Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.201
      1  1.201   hannken /*	$NetBSD: uvm_swap.c,v 1.201 2021/02/16 09:56:32 hannken Exp $	*/
      2    1.1       mrg 
      3    1.1       mrg /*
      4  1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5    1.1       mrg  * All rights reserved.
      6    1.1       mrg  *
      7    1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8    1.1       mrg  * modification, are permitted provided that the following conditions
      9    1.1       mrg  * are met:
     10    1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11    1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12    1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13    1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14    1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15    1.1       mrg  *
     16    1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17    1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18    1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19    1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20    1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21    1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22    1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23    1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24    1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25    1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26    1.1       mrg  * SUCH DAMAGE.
     27    1.3       mrg  *
     28    1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29    1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30    1.1       mrg  */
     31   1.57     lukem 
     32   1.57     lukem #include <sys/cdefs.h>
     33  1.201   hannken __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.201 2021/02/16 09:56:32 hannken Exp $");
     34    1.5       mrg 
     35    1.5       mrg #include "opt_uvmhist.h"
     36   1.16       mrg #include "opt_compat_netbsd.h"
     37   1.41       chs #include "opt_ddb.h"
     38    1.1       mrg 
     39    1.1       mrg #include <sys/param.h>
     40    1.1       mrg #include <sys/systm.h>
     41  1.183       uwe #include <sys/atomic.h>
     42    1.1       mrg #include <sys/buf.h>
     43   1.89      yamt #include <sys/bufq.h>
     44   1.36       mrg #include <sys/conf.h>
     45  1.187  riastrad #include <sys/cprng.h>
     46    1.1       mrg #include <sys/proc.h>
     47    1.1       mrg #include <sys/namei.h>
     48    1.1       mrg #include <sys/disklabel.h>
     49    1.1       mrg #include <sys/errno.h>
     50    1.1       mrg #include <sys/kernel.h>
     51    1.1       mrg #include <sys/vnode.h>
     52    1.1       mrg #include <sys/file.h>
     53  1.110      yamt #include <sys/vmem.h>
     54   1.90      yamt #include <sys/blist.h>
     55    1.1       mrg #include <sys/mount.h>
     56   1.12        pk #include <sys/pool.h>
     57  1.159      para #include <sys/kmem.h>
     58    1.1       mrg #include <sys/syscallargs.h>
     59   1.17       mrg #include <sys/swap.h>
     60  1.100      elad #include <sys/kauth.h>
     61  1.125        ad #include <sys/sysctl.h>
     62  1.130   hannken #include <sys/workqueue.h>
     63    1.1       mrg 
     64    1.1       mrg #include <uvm/uvm.h>
     65    1.1       mrg 
     66    1.1       mrg #include <miscfs/specfs/specdev.h>
     67    1.1       mrg 
     68  1.194  riastrad #include <crypto/aes/aes.h>
     69  1.198  riastrad #include <crypto/aes/aes_cbc.h>
     70  1.187  riastrad 
     71    1.1       mrg /*
     72    1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     73    1.1       mrg  */
     74    1.1       mrg 
     75    1.1       mrg /*
     76    1.1       mrg  * swap space is managed in the following way:
     77   1.51       chs  *
     78    1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     79    1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     80    1.1       mrg  * information that is passed up to the user (via system calls).
     81    1.1       mrg  *
     82    1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     83  1.199   msaitoh  * swap partition usage.
     84    1.1       mrg  *
     85    1.1       mrg  * the system maintains a global data structure describing all swap
     86    1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     87    1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     88   1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     89  1.164  christos  * TAILQ of "swapdev" structures at that priority.
     90    1.1       mrg  *
     91    1.1       mrg  * locking:
     92  1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     93    1.1       mrg  *    system call and prevents the swap priority list from changing
     94    1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     95  1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     96    1.1       mrg  *    structures including the priority list, the swapdev structures,
     97  1.110      yamt  *    and the swapmap arena.
     98    1.1       mrg  *
     99    1.1       mrg  * each swap device has the following info:
    100    1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
    101    1.1       mrg  *  - swap enabled (allows new allocations on swap)
    102    1.1       mrg  *  - map info in /dev/drum
    103    1.1       mrg  *  - vnode pointer
    104    1.1       mrg  * for swap files only:
    105    1.1       mrg  *  - block size
    106    1.1       mrg  *  - max byte count in buffer
    107    1.1       mrg  *  - buffer
    108    1.1       mrg  *
    109    1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    110    1.1       mrg  * the sys_swapctl performs the following operations:
    111    1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    112   1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    113    1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    114   1.85  junyoung  *	the current swap config into the array. The actual work is done
    115  1.155     rmind  *	in the uvm_swap_stats() function.
    116    1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    117    1.1       mrg  *	priority in "misc", start swapping on it.
    118    1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    119    1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    120    1.1       mrg  *	"misc")
    121    1.1       mrg  */
    122    1.1       mrg 
    123    1.1       mrg /*
    124    1.1       mrg  * swapdev: describes a single swap partition/file
    125    1.1       mrg  *
    126    1.1       mrg  * note the following should be true:
    127    1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    128    1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    129    1.1       mrg  */
    130    1.1       mrg struct swapdev {
    131  1.144       mrg 	dev_t			swd_dev;	/* device id */
    132  1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    133  1.144       mrg 	int			swd_priority;	/* our priority */
    134  1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    135   1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    136   1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    137   1.16       mrg 	int			swd_npages;	/* #pages we can use */
    138   1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    139   1.32       chs 	int			swd_npgbad;	/* #pages bad */
    140   1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    141   1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    142   1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    143   1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    144  1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    145    1.1       mrg 
    146   1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    147   1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    148   1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    149   1.33   thorpej 	int			swd_active;	/* number of active buffers */
    150  1.187  riastrad 
    151  1.190  riastrad 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
    152  1.194  riastrad 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
    153  1.194  riastrad 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
    154  1.187  riastrad 	bool			swd_encinit;	/* true if keys initialized */
    155    1.1       mrg };
    156    1.1       mrg 
    157    1.1       mrg /*
    158    1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    159    1.1       mrg  */
    160    1.1       mrg struct swappri {
    161    1.1       mrg 	int			spi_priority;     /* priority */
    162  1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    163  1.165  christos 	/* tailq of swapdevs at this priority */
    164    1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    165    1.1       mrg };
    166    1.1       mrg 
    167    1.1       mrg /*
    168    1.1       mrg  * The following two structures are used to keep track of data transfers
    169    1.1       mrg  * on swap devices associated with regular files.
    170    1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    171    1.1       mrg  * structure names here to ease porting..
    172    1.1       mrg  */
    173    1.1       mrg struct vndxfer {
    174    1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    175    1.1       mrg 	struct swapdev	*vx_sdp;
    176    1.1       mrg 	int		vx_error;
    177    1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    178    1.1       mrg 	int		vx_flags;
    179    1.1       mrg #define VX_BUSY		1
    180    1.1       mrg #define VX_DEAD		2
    181    1.1       mrg };
    182    1.1       mrg 
    183    1.1       mrg struct vndbuf {
    184    1.1       mrg 	struct buf	vb_buf;
    185    1.1       mrg 	struct vndxfer	*vb_xfer;
    186    1.1       mrg };
    187    1.1       mrg 
    188  1.144       mrg /*
    189   1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    190    1.1       mrg  */
    191  1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    192    1.1       mrg 
    193    1.1       mrg /*
    194    1.1       mrg  * local variables
    195    1.1       mrg  */
    196  1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    197    1.1       mrg 
    198    1.1       mrg /* list of all active swap devices [by priority] */
    199    1.1       mrg LIST_HEAD(swap_priority, swappri);
    200    1.1       mrg static struct swap_priority swap_priority;
    201    1.1       mrg 
    202    1.1       mrg /* locks */
    203  1.182        ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    204  1.117        ad static krwlock_t swap_syscall_lock;
    205    1.1       mrg 
    206  1.130   hannken /* workqueue and use counter for swap to regular files */
    207  1.130   hannken static int sw_reg_count = 0;
    208  1.130   hannken static struct workqueue *sw_reg_workqueue;
    209  1.130   hannken 
    210  1.141        ad /* tuneables */
    211  1.141        ad u_int uvm_swapisfull_factor = 99;
    212  1.189  riastrad bool uvm_swap_encrypt = false;
    213  1.141        ad 
    214    1.1       mrg /*
    215    1.1       mrg  * prototypes
    216    1.1       mrg  */
    217   1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    218    1.1       mrg 
    219  1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    220   1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    221   1.85  junyoung 					 struct swappri *, int);
    222   1.85  junyoung static void		 swaplist_trim(void);
    223    1.1       mrg 
    224   1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    225   1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    226    1.1       mrg 
    227   1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    228  1.130   hannken static void sw_reg_biodone(struct buf *);
    229  1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    230   1.85  junyoung static void sw_reg_start(struct swapdev *);
    231    1.1       mrg 
    232   1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    233    1.1       mrg 
    234  1.187  riastrad static void uvm_swap_genkey(struct swapdev *);
    235  1.189  riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int);
    236  1.189  riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int);
    237  1.187  riastrad 
    238  1.190  riastrad static size_t
    239  1.190  riastrad encmap_size(size_t npages)
    240  1.190  riastrad {
    241  1.190  riastrad 	struct swapdev *sdp;
    242  1.190  riastrad 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
    243  1.190  riastrad 	const size_t bitsperword = NBBY * bytesperword;
    244  1.190  riastrad 	const size_t nbits = npages; /* one bit for each page */
    245  1.190  riastrad 	const size_t nwords = howmany(nbits, bitsperword);
    246  1.190  riastrad 	const size_t nbytes = nwords * bytesperword;
    247  1.190  riastrad 
    248  1.190  riastrad 	return nbytes;
    249  1.190  riastrad }
    250  1.190  riastrad 
    251    1.1       mrg /*
    252    1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    253    1.1       mrg  *
    254   1.51       chs  * => called at boot time from init_main.c after the filesystems
    255    1.1       mrg  *	are brought up (which happens after uvm_init())
    256    1.1       mrg  */
    257    1.1       mrg void
    258   1.93   thorpej uvm_swap_init(void)
    259    1.1       mrg {
    260  1.197     skrll 	UVMHIST_FUNC(__func__);
    261    1.1       mrg 
    262    1.1       mrg 	UVMHIST_CALLED(pdhist);
    263    1.1       mrg 	/*
    264    1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    265    1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    266    1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    267    1.1       mrg 	 */
    268    1.1       mrg 
    269    1.1       mrg 	LIST_INIT(&swap_priority);
    270    1.1       mrg 	uvmexp.nswapdev = 0;
    271  1.117        ad 	rw_init(&swap_syscall_lock);
    272  1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    273   1.12        pk 
    274    1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    275  1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    276  1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    277  1.145       mrg 		panic("%s: can't lock swap device", __func__);
    278  1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    279  1.145       mrg 		panic("%s: can't open swap device", __func__);
    280  1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    281    1.1       mrg 
    282    1.1       mrg 	/*
    283    1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    284    1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    285   1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    286    1.1       mrg 	 * failure, or no allocation).
