uvm_swap.c revision 1.201 1 1.201 hannken /* $NetBSD: uvm_swap.c,v 1.201 2021/02/16 09:56:32 hannken Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.3 mrg *
28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 1.1 mrg */
31 1.57 lukem
32 1.57 lukem #include <sys/cdefs.h>
33 1.201 hannken __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.201 2021/02/16 09:56:32 hannken Exp $");
34 1.5 mrg
35 1.5 mrg #include "opt_uvmhist.h"
36 1.16 mrg #include "opt_compat_netbsd.h"
37 1.41 chs #include "opt_ddb.h"
38 1.1 mrg
39 1.1 mrg #include <sys/param.h>
40 1.1 mrg #include <sys/systm.h>
41 1.183 uwe #include <sys/atomic.h>
42 1.1 mrg #include <sys/buf.h>
43 1.89 yamt #include <sys/bufq.h>
44 1.36 mrg #include <sys/conf.h>
45 1.187 riastrad #include <sys/cprng.h>
46 1.1 mrg #include <sys/proc.h>
47 1.1 mrg #include <sys/namei.h>
48 1.1 mrg #include <sys/disklabel.h>
49 1.1 mrg #include <sys/errno.h>
50 1.1 mrg #include <sys/kernel.h>
51 1.1 mrg #include <sys/vnode.h>
52 1.1 mrg #include <sys/file.h>
53 1.110 yamt #include <sys/vmem.h>
54 1.90 yamt #include <sys/blist.h>
55 1.1 mrg #include <sys/mount.h>
56 1.12 pk #include <sys/pool.h>
57 1.159 para #include <sys/kmem.h>
58 1.1 mrg #include <sys/syscallargs.h>
59 1.17 mrg #include <sys/swap.h>
60 1.100 elad #include <sys/kauth.h>
61 1.125 ad #include <sys/sysctl.h>
62 1.130 hannken #include <sys/workqueue.h>
63 1.1 mrg
64 1.1 mrg #include <uvm/uvm.h>
65 1.1 mrg
66 1.1 mrg #include <miscfs/specfs/specdev.h>
67 1.1 mrg
68 1.194 riastrad #include <crypto/aes/aes.h>
69 1.198 riastrad #include <crypto/aes/aes_cbc.h>
70 1.187 riastrad
71 1.1 mrg /*
72 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
73 1.1 mrg */
74 1.1 mrg
75 1.1 mrg /*
76 1.1 mrg * swap space is managed in the following way:
77 1.51 chs *
78 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
79 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
80 1.1 mrg * information that is passed up to the user (via system calls).
81 1.1 mrg *
82 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
83 1.199 msaitoh * swap partition usage.
84 1.1 mrg *
85 1.1 mrg * the system maintains a global data structure describing all swap
86 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
87 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
88 1.51 chs * by the "swap_priority" global var. each "swappri" contains a
89 1.164 christos * TAILQ of "swapdev" structures at that priority.
90 1.1 mrg *
91 1.1 mrg * locking:
92 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
93 1.1 mrg * system call and prevents the swap priority list from changing
94 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
95 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
96 1.1 mrg * structures including the priority list, the swapdev structures,
97 1.110 yamt * and the swapmap arena.
98 1.1 mrg *
99 1.1 mrg * each swap device has the following info:
100 1.1 mrg * - swap device in use (could be disabled, preventing future use)
101 1.1 mrg * - swap enabled (allows new allocations on swap)
102 1.1 mrg * - map info in /dev/drum
103 1.1 mrg * - vnode pointer
104 1.1 mrg * for swap files only:
105 1.1 mrg * - block size
106 1.1 mrg * - max byte count in buffer
107 1.1 mrg * - buffer
108 1.1 mrg *
109 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
110 1.1 mrg * the sys_swapctl performs the following operations:
111 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
112 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures
113 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
114 1.85 junyoung * the current swap config into the array. The actual work is done
115 1.155 rmind * in the uvm_swap_stats() function.
116 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
117 1.1 mrg * priority in "misc", start swapping on it.
118 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
119 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
120 1.1 mrg * "misc")
121 1.1 mrg */
122 1.1 mrg
123 1.1 mrg /*
124 1.1 mrg * swapdev: describes a single swap partition/file
125 1.1 mrg *
126 1.1 mrg * note the following should be true:
127 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
128 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
129 1.1 mrg */
130 1.1 mrg struct swapdev {
131 1.144 mrg dev_t swd_dev; /* device id */
132 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */
133 1.144 mrg int swd_priority; /* our priority */
134 1.144 mrg int swd_nblks; /* blocks in this device */
135 1.16 mrg char *swd_path; /* saved pathname of device */
136 1.16 mrg int swd_pathlen; /* length of pathname */
137 1.16 mrg int swd_npages; /* #pages we can use */
138 1.16 mrg int swd_npginuse; /* #pages in use */
139 1.32 chs int swd_npgbad; /* #pages bad */
140 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
141 1.16 mrg int swd_drumsize; /* #pages in drum */
142 1.90 yamt blist_t swd_blist; /* blist for this swapdev */
143 1.16 mrg struct vnode *swd_vp; /* backing vnode */
144 1.165 christos TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
145 1.1 mrg
146 1.16 mrg int swd_bsize; /* blocksize (bytes) */
147 1.16 mrg int swd_maxactive; /* max active i/o reqs */
148 1.96 yamt struct bufq_state *swd_tab; /* buffer list */
149 1.33 thorpej int swd_active; /* number of active buffers */
150 1.187 riastrad
151 1.190 riastrad volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */
152 1.194 riastrad struct aesenc swd_enckey; /* AES key expanded for enc */
153 1.194 riastrad struct aesdec swd_deckey; /* AES key expanded for dec */
154 1.187 riastrad bool swd_encinit; /* true if keys initialized */
155 1.1 mrg };
156 1.1 mrg
157 1.1 mrg /*
158 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
159 1.1 mrg */
160 1.1 mrg struct swappri {
161 1.1 mrg int spi_priority; /* priority */
162 1.164 christos TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
163 1.165 christos /* tailq of swapdevs at this priority */
164 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
165 1.1 mrg };
166 1.1 mrg
167 1.1 mrg /*
168 1.1 mrg * The following two structures are used to keep track of data transfers
169 1.1 mrg * on swap devices associated with regular files.
170 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
171 1.1 mrg * structure names here to ease porting..
