Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.182
      1  1.182        ad /*	$NetBSD: uvm_swap.c,v 1.182 2019/12/01 14:40:31 ad Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.182        ad __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.182 2019/12/01 14:40:31 ad Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38    1.1       mrg 
     39    1.1       mrg #include <sys/param.h>
     40    1.1       mrg #include <sys/systm.h>
     41    1.1       mrg #include <sys/buf.h>
     42   1.89      yamt #include <sys/bufq.h>
     43   1.36       mrg #include <sys/conf.h>
     44    1.1       mrg #include <sys/proc.h>
     45    1.1       mrg #include <sys/namei.h>
     46    1.1       mrg #include <sys/disklabel.h>
     47    1.1       mrg #include <sys/errno.h>
     48    1.1       mrg #include <sys/kernel.h>
     49    1.1       mrg #include <sys/vnode.h>
     50    1.1       mrg #include <sys/file.h>
     51  1.110      yamt #include <sys/vmem.h>
     52   1.90      yamt #include <sys/blist.h>
     53    1.1       mrg #include <sys/mount.h>
     54   1.12        pk #include <sys/pool.h>
     55  1.159      para #include <sys/kmem.h>
     56    1.1       mrg #include <sys/syscallargs.h>
     57   1.17       mrg #include <sys/swap.h>
     58  1.100      elad #include <sys/kauth.h>
     59  1.125        ad #include <sys/sysctl.h>
     60  1.130   hannken #include <sys/workqueue.h>
     61    1.1       mrg 
     62    1.1       mrg #include <uvm/uvm.h>
     63    1.1       mrg 
     64    1.1       mrg #include <miscfs/specfs/specdev.h>
     65    1.1       mrg 
     66    1.1       mrg /*
     67    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     68    1.1       mrg  */
     69    1.1       mrg 
     70    1.1       mrg /*
     71    1.1       mrg  * swap space is managed in the following way:
     72   1.51       chs  *
     73    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     74    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     75    1.1       mrg  * information that is passed up to the user (via system calls).
     76    1.1       mrg  *
     77    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     78    1.1       mrg  * swap parition usage.
     79    1.1       mrg  *
     80    1.1       mrg  * the system maintains a global data structure describing all swap
     81    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     82    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     83   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     84  1.164  christos  * TAILQ of "swapdev" structures at that priority.
     85    1.1       mrg  *
     86    1.1       mrg  * locking:
     87  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88    1.1       mrg  *    system call and prevents the swap priority list from changing
     89    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91    1.1       mrg  *    structures including the priority list, the swapdev structures,
     92  1.110      yamt  *    and the swapmap arena.
     93    1.1       mrg  *
     94    1.1       mrg  * each swap device has the following info:
     95    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     96    1.1       mrg  *  - swap enabled (allows new allocations on swap)
     97    1.1       mrg  *  - map info in /dev/drum
     98    1.1       mrg  *  - vnode pointer
     99    1.1       mrg  * for swap files only:
    100    1.1       mrg  *  - block size
    101    1.1       mrg  *  - max byte count in buffer
    102    1.1       mrg  *  - buffer
    103    1.1       mrg  *
    104    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    105    1.1       mrg  * the sys_swapctl performs the following operations:
    106    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109   1.85  junyoung  *	the current swap config into the array. The actual work is done
    110  1.155     rmind  *	in the uvm_swap_stats() function.
    111    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112    1.1       mrg  *	priority in "misc", start swapping on it.
    113    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115    1.1       mrg  *	"misc")
    116    1.1       mrg  */
    117    1.1       mrg 
    118    1.1       mrg /*
    119    1.1       mrg  * swapdev: describes a single swap partition/file
    120    1.1       mrg  *
    121    1.1       mrg  * note the following should be true:
    122    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124    1.1       mrg  */
    125    1.1       mrg struct swapdev {
    126  1.144       mrg 	dev_t			swd_dev;	/* device id */
    127  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    128  1.144       mrg 	int			swd_priority;	/* our priority */
    129  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    130   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    138   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    139  1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    140    1.1       mrg 
    141   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    142   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    143   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    144   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    145    1.1       mrg };
    146    1.1       mrg 
    147    1.1       mrg /*
    148    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149    1.1       mrg  */
    150    1.1       mrg struct swappri {
    151    1.1       mrg 	int			spi_priority;     /* priority */
    152  1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153  1.165  christos 	/* tailq of swapdevs at this priority */
    154    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155    1.1       mrg };
    156    1.1       mrg 
    157    1.1       mrg /*
    158    1.1       mrg  * The following two structures are used to keep track of data transfers
    159    1.1       mrg  * on swap devices associated with regular files.
    160    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161    1.1       mrg  * structure names here to ease porting..
    162    1.1       mrg  */
    163    1.1       mrg struct vndxfer {
    164    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165    1.1       mrg 	struct swapdev	*vx_sdp;
    166    1.1       mrg 	int		vx_error;
    167    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    168    1.1       mrg 	int		vx_flags;
    169    1.1       mrg #define VX_BUSY		1
    170    1.1       mrg #define VX_DEAD		2
    171    1.1       mrg };
    172    1.1       mrg 
    173    1.1       mrg struct vndbuf {
    174    1.1       mrg 	struct buf	vb_buf;
    175    1.1       mrg 	struct vndxfer	*vb_xfer;
    176    1.1       mrg };
    177    1.1       mrg 
    178  1.144       mrg /*
    179   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    180    1.1       mrg  */
    181  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    182    1.1       mrg 
    183    1.1       mrg /*
    184    1.1       mrg  * local variables
    185    1.1       mrg  */
    186  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    187    1.1       mrg 
    188    1.1       mrg /* list of all active swap devices [by priority] */
    189    1.1       mrg LIST_HEAD(swap_priority, swappri);
    190    1.1       mrg static struct swap_priority swap_priority;
    191    1.1       mrg 
    192    1.1       mrg /* locks */
    193  1.182        ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    194  1.117        ad static krwlock_t swap_syscall_lock;
    195    1.1       mrg 
    196  1.130   hannken /* workqueue and use counter for swap to regular files */
    197  1.130   hannken static int sw_reg_count = 0;
    198  1.130   hannken static struct workqueue *sw_reg_workqueue;
    199  1.130   hannken 
    200  1.141        ad /* tuneables */
    201  1.141        ad u_int uvm_swapisfull_factor = 99;
    202  1.141        ad 
    203    1.1       mrg /*
    204    1.1       mrg  * prototypes
    205    1.1       mrg  */
    206   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    207    1.1       mrg 
    208  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    209   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    210   1.85  junyoung 					 struct swappri *, int);
    211   1.85  junyoung static void		 swaplist_trim(void);
    212    1.1       mrg 
    213   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    214   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    215    1.1       mrg 
    216   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    217  1.130   hannken static void sw_reg_biodone(struct buf *);
    218  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    219   1.85  junyoung static void sw_reg_start(struct swapdev *);
    220    1.1       mrg 
    221   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    222    1.1       mrg 
    223    1.1       mrg /*
    224    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    225    1.1       mrg  *
    226   1.51       chs  * => called at boot time from init_main.c after the filesystems
    227    1.1       mrg  *	are brought up (which happens after uvm_init())
    228    1.1       mrg  */
    229    1.1       mrg void
    230   1.93   thorpej uvm_swap_init(void)
    231    1.1       mrg {
    232    1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    233    1.1       mrg 
    234    1.1       mrg 	UVMHIST_CALLED(pdhist);
    235    1.1       mrg 	/*
    236    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    237    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    238    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    239    1.1       mrg 	 */
    240    1.1       mrg 
    241    1.1       mrg 	LIST_INIT(&swap_priority);
    242    1.1       mrg 	uvmexp.nswapdev = 0;
    243  1.117        ad 	rw_init(&swap_syscall_lock);
    244  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    245   1.12        pk 
    246    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    247  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    248  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    249  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    250  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    251  1.145       mrg 		panic("%s: can't open swap device", __func__);
    252  1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    253    1.1       mrg 
    254    1.1       mrg 	/*
    255    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    256    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    257   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    258    1.1       mrg 	 * failure, or no allocation).