    287    1.1       mrg 	 */
    288  1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    289  1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    290  1.147     rmind 	if (swapmap == 0) {
    291  1.145       mrg 		panic("%s: vmem_create failed", __func__);
    292  1.147     rmind 	}
    293  1.146     pooka 
    294  1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    295  1.146     pooka 	    NULL, IPL_BIO);
    296  1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    297  1.146     pooka 	    NULL, IPL_BIO);
    298  1.147     rmind 
    299  1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    300    1.1       mrg }
    301    1.1       mrg 
    302    1.1       mrg /*
    303    1.1       mrg  * swaplist functions: functions that operate on the list of swap
    304    1.1       mrg  * devices on the system.
    305    1.1       mrg  */
    306    1.1       mrg 
    307    1.1       mrg /*
    308    1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    309    1.1       mrg  *
    310  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    311  1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    312  1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    313  1.154     rmind  *	blocking here while adding swap)
    314    1.1       mrg  */
    315    1.1       mrg static void
    316   1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    317    1.1       mrg {
    318    1.1       mrg 	struct swappri *spp, *pspp;
    319  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    320    1.1       mrg 
    321  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    322  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    323  1.190  riastrad 
    324    1.1       mrg 	/*
    325    1.1       mrg 	 * find entry at or after which to insert the new device.
    326    1.1       mrg 	 */
    327   1.55       chs 	pspp = NULL;
    328   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    329    1.1       mrg 		if (priority <= spp->spi_priority)
    330    1.1       mrg 			break;
    331    1.1       mrg 		pspp = spp;
    332    1.1       mrg 	}
    333    1.1       mrg 
    334    1.1       mrg 	/*
    335    1.1       mrg 	 * new priority?
    336    1.1       mrg 	 */
    337    1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    338    1.1       mrg 		spp = newspp;  /* use newspp! */
    339  1.175  pgoyette 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    340   1.32       chs 			    priority, 0, 0, 0);
    341    1.1       mrg 
    342    1.1       mrg 		spp->spi_priority = priority;
    343  1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    344    1.1       mrg 
    345    1.1       mrg 		if (pspp)
    346    1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    347    1.1       mrg 		else
    348    1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    349    1.1       mrg 	} else {
    350    1.1       mrg 	  	/* we don't need a new priority structure, free it */
    351  1.159      para 		kmem_free(newspp, sizeof(*newspp));
    352    1.1       mrg 	}
    353    1.1       mrg 
    354    1.1       mrg 	/*
    355    1.1       mrg 	 * priority found (or created).   now insert on the priority's
    356  1.165  christos 	 * tailq list and bump the total number of swapdevs.
    357    1.1       mrg 	 */
    358    1.1       mrg 	sdp->swd_priority = priority;
    359  1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    360    1.1       mrg 	uvmexp.nswapdev++;
    361    1.1       mrg }
    362    1.1       mrg 
    363    1.1       mrg /*
    364    1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    365    1.1       mrg  *	global list.
    366    1.1       mrg  *
    367  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    368    1.1       mrg  * => we return the swapdev we found (and removed)
    369    1.1       mrg  */
    370    1.1       mrg static struct swapdev *
    371  1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    372    1.1       mrg {
    373    1.1       mrg 	struct swapdev *sdp;
    374    1.1       mrg 	struct swappri *spp;
    375    1.1       mrg 
    376  1.190  riastrad 	KASSERT(rw_lock_held(&swap_syscall_lock));
    377  1.190  riastrad 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
    378  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    379  1.190  riastrad 
    380    1.1       mrg 	/*
    381    1.1       mrg 	 * search the lists for the requested vp
    382    1.1       mrg 	 */
    383   1.55       chs 
    384   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    385  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    386    1.1       mrg 			if (sdp->swd_vp == vp) {
    387    1.1       mrg 				if (remove) {
    388  1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    389    1.1       mrg 					    sdp, swd_next);
    390    1.1       mrg 					uvmexp.nswapdev--;
    391    1.1       mrg 				}
    392    1.1       mrg 				return(sdp);
    393    1.1       mrg 			}
    394   1.55       chs 		}
    395    1.1       mrg 	}
    396    1.1       mrg 	return (NULL);
    397    1.1       mrg }
    398    1.1       mrg 
    399  1.113      elad /*
    400    1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    401    1.1       mrg  *	them.
    402    1.1       mrg  *
    403  1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    404    1.1       mrg  */
    405    1.1       mrg static void
    406   1.93   thorpej swaplist_trim(void)
    407    1.1       mrg {
    408    1.1       mrg 	struct swappri *spp, *nextspp;
    409    1.1       mrg 
    410  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    411  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    412  1.190  riastrad 
    413  1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    414  1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    415    1.1       mrg 			continue;
    416    1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    417  1.159      para 		kmem_free(spp, sizeof(*spp));
    418    1.1       mrg 	}
    419    1.1       mrg }
    420    1.1       mrg 
    421    1.1       mrg /*
    422    1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    423    1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    424    1.1       mrg  *
    425    1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    426  1.127        ad  * => caller must hold uvm_swap_data_lock
    427    1.1       mrg  */
    428    1.1       mrg static struct swapdev *
    429   1.93   thorpej swapdrum_getsdp(int pgno)
    430    1.1       mrg {
    431    1.1       mrg 	struct swapdev *sdp;
    432    1.1       mrg 	struct swappri *spp;
    433   1.51       chs 
    434  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    435  1.190  riastrad 
    436   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    437  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    438   1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    439   1.48      fvdl 				continue;
    440    1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    441    1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    442    1.1       mrg 				return sdp;
    443    1.1       mrg 			}
    444   1.48      fvdl 		}
    445   1.55       chs 	}
    446    1.1       mrg 	return NULL;
    447    1.1       mrg }
    448    1.1       mrg 
    449  1.190  riastrad /*
    450  1.190  riastrad  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
    451  1.190  riastrad  *
    452  1.190  riastrad  * => for use in positive assertions only; result is not stable
    453  1.190  riastrad  */
    454  1.190  riastrad static bool __debugused
    455  1.190  riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp)
    456  1.190  riastrad {
    457  1.190  riastrad 	bool result;
    458  1.190  riastrad 
    459  1.190  riastrad 	mutex_enter(&uvm_swap_data_lock);
    460  1.190  riastrad 	result = swapdrum_getsdp(pgno) == sdp;
    461  1.190  riastrad 	mutex_exit(&uvm_swap_data_lock);
    462  1.190  riastrad 
    463  1.190  riastrad 	return result;
    464  1.190  riastrad }
    465  1.190  riastrad 
    466  1.173      maxv void swapsys_lock(krw_t op)
    467  1.173      maxv {
    468  1.173      maxv 	rw_enter(&swap_syscall_lock, op);
    469  1.173      maxv }
    470  1.173      maxv 
    471  1.173      maxv void swapsys_unlock(void)
    472  1.173      maxv {
    473  1.173      maxv 	rw_exit(&swap_syscall_lock);
    474  1.173      maxv }
    475    1.1       mrg 
    476  1.176  christos static void
    477  1.176  christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    478  1.176  christos {
    479  1.176  christos 	se->se_dev = sdp->swd_dev;
    480  1.176  christos 	se->se_flags = sdp->swd_flags;
    481  1.176  christos 	se->se_nblks = sdp->swd_nblks;
    482  1.176  christos 	se->se_inuse = inuse;
    483  1.176  christos 	se->se_priority = sdp->swd_priority;
    484  1.176  christos 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    485  1.176  christos 	strcpy(se->se_path, sdp->swd_path);
    486  1.176  christos }
    487  1.176  christos 
    488  1.180       kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    489  1.177  christos     (void *)enosys;
    490  1.177  christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    491  1.177  christos     (void *)enosys;
    492  1.176  christos 
    493    1.1       mrg /*
    494    1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    495    1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    496    1.1       mrg  */
    497    1.1       mrg int
    498  1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    499    1.1       mrg {
    500  1.133       dsl 	/* {
    501    1.1       mrg 		syscallarg(int) cmd;
    502    1.1       mrg 		syscallarg(void *) arg;
    503    1.1       mrg 		syscallarg(int) misc;
    504  1.133       dsl 	} */
    505    1.1       mrg 	struct vnode *vp;
    506    1.1       mrg 	struct nameidata nd;
    507    1.1       mrg 	struct swappri *spp;
    508    1.1       mrg 	struct swapdev *sdp;
    509  1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    510  1.101  christos 	char	*userpath;
    511  1.161     rmind 	size_t	len = 0;
    512  1.176  christos 	int	error;
    513    1.1       mrg 	int	priority;
    514  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    515    1.1       mrg 
    516    1.1       mrg 	/*
    517    1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    518    1.1       mrg 	 *
    519   1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    520    1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    521    1.1       mrg 	 */
    522    1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    523  1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    524  1.175  pgoyette 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    525  1.175  pgoyette 		    0, 0, 0);
    526  1.161     rmind 		*retval = nswapdev;
    527  1.161     rmind 		return 0;
    528    1.1       mrg 	}
    529    1.1       mrg 
    530  1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    531  1.161     rmind 
    532  1.161     rmind 	/*
    533  1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    534  1.161     rmind 	 */
    535  1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    536  1.161     rmind 
    537    1.1       mrg 	/*
    538    1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    539    1.1       mrg 	 *
    540   1.51       chs 	 * note that the swap_priority list can't change as long
    541    1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    542  1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    543    1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    544    1.1       mrg 	 */
    545  1.176  christos 	switch (SCARG(uap, cmd)) {
    546  1.177  christos 	case SWAP_STATS13:
    547  1.177  christos 		error = (*uvm_swap_stats13)(uap, retval);
    548  1.177  christos 		goto out;
    549  1.177  christos 	case SWAP_STATS50:
    550  1.177  christos 		error = (*uvm_swap_stats50)(uap, retval);
    551  1.177  christos 		goto out;
    552  1.176  christos 	case SWAP_STATS:
    553  1.176  christos 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    554  1.177  christos 		    NULL, sizeof(struct swapent), retval);
    555   1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    556   1.16       mrg 		goto out;
    557  1.196     skrll 
    558  1.176  christos 	case SWAP_GETDUMPDEV:
    559  1.176  christos 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    560   1.55       chs 		goto out;
    561  1.176  christos 	default:
    562  1.176  christos 		break;
    563   1.55       chs 	}
    564    1.1       mrg 
    565    1.1       mrg 	/*
    566    1.1       mrg 	 * all other requests require superuser privs.   verify.