172 1.1 mrg */
173 1.1 mrg struct vndxfer {
174 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
175 1.1 mrg struct swapdev *vx_sdp;
176 1.1 mrg int vx_error;
177 1.1 mrg int vx_pending; /* # of pending aux buffers */
178 1.1 mrg int vx_flags;
179 1.1 mrg #define VX_BUSY 1
180 1.1 mrg #define VX_DEAD 2
181 1.1 mrg };
182 1.1 mrg
183 1.1 mrg struct vndbuf {
184 1.1 mrg struct buf vb_buf;
185 1.1 mrg struct vndxfer *vb_xfer;
186 1.1 mrg };
187 1.1 mrg
188 1.144 mrg /*
189 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
190 1.1 mrg */
191 1.146 pooka static struct pool vndxfer_pool, vndbuf_pool;
192 1.1 mrg
193 1.1 mrg /*
194 1.1 mrg * local variables
195 1.1 mrg */
196 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */
197 1.1 mrg
198 1.1 mrg /* list of all active swap devices [by priority] */
199 1.1 mrg LIST_HEAD(swap_priority, swappri);
200 1.1 mrg static struct swap_priority swap_priority;
201 1.1 mrg
202 1.1 mrg /* locks */
203 1.182 ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
204 1.117 ad static krwlock_t swap_syscall_lock;
205 1.1 mrg
206 1.130 hannken /* workqueue and use counter for swap to regular files */
207 1.130 hannken static int sw_reg_count = 0;
208 1.130 hannken static struct workqueue *sw_reg_workqueue;
209 1.130 hannken
210 1.141 ad /* tuneables */
211 1.141 ad u_int uvm_swapisfull_factor = 99;
212 1.189 riastrad bool uvm_swap_encrypt = false;
213 1.141 ad
214 1.1 mrg /*
215 1.1 mrg * prototypes
216 1.1 mrg */
217 1.85 junyoung static struct swapdev *swapdrum_getsdp(int);
218 1.1 mrg
219 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool);
220 1.85 junyoung static void swaplist_insert(struct swapdev *,
221 1.85 junyoung struct swappri *, int);
222 1.85 junyoung static void swaplist_trim(void);
223 1.1 mrg
224 1.97 christos static int swap_on(struct lwp *, struct swapdev *);
225 1.97 christos static int swap_off(struct lwp *, struct swapdev *);
226 1.1 mrg
227 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
228 1.130 hannken static void sw_reg_biodone(struct buf *);
229 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy);
230 1.85 junyoung static void sw_reg_start(struct swapdev *);
231 1.1 mrg
232 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
233 1.1 mrg
234 1.187 riastrad static void uvm_swap_genkey(struct swapdev *);
235 1.189 riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int);
236 1.189 riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int);
237 1.187 riastrad
238 1.190 riastrad static size_t
239 1.190 riastrad encmap_size(size_t npages)
240 1.190 riastrad {
241 1.190 riastrad struct swapdev *sdp;
242 1.190 riastrad const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
243 1.190 riastrad const size_t bitsperword = NBBY * bytesperword;
244 1.190 riastrad const size_t nbits = npages; /* one bit for each page */
245 1.190 riastrad const size_t nwords = howmany(nbits, bitsperword);
246 1.190 riastrad const size_t nbytes = nwords * bytesperword;
247 1.190 riastrad
248 1.190 riastrad return nbytes;
249 1.190 riastrad }
250 1.190 riastrad
251 1.1 mrg /*
252 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
253 1.1 mrg *
254 1.51 chs * => called at boot time from init_main.c after the filesystems
255 1.1 mrg * are brought up (which happens after uvm_init())
256 1.1 mrg */
257 1.1 mrg void
258 1.93 thorpej uvm_swap_init(void)
259 1.1 mrg {
260 1.197 skrll UVMHIST_FUNC(__func__);
261 1.1 mrg
262 1.1 mrg UVMHIST_CALLED(pdhist);
263 1.1 mrg /*
264 1.1 mrg * first, init the swap list, its counter, and its lock.
265 1.1 mrg * then get a handle on the vnode for /dev/drum by using
266 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
267 1.1 mrg */
268 1.1 mrg
269 1.1 mrg LIST_INIT(&swap_priority);
270 1.1 mrg uvmexp.nswapdev = 0;
271 1.117 ad rw_init(&swap_syscall_lock);
272 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
273 1.12 pk
274 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
275 1.145 mrg panic("%s: can't get vnode for swap device", __func__);
276 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
277 1.145 mrg panic("%s: can't lock swap device", __func__);
278 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
279 1.145 mrg panic("%s: can't open swap device", __func__);
280 1.151 hannken VOP_UNLOCK(swapdev_vp);
281 1.1 mrg
282 1.1 mrg /*
283 1.1 mrg * create swap block resource map to map /dev/drum. the range
284 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
285 1.51 chs * that block 0 is reserved (used to indicate an allocation
286 1.1 mrg * failure, or no allocation).
287 1.1 mrg */
288 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
289 1.126 ad VM_NOSLEEP, IPL_NONE);
290 1.147 rmind if (swapmap == 0) {
291 1.145 mrg panic("%s: vmem_create failed", __func__);
292 1.147 rmind }
293 1.146 pooka
294 1.146 pooka pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
295 1.146 pooka NULL, IPL_BIO);
296 1.146 pooka pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
297 1.146 pooka NULL, IPL_BIO);
298 1.147 rmind
299 1.147 rmind UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
300 1.1 mrg }
301 1.1 mrg
302 1.1 mrg /*
303 1.1 mrg * swaplist functions: functions that operate on the list of swap
304 1.1 mrg * devices on the system.
305 1.1 mrg */
306 1.1 mrg
307 1.1 mrg /*
308 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
309 1.1 mrg *
310 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
311 1.154 rmind * => caller must provide a newly allocated swappri structure (we will
312 1.154 rmind * FREE it if we don't need it... this it to prevent allocation
313 1.154 rmind * blocking here while adding swap)
314 1.1 mrg */
315 1.1 mrg static void
316 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
317 1.1 mrg {
318 1.1 mrg struct swappri *spp, *pspp;
319 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
320 1.1 mrg
321 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
322 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
323 1.190 riastrad
324 1.1 mrg /*
325 1.1 mrg * find entry at or after which to insert the new device.
326 1.1 mrg */
327 1.55 chs pspp = NULL;
328 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
329 1.1 mrg if (priority <= spp->spi_priority)
330 1.1 mrg break;
331 1.1 mrg pspp = spp;
332 1.1 mrg }
333 1.1 mrg
334 1.1 mrg /*
335 1.1 mrg * new priority?
336 1.1 mrg */
337 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
338 1.1 mrg spp = newspp; /* use newspp! */
339 1.175 pgoyette UVMHIST_LOG(pdhist, "created new swappri = %jd",
340 1.32 chs priority, 0, 0, 0);
341 1.1 mrg
342 1.1 mrg spp->spi_priority = priority;
343 1.164 christos TAILQ_INIT(&spp->spi_swapdev);
344 1.1 mrg
345 1.1 mrg if (pspp)
346 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
347 1.1 mrg else
348 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
349 1.1 mrg } else {
350 1.1 mrg /* we don't need a new priority structure, free it */
351 1.159 para kmem_free(newspp, sizeof(*newspp));
352 1.1 mrg }
353 1.1 mrg
354 1.1 mrg /*
355 1.1 mrg * priority found (or created). now insert on the priority's
356 1.165 christos * tailq list and bump the total number of swapdevs.
357 1.1 mrg */
358 1.1 mrg sdp->swd_priority = priority;
359 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
360 1.1 mrg uvmexp.nswapdev++;
361 1.1 mrg }
362 1.1 mrg
363 1.1 mrg /*
364 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
365 1.1 mrg * global list.