    259    1.1       mrg 	 */
    260  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    261  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    262  1.147     rmind 	if (swapmap == 0) {
    263  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    264  1.147     rmind 	}
    265  1.146     pooka 
    266  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    267  1.146     pooka 	    NULL, IPL_BIO);
    268  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    269  1.146     pooka 	    NULL, IPL_BIO);
    270  1.147     rmind 
    271  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    272    1.1       mrg }
    273    1.1       mrg 
    274    1.1       mrg /*
    275    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    276    1.1       mrg  * devices on the system.
    277    1.1       mrg  */
    278    1.1       mrg 
    279    1.1       mrg /*
    280    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    281    1.1       mrg  *
    282  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    283  1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    284  1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    285  1.154     rmind  *	blocking here while adding swap)
    286    1.1       mrg  */
    287    1.1       mrg static void
    288   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    289    1.1       mrg {
    290    1.1       mrg 	struct swappri *spp, *pspp;
    291    1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    292    1.1       mrg 
    293    1.1       mrg 	/*
    294    1.1       mrg 	 * find entry at or after which to insert the new device.
    295    1.1       mrg 	 */
    296   1.55       chs 	pspp = NULL;
    297   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    298    1.1       mrg 		if (priority <= spp->spi_priority)
    299    1.1       mrg 			break;
    300    1.1       mrg 		pspp = spp;
    301    1.1       mrg 	}
    302    1.1       mrg 
    303    1.1       mrg 	/*
    304    1.1       mrg 	 * new priority?
    305    1.1       mrg 	 */
    306    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    307    1.1       mrg 		spp = newspp;  /* use newspp! */
    308  1.175  pgoyette 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    309   1.32       chs 			    priority, 0, 0, 0);
    310    1.1       mrg 
    311    1.1       mrg 		spp->spi_priority = priority;
    312  1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    313    1.1       mrg 
    314    1.1       mrg 		if (pspp)
    315    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    316    1.1       mrg 		else
    317    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    318    1.1       mrg 	} else {
    319    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    320  1.159      para 		kmem_free(newspp, sizeof(*newspp));
    321    1.1       mrg 	}
    322    1.1       mrg 
    323    1.1       mrg 	/*
    324    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    325  1.165  christos 	 * tailq list and bump the total number of swapdevs.
    326    1.1       mrg 	 */
    327    1.1       mrg 	sdp->swd_priority = priority;
    328  1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    329    1.1       mrg 	uvmexp.nswapdev++;
    330    1.1       mrg }
    331    1.1       mrg 
    332    1.1       mrg /*
    333    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    334    1.1       mrg  *	global list.
    335    1.1       mrg  *
    336  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    337    1.1       mrg  * => we return the swapdev we found (and removed)
    338    1.1       mrg  */
    339    1.1       mrg static struct swapdev *
    340  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    341    1.1       mrg {
    342    1.1       mrg 	struct swapdev *sdp;
    343    1.1       mrg 	struct swappri *spp;
    344    1.1       mrg 
    345    1.1       mrg 	/*
    346    1.1       mrg 	 * search the lists for the requested vp
    347    1.1       mrg 	 */
    348   1.55       chs 
    349   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    350  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    351    1.1       mrg 			if (sdp->swd_vp == vp) {
    352    1.1       mrg 				if (remove) {
    353  1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    354    1.1       mrg 					    sdp, swd_next);
    355    1.1       mrg 					uvmexp.nswapdev--;
    356    1.1       mrg 				}
    357    1.1       mrg 				return(sdp);
    358    1.1       mrg 			}
    359   1.55       chs 		}
    360    1.1       mrg 	}
    361    1.1       mrg 	return (NULL);
    362    1.1       mrg }
    363    1.1       mrg 
    364  1.113      elad /*
    365    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    366    1.1       mrg  *	them.
    367    1.1       mrg  *
    368  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    369    1.1       mrg  */
    370    1.1       mrg static void
    371   1.93   thorpej swaplist_trim(void)
    372    1.1       mrg {
    373    1.1       mrg 	struct swappri *spp, *nextspp;
    374    1.1       mrg 
    375  1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    376  1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    377    1.1       mrg 			continue;
    378    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    379  1.159      para 		kmem_free(spp, sizeof(*spp));
    380    1.1       mrg 	}
    381    1.1       mrg }
    382    1.1       mrg 
    383    1.1       mrg /*
    384    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    385    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    386    1.1       mrg  *
    387    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    388  1.127        ad  * => caller must hold uvm_swap_data_lock
    389    1.1       mrg  */
    390    1.1       mrg static struct swapdev *
    391   1.93   thorpej swapdrum_getsdp(int pgno)
    392    1.1       mrg {
    393    1.1       mrg 	struct swapdev *sdp;
    394    1.1       mrg 	struct swappri *spp;
    395   1.51       chs 
    396   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    397  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    398   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    399   1.48      fvdl 				continue;
    400    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    401    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    402    1.1       mrg 				return sdp;
    403    1.1       mrg 			}
    404   1.48      fvdl 		}
    405   1.55       chs 	}
    406    1.1       mrg 	return NULL;
    407    1.1       mrg }
    408    1.1       mrg 
    409  1.173      maxv void swapsys_lock(krw_t op)
    410  1.173      maxv {
    411  1.173      maxv 	rw_enter(&swap_syscall_lock, op);
    412  1.173      maxv }
    413  1.173      maxv 
    414  1.173      maxv void swapsys_unlock(void)
    415  1.173      maxv {
    416  1.173      maxv 	rw_exit(&swap_syscall_lock);
    417  1.173      maxv }
    418    1.1       mrg 
    419  1.176  christos static void
    420  1.176  christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    421  1.176  christos {
    422  1.176  christos 	se->se_dev = sdp->swd_dev;
    423  1.176  christos 	se->se_flags = sdp->swd_flags;
    424  1.176  christos 	se->se_nblks = sdp->swd_nblks;
    425  1.176  christos 	se->se_inuse = inuse;
    426  1.176  christos 	se->se_priority = sdp->swd_priority;
    427  1.176  christos 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    428  1.176  christos 	strcpy(se->se_path, sdp->swd_path);
    429  1.176  christos }
    430  1.176  christos 
    431  1.180       kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    432  1.177  christos     (void *)enosys;
    433  1.177  christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    434  1.177  christos     (void *)enosys;
    435  1.176  christos 
    436    1.1       mrg /*
    437    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    438    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    439    1.1       mrg  */
    440    1.1       mrg int
    441  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    442    1.1       mrg {
    443  1.133       dsl 	/* {
    444    1.1       mrg 		syscallarg(int) cmd;
    445    1.1       mrg 		syscallarg(void *) arg;
    446    1.1       mrg 		syscallarg(int) misc;
    447  1.133       dsl 	} */
    448    1.1       mrg 	struct vnode *vp;
    449    1.1       mrg 	struct nameidata nd;
    450    1.1       mrg 	struct swappri *spp;
    451    1.1       mrg 	struct swapdev *sdp;
    452  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    453  1.101  christos 	char	*userpath;
    454  1.161     rmind 	size_t	len = 0;
    455  1.176  christos 	int	error;
    456    1.1       mrg 	int	priority;
    457    1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    458    1.1       mrg 
    459    1.1       mrg 	/*
    460    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    461    1.1       mrg 	 *
    462   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    463    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    464    1.1       mrg 	 */
    465    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    466  1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    467  1.175  pgoyette 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    468  1.175  pgoyette 		    0, 0, 0);
    469  1.161     rmind 		*retval = nswapdev;
    470  1.161     rmind 		return 0;
    471    1.1       mrg 	}
    472    1.1       mrg 
    473  1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    474  1.161     rmind 
    475  1.161     rmind 	/*
    476  1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    477  1.161     rmind 	 */
    478  1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    479  1.161     rmind 
    480    1.1       mrg 	/*
    481    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    482    1.1       mrg 	 *
    483   1.51       chs 	 * note that the swap_priority list can't change as long
    484    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    485  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    486    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    487    1.1       mrg 	 */
    488  1.176  christos 	switch (SCARG(uap, cmd)) {
    489  1.177  christos 	case SWAP_STATS13:
    490  1.177  christos 		error = (*uvm_swap_stats13)(uap, retval);
    491  1.177  christos 		goto out;
    492  1.177  christos 	case SWAP_STATS50:
    493  1.177  christos 		error = (*uvm_swap_stats50)(uap, retval);
    494  1.177  christos 		goto out;
    495  1.176  christos 	case SWAP_STATS:
    496  1.176  christos 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    497  1.177  christos 		    NULL, sizeof(struct swapent), retval);
    498   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    499   1.16       mrg 		goto out;
    500  1.176  christos 
    501  1.176  christos 	case SWAP_GETDUMPDEV:
    502  1.176  christos 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    503   1.55       chs 		goto out;
    504  1.176  christos 	default:
    505  1.176  christos 		break;
    506   1.55       chs 	}
    507    1.1       mrg 
    508    1.1       mrg 	/*
    509    1.1       mrg 	 * all other requests require superuser privs.   verify.