    567    1.1       mrg 	 */
    568  1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    569  1.106      elad 	    0, NULL, NULL, NULL)))
    570   1.16       mrg 		goto out;
    571    1.1       mrg 
    572  1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    573  1.104    martin 		/* drop the current dump device */
    574  1.104    martin 		dumpdev = NODEV;
    575  1.138    kardel 		dumpcdev = NODEV;
    576  1.104    martin 		cpu_dumpconf();
    577  1.104    martin 		goto out;
    578  1.104    martin 	}
    579  1.104    martin 
    580    1.1       mrg 	/*
    581    1.1       mrg 	 * at this point we expect a path name in arg.   we will
    582    1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    583    1.1       mrg 	 * the vnode (VOP_LOCK).
    584    1.1       mrg 	 *
    585    1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    586   1.16       mrg 	 * miniroot)
    587    1.1       mrg 	 */
    588    1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    589    1.1       mrg 		vp = rootvp;		/* miniroot */
    590  1.152   hannken 		vref(vp);
    591  1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    592  1.152   hannken 			vrele(vp);
    593   1.16       mrg 			error = EBUSY;
    594   1.16       mrg 			goto out;
    595    1.1       mrg 		}
    596   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    597  1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    598   1.16       mrg 			panic("swapctl: miniroot copy failed");
    599    1.1       mrg 	} else {
    600  1.153  dholland 		struct pathbuf *pb;
    601   1.16       mrg 
    602  1.153  dholland 		/*
    603  1.153  dholland 		 * This used to allow copying in one extra byte
    604  1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    605  1.153  dholland 		 * This was completely pointless because if anyone
    606  1.153  dholland 		 * used that extra byte namei would fail with
    607  1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    608  1.153  dholland 		 * logic. - dholland 20100215
    609  1.153  dholland 		 */
    610  1.153  dholland 
    611  1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    612  1.153  dholland 		if (error) {
    613  1.153  dholland 			goto out;
    614  1.153  dholland 		}
    615   1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    616  1.153  dholland 			/* get a copy of the string */
    617  1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    618  1.153  dholland 			len = strlen(userpath) + 1;
    619  1.153  dholland 		}
    620  1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    621  1.153  dholland 		if ((error = namei(&nd))) {
    622  1.153  dholland 			pathbuf_destroy(pb);
    623  1.153  dholland 			goto out;
    624    1.1       mrg 		}
    625    1.1       mrg 		vp = nd.ni_vp;
    626  1.153  dholland 		pathbuf_destroy(pb);
    627    1.1       mrg 	}
    628    1.1       mrg 	/* note: "vp" is referenced and locked */
    629    1.1       mrg 
    630    1.1       mrg 	error = 0;		/* assume no error */
    631    1.1       mrg 	switch(SCARG(uap, cmd)) {
    632   1.40       mrg 
    633   1.24       mrg 	case SWAP_DUMPDEV:
    634   1.24       mrg 		if (vp->v_type != VBLK) {
    635   1.24       mrg 			error = ENOTBLK;
    636   1.45        pk 			break;
    637   1.24       mrg 		}
    638  1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    639  1.109       mrg 			dumpdev = vp->v_rdev;
    640  1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    641  1.138    kardel 		} else
    642  1.109       mrg 			dumpdev = NODEV;
    643   1.68  drochner 		cpu_dumpconf();
    644   1.24       mrg 		break;
    645   1.24       mrg 
    646    1.1       mrg 	case SWAP_CTL:
    647    1.1       mrg 		/*
    648    1.1       mrg 		 * get new priority, remove old entry (if any) and then
    649    1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    650    1.1       mrg 		 * any empty priority structures.
    651    1.1       mrg 		 */
    652    1.1       mrg 		priority = SCARG(uap, misc);
    653  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    654  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    655  1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    656    1.1       mrg 			error = ENOENT;
    657    1.1       mrg 		} else {
    658    1.1       mrg 			swaplist_insert(sdp, spp, priority);
    659    1.1       mrg 			swaplist_trim();
    660    1.1       mrg 		}
    661  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    662    1.1       mrg 		if (error)
    663  1.159      para 			kmem_free(spp, sizeof(*spp));
    664    1.1       mrg 		break;
    665    1.1       mrg 
    666    1.1       mrg 	case SWAP_ON:
    667   1.32       chs 
    668    1.1       mrg 		/*
    669    1.1       mrg 		 * check for duplicates.   if none found, then insert a
    670    1.1       mrg 		 * dummy entry on the list to prevent someone else from
    671    1.1       mrg 		 * trying to enable this device while we are working on
    672    1.1       mrg 		 * it.
    673    1.1       mrg 		 */
    674   1.32       chs 
    675    1.1       mrg 		priority = SCARG(uap, misc);
    676  1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    677  1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    678   1.67       chs 		sdp->swd_flags = SWF_FAKE;
    679   1.67       chs 		sdp->swd_vp = vp;
    680   1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    681   1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    682  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    683  1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    684    1.1       mrg 			error = EBUSY;
    685  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    686   1.96      yamt 			bufq_free(sdp->swd_tab);
    687  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    688  1.159      para 			kmem_free(spp, sizeof(*spp));
    689   1.16       mrg 			break;
    690    1.1       mrg 		}
    691    1.1       mrg 		swaplist_insert(sdp, spp, priority);
    692  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    693    1.1       mrg 
    694  1.161     rmind 		KASSERT(len > 0);
    695   1.16       mrg 		sdp->swd_pathlen = len;
    696  1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    697  1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    698   1.19        pk 			panic("swapctl: copystr");
    699   1.32       chs 
    700    1.1       mrg 		/*
    701    1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    702    1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    703    1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    704    1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    705    1.1       mrg 		 */
    706   1.32       chs 
    707   1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    708  1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    709  1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    710    1.1       mrg 			swaplist_trim();
    711  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    712   1.96      yamt 			bufq_free(sdp->swd_tab);
    713  1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    714  1.159      para 			kmem_free(sdp, sizeof(*sdp));
    715    1.1       mrg 			break;
    716    1.1       mrg 		}
    717    1.1       mrg 		break;
    718    1.1       mrg 
    719    1.1       mrg 	case SWAP_OFF:
    720  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    721  1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    722  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    723    1.1       mrg 			error = ENXIO;
    724    1.1       mrg 			break;
    725    1.1       mrg 		}
    726   1.32       chs 
    727    1.1       mrg 		/*
    728    1.1       mrg 		 * If a device isn't in use or enabled, we
    729    1.1       mrg 		 * can't stop swapping from it (again).
    730    1.1       mrg 		 */
    731    1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    732  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    733    1.1       mrg 			error = EBUSY;
    734   1.16       mrg 			break;
    735    1.1       mrg 		}
    736    1.1       mrg 
    737    1.1       mrg 		/*
    738   1.32       chs 		 * do the real work.
    739    1.1       mrg 		 */
    740   1.97  christos 		error = swap_off(l, sdp);
    741    1.1       mrg 		break;
    742    1.1       mrg 
    743    1.1       mrg 	default:
    744    1.1       mrg 		error = EINVAL;
    745    1.1       mrg 	}
    746    1.1       mrg 
    747    1.1       mrg 	/*
    748   1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    749    1.1       mrg 	 */
    750    1.1       mrg 	vput(vp);
    751   1.16       mrg out:
    752  1.160     rmind 	rw_exit(&swap_syscall_lock);
    753  1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    754    1.1       mrg 
    755  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    756    1.1       mrg 	return (error);
    757   1.61      manu }
    758   1.61      manu 
    759   1.85  junyoung /*
    760  1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    761   1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    762   1.61      manu  * emulation to use it directly without going through sys_swapctl().
    763   1.61      manu  * The problem with using sys_swapctl() there is that it involves
    764   1.61      manu  * copying the swapent array to the stackgap, and this array's size
    765   1.85  junyoung  * is not known at build time. Hence it would not be possible to
    766   1.61      manu  * ensure it would fit in the stackgap in any case.
    767   1.61      manu  */
    768  1.176  christos int
    769  1.180       kre uvm_swap_stats(char *ptr, int misc,
    770  1.176  christos     void (*f)(void *, const struct swapent *), size_t len,
    771  1.176  christos     register_t *retval)
    772   1.61      manu {
    773   1.61      manu 	struct swappri *spp;
    774   1.61      manu 	struct swapdev *sdp;
    775  1.176  christos 	struct swapent sep;
    776   1.61      manu 	int count = 0;
    777  1.176  christos 	int error;
    778  1.176  christos 
    779  1.176  christos 	KASSERT(len <= sizeof(sep));
    780  1.176  christos 	if (len == 0)
    781  1.176  christos 		return ENOSYS;
    782  1.176  christos 
    783  1.176  christos 	if (misc < 0)
    784  1.176  christos 		return EINVAL;
    785  1.176  christos 
    786  1.176  christos 	if (misc == 0 || uvmexp.nswapdev == 0)
    787  1.176  christos 		return 0;
    788  1.176  christos 
    789  1.176  christos 	/* Make sure userland cannot exhaust kernel memory */
    790  1.176  christos 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    791  1.176  christos 		misc = uvmexp.nswapdev;
    792   1.61      manu 
    793  1.173      maxv 	KASSERT(rw_lock_held(&swap_syscall_lock));
    794  1.173      maxv 
    795   1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    796  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    797  1.144       mrg 			int inuse;
    798  1.144       mrg 
    799  1.176  christos 			if (misc-- <= 0)
    800  1.161     rmind 				break;
    801  1.161     rmind 
    802  1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    803   1.61      manu 			    PAGE_SHIFT);
    804   1.85  junyoung 
    805  1.178      maxv 			memset(&sep, 0, sizeof(sep));
    806  1.176  christos 			swapent_cvt(&sep, sdp, inuse);
    807  1.176  christos 			if (f)
    808  1.176  christos 				(*f)(&sep, &sep);
    809  1.176  christos 			if ((error = copyout(&sep, ptr, len)) != 0)
    810  1.176  christos 				return error;
    811  1.176  christos 			ptr += len;
    812   1.61      manu 			count++;
    813   1.61      manu 		}
    814   1.61      manu 	}
    815   1.61      manu 	*retval = count;
    816  1.176  christos 	return 0;
    817    1.1       mrg }
    818    1.1       mrg 
    819    1.1       mrg /*
    820    1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    821    1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    822    1.1       mrg  *	SWF_FAKE).