366 1.1 mrg *
367 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
368 1.1 mrg * => we return the swapdev we found (and removed)
369 1.1 mrg */
370 1.1 mrg static struct swapdev *
371 1.119 thorpej swaplist_find(struct vnode *vp, bool remove)
372 1.1 mrg {
373 1.1 mrg struct swapdev *sdp;
374 1.1 mrg struct swappri *spp;
375 1.1 mrg
376 1.190 riastrad KASSERT(rw_lock_held(&swap_syscall_lock));
377 1.190 riastrad KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
378 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
379 1.190 riastrad
380 1.1 mrg /*
381 1.1 mrg * search the lists for the requested vp
382 1.1 mrg */
383 1.55 chs
384 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
385 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
386 1.1 mrg if (sdp->swd_vp == vp) {
387 1.1 mrg if (remove) {
388 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev,
389 1.1 mrg sdp, swd_next);
390 1.1 mrg uvmexp.nswapdev--;
391 1.1 mrg }
392 1.1 mrg return(sdp);
393 1.1 mrg }
394 1.55 chs }
395 1.1 mrg }
396 1.1 mrg return (NULL);
397 1.1 mrg }
398 1.1 mrg
399 1.113 elad /*
400 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
401 1.1 mrg * them.
402 1.1 mrg *
403 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
404 1.1 mrg */
405 1.1 mrg static void
406 1.93 thorpej swaplist_trim(void)
407 1.1 mrg {
408 1.1 mrg struct swappri *spp, *nextspp;
409 1.1 mrg
410 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
411 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
412 1.190 riastrad
413 1.161 rmind LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
414 1.167 mlelstv if (!TAILQ_EMPTY(&spp->spi_swapdev))
415 1.1 mrg continue;
416 1.1 mrg LIST_REMOVE(spp, spi_swappri);
417 1.159 para kmem_free(spp, sizeof(*spp));
418 1.1 mrg }
419 1.1 mrg }
420 1.1 mrg
421 1.1 mrg /*
422 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
423 1.1 mrg * to the "swapdev" that maps that section of the drum.
424 1.1 mrg *
425 1.1 mrg * => each swapdev takes one big contig chunk of the drum
426 1.127 ad * => caller must hold uvm_swap_data_lock
427 1.1 mrg */
428 1.1 mrg static struct swapdev *
429 1.93 thorpej swapdrum_getsdp(int pgno)
430 1.1 mrg {
431 1.1 mrg struct swapdev *sdp;
432 1.1 mrg struct swappri *spp;
433 1.51 chs
434 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
435 1.190 riastrad
436 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
437 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
438 1.48 fvdl if (sdp->swd_flags & SWF_FAKE)
439 1.48 fvdl continue;
440 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
441 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
442 1.1 mrg return sdp;
443 1.1 mrg }
444 1.48 fvdl }
445 1.55 chs }
446 1.1 mrg return NULL;
447 1.1 mrg }
448 1.1 mrg
449 1.190 riastrad /*
450 1.190 riastrad * swapdrum_sdp_is: true iff the swap device for pgno is sdp
451 1.190 riastrad *
452 1.190 riastrad * => for use in positive assertions only; result is not stable
453 1.190 riastrad */
454 1.190 riastrad static bool __debugused
455 1.190 riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp)
456 1.190 riastrad {
457 1.190 riastrad bool result;
458 1.190 riastrad
459 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
460 1.190 riastrad result = swapdrum_getsdp(pgno) == sdp;
461 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
462 1.190 riastrad
463 1.190 riastrad return result;
464 1.190 riastrad }
465 1.190 riastrad
466 1.173 maxv void swapsys_lock(krw_t op)
467 1.173 maxv {
468 1.173 maxv rw_enter(&swap_syscall_lock, op);
469 1.173 maxv }
470 1.173 maxv
471 1.173 maxv void swapsys_unlock(void)
472 1.173 maxv {
473 1.173 maxv rw_exit(&swap_syscall_lock);
474 1.173 maxv }
475 1.1 mrg
476 1.176 christos static void
477 1.176 christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
478 1.176 christos {
479 1.176 christos se->se_dev = sdp->swd_dev;
480 1.176 christos se->se_flags = sdp->swd_flags;
481 1.176 christos se->se_nblks = sdp->swd_nblks;
482 1.176 christos se->se_inuse = inuse;
483 1.176 christos se->se_priority = sdp->swd_priority;
484 1.176 christos KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
485 1.176 christos strcpy(se->se_path, sdp->swd_path);
486 1.176 christos }
487 1.176 christos
488 1.180 kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
489 1.177 christos (void *)enosys;
490 1.177 christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
491 1.177 christos (void *)enosys;
492 1.176 christos
493 1.1 mrg /*
494 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
495 1.1 mrg * [with two helper functions: swap_on and swap_off]
496 1.1 mrg */
497 1.1 mrg int
498 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
499 1.1 mrg {
500 1.133 dsl /* {
501 1.1 mrg syscallarg(int) cmd;
502 1.1 mrg syscallarg(void *) arg;
503 1.1 mrg syscallarg(int) misc;
504 1.133 dsl } */
505 1.1 mrg struct vnode *vp;
506 1.1 mrg struct nameidata nd;
507 1.1 mrg struct swappri *spp;
508 1.1 mrg struct swapdev *sdp;
509 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1)
510 1.101 christos char *userpath;
511 1.161 rmind size_t len = 0;
512 1.176 christos int error;
513 1.1 mrg int priority;
514 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
515 1.1 mrg
516 1.1 mrg /*
517 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
518 1.1 mrg *
519 1.51 chs * SWAP_NSWAP: return number of config'd swap devices
520 1.1 mrg * [can also be obtained with uvmexp sysctl]
521 1.1 mrg */
522 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
523 1.161 rmind const int nswapdev = uvmexp.nswapdev;
524 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
525 1.175 pgoyette 0, 0, 0);
526 1.161 rmind *retval = nswapdev;
527 1.161 rmind return 0;
528 1.1 mrg }
529 1.1 mrg
530 1.161 rmind userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
531 1.161 rmind
532 1.161 rmind /*
533 1.161 rmind * ensure serialized syscall access by grabbing the swap_syscall_lock
534 1.161 rmind */
535 1.161 rmind rw_enter(&swap_syscall_lock, RW_WRITER);
536 1.161 rmind
537 1.1 mrg /*
538 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
539 1.1 mrg *
540 1.51 chs * note that the swap_priority list can't change as long
541 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
542 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during
543 1.1 mrg * copyout() and we don't want to be holding that lock then!
544 1.1 mrg */
545 1.176 christos switch (SCARG(uap, cmd)) {
546 1.177 christos case SWAP_STATS13:
547 1.177 christos error = (*uvm_swap_stats13)(uap, retval);
548 1.177 christos goto out;
549 1.177 christos case SWAP_STATS50:
550 1.177 christos error = (*uvm_swap_stats50)(uap, retval);
551 1.177 christos goto out;
552 1.176 christos case SWAP_STATS:
553 1.176 christos error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
554 1.177 christos NULL, sizeof(struct swapent), retval);
555 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
556 1.16 mrg goto out;
557 1.196 skrll
558 1.176 christos case SWAP_GETDUMPDEV:
559 1.176 christos error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
560 1.55 chs goto out;
561 1.176 christos default:
562 1.176 christos break;
563 1.55 chs }
564 1.1 mrg
565 1.1 mrg /*
566 1.1 mrg * all other requests require superuser privs. verify.