    510    1.1       mrg 	 */
    511  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    512  1.106      elad 	    0, NULL, NULL, NULL)))
    513   1.16       mrg 		goto out;
    514    1.1       mrg 
    515  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    516  1.104    martin 		/* drop the current dump device */
    517  1.104    martin 		dumpdev = NODEV;
    518  1.138    kardel 		dumpcdev = NODEV;
    519  1.104    martin 		cpu_dumpconf();
    520  1.104    martin 		goto out;
    521  1.104    martin 	}
    522  1.104    martin 
    523    1.1       mrg 	/*
    524    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    525    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    526    1.1       mrg 	 * the vnode (VOP_LOCK).
    527    1.1       mrg 	 *
    528    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    529   1.16       mrg 	 * miniroot)
    530    1.1       mrg 	 */
    531    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    532    1.1       mrg 		vp = rootvp;		/* miniroot */
    533  1.152   hannken 		vref(vp);
    534  1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    535  1.152   hannken 			vrele(vp);
    536   1.16       mrg 			error = EBUSY;
    537   1.16       mrg 			goto out;
    538    1.1       mrg 		}
    539   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    540  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    541   1.16       mrg 			panic("swapctl: miniroot copy failed");
    542    1.1       mrg 	} else {
    543  1.153  dholland 		struct pathbuf *pb;
    544   1.16       mrg 
    545  1.153  dholland 		/*
    546  1.153  dholland 		 * This used to allow copying in one extra byte
    547  1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    548  1.153  dholland 		 * This was completely pointless because if anyone
    549  1.153  dholland 		 * used that extra byte namei would fail with
    550  1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    551  1.153  dholland 		 * logic. - dholland 20100215
    552  1.153  dholland 		 */
    553  1.153  dholland 
    554  1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    555  1.153  dholland 		if (error) {
    556  1.153  dholland 			goto out;
    557  1.153  dholland 		}
    558   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    559  1.153  dholland 			/* get a copy of the string */
    560  1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    561  1.153  dholland 			len = strlen(userpath) + 1;
    562  1.153  dholland 		}
    563  1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    564  1.153  dholland 		if ((error = namei(&nd))) {
    565  1.153  dholland 			pathbuf_destroy(pb);
    566  1.153  dholland 			goto out;
    567    1.1       mrg 		}
    568    1.1       mrg 		vp = nd.ni_vp;
    569  1.153  dholland 		pathbuf_destroy(pb);
    570    1.1       mrg 	}
    571    1.1       mrg 	/* note: "vp" is referenced and locked */
    572    1.1       mrg 
    573    1.1       mrg 	error = 0;		/* assume no error */
    574    1.1       mrg 	switch(SCARG(uap, cmd)) {
    575   1.40       mrg 
    576   1.24       mrg 	case SWAP_DUMPDEV:
    577   1.24       mrg 		if (vp->v_type != VBLK) {
    578   1.24       mrg 			error = ENOTBLK;
    579   1.45        pk 			break;
    580   1.24       mrg 		}
    581  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    582  1.109       mrg 			dumpdev = vp->v_rdev;
    583  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    584  1.138    kardel 		} else
    585  1.109       mrg 			dumpdev = NODEV;
    586   1.68  drochner 		cpu_dumpconf();
    587   1.24       mrg 		break;
    588   1.24       mrg 
    589    1.1       mrg 	case SWAP_CTL:
    590    1.1       mrg 		/*
    591    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    592    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    593    1.1       mrg 		 * any empty priority structures.
    594    1.1       mrg 		 */
    595    1.1       mrg 		priority = SCARG(uap, misc);
    596  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    597  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    598  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    599    1.1       mrg 			error = ENOENT;
    600    1.1       mrg 		} else {
    601    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    602    1.1       mrg 			swaplist_trim();
    603    1.1       mrg 		}
    604  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    605    1.1       mrg 		if (error)
    606  1.159      para 			kmem_free(spp, sizeof(*spp));
    607    1.1       mrg 		break;
    608    1.1       mrg 
    609    1.1       mrg 	case SWAP_ON:
    610   1.32       chs 
    611    1.1       mrg 		/*
    612    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    613    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    614    1.1       mrg 		 * trying to enable this device while we are working on
    615    1.1       mrg 		 * it.
    616    1.1       mrg 		 */
    617   1.32       chs 
    618    1.1       mrg 		priority = SCARG(uap, misc);
    619  1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    620  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    621   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    622   1.67       chs 		sdp->swd_vp = vp;
    623   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    624   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    625  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    626  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    627    1.1       mrg 			error = EBUSY;
    628  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    629   1.96      yamt 			bufq_free(sdp->swd_tab);
    630  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    631  1.159      para 			kmem_free(spp, sizeof(*spp));
    632   1.16       mrg 			break;
    633    1.1       mrg 		}
    634    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    635  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    636    1.1       mrg 
    637  1.161     rmind 		KASSERT(len > 0);
    638   1.16       mrg 		sdp->swd_pathlen = len;
    639  1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    640  1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    641   1.19        pk 			panic("swapctl: copystr");
    642   1.32       chs 
    643    1.1       mrg 		/*
    644    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    645    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    646    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    647    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    648    1.1       mrg 		 */
    649   1.32       chs 
    650   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    651  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    652  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    653    1.1       mrg 			swaplist_trim();
    654  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    655   1.96      yamt 			bufq_free(sdp->swd_tab);
    656  1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    657  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    658    1.1       mrg 			break;
    659    1.1       mrg 		}
    660    1.1       mrg 		break;
    661    1.1       mrg 
    662    1.1       mrg 	case SWAP_OFF:
    663  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    664  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    665  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    666    1.1       mrg 			error = ENXIO;
    667    1.1       mrg 			break;
    668    1.1       mrg 		}
    669   1.32       chs 
    670    1.1       mrg 		/*
    671    1.1       mrg 		 * If a device isn't in use or enabled, we
    672    1.1       mrg 		 * can't stop swapping from it (again).
    673    1.1       mrg 		 */
    674    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    675  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    676    1.1       mrg 			error = EBUSY;
    677   1.16       mrg 			break;
    678    1.1       mrg 		}
    679    1.1       mrg 
    680    1.1       mrg 		/*
    681   1.32       chs 		 * do the real work.
    682    1.1       mrg 		 */
    683   1.97  christos 		error = swap_off(l, sdp);
    684    1.1       mrg 		break;
    685    1.1       mrg 
    686    1.1       mrg 	default:
    687    1.1       mrg 		error = EINVAL;
    688    1.1       mrg 	}
    689    1.1       mrg 
    690    1.1       mrg 	/*
    691   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    692    1.1       mrg 	 */
    693    1.1       mrg 	vput(vp);
    694   1.16       mrg out:
    695  1.160     rmind 	rw_exit(&swap_syscall_lock);
    696  1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    697    1.1       mrg 
    698  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    699    1.1       mrg 	return (error);
    700   1.61      manu }
    701   1.61      manu 
    702   1.85  junyoung /*
    703  1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    704   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    705   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    706   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    707   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    708   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    709   1.61      manu  * ensure it would fit in the stackgap in any case.