    823    1.1       mrg  *
    824    1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    825    1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    826  1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    827    1.1       mrg  *	if needed.
    828    1.1       mrg  */
    829    1.1       mrg static int
    830   1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    831    1.1       mrg {
    832    1.1       mrg 	struct vnode *vp;
    833    1.1       mrg 	int error, npages, nblocks, size;
    834    1.1       mrg 	long addr;
    835  1.157    dyoung 	vmem_addr_t result;
    836    1.1       mrg 	struct vattr va;
    837    1.1       mrg 	dev_t dev;
    838  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    839    1.1       mrg 
    840    1.1       mrg 	/*
    841    1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    842    1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    843    1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    844    1.1       mrg 	 */
    845    1.1       mrg 
    846    1.1       mrg 	vp = sdp->swd_vp;
    847    1.1       mrg 	dev = sdp->swd_dev;
    848    1.1       mrg 
    849    1.1       mrg 	/*
    850    1.1       mrg 	 * open the swap file (mostly useful for block device files to
    851    1.1       mrg 	 * let device driver know what is up).
    852    1.1       mrg 	 *
    853    1.1       mrg 	 * we skip the open/close for root on swap because the root
    854    1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    855    1.1       mrg 	 */
    856    1.1       mrg 	if (vp != rootvp) {
    857  1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    858    1.1       mrg 			return (error);
    859    1.1       mrg 	}
    860    1.1       mrg 
    861    1.1       mrg 	/* XXX this only works for block devices */
    862  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    863    1.1       mrg 
    864    1.1       mrg 	/*
    865    1.1       mrg 	 * we now need to determine the size of the swap area.   for
    866    1.1       mrg 	 * block specials we can call the d_psize function.
    867    1.1       mrg 	 * for normal files, we must stat [get attrs].
    868    1.1       mrg 	 *
    869    1.1       mrg 	 * we put the result in nblks.
    870    1.1       mrg 	 * for normal files, we also want the filesystem block size
    871    1.1       mrg 	 * (which we get with statfs).
    872    1.1       mrg 	 */
    873    1.1       mrg 	switch (vp->v_type) {
    874    1.1       mrg 	case VBLK:
    875  1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    876    1.1       mrg 			error = ENXIO;
    877    1.1       mrg 			goto bad;
    878    1.1       mrg 		}
    879    1.1       mrg 		break;
    880    1.1       mrg 
    881    1.1       mrg 	case VREG:
    882  1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    883    1.1       mrg 			goto bad;
    884    1.1       mrg 		nblocks = (int)btodb(va.va_size);
    885  1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    886    1.1       mrg 		/*
    887    1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    888    1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    889    1.1       mrg 		 */
    890  1.150     pooka 		if (vp->v_tag == VT_NFS)
    891    1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    892    1.1       mrg 		else
    893    1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    894    1.1       mrg 		break;
    895    1.1       mrg 
    896    1.1       mrg 	default:
    897    1.1       mrg 		error = ENXIO;
    898    1.1       mrg 		goto bad;
    899    1.1       mrg 	}
    900    1.1       mrg 
    901    1.1       mrg 	/*
    902    1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    903    1.1       mrg 	 */
    904    1.1       mrg 
    905  1.144       mrg 	sdp->swd_nblks = nblocks;
    906   1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    907    1.1       mrg 
    908    1.1       mrg 	/*
    909    1.1       mrg 	 * for block special files, we want to make sure that leave
    910    1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    911   1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    912    1.1       mrg 	 * note that because of this the "size" can be less than the
    913    1.1       mrg 	 * actual number of blocks on the device.
    914    1.1       mrg 	 */
    915    1.1       mrg 	if (vp->v_type == VBLK) {
    916    1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    917    1.1       mrg 		size = npages - 1;
    918    1.1       mrg 		addr = 1;
    919    1.1       mrg 	} else {
    920    1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    921    1.1       mrg 		size = npages;
    922    1.1       mrg 		addr = 0;
    923    1.1       mrg 	}
    924    1.1       mrg 
    925    1.1       mrg 	/*
    926    1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    927    1.1       mrg 	 * area.   we want at least one page.
    928    1.1       mrg 	 */
    929    1.1       mrg 
    930    1.1       mrg 	if (size < 1) {
    931    1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    932    1.1       mrg 		error = EINVAL;
    933    1.1       mrg 		goto bad;
    934    1.1       mrg 	}
    935    1.1       mrg 
    936  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    937    1.1       mrg 
    938    1.1       mrg 	/*
    939    1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    940    1.1       mrg 	 */
    941    1.1       mrg 
    942   1.90      yamt 	sdp->swd_blist = blist_create(npages);
    943   1.90      yamt 	/* mark all expect the `saved' region free. */
    944   1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    945    1.1       mrg 
    946    1.1       mrg 	/*
    947  1.187  riastrad 	 * allocate space to for swap encryption state and mark the
    948  1.187  riastrad 	 * keys uninitialized so we generate them lazily
    949  1.187  riastrad 	 */
    950  1.190  riastrad 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
    951  1.187  riastrad 	sdp->swd_encinit = false;
    952  1.187  riastrad 
    953  1.187  riastrad 	/*
    954   1.51       chs 	 * if the vnode we are swapping to is the root vnode
    955    1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    956   1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    957    1.1       mrg 	 * find its size and skip over it.
    958    1.1       mrg 	 */
    959    1.1       mrg 	if (vp == rootvp) {
    960    1.1       mrg 		struct mount *mp;
    961   1.86  christos 		struct statvfs *sp;
    962    1.1       mrg 		int rootblocks, rootpages;
    963    1.1       mrg 
    964    1.1       mrg 		mp = rootvnode->v_mount;
    965    1.1       mrg 		sp = &mp->mnt_stat;
    966   1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    967   1.64  fredette 		/*
    968   1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    969   1.64  fredette 		 * blocks in the filesystem, it's the number of
    970   1.64  fredette 		 * data blocks.  so, our rootblocks almost
    971   1.85  junyoung 		 * definitely underestimates the total size
    972   1.64  fredette 		 * of the filesystem - how badly depends on the
    973   1.85  junyoung 		 * details of the filesystem type.  there isn't
    974   1.64  fredette 		 * an obvious way to deal with this cleanly
    975   1.85  junyoung 		 * and perfectly, so for now we just pad our
    976   1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    977   1.64  fredette 		 */
    978   1.64  fredette 		rootblocks += (rootblocks >> 5) +
    979   1.64  fredette 			(rootblocks >> 6) +
    980   1.64  fredette 			(rootblocks >> 7);
    981   1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    982   1.32       chs 		if (rootpages > size)
    983    1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    984    1.1       mrg 
    985   1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    986    1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    987   1.90      yamt 		}
    988    1.1       mrg 
    989   1.32       chs 		size -= rootpages;
    990    1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    991   1.32       chs 		printf("leaving %d pages of swap\n", size);
    992    1.1       mrg 	}
    993    1.1       mrg 
    994   1.39       chs 	/*
    995   1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    996   1.39       chs 	 */
    997   1.39       chs 	vref(vp);
    998   1.39       chs 
    999    1.1       mrg 	/*
   1000    1.1       mrg 	 * now add the new swapdev to the drum and enable.
   1001    1.1       mrg 	 */
   1002  1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
   1003  1.157    dyoung 	if (error != 0)
   1004   1.48      fvdl 		panic("swapdrum_add");
   1005  1.130   hannken 	/*
   1006  1.130   hannken 	 * If this is the first regular swap create the workqueue.
   1007  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1008  1.130   hannken 	 */
   1009  1.130   hannken 	if (vp->v_type != VBLK) {
   1010  1.130   hannken 		if (sw_reg_count++ == 0) {
   1011  1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
   1012  1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1013  1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1014  1.145       mrg 				panic("%s: workqueue_create failed", __func__);
   1015  1.130   hannken 		}
   1016  1.130   hannken 	}
   1017   1.48      fvdl 
   1018   1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1019   1.48      fvdl 	sdp->swd_drumsize = npages;
   1020   1.48      fvdl 	sdp->swd_npages = size;
   1021  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1022    1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1023    1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1024   1.32       chs 	uvmexp.swpages += size;
   1025   1.81        pk 	uvmexp.swpgavail += size;
   1026  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1027    1.1       mrg 	return (0);
   1028    1.1       mrg 
   1029    1.1       mrg 	/*
   1030   1.43       chs 	 * failure: clean up and return error.
   1031    1.1       mrg 	 */
   1032   1.43       chs 
   1033   1.43       chs bad:
   1034   1.90      yamt 	if (sdp->swd_blist) {
   1035   1.90      yamt 		blist_destroy(sdp->swd_blist);
   1036   1.43       chs 	}
   1037   1.43       chs 	if (vp != rootvp) {
   1038  1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1039   1.43       chs 	}
   1040    1.1       mrg 	return (error);
   1041    1.1       mrg }
   1042    1.1       mrg 
   1043    1.1       mrg /*
   1044    1.1       mrg  * swap_off: stop swapping on swapdev
   1045    1.1       mrg  *
   1046   1.32       chs  * => swap data should be locked, we will unlock.
   1047    1.1       mrg  */
   1048    1.1       mrg static int
   1049   1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1050    1.1       mrg {
   1051   1.91      yamt 	int npages = sdp->swd_npages;
   1052   1.91      yamt 	int error = 0;
   1053   1.81        pk 
   1054  1.197     skrll 	UVMHIST_FUNC(__func__);
   1055  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1056    1.1       mrg 
   1057  1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
   1058  1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
   1059  1.190  riastrad 
   1060   1.32       chs 	/* disable the swap area being removed */
   1061    1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1062   1.81        pk 	uvmexp.swpgavail -= npages;
   1063  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1064   1.32       chs 
   1065   1.32       chs 	/*
   1066   1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1067   1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1068   1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1069   1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1070   1.32       chs 	 */
   1071    1.1       mrg 
   1072   1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1073   1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1074   1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1075   1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1076   1.91      yamt 		error = ENOMEM;
   1077   1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1078   1.91      yamt 		error = EBUSY;
   1079   1.91      yamt 	}
   1080   1.51       chs 
   1081   1.91      yamt 	if (error) {
   1082  1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1083   1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1084   1.81        pk 		uvmexp.swpgavail += npages;
   1085  1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1086   1.91      yamt 
   1087   1.91      yamt 		return error;
   1088   1.32       chs 	}
   1089    1.1       mrg 
   1090    1.1       mrg 	/*
   1091  1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1092  1.130   hannken 	 * => Protected by swap_syscall_lock.