567 1.1 mrg */
568 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
569 1.106 elad 0, NULL, NULL, NULL)))
570 1.16 mrg goto out;
571 1.1 mrg
572 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
573 1.104 martin /* drop the current dump device */
574 1.104 martin dumpdev = NODEV;
575 1.138 kardel dumpcdev = NODEV;
576 1.104 martin cpu_dumpconf();
577 1.104 martin goto out;
578 1.104 martin }
579 1.104 martin
580 1.1 mrg /*
581 1.1 mrg * at this point we expect a path name in arg. we will
582 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
583 1.1 mrg * the vnode (VOP_LOCK).
584 1.1 mrg *
585 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
586 1.16 mrg * miniroot)
587 1.1 mrg */
588 1.1 mrg if (SCARG(uap, arg) == NULL) {
589 1.1 mrg vp = rootvp; /* miniroot */
590 1.152 hannken vref(vp);
591 1.152 hannken if (vn_lock(vp, LK_EXCLUSIVE)) {
592 1.152 hannken vrele(vp);
593 1.16 mrg error = EBUSY;
594 1.16 mrg goto out;
595 1.1 mrg }
596 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
597 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
598 1.16 mrg panic("swapctl: miniroot copy failed");
599 1.1 mrg } else {
600 1.153 dholland struct pathbuf *pb;
601 1.16 mrg
602 1.153 dholland /*
603 1.153 dholland * This used to allow copying in one extra byte
604 1.153 dholland * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
605 1.153 dholland * This was completely pointless because if anyone
606 1.153 dholland * used that extra byte namei would fail with
607 1.153 dholland * ENAMETOOLONG anyway, so I've removed the excess
608 1.153 dholland * logic. - dholland 20100215
609 1.153 dholland */
610 1.153 dholland
611 1.153 dholland error = pathbuf_copyin(SCARG(uap, arg), &pb);
612 1.153 dholland if (error) {
613 1.153 dholland goto out;
614 1.153 dholland }
615 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
616 1.153 dholland /* get a copy of the string */
617 1.153 dholland pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
618 1.153 dholland len = strlen(userpath) + 1;
619 1.153 dholland }
620 1.153 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
621 1.153 dholland if ((error = namei(&nd))) {
622 1.153 dholland pathbuf_destroy(pb);
623 1.153 dholland goto out;
624 1.1 mrg }
625 1.1 mrg vp = nd.ni_vp;
626 1.153 dholland pathbuf_destroy(pb);
627 1.1 mrg }
628 1.1 mrg /* note: "vp" is referenced and locked */
629 1.1 mrg
630 1.1 mrg error = 0; /* assume no error */
631 1.1 mrg switch(SCARG(uap, cmd)) {
632 1.40 mrg
633 1.24 mrg case SWAP_DUMPDEV:
634 1.24 mrg if (vp->v_type != VBLK) {
635 1.24 mrg error = ENOTBLK;
636 1.45 pk break;
637 1.24 mrg }
638 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) {
639 1.109 mrg dumpdev = vp->v_rdev;
640 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev);
641 1.138 kardel } else
642 1.109 mrg dumpdev = NODEV;
643 1.68 drochner cpu_dumpconf();
644 1.24 mrg break;
645 1.24 mrg
646 1.1 mrg case SWAP_CTL:
647 1.1 mrg /*
648 1.1 mrg * get new priority, remove old entry (if any) and then
649 1.1 mrg * reinsert it in the correct place. finally, prune out
650 1.1 mrg * any empty priority structures.
651 1.1 mrg */
652 1.1 mrg priority = SCARG(uap, misc);
653 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
654 1.127 ad mutex_enter(&uvm_swap_data_lock);
655 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) {
656 1.1 mrg error = ENOENT;
657 1.1 mrg } else {
658 1.1 mrg swaplist_insert(sdp, spp, priority);
659 1.1 mrg swaplist_trim();
660 1.1 mrg }
661 1.127 ad mutex_exit(&uvm_swap_data_lock);
662 1.1 mrg if (error)
663 1.159 para kmem_free(spp, sizeof(*spp));
664 1.1 mrg break;
665 1.1 mrg
666 1.1 mrg case SWAP_ON:
667 1.32 chs
668 1.1 mrg /*
669 1.1 mrg * check for duplicates. if none found, then insert a
670 1.1 mrg * dummy entry on the list to prevent someone else from
671 1.1 mrg * trying to enable this device while we are working on
672 1.1 mrg * it.
673 1.1 mrg */
674 1.32 chs
675 1.1 mrg priority = SCARG(uap, misc);
676 1.160 rmind sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
677 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
678 1.67 chs sdp->swd_flags = SWF_FAKE;
679 1.67 chs sdp->swd_vp = vp;
680 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
681 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
682 1.127 ad mutex_enter(&uvm_swap_data_lock);
683 1.120 matt if (swaplist_find(vp, false) != NULL) {
684 1.1 mrg error = EBUSY;
685 1.127 ad mutex_exit(&uvm_swap_data_lock);
686 1.96 yamt bufq_free(sdp->swd_tab);
687 1.159 para kmem_free(sdp, sizeof(*sdp));
688 1.159 para kmem_free(spp, sizeof(*spp));
689 1.16 mrg break;
690 1.1 mrg }
691 1.1 mrg swaplist_insert(sdp, spp, priority);
692 1.127 ad mutex_exit(&uvm_swap_data_lock);
693 1.1 mrg
694 1.161 rmind KASSERT(len > 0);
695 1.16 mrg sdp->swd_pathlen = len;
696 1.161 rmind sdp->swd_path = kmem_alloc(len, KM_SLEEP);
697 1.161 rmind if (copystr(userpath, sdp->swd_path, len, 0) != 0)
698 1.19 pk panic("swapctl: copystr");
699 1.32 chs
700 1.1 mrg /*
701 1.1 mrg * we've now got a FAKE placeholder in the swap list.
702 1.1 mrg * now attempt to enable swap on it. if we fail, undo
703 1.1 mrg * what we've done and kill the fake entry we just inserted.
704 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
705 1.1 mrg */
706 1.32 chs
707 1.97 christos if ((error = swap_on(l, sdp)) != 0) {
708 1.127 ad mutex_enter(&uvm_swap_data_lock);
709 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */
710 1.1 mrg swaplist_trim();
711 1.127 ad mutex_exit(&uvm_swap_data_lock);
712 1.96 yamt bufq_free(sdp->swd_tab);
713 1.159 para kmem_free(sdp->swd_path, sdp->swd_pathlen);
714 1.159 para kmem_free(sdp, sizeof(*sdp));
715 1.1 mrg break;
716 1.1 mrg }
717 1.1 mrg break;
718 1.1 mrg
719 1.1 mrg case SWAP_OFF:
720 1.127 ad mutex_enter(&uvm_swap_data_lock);
721 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) {
722 1.127 ad mutex_exit(&uvm_swap_data_lock);
723 1.1 mrg error = ENXIO;
724 1.1 mrg break;
725 1.1 mrg }
726 1.32 chs
727 1.1 mrg /*
728 1.1 mrg * If a device isn't in use or enabled, we
729 1.1 mrg * can't stop swapping from it (again).
730 1.1 mrg */
731 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
732 1.127 ad mutex_exit(&uvm_swap_data_lock);
733 1.1 mrg error = EBUSY;
734 1.16 mrg break;
735 1.1 mrg }
736 1.1 mrg
737 1.1 mrg /*
738 1.32 chs * do the real work.