    710   1.61      manu  */
    711  1.176  christos int
    712  1.180       kre uvm_swap_stats(char *ptr, int misc,
    713  1.176  christos     void (*f)(void *, const struct swapent *), size_t len,
    714  1.176  christos     register_t *retval)
    715   1.61      manu {
    716   1.61      manu 	struct swappri *spp;
    717   1.61      manu 	struct swapdev *sdp;
    718  1.176  christos 	struct swapent sep;
    719   1.61      manu 	int count = 0;
    720  1.176  christos 	int error;
    721  1.176  christos 
    722  1.176  christos 	KASSERT(len <= sizeof(sep));
    723  1.176  christos 	if (len == 0)
    724  1.176  christos 		return ENOSYS;
    725  1.176  christos 
    726  1.176  christos 	if (misc < 0)
    727  1.176  christos 		return EINVAL;
    728  1.176  christos 
    729  1.176  christos 	if (misc == 0 || uvmexp.nswapdev == 0)
    730  1.176  christos 		return 0;
    731  1.176  christos 
    732  1.176  christos 	/* Make sure userland cannot exhaust kernel memory */
    733  1.176  christos 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    734  1.176  christos 		misc = uvmexp.nswapdev;
    735   1.61      manu 
    736  1.173      maxv 	KASSERT(rw_lock_held(&swap_syscall_lock));
    737  1.173      maxv 
    738   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    739  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    740  1.144       mrg 			int inuse;
    741  1.144       mrg 
    742  1.176  christos 			if (misc-- <= 0)
    743  1.161     rmind 				break;
    744  1.161     rmind 
    745  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    746   1.61      manu 			    PAGE_SHIFT);
    747   1.85  junyoung 
    748  1.178      maxv 			memset(&sep, 0, sizeof(sep));
    749  1.176  christos 			swapent_cvt(&sep, sdp, inuse);
    750  1.176  christos 			if (f)
    751  1.176  christos 				(*f)(&sep, &sep);
    752  1.176  christos 			if ((error = copyout(&sep, ptr, len)) != 0)
    753  1.176  christos 				return error;
    754  1.176  christos 			ptr += len;
    755   1.61      manu 			count++;
    756   1.61      manu 		}
    757   1.61      manu 	}
    758   1.61      manu 	*retval = count;
    759  1.176  christos 	return 0;
    760    1.1       mrg }
    761    1.1       mrg 
    762    1.1       mrg /*
    763    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    764    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    765    1.1       mrg  *	SWF_FAKE).
    766    1.1       mrg  *
    767    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    768    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    769  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    770    1.1       mrg  *	if needed.
    771    1.1       mrg  */
    772    1.1       mrg static int
    773   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    774    1.1       mrg {
    775    1.1       mrg 	struct vnode *vp;
    776    1.1       mrg 	int error, npages, nblocks, size;
    777    1.1       mrg 	long addr;
    778  1.157    dyoung 	vmem_addr_t result;
    779    1.1       mrg 	struct vattr va;
    780    1.1       mrg 	dev_t dev;
    781    1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    782    1.1       mrg 
    783    1.1       mrg 	/*
    784    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    785    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    786    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    787    1.1       mrg 	 */
    788    1.1       mrg 
    789    1.1       mrg 	vp = sdp->swd_vp;
    790    1.1       mrg 	dev = sdp->swd_dev;
    791    1.1       mrg 
    792    1.1       mrg 	/*
    793    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    794    1.1       mrg 	 * let device driver know what is up).
    795    1.1       mrg 	 *
    796    1.1       mrg 	 * we skip the open/close for root on swap because the root
    797    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    798    1.1       mrg 	 */
    799    1.1       mrg 	if (vp != rootvp) {
    800  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    801    1.1       mrg 			return (error);
    802    1.1       mrg 	}
    803    1.1       mrg 
    804    1.1       mrg 	/* XXX this only works for block devices */
    805  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    806    1.1       mrg 
    807    1.1       mrg 	/*
    808    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    809    1.1       mrg 	 * block specials we can call the d_psize function.
    810    1.1       mrg 	 * for normal files, we must stat [get attrs].
    811    1.1       mrg 	 *
    812    1.1       mrg 	 * we put the result in nblks.
    813    1.1       mrg 	 * for normal files, we also want the filesystem block size
    814    1.1       mrg 	 * (which we get with statfs).
    815    1.1       mrg 	 */
    816    1.1       mrg 	switch (vp->v_type) {
    817    1.1       mrg 	case VBLK:
    818  1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    819    1.1       mrg 			error = ENXIO;
    820    1.1       mrg 			goto bad;
    821    1.1       mrg 		}
    822    1.1       mrg 		break;
    823    1.1       mrg 
    824    1.1       mrg 	case VREG:
    825  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    826    1.1       mrg 			goto bad;
    827    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    828  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    829    1.1       mrg 		/*
    830    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    831    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    832    1.1       mrg 		 */
    833  1.150     pooka 		if (vp->v_tag == VT_NFS)
    834    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    835    1.1       mrg 		else
    836    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    837    1.1       mrg 		break;
    838    1.1       mrg 
    839    1.1       mrg 	default:
    840    1.1       mrg 		error = ENXIO;
    841    1.1       mrg 		goto bad;
    842    1.1       mrg 	}
    843    1.1       mrg 
    844    1.1       mrg 	/*
    845    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    846    1.1       mrg 	 */
    847    1.1       mrg 
    848  1.144       mrg 	sdp->swd_nblks = nblocks;
    849   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    850    1.1       mrg 
    851    1.1       mrg 	/*
    852    1.1       mrg 	 * for block special files, we want to make sure that leave
    853    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    854   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    855    1.1       mrg 	 * note that because of this the "size" can be less than the
    856    1.1       mrg 	 * actual number of blocks on the device.
    857    1.1       mrg 	 */
    858    1.1       mrg 	if (vp->v_type == VBLK) {
    859    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    860    1.1       mrg 		size = npages - 1;
    861    1.1       mrg 		addr = 1;
    862    1.1       mrg 	} else {
    863    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    864    1.1       mrg 		size = npages;
    865    1.1       mrg 		addr = 0;
    866    1.1       mrg 	}
    867    1.1       mrg 
    868    1.1       mrg 	/*
    869    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    870    1.1       mrg 	 * area.   we want at least one page.
    871    1.1       mrg 	 */
    872    1.1       mrg 
    873    1.1       mrg 	if (size < 1) {
    874    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    875    1.1       mrg 		error = EINVAL;
    876    1.1       mrg 		goto bad;
    877    1.1       mrg 	}
    878    1.1       mrg 
    879  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    880    1.1       mrg 
    881    1.1       mrg 	/*
    882    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    883    1.1       mrg 	 */
    884    1.1       mrg 
    885   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    886   1.90      yamt 	/* mark all expect the `saved' region free. */
    887   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    888    1.1       mrg 
    889    1.1       mrg 	/*
    890   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    891    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    892   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    893    1.1       mrg 	 * find its size and skip over it.
    894    1.1       mrg 	 */
    895    1.1       mrg 	if (vp == rootvp) {
    896    1.1       mrg 		struct mount *mp;
    897   1.86  christos 		struct statvfs *sp;
    898    1.1       mrg 		int rootblocks, rootpages;
    899    1.1       mrg 
    900    1.1       mrg 		mp = rootvnode->v_mount;
    901    1.1       mrg 		sp = &mp->mnt_stat;
    902   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    903   1.64  fredette 		/*
    904   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    905   1.64  fredette 		 * blocks in the filesystem, it's the number of
    906   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    907   1.85  junyoung 		 * definitely underestimates the total size
    908   1.64  fredette 		 * of the filesystem - how badly depends on the
    909   1.85  junyoung 		 * details of the filesystem type.  there isn't
    910   1.64  fredette 		 * an obvious way to deal with this cleanly
    911   1.85  junyoung 		 * and perfectly, so for now we just pad our
    912   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    913   1.64  fredette 		 */
    914   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    915   1.64  fredette 			(rootblocks >> 6) +
    916   1.64  fredette 			(rootblocks >> 7);
    917   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    918   1.32       chs 		if (rootpages > size)
    919    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    920    1.1       mrg 
    921   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    922    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    923   1.90      yamt 		}
    924    1.1       mrg 
    925   1.32       chs 		size -= rootpages;
    926    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    927   1.32       chs 		printf("leaving %d pages of swap\n", size);
    928    1.1       mrg 	}
    929    1.1       mrg 
    930   1.39       chs 	/*
    931   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    932   1.39       chs 	 */
    933   1.39       chs 	vref(vp);
    934   1.39       chs 
    935    1.1       mrg 	/*
    936    1.1       mrg 	 * now add the new swapdev to the drum and enable.