   1093  1.130   hannken 	 */
   1094  1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1095  1.130   hannken 		KASSERT(sw_reg_count > 0);
   1096  1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1097  1.130   hannken 		if (--sw_reg_count == 0) {
   1098  1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1099  1.130   hannken 			sw_reg_workqueue = NULL;
   1100  1.130   hannken 		}
   1101  1.130   hannken 	}
   1102  1.130   hannken 
   1103  1.130   hannken 	/*
   1104   1.58     enami 	 * done with the vnode.
   1105   1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1106   1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1107    1.1       mrg 	 */
   1108   1.39       chs 	vrele(sdp->swd_vp);
   1109   1.32       chs 	if (sdp->swd_vp != rootvp) {
   1110  1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1111   1.32       chs 	}
   1112   1.32       chs 
   1113  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1114   1.81        pk 	uvmexp.swpages -= npages;
   1115   1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1116    1.1       mrg 
   1117  1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1118  1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1119   1.32       chs 	swaplist_trim();
   1120  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1121    1.1       mrg 
   1122   1.32       chs 	/*
   1123   1.32       chs 	 * free all resources!
   1124   1.32       chs 	 */
   1125  1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1126   1.90      yamt 	blist_destroy(sdp->swd_blist);
   1127   1.96      yamt 	bufq_free(sdp->swd_tab);
   1128  1.190  riastrad 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
   1129  1.190  riastrad 	    encmap_size(sdp->swd_drumsize));
   1130  1.187  riastrad 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
   1131  1.187  riastrad 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
   1132  1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1133    1.1       mrg 	return (0);
   1134    1.1       mrg }
   1135    1.1       mrg 
   1136  1.164  christos void
   1137  1.164  christos uvm_swap_shutdown(struct lwp *l)
   1138  1.164  christos {
   1139  1.164  christos 	struct swapdev *sdp;
   1140  1.164  christos 	struct swappri *spp;
   1141  1.164  christos 	struct vnode *vp;
   1142  1.164  christos 	int error;
   1143  1.164  christos 
   1144  1.182        ad 	printf("turning off swap...");
   1145  1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1146  1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1147  1.164  christos again:
   1148  1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1149  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1150  1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1151  1.164  christos 				continue;
   1152  1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1153  1.164  christos 				continue;
   1154  1.164  christos #ifdef DEBUG
   1155  1.201   hannken 			printf("\nturning off swap on %s...", sdp->swd_path);
   1156  1.164  christos #endif
   1157  1.201   hannken 			/* Have to lock and reference vnode for swap_off(). */
   1158  1.164  christos 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1159  1.164  christos 				error = EBUSY;
   1160  1.201   hannken 			} else {
   1161  1.201   hannken 				vref(vp);
   1162  1.164  christos 				error = swap_off(l, sdp);
   1163  1.201   hannken 				vput(vp);
   1164  1.164  christos 				mutex_enter(&uvm_swap_data_lock);
   1165  1.164  christos 			}
   1166  1.164  christos 			if (error) {
   1167  1.164  christos 				printf("stopping swap on %s failed "
   1168  1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1169  1.201   hannken 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1170  1.164  christos 				uvmexp.nswapdev--;
   1171  1.164  christos 				swaplist_trim();
   1172  1.164  christos 			}
   1173  1.164  christos 			goto again;
   1174  1.164  christos 		}
   1175  1.164  christos 	printf(" done\n");
   1176  1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1177  1.164  christos 	rw_exit(&swap_syscall_lock);
   1178  1.164  christos }
   1179  1.164  christos 
   1180  1.164  christos 
   1181    1.1       mrg /*
   1182    1.1       mrg  * /dev/drum interface and i/o functions
   1183    1.1       mrg  */
   1184    1.1       mrg 
   1185    1.1       mrg /*
   1186    1.1       mrg  * swstrategy: perform I/O on the drum
   1187    1.1       mrg  *
   1188    1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1189    1.1       mrg  */
   1190   1.94   thorpej static void
   1191   1.93   thorpej swstrategy(struct buf *bp)
   1192    1.1       mrg {
   1193    1.1       mrg 	struct swapdev *sdp;
   1194    1.1       mrg 	struct vnode *vp;
   1195  1.134        ad 	int pageno, bn;
   1196  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1197    1.1       mrg 
   1198    1.1       mrg 	/*
   1199    1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1200    1.1       mrg 	 * be yanked out from under us because we are holding resources
   1201    1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1202    1.1       mrg 	 */
   1203   1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1204  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1205    1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1206  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1207    1.1       mrg 	if (sdp == NULL) {
   1208    1.1       mrg 		bp->b_error = EINVAL;
   1209  1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1210    1.1       mrg 		biodone(bp);
   1211    1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1212    1.1       mrg 		return;
   1213    1.1       mrg 	}
   1214    1.1       mrg 
   1215    1.1       mrg 	/*
   1216    1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1217    1.1       mrg 	 */
   1218    1.1       mrg 
   1219   1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1220   1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1221    1.1       mrg 
   1222  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1223  1.175  pgoyette 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1224    1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1225    1.1       mrg 
   1226    1.1       mrg 	/*
   1227    1.1       mrg 	 * for block devices we finish up here.
   1228   1.32       chs 	 * for regular files we have to do more work which we delegate
   1229    1.1       mrg 	 * to sw_reg_strategy().
   1230    1.1       mrg 	 */
   1231    1.1       mrg 
   1232  1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1233  1.134        ad 	switch (vp->v_type) {
   1234    1.1       mrg 	default:
   1235  1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1236   1.32       chs 
   1237    1.1       mrg 	case VBLK:
   1238    1.1       mrg 
   1239    1.1       mrg 		/*
   1240    1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1241    1.1       mrg 		 * on the swapdev (sdp).
   1242    1.1       mrg 		 */
   1243    1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1244    1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1245    1.1       mrg 
   1246    1.1       mrg 		/*
   1247    1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1248    1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1249    1.1       mrg 		 */
   1250    1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1251  1.134        ad 			mutex_enter(bp->b_objlock);
   1252    1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1253  1.134        ad 			mutex_exit(bp->b_objlock);
   1254  1.156     rmind 			mutex_enter(vp->v_interlock);
   1255  1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1256  1.156     rmind 			mutex_exit(vp->v_interlock);
   1257    1.1       mrg 		}
   1258    1.1       mrg 
   1259   1.41       chs 		/*
   1260    1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1261    1.1       mrg 		 */
   1262    1.1       mrg 		bp->b_vp = vp;
   1263  1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1264   1.84   hannken 		VOP_STRATEGY(vp, bp);
   1265    1.1       mrg 		return;
   1266   1.32       chs 
   1267    1.1       mrg 	case VREG:
   1268    1.1       mrg 		/*
   1269   1.32       chs 		 * delegate to sw_reg_strategy function.
   1270    1.1       mrg 		 */
   1271    1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1272    1.1       mrg 		return;
   1273    1.1       mrg 	}
   1274    1.1       mrg 	/* NOTREACHED */
   1275    1.1       mrg }
   1276    1.1       mrg 
   1277    1.1       mrg /*
   1278   1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1279   1.94   thorpej  */
   1280   1.94   thorpej /*ARGSUSED*/
   1281   1.94   thorpej static int
   1282  1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1283   1.94   thorpej {
   1284  1.197     skrll 	UVMHIST_FUNC(__func__);
   1285  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1286   1.94   thorpej 
   1287   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1288   1.94   thorpej }
   1289   1.94   thorpej 
   1290   1.94   thorpej /*
   1291   1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1292   1.94   thorpej  */
   1293   1.94   thorpej /*ARGSUSED*/
   1294   1.94   thorpej static int
   1295  1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1296   1.94   thorpej {
   1297  1.197     skrll 	UVMHIST_FUNC(__func__);
   1298  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1299   1.94   thorpej 
   1300   1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1301   1.94   thorpej }
   1302   1.94   thorpej 
   1303   1.94   thorpej const struct bdevsw swap_bdevsw = {
   1304  1.168  dholland 	.d_open = nullopen,
   1305  1.168  dholland 	.d_close = nullclose,
   1306  1.168  dholland 	.d_strategy = swstrategy,
   1307  1.168  dholland 	.d_ioctl = noioctl,
   1308  1.168  dholland 	.d_dump = nodump,
   1309  1.168  dholland 	.d_psize = nosize,
   1310  1.171  dholland 	.d_discard = nodiscard,
   1311  1.168  dholland 	.d_flag = D_OTHER
   1312   1.94   thorpej };
   1313   1.94   thorpej 
   1314   1.94   thorpej const struct cdevsw swap_cdevsw = {
   1315  1.168  dholland 	.d_open = nullopen,
   1316  1.168  dholland 	.d_close = nullclose,
   1317  1.168  dholland 	.d_read = swread,
   1318  1.168  dholland 	.d_write = swwrite,
   1319  1.168  dholland 	.d_ioctl = noioctl,
   1320  1.168  dholland 	.d_stop = nostop,
   1321  1.168  dholland 	.d_tty = notty,
   1322  1.168  dholland 	.d_poll = nopoll,
   1323  1.168  dholland 	.d_mmap = nommap,
   1324  1.168  dholland 	.d_kqfilter = nokqfilter,
   1325  1.172  dholland 	.d_discard = nodiscard,
   1326  1.168  dholland 	.d_flag = D_OTHER,
   1327   1.94   thorpej };
   1328   1.94   thorpej 
   1329   1.94   thorpej /*
   1330    1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1331    1.1       mrg  */
   1332    1.1       mrg static void
   1333   1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1334    1.1       mrg {
   1335    1.1       mrg 	struct vnode	*vp;
   1336    1.1       mrg 	struct vndxfer	*vnx;
   1337   1.44     enami 	daddr_t		nbn;
   1338  1.122  christos 	char 		*addr;
   1339   1.44     enami 	off_t		byteoff;
   1340    1.9       mrg 	int		s, off, nra, error, sz, resid;
   1341  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1342    1.1       mrg 
   1343    1.1       mrg 	/*
   1344    1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1345    1.1       mrg 	 * our buffer.
   1346    1.1       mrg 	 */
   1347  1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1348    1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1349    1.1       mrg 	vnx->vx_error = 0;
   1350    1.1       mrg 	vnx->vx_pending = 0;
   1351    1.1       mrg 	vnx->vx_bp = bp;
   1352    1.1       mrg 	vnx->vx_sdp = sdp;
   1353    1.1       mrg 
   1354    1.1       mrg 	/*
   1355    1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1356    1.1       mrg 	 * our buffer.