739 1.1 mrg */
740 1.97 christos error = swap_off(l, sdp);
741 1.1 mrg break;
742 1.1 mrg
743 1.1 mrg default:
744 1.1 mrg error = EINVAL;
745 1.1 mrg }
746 1.1 mrg
747 1.1 mrg /*
748 1.39 chs * done! release the ref gained by namei() and unlock.
749 1.1 mrg */
750 1.1 mrg vput(vp);
751 1.16 mrg out:
752 1.160 rmind rw_exit(&swap_syscall_lock);
753 1.159 para kmem_free(userpath, SWAP_PATH_MAX);
754 1.1 mrg
755 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
756 1.1 mrg return (error);
757 1.61 manu }
758 1.61 manu
759 1.85 junyoung /*
760 1.155 rmind * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
761 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl()
762 1.61 manu * emulation to use it directly without going through sys_swapctl().
763 1.61 manu * The problem with using sys_swapctl() there is that it involves
764 1.61 manu * copying the swapent array to the stackgap, and this array's size
765 1.85 junyoung * is not known at build time. Hence it would not be possible to
766 1.61 manu * ensure it would fit in the stackgap in any case.
767 1.61 manu */
768 1.176 christos int
769 1.180 kre uvm_swap_stats(char *ptr, int misc,
770 1.176 christos void (*f)(void *, const struct swapent *), size_t len,
771 1.176 christos register_t *retval)
772 1.61 manu {
773 1.61 manu struct swappri *spp;
774 1.61 manu struct swapdev *sdp;
775 1.176 christos struct swapent sep;
776 1.61 manu int count = 0;
777 1.176 christos int error;
778 1.176 christos
779 1.176 christos KASSERT(len <= sizeof(sep));
780 1.176 christos if (len == 0)
781 1.176 christos return ENOSYS;
782 1.176 christos
783 1.176 christos if (misc < 0)
784 1.176 christos return EINVAL;
785 1.176 christos
786 1.176 christos if (misc == 0 || uvmexp.nswapdev == 0)
787 1.176 christos return 0;
788 1.176 christos
789 1.176 christos /* Make sure userland cannot exhaust kernel memory */
790 1.176 christos if ((size_t)misc > (size_t)uvmexp.nswapdev)
791 1.176 christos misc = uvmexp.nswapdev;
792 1.61 manu
793 1.173 maxv KASSERT(rw_lock_held(&swap_syscall_lock));
794 1.173 maxv
795 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) {
796 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
797 1.144 mrg int inuse;
798 1.144 mrg
799 1.176 christos if (misc-- <= 0)
800 1.161 rmind break;
801 1.161 rmind
802 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse <<
803 1.61 manu PAGE_SHIFT);
804 1.85 junyoung
805 1.178 maxv memset(&sep, 0, sizeof(sep));
806 1.176 christos swapent_cvt(&sep, sdp, inuse);
807 1.176 christos if (f)
808 1.176 christos (*f)(&sep, &sep);
809 1.176 christos if ((error = copyout(&sep, ptr, len)) != 0)
810 1.176 christos return error;
811 1.176 christos ptr += len;
812 1.61 manu count++;
813 1.61 manu }
814 1.61 manu }
815 1.61 manu *retval = count;
816 1.176 christos return 0;
817 1.1 mrg }
818 1.1 mrg
819 1.1 mrg /*
820 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
821 1.1 mrg * swapdev is already on the global list, but disabled (marked
822 1.1 mrg * SWF_FAKE).
823 1.1 mrg *
824 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
825 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
826 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it
827 1.1 mrg * if needed.
828 1.1 mrg */
829 1.1 mrg static int
830 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp)
831 1.1 mrg {
832 1.1 mrg struct vnode *vp;
833 1.1 mrg int error, npages, nblocks, size;
834 1.1 mrg long addr;
835 1.157 dyoung vmem_addr_t result;
836 1.1 mrg struct vattr va;
837 1.1 mrg dev_t dev;
838 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
839 1.1 mrg
840 1.1 mrg /*
841 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
842 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
843 1.1 mrg * contains the dev_t of the file, if it a block device.
844 1.1 mrg */
845 1.1 mrg
846 1.1 mrg vp = sdp->swd_vp;
847 1.1 mrg dev = sdp->swd_dev;
848 1.1 mrg
849 1.1 mrg /*
850 1.1 mrg * open the swap file (mostly useful for block device files to
851 1.1 mrg * let device driver know what is up).
852 1.1 mrg *
853 1.1 mrg * we skip the open/close for root on swap because the root
854 1.1 mrg * has already been opened when root was mounted (mountroot).
855 1.1 mrg */
856 1.1 mrg if (vp != rootvp) {
857 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
858 1.1 mrg return (error);
859 1.1 mrg }
860 1.1 mrg
861 1.1 mrg /* XXX this only works for block devices */
862 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
863 1.1 mrg
864 1.1 mrg /*
865 1.1 mrg * we now need to determine the size of the swap area. for
866 1.1 mrg * block specials we can call the d_psize function.
867 1.1 mrg * for normal files, we must stat [get attrs].
868 1.1 mrg *
869 1.1 mrg * we put the result in nblks.
870 1.1 mrg * for normal files, we also want the filesystem block size
871 1.1 mrg * (which we get with statfs).
872 1.1 mrg */
873 1.1 mrg switch (vp->v_type) {
874 1.1 mrg case VBLK:
875 1.158 mrg if ((nblocks = bdev_size(dev)) == -1) {
876 1.1 mrg error = ENXIO;
877 1.1 mrg goto bad;
878 1.1 mrg }
879 1.1 mrg break;
880 1.1 mrg
881 1.1 mrg case VREG:
882 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
883 1.1 mrg goto bad;
884 1.1 mrg nblocks = (int)btodb(va.va_size);
885 1.149 mlelstv sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
886 1.1 mrg /*
887 1.1 mrg * limit the max # of outstanding I/O requests we issue
888 1.1 mrg * at any one time. take it easy on NFS servers.
889 1.1 mrg */
890 1.150 pooka if (vp->v_tag == VT_NFS)
891 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
892 1.1 mrg else
893 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
894 1.1 mrg break;
895 1.1 mrg
896 1.1 mrg default:
897 1.1 mrg error = ENXIO;
898 1.1 mrg goto bad;
899 1.1 mrg }
900 1.1 mrg
901 1.1 mrg /*
902 1.1 mrg * save nblocks in a safe place and convert to pages.
903 1.1 mrg */
904 1.1 mrg
905 1.144 mrg sdp->swd_nblks = nblocks;
906 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
907 1.1 mrg
908 1.1 mrg /*
909 1.1 mrg * for block special files, we want to make sure that leave
910 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
911 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
912 1.1 mrg * note that because of this the "size" can be less than the
913 1.1 mrg * actual number of blocks on the device.
914 1.1 mrg */
915 1.1 mrg if (vp->v_type == VBLK) {
916 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
917 1.1 mrg size = npages - 1;
918 1.1 mrg addr = 1;
919 1.1 mrg } else {
920 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
921 1.1 mrg size = npages;
922 1.1 mrg addr = 0;
923 1.1 mrg }
924 1.1 mrg
925 1.1 mrg /*
926 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
927 1.1 mrg * area. we want at least one page.