    937    1.1       mrg 	 */
    938  1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    939  1.157    dyoung 	if (error != 0)
    940   1.48      fvdl 		panic("swapdrum_add");
    941  1.130   hannken 	/*
    942  1.130   hannken 	 * If this is the first regular swap create the workqueue.
    943  1.130   hannken 	 * => Protected by swap_syscall_lock.
    944  1.130   hannken 	 */
    945  1.130   hannken 	if (vp->v_type != VBLK) {
    946  1.130   hannken 		if (sw_reg_count++ == 0) {
    947  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
    948  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    949  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    950  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
    951  1.130   hannken 		}
    952  1.130   hannken 	}
    953   1.48      fvdl 
    954   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    955   1.48      fvdl 	sdp->swd_drumsize = npages;
    956   1.48      fvdl 	sdp->swd_npages = size;
    957  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
    958    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    959    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    960   1.32       chs 	uvmexp.swpages += size;
    961   1.81        pk 	uvmexp.swpgavail += size;
    962  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    963    1.1       mrg 	return (0);
    964    1.1       mrg 
    965    1.1       mrg 	/*
    966   1.43       chs 	 * failure: clean up and return error.
    967    1.1       mrg 	 */
    968   1.43       chs 
    969   1.43       chs bad:
    970   1.90      yamt 	if (sdp->swd_blist) {
    971   1.90      yamt 		blist_destroy(sdp->swd_blist);
    972   1.43       chs 	}
    973   1.43       chs 	if (vp != rootvp) {
    974  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    975   1.43       chs 	}
    976    1.1       mrg 	return (error);
    977    1.1       mrg }
    978    1.1       mrg 
    979    1.1       mrg /*
    980    1.1       mrg  * swap_off: stop swapping on swapdev
    981    1.1       mrg  *
    982   1.32       chs  * => swap data should be locked, we will unlock.
    983    1.1       mrg  */
    984    1.1       mrg static int
    985   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
    986    1.1       mrg {
    987   1.91      yamt 	int npages = sdp->swd_npages;
    988   1.91      yamt 	int error = 0;
    989   1.81        pk 
    990    1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    991  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
    992    1.1       mrg 
    993   1.32       chs 	/* disable the swap area being removed */
    994    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
    995   1.81        pk 	uvmexp.swpgavail -= npages;
    996  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
    997   1.32       chs 
    998   1.32       chs 	/*
    999   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1000   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1001   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1002   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1003   1.32       chs 	 */
   1004    1.1       mrg 
   1005   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1006   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1007   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1008   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1009   1.91      yamt 		error = ENOMEM;
   1010   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1011   1.91      yamt 		error = EBUSY;
   1012   1.91      yamt 	}
   1013   1.51       chs 
   1014   1.91      yamt 	if (error) {
   1015  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1016   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1017   1.81        pk 		uvmexp.swpgavail += npages;
   1018  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1019   1.91      yamt 
   1020   1.91      yamt 		return error;
   1021   1.32       chs 	}
   1022    1.1       mrg 
   1023    1.1       mrg 	/*
   1024  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1025  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1026  1.130   hannken 	 */
   1027  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1028  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1029  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1030  1.130   hannken 		if (--sw_reg_count == 0) {
   1031  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1032  1.130   hannken 			sw_reg_workqueue = NULL;
   1033  1.130   hannken 		}
   1034  1.130   hannken 	}
   1035  1.130   hannken 
   1036  1.130   hannken 	/*
   1037   1.58     enami 	 * done with the vnode.
   1038   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1039   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1040    1.1       mrg 	 */
   1041   1.39       chs 	vrele(sdp->swd_vp);
   1042   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1043  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1044   1.32       chs 	}
   1045   1.32       chs 
   1046  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1047   1.81        pk 	uvmexp.swpages -= npages;
   1048   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1049    1.1       mrg 
   1050  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1051  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1052   1.32       chs 	swaplist_trim();
   1053  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1054    1.1       mrg 
   1055   1.32       chs 	/*
   1056   1.32       chs 	 * free all resources!
   1057   1.32       chs 	 */
   1058  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1059   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1060   1.96      yamt 	bufq_free(sdp->swd_tab);
   1061  1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1062    1.1       mrg 	return (0);
   1063    1.1       mrg }
   1064    1.1       mrg 
   1065  1.164  christos void
   1066  1.164  christos uvm_swap_shutdown(struct lwp *l)
   1067  1.164  christos {
   1068  1.164  christos 	struct swapdev *sdp;
   1069  1.164  christos 	struct swappri *spp;
   1070  1.164  christos 	struct vnode *vp;
   1071  1.164  christos 	int error;
   1072  1.164  christos 
   1073  1.182        ad 	printf("turning off swap...");
   1074  1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1075  1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1076  1.164  christos again:
   1077  1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1078  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1079  1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1080  1.164  christos 				continue;
   1081  1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1082  1.164  christos 				continue;
   1083  1.164  christos #ifdef DEBUG
   1084  1.164  christos 			printf("\nturning off swap on %s...",
   1085  1.164  christos 			    sdp->swd_path);
   1086  1.164  christos #endif
   1087  1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1088  1.164  christos 				error = EBUSY;
   1089  1.164  christos 				vp = NULL;
   1090  1.164  christos 			} else
   1091  1.164  christos 				error = 0;
   1092  1.164  christos 			if (!error) {
   1093  1.164  christos 				error = swap_off(l, sdp);
   1094  1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1095  1.164  christos 			}
   1096  1.164  christos 			if (error) {
   1097  1.164  christos 				printf("stopping swap on %s failed "
   1098  1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1099  1.164  christos 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1100  1.164  christos 				    swd_next);
   1101  1.164  christos 				uvmexp.nswapdev--;
   1102  1.164  christos 				swaplist_trim();
   1103  1.164  christos 				if (vp)
   1104  1.164  christos 					vput(vp);
   1105  1.164  christos 			}
   1106  1.164  christos 			goto again;
   1107  1.164  christos 		}
   1108  1.164  christos 	printf(" done\n");
   1109  1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1110  1.164  christos 	rw_exit(&swap_syscall_lock);
   1111  1.164  christos }
   1112  1.164  christos 
   1113  1.164  christos 
   1114    1.1       mrg /*
   1115    1.1       mrg  * /dev/drum interface and i/o functions
   1116    1.1       mrg  */
   1117    1.1       mrg 
   1118    1.1       mrg /*
   1119    1.1       mrg  * swstrategy: perform I/O on the drum
   1120    1.1       mrg  *
   1121    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1122    1.1       mrg  */
   1123   1.94   thorpej static void
   1124   1.93   thorpej swstrategy(struct buf *bp)
   1125    1.1       mrg {
   1126    1.1       mrg 	struct swapdev *sdp;
   1127    1.1       mrg 	struct vnode *vp;
   1128  1.134        ad 	int pageno, bn;
   1129    1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1130    1.1       mrg 
   1131    1.1       mrg 	/*
   1132    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1133    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1134    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1135    1.1       mrg 	 */
   1136   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1137  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1138    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1139  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1140    1.1       mrg 	if (sdp == NULL) {
   1141    1.1       mrg 		bp->b_error = EINVAL;
   1142  1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1143    1.1       mrg 		biodone(bp);
   1144    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1145    1.1       mrg 		return;
   1146    1.1       mrg 	}
   1147    1.1       mrg 
   1148    1.1       mrg 	/*
   1149    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1150    1.1       mrg 	 */
   1151    1.1       mrg 
   1152   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1153   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1154    1.1       mrg 
   1155  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1156  1.175  pgoyette 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1157    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1158    1.1       mrg 
   1159    1.1       mrg 	/*
   1160    1.1       mrg 	 * for block devices we finish up here.
   1161   1.32       chs 	 * for regular files we have to do more work which we delegate
   1162    1.1       mrg 	 * to sw_reg_strategy().
   1163    1.1       mrg 	 */
   1164    1.1       mrg 
   1165  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1166  1.134        ad 	switch (vp->v_type) {
   1167    1.1       mrg 	default:
   1168  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1169   1.32       chs 
   1170    1.1       mrg 	case VBLK:
   1171    1.1       mrg 
   1172    1.1       mrg 		/*
   1173    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1174    1.1       mrg 		 * on the swapdev (sdp).