   1357    1.1       mrg 	 */
   1358    1.1       mrg 	error = 0;
   1359  1.185   msaitoh 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1360    1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1361   1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1362    1.1       mrg 
   1363    1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1364    1.1       mrg 		struct vndbuf	*nbp;
   1365    1.1       mrg 
   1366    1.1       mrg 		/*
   1367    1.1       mrg 		 * translate byteoffset into block number.  return values:
   1368    1.1       mrg 		 *   vp = vnode of underlying device
   1369    1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1370    1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1371    1.1       mrg 		 *	block)
   1372    1.1       mrg 		 */
   1373    1.1       mrg 		nra = 0;
   1374    1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1375    1.1       mrg 				 	&vp, &nbn, &nra);
   1376    1.1       mrg 
   1377   1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1378   1.51       chs 			/*
   1379   1.23      marc 			 * this used to just set error, but that doesn't
   1380   1.23      marc 			 * do the right thing.  Instead, it causes random
   1381   1.23      marc 			 * memory errors.  The panic() should remain until
   1382   1.23      marc 			 * this condition doesn't destabilize the system.
   1383   1.23      marc 			 */
   1384   1.23      marc #if 1
   1385  1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1386   1.23      marc #else
   1387    1.1       mrg 			error = EIO;	/* failure */
   1388   1.23      marc #endif
   1389   1.23      marc 		}
   1390    1.1       mrg 
   1391    1.1       mrg 		/*
   1392    1.1       mrg 		 * punt if there was an error or a hole in the file.
   1393    1.1       mrg 		 * we must wait for any i/o ops we have already started
   1394    1.1       mrg 		 * to finish before returning.
   1395    1.1       mrg 		 *
   1396    1.1       mrg 		 * XXX we could deal with holes here but it would be
   1397    1.1       mrg 		 * a hassle (in the write case).
   1398    1.1       mrg 		 */
   1399    1.1       mrg 		if (error) {
   1400    1.1       mrg 			s = splbio();
   1401    1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1402    1.1       mrg 			goto out;
   1403    1.1       mrg 		}
   1404    1.1       mrg 
   1405    1.1       mrg 		/*
   1406    1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1407    1.1       mrg 		 */
   1408   1.41       chs 		off = byteoff % sdp->swd_bsize;
   1409   1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1410   1.41       chs 		if (sz > resid)
   1411    1.1       mrg 			sz = resid;
   1412    1.1       mrg 
   1413   1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1414  1.175  pgoyette 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1415  1.175  pgoyette 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1416    1.1       mrg 
   1417    1.1       mrg 		/*
   1418    1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1419    1.1       mrg 		 * at the front of the nbp structure so that you can
   1420    1.1       mrg 		 * cast pointers between the two structure easily.
   1421    1.1       mrg 		 */
   1422  1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1423  1.134        ad 		buf_init(&nbp->vb_buf);
   1424  1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1425  1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1426  1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1427    1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1428   1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1429    1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1430    1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1431   1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1432    1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1433   1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1434  1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1435   1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1436  1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1437   1.53       chs 		if (vp->v_type == VBLK) {
   1438   1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1439   1.53       chs 		}
   1440    1.1       mrg 
   1441    1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1442    1.1       mrg 
   1443    1.1       mrg 		/*
   1444    1.1       mrg 		 * Just sort by block number
   1445    1.1       mrg 		 */
   1446    1.1       mrg 		s = splbio();
   1447    1.1       mrg 		if (vnx->vx_error != 0) {
   1448  1.134        ad 			buf_destroy(&nbp->vb_buf);
   1449  1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1450    1.1       mrg 			goto out;
   1451    1.1       mrg 		}
   1452    1.1       mrg 		vnx->vx_pending++;
   1453    1.1       mrg 
   1454    1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1455  1.134        ad 		/* XXXAD locking */
   1456  1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1457    1.1       mrg 		sw_reg_start(sdp);
   1458    1.1       mrg 		splx(s);
   1459    1.1       mrg 
   1460    1.1       mrg 		/*
   1461    1.1       mrg 		 * advance to the next I/O
   1462    1.1       mrg 		 */
   1463    1.9       mrg 		byteoff += sz;
   1464    1.1       mrg 		addr += sz;
   1465    1.1       mrg 	}
   1466    1.1       mrg 
   1467    1.1       mrg 	s = splbio();
   1468    1.1       mrg 
   1469    1.1       mrg out: /* Arrive here at splbio */
   1470    1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1471    1.1       mrg 	if (vnx->vx_pending == 0) {
   1472  1.134        ad 		error = vnx->vx_error;
   1473  1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1474  1.134        ad 		bp->b_error = error;
   1475    1.1       mrg 		biodone(bp);
   1476    1.1       mrg 	}
   1477    1.1       mrg 	splx(s);
   1478    1.1       mrg }
   1479    1.1       mrg 
   1480    1.1       mrg /*
   1481    1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1482    1.1       mrg  *
   1483   1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1484    1.1       mrg  */
   1485    1.1       mrg static void
   1486   1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1487    1.1       mrg {
   1488    1.1       mrg 	struct buf	*bp;
   1489  1.134        ad 	struct vnode	*vp;
   1490  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1491    1.1       mrg 
   1492    1.8       mrg 	/* recursion control */
   1493    1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1494    1.1       mrg 		return;
   1495    1.1       mrg 
   1496    1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1497    1.1       mrg 
   1498   1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1499  1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1500    1.1       mrg 		if (bp == NULL)
   1501    1.1       mrg 			break;
   1502   1.33   thorpej 		sdp->swd_active++;
   1503    1.1       mrg 
   1504    1.1       mrg 		UVMHIST_LOG(pdhist,
   1505  1.175  pgoyette 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1506  1.175  pgoyette 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1507  1.175  pgoyette 		    bp->b_bcount);
   1508  1.134        ad 		vp = bp->b_vp;
   1509  1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1510  1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1511  1.156     rmind 			mutex_enter(vp->v_interlock);
   1512  1.134        ad 			vp->v_numoutput++;
   1513  1.156     rmind 			mutex_exit(vp->v_interlock);
   1514  1.134        ad 		}
   1515  1.134        ad 		VOP_STRATEGY(vp, bp);
   1516    1.1       mrg 	}
   1517    1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1518    1.1       mrg }
   1519    1.1       mrg 
   1520    1.1       mrg /*
   1521  1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1522  1.130   hannken  */
   1523  1.130   hannken static void
   1524  1.130   hannken sw_reg_biodone(struct buf *bp)
   1525  1.130   hannken {
   1526  1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1527  1.130   hannken }
   1528  1.130   hannken 
   1529  1.130   hannken /*
   1530    1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1531    1.1       mrg  *
   1532    1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1533    1.1       mrg  */
   1534    1.1       mrg static void
   1535  1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1536    1.1       mrg {
   1537  1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1538    1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1539    1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1540    1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1541   1.72       chs 	int s, resid, error;
   1542  1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1543  1.197     skrll 	UVMHIST_FUNC(__func__);
   1544  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1545  1.175  pgoyette 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1546  1.175  pgoyette 	    (uintptr_t)vbp->vb_buf.b_data);
   1547  1.175  pgoyette 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1548    1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1549    1.1       mrg 
   1550    1.1       mrg 	/*
   1551    1.1       mrg 	 * protect vbp at splbio and update.
   1552    1.1       mrg 	 */
   1553    1.1       mrg 
   1554    1.1       mrg 	s = splbio();
   1555    1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1556    1.1       mrg 	pbp->b_resid -= resid;
   1557    1.1       mrg 	vnx->vx_pending--;
   1558    1.1       mrg 
   1559  1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1560    1.1       mrg 		/* pass error upward */
   1561  1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1562  1.175  pgoyette 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1563   1.72       chs 		vnx->vx_error = error;
   1564   1.35       chs 	}
   1565   1.35       chs 
   1566   1.35       chs 	/*
   1567    1.1       mrg 	 * kill vbp structure
   1568    1.1       mrg 	 */
   1569  1.134        ad 	buf_destroy(&vbp->vb_buf);
   1570  1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1571    1.1       mrg 
   1572    1.1       mrg 	/*
   1573    1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1574    1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1575    1.1       mrg 	 */
   1576    1.1       mrg 	if (vnx->vx_error != 0) {
   1577    1.1       mrg 		/* pass error upward */
   1578  1.134        ad 		error = vnx->vx_error;
   1579    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1580  1.134        ad 			pbp->b_error = error;
   1581    1.1       mrg 			biodone(pbp);
   1582  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1583    1.1       mrg 		}
   1584   1.11        pk 	} else if (pbp->b_resid == 0) {
   1585   1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1586    1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1587  1.175  pgoyette 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1588  1.175  pgoyette 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1589    1.1       mrg 			biodone(pbp);
   1590  1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1591    1.1       mrg 		}
   1592    1.1       mrg 	}
   1593    1.1       mrg 
   1594    1.1       mrg 	/*
   1595    1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1596    1.1       mrg 	 */
   1597   1.33   thorpej 	sdp->swd_active--;
   1598    1.1       mrg 	sw_reg_start(sdp);
   1599    1.1       mrg 	splx(s);
   1600    1.1       mrg }
   1601    1.1       mrg 
   1602    1.1       mrg 
   1603    1.1       mrg /*
   1604    1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1605    1.1       mrg  *
   1606    1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1607    1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1608    1.1       mrg  * => space can be freed with uvm_swap_free
   1609    1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1610  1.127        ad  * => we lock uvm_swap_data_lock
   1611    1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1612    1.1       mrg  */
   1613    1.1       mrg int
   1614  1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1615    1.1       mrg {
   1616    1.1       mrg 	struct swapdev *sdp;
   1617    1.1       mrg 	struct swappri *spp;
   1618  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1619    1.1       mrg 
   1620    1.1       mrg 	/*
   1621    1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1622    1.1       mrg 	 */
   1623    1.1       mrg 	if (uvmexp.nswapdev < 1)
   1624    1.1       mrg 		return 0;
   1625   1.51       chs 
   1626    1.1       mrg 	/*
   1627  1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1628  1.162  jakllsch 	 *
   1629  1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1630  1.162  jakllsch 	 * too many slots.