928 1.1 mrg */
929 1.1 mrg
930 1.1 mrg if (size < 1) {
931 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
932 1.1 mrg error = EINVAL;
933 1.1 mrg goto bad;
934 1.1 mrg }
935 1.1 mrg
936 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
937 1.1 mrg
938 1.1 mrg /*
939 1.1 mrg * now we need to allocate an extent to manage this swap device
940 1.1 mrg */
941 1.1 mrg
942 1.90 yamt sdp->swd_blist = blist_create(npages);
943 1.90 yamt /* mark all expect the `saved' region free. */
944 1.90 yamt blist_free(sdp->swd_blist, addr, size);
945 1.1 mrg
946 1.1 mrg /*
947 1.187 riastrad * allocate space to for swap encryption state and mark the
948 1.187 riastrad * keys uninitialized so we generate them lazily
949 1.187 riastrad */
950 1.190 riastrad sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
951 1.187 riastrad sdp->swd_encinit = false;
952 1.187 riastrad
953 1.187 riastrad /*
954 1.51 chs * if the vnode we are swapping to is the root vnode
955 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
956 1.51 chs * to make sure we don't overwrite it. do a statfs to
957 1.1 mrg * find its size and skip over it.
958 1.1 mrg */
959 1.1 mrg if (vp == rootvp) {
960 1.1 mrg struct mount *mp;
961 1.86 christos struct statvfs *sp;
962 1.1 mrg int rootblocks, rootpages;
963 1.1 mrg
964 1.1 mrg mp = rootvnode->v_mount;
965 1.1 mrg sp = &mp->mnt_stat;
966 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize);
967 1.64 fredette /*
968 1.64 fredette * XXX: sp->f_blocks isn't the total number of
969 1.64 fredette * blocks in the filesystem, it's the number of
970 1.64 fredette * data blocks. so, our rootblocks almost
971 1.85 junyoung * definitely underestimates the total size
972 1.64 fredette * of the filesystem - how badly depends on the
973 1.85 junyoung * details of the filesystem type. there isn't
974 1.64 fredette * an obvious way to deal with this cleanly
975 1.85 junyoung * and perfectly, so for now we just pad our
976 1.64 fredette * rootblocks estimate with an extra 5 percent.
977 1.64 fredette */
978 1.64 fredette rootblocks += (rootblocks >> 5) +
979 1.64 fredette (rootblocks >> 6) +
980 1.64 fredette (rootblocks >> 7);
981 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
982 1.32 chs if (rootpages > size)
983 1.1 mrg panic("swap_on: miniroot larger than swap?");
984 1.1 mrg
985 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
986 1.1 mrg panic("swap_on: unable to preserve miniroot");
987 1.90 yamt }
988 1.1 mrg
989 1.32 chs size -= rootpages;
990 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
991 1.32 chs printf("leaving %d pages of swap\n", size);
992 1.1 mrg }
993 1.1 mrg
994 1.39 chs /*
995 1.39 chs * add a ref to vp to reflect usage as a swap device.
996 1.39 chs */
997 1.39 chs vref(vp);
998 1.39 chs
999 1.1 mrg /*
1000 1.1 mrg * now add the new swapdev to the drum and enable.
1001 1.1 mrg */
1002 1.157 dyoung error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1003 1.157 dyoung if (error != 0)
1004 1.48 fvdl panic("swapdrum_add");
1005 1.130 hannken /*
1006 1.130 hannken * If this is the first regular swap create the workqueue.
1007 1.130 hannken * => Protected by swap_syscall_lock.
1008 1.130 hannken */
1009 1.130 hannken if (vp->v_type != VBLK) {
1010 1.130 hannken if (sw_reg_count++ == 0) {
1011 1.130 hannken KASSERT(sw_reg_workqueue == NULL);
1012 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod",
1013 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1014 1.145 mrg panic("%s: workqueue_create failed", __func__);
1015 1.130 hannken }
1016 1.130 hannken }
1017 1.48 fvdl
1018 1.48 fvdl sdp->swd_drumoffset = (int)result;
1019 1.48 fvdl sdp->swd_drumsize = npages;
1020 1.48 fvdl sdp->swd_npages = size;
1021 1.127 ad mutex_enter(&uvm_swap_data_lock);
1022 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
1023 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1024 1.32 chs uvmexp.swpages += size;
1025 1.81 pk uvmexp.swpgavail += size;
1026 1.127 ad mutex_exit(&uvm_swap_data_lock);
1027 1.1 mrg return (0);
1028 1.1 mrg
1029 1.1 mrg /*
1030 1.43 chs * failure: clean up and return error.
1031 1.1 mrg */
1032 1.43 chs
1033 1.43 chs bad:
1034 1.90 yamt if (sdp->swd_blist) {
1035 1.90 yamt blist_destroy(sdp->swd_blist);
1036 1.43 chs }
1037 1.43 chs if (vp != rootvp) {
1038 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1039 1.43 chs }
1040 1.1 mrg return (error);
1041 1.1 mrg }
1042 1.1 mrg
1043 1.1 mrg /*
1044 1.1 mrg * swap_off: stop swapping on swapdev
1045 1.1 mrg *
1046 1.32 chs * => swap data should be locked, we will unlock.
1047 1.1 mrg */
1048 1.1 mrg static int
1049 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp)
1050 1.1 mrg {
1051 1.91 yamt int npages = sdp->swd_npages;
1052 1.91 yamt int error = 0;
1053 1.81 pk
1054 1.197 skrll UVMHIST_FUNC(__func__);
1055 1.197 skrll UVMHIST_CALLARGS(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1056 1.1 mrg
1057 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
1058 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
1059 1.190 riastrad
1060 1.32 chs /* disable the swap area being removed */
1061 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1062 1.81 pk uvmexp.swpgavail -= npages;
1063 1.127 ad mutex_exit(&uvm_swap_data_lock);
1064 1.32 chs
1065 1.32 chs /*
1066 1.32 chs * the idea is to find all the pages that are paged out to this
1067 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1068 1.32 chs * memory can take two forms: aobjs and anons. call the
1069 1.32 chs * swapoff hook for each subsystem to bring in pages.
1070 1.32 chs */
1071 1.1 mrg
1072 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1073 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1074 1.91 yamt amap_swap_off(sdp->swd_drumoffset,
1075 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1076 1.91 yamt error = ENOMEM;
1077 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1078 1.91 yamt error = EBUSY;
1079 1.91 yamt }
1080 1.51 chs
1081 1.91 yamt if (error) {
1082 1.127 ad mutex_enter(&uvm_swap_data_lock);
1083 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1084 1.81 pk uvmexp.swpgavail += npages;
1085 1.127 ad mutex_exit(&uvm_swap_data_lock);
1086 1.91 yamt
1087 1.91 yamt return error;
1088 1.32 chs }
1089 1.1 mrg
1090 1.1 mrg /*
1091 1.130 hannken * If this is the last regular swap destroy the workqueue.
1092 1.130 hannken * => Protected by swap_syscall_lock.