   1175    1.1       mrg 		 */
   1176    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1177    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1178    1.1       mrg 
   1179    1.1       mrg 		/*
   1180    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1181    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1182    1.1       mrg 		 */
   1183    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1184  1.134        ad 			mutex_enter(bp->b_objlock);
   1185    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1186  1.134        ad 			mutex_exit(bp->b_objlock);
   1187  1.156     rmind 			mutex_enter(vp->v_interlock);
   1188  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1189  1.156     rmind 			mutex_exit(vp->v_interlock);
   1190    1.1       mrg 		}
   1191    1.1       mrg 
   1192   1.41       chs 		/*
   1193    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1194    1.1       mrg 		 */
   1195    1.1       mrg 		bp->b_vp = vp;
   1196  1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1197   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1198    1.1       mrg 		return;
   1199   1.32       chs 
   1200    1.1       mrg 	case VREG:
   1201    1.1       mrg 		/*
   1202   1.32       chs 		 * delegate to sw_reg_strategy function.
   1203    1.1       mrg 		 */
   1204    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1205    1.1       mrg 		return;
   1206    1.1       mrg 	}
   1207    1.1       mrg 	/* NOTREACHED */
   1208    1.1       mrg }
   1209    1.1       mrg 
   1210    1.1       mrg /*
   1211   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1212   1.94   thorpej  */
   1213   1.94   thorpej /*ARGSUSED*/
   1214   1.94   thorpej static int
   1215  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1216   1.94   thorpej {
   1217   1.94   thorpej 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1218   1.94   thorpej 
   1219  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1220   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1221   1.94   thorpej }
   1222   1.94   thorpej 
   1223   1.94   thorpej /*
   1224   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1225   1.94   thorpej  */
   1226   1.94   thorpej /*ARGSUSED*/
   1227   1.94   thorpej static int
   1228  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1229   1.94   thorpej {
   1230   1.94   thorpej 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1231   1.94   thorpej 
   1232  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1233   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1234   1.94   thorpej }
   1235   1.94   thorpej 
   1236   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1237  1.168  dholland 	.d_open = nullopen,
   1238  1.168  dholland 	.d_close = nullclose,
   1239  1.168  dholland 	.d_strategy = swstrategy,
   1240  1.168  dholland 	.d_ioctl = noioctl,
   1241  1.168  dholland 	.d_dump = nodump,
   1242  1.168  dholland 	.d_psize = nosize,
   1243  1.171  dholland 	.d_discard = nodiscard,
   1244  1.168  dholland 	.d_flag = D_OTHER
   1245   1.94   thorpej };
   1246   1.94   thorpej 
   1247   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1248  1.168  dholland 	.d_open = nullopen,
   1249  1.168  dholland 	.d_close = nullclose,
   1250  1.168  dholland 	.d_read = swread,
   1251  1.168  dholland 	.d_write = swwrite,
   1252  1.168  dholland 	.d_ioctl = noioctl,
   1253  1.168  dholland 	.d_stop = nostop,
   1254  1.168  dholland 	.d_tty = notty,
   1255  1.168  dholland 	.d_poll = nopoll,
   1256  1.168  dholland 	.d_mmap = nommap,
   1257  1.168  dholland 	.d_kqfilter = nokqfilter,
   1258  1.172  dholland 	.d_discard = nodiscard,
   1259  1.168  dholland 	.d_flag = D_OTHER,
   1260   1.94   thorpej };
   1261   1.94   thorpej 
   1262   1.94   thorpej /*
   1263    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1264    1.1       mrg  */
   1265    1.1       mrg static void
   1266   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1267    1.1       mrg {
   1268    1.1       mrg 	struct vnode	*vp;
   1269    1.1       mrg 	struct vndxfer	*vnx;
   1270   1.44     enami 	daddr_t		nbn;
   1271  1.122  christos 	char 		*addr;
   1272   1.44     enami 	off_t		byteoff;
   1273    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1274    1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1275    1.1       mrg 
   1276    1.1       mrg 	/*
   1277    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1278    1.1       mrg 	 * our buffer.
   1279    1.1       mrg 	 */
   1280  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1281    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1282    1.1       mrg 	vnx->vx_error = 0;
   1283    1.1       mrg 	vnx->vx_pending = 0;
   1284    1.1       mrg 	vnx->vx_bp = bp;
   1285    1.1       mrg 	vnx->vx_sdp = sdp;
   1286    1.1       mrg 
   1287    1.1       mrg 	/*
   1288    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1289    1.1       mrg 	 * our buffer.
   1290    1.1       mrg 	 */
   1291    1.1       mrg 	error = 0;
   1292    1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1293    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1294   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1295    1.1       mrg 
   1296    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1297    1.1       mrg 		struct vndbuf	*nbp;
   1298    1.1       mrg 
   1299    1.1       mrg 		/*
   1300    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1301    1.1       mrg 		 *   vp = vnode of underlying device
   1302    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1303    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1304    1.1       mrg 		 *	block)
   1305    1.1       mrg 		 */
   1306    1.1       mrg 		nra = 0;
   1307    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1308    1.1       mrg 				 	&vp, &nbn, &nra);
   1309    1.1       mrg 
   1310   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1311   1.51       chs 			/*
   1312   1.23      marc 			 * this used to just set error, but that doesn't
   1313   1.23      marc 			 * do the right thing.  Instead, it causes random
   1314   1.23      marc 			 * memory errors.  The panic() should remain until
   1315   1.23      marc 			 * this condition doesn't destabilize the system.
   1316   1.23      marc 			 */
   1317   1.23      marc #if 1
   1318  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1319   1.23      marc #else
   1320    1.1       mrg 			error = EIO;	/* failure */
   1321   1.23      marc #endif
   1322   1.23      marc 		}
   1323    1.1       mrg 
   1324    1.1       mrg 		/*
   1325    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1326    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1327    1.1       mrg 		 * to finish before returning.
   1328    1.1       mrg 		 *
   1329    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1330    1.1       mrg 		 * a hassle (in the write case).
   1331    1.1       mrg 		 */
   1332    1.1       mrg 		if (error) {
   1333    1.1       mrg 			s = splbio();
   1334    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1335    1.1       mrg 			goto out;
   1336    1.1       mrg 		}
   1337    1.1       mrg 
   1338    1.1       mrg 		/*
   1339    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1340    1.1       mrg 		 */
   1341   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1342   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1343   1.41       chs 		if (sz > resid)
   1344    1.1       mrg 			sz = resid;
   1345    1.1       mrg 
   1346   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1347  1.175  pgoyette 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1348  1.175  pgoyette 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1349    1.1       mrg 
   1350    1.1       mrg 		/*
   1351    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1352    1.1       mrg 		 * at the front of the nbp structure so that you can
   1353    1.1       mrg 		 * cast pointers between the two structure easily.