   1631  1.162  jakllsch 	 */
   1632  1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1633  1.162  jakllsch 		if (__predict_false(lessok == false))
   1634  1.162  jakllsch 			return 0;
   1635  1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1636  1.162  jakllsch 	}
   1637  1.162  jakllsch 	/* XXXJAK: END HACK */
   1638  1.162  jakllsch 
   1639  1.162  jakllsch 	/*
   1640    1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1641    1.1       mrg 	 */
   1642  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1643    1.1       mrg 
   1644    1.1       mrg ReTry:	/* XXXMRG */
   1645   1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1646  1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1647   1.90      yamt 			uint64_t result;
   1648   1.90      yamt 
   1649    1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1650    1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1651    1.1       mrg 				continue;
   1652    1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1653    1.1       mrg 				continue;
   1654   1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1655   1.90      yamt 			if (result == BLIST_NONE) {
   1656    1.1       mrg 				continue;
   1657    1.1       mrg 			}
   1658   1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1659    1.1       mrg 
   1660    1.1       mrg 			/*
   1661  1.165  christos 			 * successful allocation!  now rotate the tailq.
   1662    1.1       mrg 			 */
   1663  1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1664  1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1665    1.1       mrg 			sdp->swd_npginuse += *nslots;
   1666    1.1       mrg 			uvmexp.swpginuse += *nslots;
   1667  1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1668    1.1       mrg 			/* done!  return drum slot number */
   1669    1.1       mrg 			UVMHIST_LOG(pdhist,
   1670  1.175  pgoyette 			    "success!  returning %jd slots starting at %jd",
   1671    1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1672   1.55       chs 			return (result + sdp->swd_drumoffset);
   1673    1.1       mrg 		}
   1674    1.1       mrg 	}
   1675    1.1       mrg 
   1676    1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1677    1.1       mrg 	if (*nslots > 1 && lessok) {
   1678    1.1       mrg 		*nslots = 1;
   1679   1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1680   1.90      yamt 		goto ReTry;
   1681    1.1       mrg 	}
   1682    1.1       mrg 	/* XXXMRG: END HACK */
   1683    1.1       mrg 
   1684  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1685   1.55       chs 	return 0;
   1686    1.1       mrg }
   1687    1.1       mrg 
   1688  1.141        ad /*
   1689  1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1690  1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1691  1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1692  1.141        ad  * pages are busy.
   1693  1.141        ad  */
   1694  1.119   thorpej bool
   1695   1.81        pk uvm_swapisfull(void)
   1696   1.81        pk {
   1697  1.141        ad 	int swpgonly;
   1698  1.119   thorpej 	bool rv;
   1699   1.81        pk 
   1700  1.200       chs 	if (uvmexp.swpages == 0) {
   1701  1.200       chs 		return true;
   1702  1.200       chs 	}
   1703  1.200       chs 
   1704  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1705   1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1706  1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1707  1.141        ad 	    uvm_swapisfull_factor);
   1708  1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1709  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1710   1.81        pk 
   1711   1.81        pk 	return (rv);
   1712   1.81        pk }
   1713   1.81        pk 
   1714    1.1       mrg /*
   1715   1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1716   1.32       chs  *
   1717  1.127        ad  * => we lock uvm_swap_data_lock
   1718   1.32       chs  */
   1719   1.32       chs void
   1720   1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1721   1.32       chs {
   1722   1.32       chs 	struct swapdev *sdp;
   1723  1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1724   1.32       chs 
   1725  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1726   1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1727   1.82        pk 	KASSERT(sdp != NULL);
   1728   1.32       chs 
   1729   1.32       chs 	/*
   1730   1.32       chs 	 * we just keep track of how many pages have been marked bad
   1731   1.32       chs 	 * in this device, to make everything add up in swap_off().
   1732   1.32       chs 	 * we assume here that the range of slots will all be within
   1733   1.32       chs 	 * one swap device.
   1734   1.32       chs 	 */
   1735   1.41       chs 
   1736   1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1737  1.182        ad 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1738   1.32       chs 	sdp->swd_npgbad += nslots;
   1739  1.175  pgoyette 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1740  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1741   1.32       chs }
   1742   1.32       chs 
   1743   1.32       chs /*
   1744    1.1       mrg  * uvm_swap_free: free swap slots
   1745    1.1       mrg  *
   1746    1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1747  1.127        ad  * => we lock uvm_swap_data_lock
   1748    1.1       mrg  */
   1749    1.1       mrg void
   1750   1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1751    1.1       mrg {
   1752    1.1       mrg 	struct swapdev *sdp;
   1753  1.197     skrll 	UVMHIST_FUNC(__func__);
   1754  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
   1755    1.1       mrg 	    startslot, 0, 0);
   1756   1.32       chs 
   1757   1.32       chs 	/*
   1758   1.32       chs 	 * ignore attempts to free the "bad" slot.
   1759   1.32       chs 	 */
   1760   1.46       chs 
   1761   1.32       chs 	if (startslot == SWSLOT_BAD) {
   1762   1.32       chs 		return;
   1763   1.32       chs 	}
   1764   1.32       chs 
   1765    1.1       mrg 	/*
   1766   1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1767   1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1768    1.1       mrg 	 * lookup and access the extent.
   1769    1.1       mrg 	 */
   1770   1.46       chs 
   1771  1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1772    1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1773   1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1774   1.46       chs 	KASSERT(sdp != NULL);
   1775   1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1776   1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1777    1.1       mrg 	sdp->swd_npginuse -= nslots;
   1778    1.1       mrg 	uvmexp.swpginuse -= nslots;
   1779  1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1780    1.1       mrg }
   1781    1.1       mrg 
   1782    1.1       mrg /*
   1783    1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1784    1.1       mrg  *
   1785    1.1       mrg  * => can be sync or async
   1786    1.1       mrg  */
   1787   1.54       chs 
   1788    1.1       mrg int
   1789   1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1790    1.1       mrg {
   1791   1.56       chs 	int error;
   1792    1.1       mrg 
   1793   1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1794    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1795   1.56       chs 	return error;
   1796    1.1       mrg }
   1797    1.1       mrg 
   1798    1.1       mrg /*
   1799    1.1       mrg  * uvm_swap_get: get a single page from swap
   1800    1.1       mrg  *
   1801    1.1       mrg  * => usually a sync op (from fault)
   1802    1.1       mrg  */
   1803   1.54       chs 
   1804    1.1       mrg int
   1805   1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1806    1.1       mrg {
   1807   1.56       chs 	int error;
   1808    1.1       mrg 
   1809  1.184        ad 	atomic_inc_uint(&uvmexp.nswget);
   1810   1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1811   1.32       chs 	if (swslot == SWSLOT_BAD) {
   1812   1.47       chs 		return EIO;
   1813   1.32       chs 	}
   1814   1.81        pk 
   1815   1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1816    1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1817   1.56       chs 	if (error == 0) {
   1818   1.47       chs 
   1819   1.26       chs 		/*
   1820   1.54       chs 		 * this page is no longer only in swap.
   1821   1.26       chs 		 */
   1822   1.47       chs 
   1823   1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1824  1.182        ad 		atomic_dec_uint(&uvmexp.swpgonly);
   1825   1.26       chs 	}
   1826   1.56       chs 	return error;
   1827    1.1       mrg }
   1828    1.1       mrg 
   1829    1.1       mrg /*
   1830    1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1831    1.1       mrg  */
   1832    1.1       mrg 
   1833    1.1       mrg static int
   1834   1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1835    1.1       mrg {
   1836    1.1       mrg 	daddr_t startblk;
   1837    1.1       mrg 	struct	buf *bp;
   1838   1.15       eeh 	vaddr_t kva;
   1839  1.134        ad 	int	error, mapinflags;
   1840  1.187  riastrad 	bool write, async, swap_encrypt;
   1841  1.197     skrll 	UVMHIST_FUNC(__func__);
   1842  1.197     skrll 	UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1843    1.1       mrg 	    startslot, npages, flags, 0);
   1844   1.32       chs 
   1845   1.41       chs 	write = (flags & B_READ) == 0;
   1846   1.41       chs 	async = (flags & B_ASYNC) != 0;
   1847  1.189  riastrad 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
   1848   1.41       chs 
   1849    1.1       mrg 	/*
   1850  1.137      yamt 	 * allocate a buf for the i/o.
   1851  1.137      yamt 	 */
   1852  1.137      yamt 
   1853  1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1854  1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1855  1.137      yamt 	if (bp == NULL) {
   1856  1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1857  1.137      yamt 		return ENOMEM;
   1858  1.137      yamt 	}
   1859  1.137      yamt 
   1860  1.137      yamt 	/*
   1861    1.1       mrg 	 * convert starting drum slot to block number
   1862    1.1       mrg 	 */
   1863   1.54       chs 
   1864   1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1865    1.1       mrg 
   1866    1.1       mrg 	/*
   1867   1.54       chs 	 * first, map the pages into the kernel.
   1868   1.41       chs 	 */
   1869   1.41       chs 
   1870   1.54       chs 	mapinflags = !write ?
   1871   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1872   1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1873  1.187  riastrad 	if (write && swap_encrypt)	/* need to encrypt in-place */
   1874  1.187  riastrad 		mapinflags |= UVMPAGER_MAPIN_READ;
   1875   1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1876    1.1       mrg 
   1877   1.51       chs 	/*
   1878  1.187  riastrad 	 * encrypt writes in place if requested
   1879  1.187  riastrad 	 */
   1880  1.187  riastrad 
   1881  1.187  riastrad 	if (write) do {
   1882  1.187  riastrad 		struct swapdev *sdp;
   1883  1.187  riastrad 		int i;
   1884  1.187  riastrad 
   1885  1.187  riastrad 		/*
   1886  1.187  riastrad 		 * Get the swapdev so we can discriminate on the
   1887  1.187  riastrad 		 * encryption state.  There may or may not be an
   1888  1.187  riastrad 		 * encryption key generated; we may or may not be asked
   1889  1.187  riastrad 		 * to encrypt swap.
   1890  1.187  riastrad 		 *
   1891  1.187  riastrad 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
   1892  1.187  riastrad 		 *
   1893  1.187  riastrad 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
   1894  1.187  riastrad 		 *    and mark the slots encrypted.
   1895  1.187  riastrad 		 *
   1896  1.187  riastrad 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
   1897  1.187  riastrad 		 *    marked encrypted from a past life.  Mark them not
   1898  1.187  riastrad 		 *    encrypted.
   1899  1.187  riastrad 		 *
   1900  1.187  riastrad 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
   1901  1.187  riastrad 		 *    encrypted.