1093 1.130 hannken */
1094 1.130 hannken if (sdp->swd_vp->v_type != VBLK) {
1095 1.130 hannken KASSERT(sw_reg_count > 0);
1096 1.130 hannken KASSERT(sw_reg_workqueue != NULL);
1097 1.130 hannken if (--sw_reg_count == 0) {
1098 1.130 hannken workqueue_destroy(sw_reg_workqueue);
1099 1.130 hannken sw_reg_workqueue = NULL;
1100 1.130 hannken }
1101 1.130 hannken }
1102 1.130 hannken
1103 1.130 hannken /*
1104 1.58 enami * done with the vnode.
1105 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE()
1106 1.39 chs * so that spec_close() can tell if this is the last close.
1107 1.1 mrg */
1108 1.39 chs vrele(sdp->swd_vp);
1109 1.32 chs if (sdp->swd_vp != rootvp) {
1110 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1111 1.32 chs }
1112 1.32 chs
1113 1.127 ad mutex_enter(&uvm_swap_data_lock);
1114 1.81 pk uvmexp.swpages -= npages;
1115 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad;
1116 1.1 mrg
1117 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL)
1118 1.145 mrg panic("%s: swapdev not in list", __func__);
1119 1.32 chs swaplist_trim();
1120 1.127 ad mutex_exit(&uvm_swap_data_lock);
1121 1.1 mrg
1122 1.32 chs /*
1123 1.32 chs * free all resources!
1124 1.32 chs */
1125 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1126 1.90 yamt blist_destroy(sdp->swd_blist);
1127 1.96 yamt bufq_free(sdp->swd_tab);
1128 1.190 riastrad kmem_free(__UNVOLATILE(sdp->swd_encmap),
1129 1.190 riastrad encmap_size(sdp->swd_drumsize));
1130 1.187 riastrad explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1131 1.187 riastrad explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1132 1.159 para kmem_free(sdp, sizeof(*sdp));
1133 1.1 mrg return (0);
1134 1.1 mrg }
1135 1.1 mrg
1136 1.164 christos void
1137 1.164 christos uvm_swap_shutdown(struct lwp *l)
1138 1.164 christos {
1139 1.164 christos struct swapdev *sdp;
1140 1.164 christos struct swappri *spp;
1141 1.164 christos struct vnode *vp;
1142 1.164 christos int error;
1143 1.164 christos
1144 1.182 ad printf("turning off swap...");
1145 1.164 christos rw_enter(&swap_syscall_lock, RW_WRITER);
1146 1.164 christos mutex_enter(&uvm_swap_data_lock);
1147 1.164 christos again:
1148 1.164 christos LIST_FOREACH(spp, &swap_priority, spi_swappri)
1149 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1150 1.164 christos if (sdp->swd_flags & SWF_FAKE)
1151 1.164 christos continue;
1152 1.164 christos if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1153 1.164 christos continue;
1154 1.164 christos #ifdef DEBUG
1155 1.201 hannken printf("\nturning off swap on %s...", sdp->swd_path);
1156 1.164 christos #endif
1157 1.201 hannken /* Have to lock and reference vnode for swap_off(). */
1158 1.164 christos if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1159 1.164 christos error = EBUSY;
1160 1.201 hannken } else {
1161 1.201 hannken vref(vp);
1162 1.164 christos error = swap_off(l, sdp);
1163 1.201 hannken vput(vp);
1164 1.164 christos mutex_enter(&uvm_swap_data_lock);
1165 1.164 christos }
1166 1.164 christos if (error) {
1167 1.164 christos printf("stopping swap on %s failed "
1168 1.164 christos "with error %d\n", sdp->swd_path, error);
1169 1.201 hannken TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1170 1.164 christos uvmexp.nswapdev--;
1171 1.164 christos swaplist_trim();
1172 1.164 christos }
1173 1.164 christos goto again;
1174 1.164 christos }
1175 1.164 christos printf(" done\n");
1176 1.164 christos mutex_exit(&uvm_swap_data_lock);
1177 1.164 christos rw_exit(&swap_syscall_lock);
1178 1.164 christos }
1179 1.164 christos
1180 1.164 christos
1181 1.1 mrg /*
1182 1.1 mrg * /dev/drum interface and i/o functions
1183 1.1 mrg */
1184 1.1 mrg
1185 1.1 mrg /*
1186 1.1 mrg * swstrategy: perform I/O on the drum
1187 1.1 mrg *
1188 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1189 1.1 mrg */
1190 1.94 thorpej static void
1191 1.93 thorpej swstrategy(struct buf *bp)
1192 1.1 mrg {
1193 1.1 mrg struct swapdev *sdp;
1194 1.1 mrg struct vnode *vp;
1195 1.134 ad int pageno, bn;
1196 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1197 1.1 mrg
1198 1.1 mrg /*
1199 1.1 mrg * convert block number to swapdev. note that swapdev can't
1200 1.1 mrg * be yanked out from under us because we are holding resources
1201 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1202 1.1 mrg */
1203 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1204 1.127 ad mutex_enter(&uvm_swap_data_lock);
1205 1.1 mrg sdp = swapdrum_getsdp(pageno);
1206 1.127 ad mutex_exit(&uvm_swap_data_lock);
1207 1.1 mrg if (sdp == NULL) {
1208 1.1 mrg bp->b_error = EINVAL;
1209 1.163 riastrad bp->b_resid = bp->b_bcount;
1210 1.1 mrg biodone(bp);
1211 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1212 1.1 mrg return;
1213 1.1 mrg }
1214 1.1 mrg
1215 1.1 mrg /*
1216 1.1 mrg * convert drum page number to block number on this swapdev.
1217 1.1 mrg */
1218 1.1 mrg
1219 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1220 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1221 1.1 mrg
1222 1.175 pgoyette UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1223 1.175 pgoyette ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1224 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1225 1.1 mrg
1226 1.1 mrg /*
1227 1.1 mrg * for block devices we finish up here.
1228 1.32 chs * for regular files we have to do more work which we delegate
1229 1.1 mrg * to sw_reg_strategy().
1230 1.1 mrg */
1231 1.1 mrg
1232 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */
1233 1.134 ad switch (vp->v_type) {
1234 1.1 mrg default:
1235 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type);
1236 1.32 chs
1237 1.1 mrg case VBLK:
1238 1.1 mrg
1239 1.1 mrg /*
1240 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1241 1.1 mrg * on the swapdev (sdp).
1242 1.1 mrg */
1243 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1244 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1245 1.1 mrg
1246 1.1 mrg /*
1247 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1248 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1249 1.1 mrg */
1250 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1251 1.134 ad mutex_enter(bp->b_objlock);
1252 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1253 1.134 ad mutex_exit(bp->b_objlock);
1254 1.156 rmind mutex_enter(vp->v_interlock);
1255 1.134 ad vp->v_numoutput++; /* put it on swapdev */
1256 1.156 rmind mutex_exit(vp->v_interlock);
1257 1.1 mrg }
1258 1.1 mrg
1259 1.41 chs /*
1260 1.1 mrg * finally plug in swapdev vnode and start I/O
1261 1.1 mrg */
1262 1.1 mrg bp->b_vp = vp;
1263 1.156 rmind bp->b_objlock = vp->v_interlock;
1264 1.84 hannken VOP_STRATEGY(vp, bp);
1265 1.1 mrg return;
1266 1.32 chs
1267 1.1 mrg case VREG:
1268 1.1 mrg /*
1269 1.32 chs * delegate to sw_reg_strategy function.