   1354    1.1       mrg 		 */
   1355  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1356  1.134        ad 		buf_init(&nbp->vb_buf);
   1357  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1358  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1359  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1360    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1361   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1362    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1363    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1364   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1365    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1366   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1367  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1368   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1369  1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1370   1.53       chs 		if (vp->v_type == VBLK) {
   1371   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1372   1.53       chs 		}
   1373    1.1       mrg 
   1374    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1375    1.1       mrg 
   1376    1.1       mrg 		/*
   1377    1.1       mrg 		 * Just sort by block number
   1378    1.1       mrg 		 */
   1379    1.1       mrg 		s = splbio();
   1380    1.1       mrg 		if (vnx->vx_error != 0) {
   1381  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1382  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1383    1.1       mrg 			goto out;
   1384    1.1       mrg 		}
   1385    1.1       mrg 		vnx->vx_pending++;
   1386    1.1       mrg 
   1387    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1388  1.134        ad 		/* XXXAD locking */
   1389  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1390    1.1       mrg 		sw_reg_start(sdp);
   1391    1.1       mrg 		splx(s);
   1392    1.1       mrg 
   1393    1.1       mrg 		/*
   1394    1.1       mrg 		 * advance to the next I/O
   1395    1.1       mrg 		 */
   1396    1.9       mrg 		byteoff += sz;
   1397    1.1       mrg 		addr += sz;
   1398    1.1       mrg 	}
   1399    1.1       mrg 
   1400    1.1       mrg 	s = splbio();
   1401    1.1       mrg 
   1402    1.1       mrg out: /* Arrive here at splbio */
   1403    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1404    1.1       mrg 	if (vnx->vx_pending == 0) {
   1405  1.134        ad 		error = vnx->vx_error;
   1406  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1407  1.134        ad 		bp->b_error = error;
   1408    1.1       mrg 		biodone(bp);
   1409    1.1       mrg 	}
   1410    1.1       mrg 	splx(s);
   1411    1.1       mrg }
   1412    1.1       mrg 
   1413    1.1       mrg /*
   1414    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1415    1.1       mrg  *
   1416   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1417    1.1       mrg  */
   1418    1.1       mrg static void
   1419   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1420    1.1       mrg {
   1421    1.1       mrg 	struct buf	*bp;
   1422  1.134        ad 	struct vnode	*vp;
   1423    1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1424    1.1       mrg 
   1425    1.8       mrg 	/* recursion control */
   1426    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1427    1.1       mrg 		return;
   1428    1.1       mrg 
   1429    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1430    1.1       mrg 
   1431   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1432  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1433    1.1       mrg 		if (bp == NULL)
   1434    1.1       mrg 			break;
   1435   1.33   thorpej 		sdp->swd_active++;
   1436    1.1       mrg 
   1437    1.1       mrg 		UVMHIST_LOG(pdhist,
   1438  1.175  pgoyette 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1439  1.175  pgoyette 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1440  1.175  pgoyette 		    bp->b_bcount);
   1441  1.134        ad 		vp = bp->b_vp;
   1442  1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1443  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1444  1.156     rmind 			mutex_enter(vp->v_interlock);
   1445  1.134        ad 			vp->v_numoutput++;
   1446  1.156     rmind 			mutex_exit(vp->v_interlock);
   1447  1.134        ad 		}
   1448  1.134        ad 		VOP_STRATEGY(vp, bp);
   1449    1.1       mrg 	}
   1450    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1451    1.1       mrg }
   1452    1.1       mrg 
   1453    1.1       mrg /*
   1454  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1455  1.130   hannken  */
   1456  1.130   hannken static void
   1457  1.130   hannken sw_reg_biodone(struct buf *bp)
   1458  1.130   hannken {
   1459  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1460  1.130   hannken }
   1461  1.130   hannken 
   1462  1.130   hannken /*
   1463    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1464    1.1       mrg  *
   1465    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1466    1.1       mrg  */
   1467    1.1       mrg static void
   1468  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1469    1.1       mrg {
   1470  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1471    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1472    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1473    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1474   1.72       chs 	int s, resid, error;
   1475  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1476    1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1477    1.1       mrg 
   1478  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1479  1.175  pgoyette 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1480  1.175  pgoyette 	    (uintptr_t)vbp->vb_buf.b_data);
   1481  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1482    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1483    1.1       mrg 
   1484    1.1       mrg 	/*
   1485    1.1       mrg 	 * protect vbp at splbio and update.
   1486    1.1       mrg 	 */
   1487    1.1       mrg 
   1488    1.1       mrg 	s = splbio();
   1489    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1490    1.1       mrg 	pbp->b_resid -= resid;
   1491    1.1       mrg 	vnx->vx_pending--;
   1492    1.1       mrg 
   1493  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1494    1.1       mrg 		/* pass error upward */
   1495  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1496  1.175  pgoyette 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1497   1.72       chs 		vnx->vx_error = error;
   1498   1.35       chs 	}
   1499   1.35       chs 
   1500   1.35       chs 	/*
   1501    1.1       mrg 	 * kill vbp structure
   1502    1.1       mrg 	 */
   1503  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1504  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1505    1.1       mrg 
   1506    1.1       mrg 	/*
   1507    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1508    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1509    1.1       mrg 	 */
   1510    1.1       mrg 	if (vnx->vx_error != 0) {
   1511    1.1       mrg 		/* pass error upward */
   1512  1.134        ad 		error = vnx->vx_error;
   1513    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1514  1.134        ad 			pbp->b_error = error;
   1515    1.1       mrg 			biodone(pbp);
   1516  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1517    1.1       mrg 		}
   1518   1.11        pk 	} else if (pbp->b_resid == 0) {
   1519   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1520    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1521  1.175  pgoyette 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1522  1.175  pgoyette 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1523    1.1       mrg 			biodone(pbp);
   1524  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1525    1.1       mrg 		}
   1526    1.1       mrg 	}
   1527    1.1       mrg 
   1528    1.1       mrg 	/*
   1529    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1530    1.1       mrg 	 */
   1531   1.33   thorpej 	sdp->swd_active--;
   1532    1.1       mrg 	sw_reg_start(sdp);
   1533    1.1       mrg 	splx(s);
   1534    1.1       mrg }
   1535    1.1       mrg 
   1536    1.1       mrg 
   1537    1.1       mrg /*
   1538    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1539    1.1       mrg  *
   1540    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1541    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1542    1.1       mrg  * => space can be freed with uvm_swap_free
   1543    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1544  1.127        ad  * => we lock uvm_swap_data_lock
   1545    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1546    1.1       mrg  */
   1547    1.1       mrg int
   1548  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1549    1.1       mrg {
   1550    1.1       mrg 	struct swapdev *sdp;
   1551    1.1       mrg 	struct swappri *spp;
   1552    1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1553    1.1       mrg 
   1554    1.1       mrg 	/*
   1555    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1556    1.1       mrg 	 */
   1557    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1558    1.1       mrg 		return 0;
   1559   1.51       chs 
   1560    1.1       mrg 	/*
   1561  1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1562  1.162  jakllsch 	 *
   1563  1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1564  1.162  jakllsch 	 * too many slots.
   1565  1.162  jakllsch 	 */
   1566  1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1567  1.162  jakllsch 		if (__predict_false(lessok == false))
   1568  1.162  jakllsch 			return 0;
   1569  1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1570  1.162  jakllsch 	}
   1571  1.162  jakllsch 	/* XXXJAK: END HACK */
   1572  1.162  jakllsch 
   1573  1.162  jakllsch 	/*
   1574    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1575    1.1       mrg 	 */
   1576  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1577    1.1       mrg 
   1578    1.1       mrg ReTry:	/* XXXMRG */
   1579   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1580  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1581   1.90      yamt 			uint64_t result;
   1582   1.90      yamt 
   1583    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1584    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1585    1.1       mrg 				continue;
   1586    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1587    1.1       mrg 				continue;
   1588   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1589   1.90      yamt 			if (result == BLIST_NONE) {
   1590    1.1       mrg 				continue;
   1591    1.1       mrg 			}
   1592   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1593    1.1       mrg 
   1594    1.1       mrg 			/*
   1595  1.165  christos 			 * successful allocation!  now rotate the tailq.
   1596    1.1       mrg 			 */
   1597  1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1598  1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1599    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1600    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1601  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1602    1.1       mrg 			/* done!  return drum slot number */
   1603    1.1       mrg 			UVMHIST_LOG(pdhist,
   1604  1.175  pgoyette 			    "success!  returning %jd slots starting at %jd",
   1605    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1606   1.55       chs 			return (result + sdp->swd_drumoffset);
   1607    1.1       mrg 		}
   1608    1.1       mrg 	}
   1609    1.1       mrg 
   1610    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1611    1.1       mrg 	if (*nslots > 1 && lessok) {
   1612    1.1       mrg 		*nslots = 1;
   1613   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1614   1.90      yamt 		goto ReTry;
   1615    1.1       mrg 	}
   1616    1.1       mrg 	/* XXXMRG: END HACK */
   1617    1.1       mrg 
   1618  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1619   1.55       chs 	return 0;
   1620    1.1       mrg }
   1621    1.1       mrg 
   1622  1.141        ad /*
   1623  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1624  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1625  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1626  1.141        ad  * pages are busy.