   1902  1.187  riastrad 		 */
   1903  1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   1904  1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   1905  1.187  riastrad 		if (!sdp->swd_encinit) {
   1906  1.190  riastrad 			if (!swap_encrypt) {
   1907  1.190  riastrad 				mutex_exit(&uvm_swap_data_lock);
   1908  1.187  riastrad 				break;
   1909  1.190  riastrad 			}
   1910  1.187  riastrad 			uvm_swap_genkey(sdp);
   1911  1.187  riastrad 		}
   1912  1.187  riastrad 		KASSERT(sdp->swd_encinit);
   1913  1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   1914  1.187  riastrad 
   1915  1.192  jdolecek 		for (i = 0; i < npages; i++) {
   1916  1.192  jdolecek 			int s = startslot + i;
   1917  1.192  jdolecek 			KDASSERT(swapdrum_sdp_is(s, sdp));
   1918  1.192  jdolecek 			KASSERT(s >= sdp->swd_drumoffset);
   1919  1.192  jdolecek 			s -= sdp->swd_drumoffset;
   1920  1.192  jdolecek 			KASSERT(s < sdp->swd_drumsize);
   1921  1.192  jdolecek 
   1922  1.192  jdolecek 			if (swap_encrypt) {
   1923  1.189  riastrad 				uvm_swap_encryptpage(sdp,
   1924  1.188  riastrad 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   1925  1.190  riastrad 				atomic_or_32(&sdp->swd_encmap[s/32],
   1926  1.190  riastrad 				    __BIT(s%32));
   1927  1.192  jdolecek 			} else {
   1928  1.190  riastrad 				atomic_and_32(&sdp->swd_encmap[s/32],
   1929  1.190  riastrad 				    ~__BIT(s%32));
   1930  1.187  riastrad 			}
   1931  1.187  riastrad 		}
   1932  1.187  riastrad 	} while (0);
   1933  1.187  riastrad 
   1934  1.187  riastrad 	/*
   1935    1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1936    1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1937    1.1       mrg 	 */
   1938   1.54       chs 
   1939  1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1940  1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1941    1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1942   1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1943  1.122  christos 	bp->b_data = (void *)kva;
   1944    1.1       mrg 	bp->b_blkno = startblk;
   1945   1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1946    1.1       mrg 
   1947   1.51       chs 	/*
   1948   1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1949    1.1       mrg 	 */
   1950   1.54       chs 
   1951   1.41       chs 	if (write) {
   1952  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1953  1.134        ad 		swapdev_vp->v_numoutput++;
   1954  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1955    1.1       mrg 	}
   1956    1.1       mrg 
   1957    1.1       mrg 	/*
   1958   1.41       chs 	 * for async ops we must set up the iodone handler.
   1959    1.1       mrg 	 */
   1960   1.54       chs 
   1961   1.41       chs 	if (async) {
   1962  1.186       chs 		bp->b_iodone = uvm_aio_aiodone;
   1963    1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1964  1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1965   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1966   1.83      yamt 		else
   1967   1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1968   1.83      yamt 	} else {
   1969  1.134        ad 		bp->b_iodone = NULL;
   1970   1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1971    1.1       mrg 	}
   1972    1.1       mrg 	UVMHIST_LOG(pdhist,
   1973  1.175  pgoyette 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1974  1.175  pgoyette 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1975    1.1       mrg 
   1976    1.1       mrg 	/*
   1977    1.1       mrg 	 * now we start the I/O, and if async, return.
   1978    1.1       mrg 	 */
   1979   1.54       chs 
   1980   1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   1981  1.190  riastrad 	if (async) {
   1982  1.190  riastrad 		/*
   1983  1.190  riastrad 		 * Reads are always synchronous; if this changes, we
   1984  1.190  riastrad 		 * need to add an asynchronous path for decryption.
   1985  1.190  riastrad 		 */
   1986  1.193  jdolecek 		KASSERT(write);
   1987   1.47       chs 		return 0;
   1988  1.190  riastrad 	}
   1989    1.1       mrg 
   1990    1.1       mrg 	/*
   1991    1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1992    1.1       mrg 	 */
   1993   1.54       chs 
   1994   1.47       chs 	error = biowait(bp);
   1995  1.191  riastrad 	if (error)
   1996  1.191  riastrad 		goto out;
   1997    1.1       mrg 
   1998    1.1       mrg 	/*
   1999  1.187  riastrad 	 * decrypt reads in place if needed
   2000  1.187  riastrad 	 */
   2001  1.187  riastrad 
   2002  1.187  riastrad 	if (!write) do {
   2003  1.187  riastrad 		struct swapdev *sdp;
   2004  1.190  riastrad 		bool encinit;
   2005  1.187  riastrad 		int i;
   2006  1.187  riastrad 
   2007  1.190  riastrad 		/*
   2008  1.190  riastrad 		 * Get the sdp.  Everything about it except the encinit
   2009  1.190  riastrad 		 * bit, saying whether the encryption key is
   2010  1.190  riastrad 		 * initialized or not, and the encrypted bit for each
   2011  1.190  riastrad 		 * page, is stable until all swap pages have been
   2012  1.190  riastrad 		 * released and the device is removed.
   2013  1.190  riastrad 		 */
   2014  1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   2015  1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   2016  1.190  riastrad 		encinit = sdp->swd_encinit;
   2017  1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   2018  1.190  riastrad 
   2019  1.190  riastrad 		if (!encinit)
   2020  1.187  riastrad 			/*
   2021  1.187  riastrad 			 * If there's no encryption key, there's no way
   2022  1.187  riastrad 			 * any of these slots can be encrypted, so
   2023  1.187  riastrad 			 * nothing to do here.
   2024  1.187  riastrad 			 */
   2025  1.187  riastrad 			break;
   2026  1.187  riastrad 		for (i = 0; i < npages; i++) {
   2027  1.187  riastrad 			int s = startslot + i;
   2028  1.190  riastrad 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2029  1.187  riastrad 			KASSERT(s >= sdp->swd_drumoffset);
   2030  1.187  riastrad 			s -= sdp->swd_drumoffset;
   2031  1.187  riastrad 			KASSERT(s < sdp->swd_drumsize);
   2032  1.190  riastrad 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
   2033  1.190  riastrad 				__BIT(s%32)) == 0)
   2034  1.187  riastrad 				continue;
   2035  1.189  riastrad 			uvm_swap_decryptpage(sdp,
   2036  1.188  riastrad 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2037  1.187  riastrad 		}
   2038  1.187  riastrad 	} while (0);
   2039  1.191  riastrad out:
   2040  1.187  riastrad 	/*
   2041    1.1       mrg 	 * kill the pager mapping
   2042    1.1       mrg 	 */
   2043   1.54       chs 
   2044    1.1       mrg 	uvm_pagermapout(kva, npages);
   2045    1.1       mrg 
   2046    1.1       mrg 	/*
   2047   1.54       chs 	 * now dispose of the buf and we're done.
   2048    1.1       mrg 	 */
   2049   1.54       chs 
   2050  1.134        ad 	if (write) {
   2051  1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   2052   1.41       chs 		vwakeup(bp);
   2053  1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   2054  1.134        ad 	}
   2055   1.98      yamt 	putiobuf(bp);
   2056  1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   2057  1.134        ad 
   2058   1.47       chs 	return (error);
   2059    1.1       mrg }
   2060  1.187  riastrad 
   2061  1.187  riastrad /*
   2062  1.187  riastrad  * uvm_swap_genkey(sdp)
   2063  1.187  riastrad  *
   2064  1.187  riastrad  *	Generate a key for swap encryption.
   2065  1.187  riastrad  */
   2066  1.187  riastrad static void
   2067  1.187  riastrad uvm_swap_genkey(struct swapdev *sdp)
   2068  1.187  riastrad {
   2069  1.187  riastrad 	uint8_t key[32];
   2070  1.187  riastrad 
   2071  1.187  riastrad 	KASSERT(!sdp->swd_encinit);
   2072  1.187  riastrad 
   2073  1.187  riastrad 	cprng_strong(kern_cprng, key, sizeof key, 0);
   2074  1.194  riastrad 	aes_setenckey256(&sdp->swd_enckey, key);
   2075  1.194  riastrad 	aes_setdeckey256(&sdp->swd_deckey, key);
   2076  1.187  riastrad 	explicit_memset(key, 0, sizeof key);
   2077  1.187  riastrad 
   2078  1.187  riastrad 	sdp->swd_encinit = true;
   2079  1.187  riastrad }
   2080  1.187  riastrad 
   2081  1.187  riastrad /*
   2082  1.189  riastrad  * uvm_swap_encryptpage(sdp, kva, slot)
   2083  1.187  riastrad  *
   2084  1.187  riastrad  *	Encrypt one page of data at kva for the specified slot number
   2085  1.187  riastrad  *	in the swap device.
   2086  1.187  riastrad  */
   2087  1.187  riastrad static void
   2088  1.189  riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
   2089  1.187  riastrad {
   2090  1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2091  1.187  riastrad 
   2092  1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2093  1.187  riastrad 	le32enc(preiv, slot);
   2094  1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2095  1.187  riastrad 
   2096  1.187  riastrad 	/* *kva := AES-CBC_k(iv, *kva) */
   2097  1.194  riastrad 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
   2098  1.194  riastrad 	    AES_256_NROUNDS);
   2099  1.187  riastrad 
   2100  1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2101  1.187  riastrad }
   2102  1.187  riastrad 
   2103  1.187  riastrad /*
   2104  1.189  riastrad  * uvm_swap_decryptpage(sdp, kva, slot)
   2105  1.187  riastrad  *
   2106  1.187  riastrad  *	Decrypt one page of data at kva for the specified slot number
   2107  1.187  riastrad  *	in the swap device.
   2108  1.187  riastrad  */
   2109  1.187  riastrad static void
   2110  1.189  riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
   2111  1.187  riastrad {
   2112  1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2113  1.187  riastrad 
   2114  1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2115  1.187  riastrad 	le32enc(preiv, slot);
   2116  1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2117  1.187  riastrad 
   2118  1.187  riastrad 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
   2119  1.194  riastrad 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
   2120  1.194  riastrad 	    AES_256_NROUNDS);
   2121  1.187  riastrad 
   2122  1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2123  1.187  riastrad }
   2124  1.187  riastrad 
   2125  1.187  riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
   2126  1.187  riastrad {
   2127  1.187  riastrad 
   2128  1.187  riastrad 	sysctl_createv(clog, 0, NULL, NULL,
   2129  1.187  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
   2130  1.187  riastrad 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
   2131  1.189  riastrad 	    NULL, 0, &uvm_swap_encrypt, 0,
   2132  1.187  riastrad 	    CTL_VM, CTL_CREATE, CTL_EOL);
   2133  1.187  riastrad }
   2134