   1627  1.141        ad  */
   1628  1.119   thorpej bool
   1629   1.81        pk uvm_swapisfull(void)
   1630   1.81        pk {
   1631  1.141        ad 	int swpgonly;
   1632  1.119   thorpej 	bool rv;
   1633   1.81        pk 
   1634  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1635   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1636  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1637  1.141        ad 	    uvm_swapisfull_factor);
   1638  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1639  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1640   1.81        pk 
   1641   1.81        pk 	return (rv);
   1642   1.81        pk }
   1643   1.81        pk 
   1644    1.1       mrg /*
   1645   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1646   1.32       chs  *
   1647  1.127        ad  * => we lock uvm_swap_data_lock
   1648   1.32       chs  */
   1649   1.32       chs void
   1650   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1651   1.32       chs {
   1652   1.32       chs 	struct swapdev *sdp;
   1653   1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1654   1.32       chs 
   1655  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1656   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1657   1.82        pk 	KASSERT(sdp != NULL);
   1658   1.32       chs 
   1659   1.32       chs 	/*
   1660   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1661   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1662   1.32       chs 	 * we assume here that the range of slots will all be within
   1663   1.32       chs 	 * one swap device.
   1664   1.32       chs 	 */
   1665   1.41       chs 
   1666   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1667  1.182        ad 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1668   1.32       chs 	sdp->swd_npgbad += nslots;
   1669  1.175  pgoyette 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1670  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1671   1.32       chs }
   1672   1.32       chs 
   1673   1.32       chs /*
   1674    1.1       mrg  * uvm_swap_free: free swap slots
   1675    1.1       mrg  *
   1676    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1677  1.127        ad  * => we lock uvm_swap_data_lock
   1678    1.1       mrg  */
   1679    1.1       mrg void
   1680   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1681    1.1       mrg {
   1682    1.1       mrg 	struct swapdev *sdp;
   1683    1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1684    1.1       mrg 
   1685  1.175  pgoyette 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
   1686    1.1       mrg 	    startslot, 0, 0);
   1687   1.32       chs 
   1688   1.32       chs 	/*
   1689   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1690   1.32       chs 	 */
   1691   1.46       chs 
   1692   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1693   1.32       chs 		return;
   1694   1.32       chs 	}
   1695   1.32       chs 
   1696    1.1       mrg 	/*
   1697   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1698   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1699    1.1       mrg 	 * lookup and access the extent.
   1700    1.1       mrg 	 */
   1701   1.46       chs 
   1702  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1703    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1704   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1705   1.46       chs 	KASSERT(sdp != NULL);
   1706   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1707   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1708    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1709    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1710  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1711    1.1       mrg }
   1712    1.1       mrg 
   1713    1.1       mrg /*
   1714    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1715    1.1       mrg  *
   1716    1.1       mrg  * => can be sync or async
   1717    1.1       mrg  */
   1718   1.54       chs 
   1719    1.1       mrg int
   1720   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1721    1.1       mrg {
   1722   1.56       chs 	int error;
   1723    1.1       mrg 
   1724   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1725    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1726   1.56       chs 	return error;
   1727    1.1       mrg }
   1728    1.1       mrg 
   1729    1.1       mrg /*
   1730    1.1       mrg  * uvm_swap_get: get a single page from swap
   1731    1.1       mrg  *
   1732    1.1       mrg  * => usually a sync op (from fault)
   1733    1.1       mrg  */
   1734   1.54       chs 
   1735    1.1       mrg int
   1736   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1737    1.1       mrg {
   1738   1.56       chs 	int error;
   1739    1.1       mrg 
   1740    1.1       mrg 	uvmexp.nswget++;
   1741   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1742   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1743   1.47       chs 		return EIO;
   1744   1.32       chs 	}
   1745   1.81        pk 
   1746   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1747    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1748   1.56       chs 	if (error == 0) {
   1749   1.47       chs 
   1750   1.26       chs 		/*
   1751   1.54       chs 		 * this page is no longer only in swap.
   1752   1.26       chs 		 */
   1753   1.47       chs 
   1754   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1755  1.182        ad 		atomic_dec_uint(&uvmexp.swpgonly);
   1756   1.26       chs 	}
   1757   1.56       chs 	return error;
   1758    1.1       mrg }
   1759    1.1       mrg 
   1760    1.1       mrg /*
   1761    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1762    1.1       mrg  */
   1763    1.1       mrg 
   1764    1.1       mrg static int
   1765   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1766    1.1       mrg {
   1767    1.1       mrg 	daddr_t startblk;
   1768    1.1       mrg 	struct	buf *bp;
   1769   1.15       eeh 	vaddr_t kva;
   1770  1.134        ad 	int	error, mapinflags;
   1771  1.119   thorpej 	bool write, async;
   1772    1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1773    1.1       mrg 
   1774  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1775    1.1       mrg 	    startslot, npages, flags, 0);
   1776   1.32       chs 
   1777   1.41       chs 	write = (flags & B_READ) == 0;
   1778   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1779   1.41       chs 
   1780  1.181   mlelstv 	/* XXX swap io make take place before the aiodone queue exists */
   1781  1.181   mlelstv 	if (uvm.aiodone_queue == NULL)
   1782  1.181   mlelstv 		async = 0;
   1783  1.181   mlelstv 
   1784    1.1       mrg 	/*
   1785  1.137      yamt 	 * allocate a buf for the i/o.
   1786  1.137      yamt 	 */
   1787  1.137      yamt 
   1788  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1789  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1790  1.137      yamt 	if (bp == NULL) {
   1791  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1792  1.137      yamt 		return ENOMEM;
   1793  1.137      yamt 	}
   1794  1.137      yamt 
   1795  1.137      yamt 	/*
   1796    1.1       mrg 	 * convert starting drum slot to block number
   1797    1.1       mrg 	 */
   1798   1.54       chs 
   1799   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1800    1.1       mrg 
   1801    1.1       mrg 	/*
   1802   1.54       chs 	 * first, map the pages into the kernel.
   1803   1.41       chs 	 */
   1804   1.41       chs 
   1805   1.54       chs 	mapinflags = !write ?
   1806   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1807   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1808   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1809    1.1       mrg 
   1810   1.51       chs 	/*
   1811    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1812    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1813    1.1       mrg 	 */
   1814   1.54       chs 
   1815  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1816  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1817    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1818   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1819  1.122  christos 	bp->b_data = (void *)kva;
   1820    1.1       mrg 	bp->b_blkno = startblk;
   1821   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1822    1.1       mrg 
   1823   1.51       chs 	/*
   1824   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1825    1.1       mrg 	 */
   1826   1.54       chs 
   1827   1.41       chs 	if (write) {
   1828  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1829  1.134        ad 		swapdev_vp->v_numoutput++;
   1830  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1831    1.1       mrg 	}
   1832    1.1       mrg 
   1833    1.1       mrg 	/*
   1834   1.41       chs 	 * for async ops we must set up the iodone handler.
   1835    1.1       mrg 	 */
   1836   1.54       chs 
   1837   1.41       chs 	if (async) {
   1838  1.181   mlelstv 		KASSERT(uvm.aiodone_queue != NULL);
   1839   1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1840    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1841  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1842   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1843   1.83      yamt 		else
   1844   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1845   1.83      yamt 	} else {
   1846  1.134        ad 		bp->b_iodone = NULL;
   1847   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1848    1.1       mrg 	}
   1849    1.1       mrg 	UVMHIST_LOG(pdhist,
   1850  1.175  pgoyette 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1851  1.175  pgoyette 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1852    1.1       mrg 
   1853    1.1       mrg 	/*
   1854    1.1       mrg 	 * now we start the I/O, and if async, return.
   1855    1.1       mrg 	 */
   1856   1.54       chs 
   1857   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1858   1.41       chs 	if (async)
   1859   1.47       chs 		return 0;
   1860    1.1       mrg 
   1861    1.1       mrg 	/*
   1862    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1863    1.1       mrg 	 */
   1864   1.54       chs 
   1865   1.47       chs 	error = biowait(bp);
   1866    1.1       mrg 
   1867    1.1       mrg 	/*
   1868    1.1       mrg 	 * kill the pager mapping
   1869    1.1       mrg 	 */
   1870   1.54       chs 
   1871    1.1       mrg 	uvm_pagermapout(kva, npages);
   1872    1.1       mrg 
   1873    1.1       mrg 	/*
   1874   1.54       chs 	 * now dispose of the buf and we're done.
   1875    1.1       mrg 	 */
   1876   1.54       chs 
   1877  1.134        ad 	if (write) {
   1878  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1879   1.41       chs 		vwakeup(bp);
   1880  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1881  1.134        ad 	}
   1882   1.98      yamt 	putiobuf(bp);
   1883  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   1884  1.134        ad 
   1885   1.47       chs 	return (error);
   1886    1.1       mrg }
   1887