1270 1.1 mrg */
1271 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1272 1.1 mrg return;
1273 1.1 mrg }
1274 1.1 mrg /* NOTREACHED */
1275 1.1 mrg }
1276 1.1 mrg
1277 1.1 mrg /*
1278 1.94 thorpej * swread: the read function for the drum (just a call to physio)
1279 1.94 thorpej */
1280 1.94 thorpej /*ARGSUSED*/
1281 1.94 thorpej static int
1282 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag)
1283 1.94 thorpej {
1284 1.197 skrll UVMHIST_FUNC(__func__);
1285 1.197 skrll UVMHIST_CALLARGS(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1286 1.94 thorpej
1287 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1288 1.94 thorpej }
1289 1.94 thorpej
1290 1.94 thorpej /*
1291 1.94 thorpej * swwrite: the write function for the drum (just a call to physio)
1292 1.94 thorpej */
1293 1.94 thorpej /*ARGSUSED*/
1294 1.94 thorpej static int
1295 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
1296 1.94 thorpej {
1297 1.197 skrll UVMHIST_FUNC(__func__);
1298 1.197 skrll UVMHIST_CALLARGS(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1299 1.94 thorpej
1300 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1301 1.94 thorpej }
1302 1.94 thorpej
1303 1.94 thorpej const struct bdevsw swap_bdevsw = {
1304 1.168 dholland .d_open = nullopen,
1305 1.168 dholland .d_close = nullclose,
1306 1.168 dholland .d_strategy = swstrategy,
1307 1.168 dholland .d_ioctl = noioctl,
1308 1.168 dholland .d_dump = nodump,
1309 1.168 dholland .d_psize = nosize,
1310 1.171 dholland .d_discard = nodiscard,
1311 1.168 dholland .d_flag = D_OTHER
1312 1.94 thorpej };
1313 1.94 thorpej
1314 1.94 thorpej const struct cdevsw swap_cdevsw = {
1315 1.168 dholland .d_open = nullopen,
1316 1.168 dholland .d_close = nullclose,
1317 1.168 dholland .d_read = swread,
1318 1.168 dholland .d_write = swwrite,
1319 1.168 dholland .d_ioctl = noioctl,
1320 1.168 dholland .d_stop = nostop,
1321 1.168 dholland .d_tty = notty,
1322 1.168 dholland .d_poll = nopoll,
1323 1.168 dholland .d_mmap = nommap,
1324 1.168 dholland .d_kqfilter = nokqfilter,
1325 1.172 dholland .d_discard = nodiscard,
1326 1.168 dholland .d_flag = D_OTHER,
1327 1.94 thorpej };
1328 1.94 thorpej
1329 1.94 thorpej /*
1330 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1331 1.1 mrg */
1332 1.1 mrg static void
1333 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1334 1.1 mrg {
1335 1.1 mrg struct vnode *vp;
1336 1.1 mrg struct vndxfer *vnx;
1337 1.44 enami daddr_t nbn;
1338 1.122 christos char *addr;
1339 1.44 enami off_t byteoff;
1340 1.9 mrg int s, off, nra, error, sz, resid;
1341 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1342 1.1 mrg
1343 1.1 mrg /*
1344 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1345 1.1 mrg * our buffer.
1346 1.1 mrg */
1347 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1348 1.1 mrg vnx->vx_flags = VX_BUSY;
1349 1.1 mrg vnx->vx_error = 0;
1350 1.1 mrg vnx->vx_pending = 0;
1351 1.1 mrg vnx->vx_bp = bp;
1352 1.1 mrg vnx->vx_sdp = sdp;
1353 1.1 mrg
1354 1.1 mrg /*
1355 1.1 mrg * setup for main loop where we read filesystem blocks into
1356 1.1 mrg * our buffer.
1357 1.1 mrg */
1358 1.1 mrg error = 0;
1359 1.185 msaitoh bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1360 1.1 mrg addr = bp->b_data; /* current position in buffer */
1361 1.99 matt byteoff = dbtob((uint64_t)bn);
1362 1.1 mrg
1363 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1364 1.1 mrg struct vndbuf *nbp;
1365 1.1 mrg
1366 1.1 mrg /*
1367 1.1 mrg * translate byteoffset into block number. return values:
1368 1.1 mrg * vp = vnode of underlying device
1369 1.1 mrg * nbn = new block number (on underlying vnode dev)
1370 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1371 1.1 mrg * block)
1372 1.1 mrg */
1373 1.1 mrg nra = 0;
1374 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1375 1.1 mrg &vp, &nbn, &nra);
1376 1.1 mrg
1377 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1378 1.51 chs /*
1379 1.23 marc * this used to just set error, but that doesn't
1380 1.23 marc * do the right thing. Instead, it causes random
1381 1.23 marc * memory errors. The panic() should remain until
1382 1.23 marc * this condition doesn't destabilize the system.
1383 1.23 marc */
1384 1.23 marc #if 1
1385 1.145 mrg panic("%s: swap to sparse file", __func__);
1386 1.23 marc #else
1387 1.1 mrg error = EIO; /* failure */
1388 1.23 marc #endif
1389 1.23 marc }
1390 1.1 mrg
1391 1.1 mrg /*
1392 1.1 mrg * punt if there was an error or a hole in the file.
1393 1.1 mrg * we must wait for any i/o ops we have already started
1394 1.1 mrg * to finish before returning.
1395 1.1 mrg *
1396 1.1 mrg * XXX we could deal with holes here but it would be
1397 1.1 mrg * a hassle (in the write case).
1398 1.1 mrg */
1399 1.1 mrg if (error) {
1400 1.1 mrg s = splbio();
1401 1.1 mrg vnx->vx_error = error; /* pass error up */
1402 1.1 mrg goto out;
1403 1.1 mrg }
1404 1.1 mrg
1405 1.1 mrg /*
1406 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1407 1.1 mrg */
1408 1.41 chs off = byteoff % sdp->swd_bsize;
1409 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off;
1410 1.41 chs if (sz > resid)
1411 1.1 mrg sz = resid;
1412 1.1 mrg
1413 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1414 1.175 pgoyette "vp %#jx/%#jx offset 0x%jx/0x%jx",
1415 1.175 pgoyette (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1416 1.1 mrg
1417 1.1 mrg /*
1418 1.1 mrg * now get a buf structure. note that the vb_buf is
1419 1.1 mrg * at the front of the nbp structure so that you can
1420 1.1 mrg * cast pointers between the two structure easily.
1421 1.1 mrg */
1422 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1423 1.134 ad buf_init(&nbp->vb_buf);
1424 1.134 ad nbp->vb_buf.b_flags = bp->b_flags;
1425 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags;
1426 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags;
1427 1.1 mrg nbp->vb_buf.b_bcount = sz;
1428 1.12 pk nbp->vb_buf.b_bufsize = sz;
1429 1.1 mrg nbp->vb_buf.b_error = 0;
1430 1.1 mrg nbp->vb_buf.b_data = addr;
1431 1.41 chs nbp->vb_buf.b_lblkno = 0;
1432 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1433 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1434 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone;
1435 1.53 chs nbp->vb_buf.b_vp = vp;
1436 1.156 rmind nbp->vb_buf.b_objlock = vp->v_interlock;
1437 1.53 chs if (vp->v_type == VBLK) {
1438 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev;
1439 1.53 chs }
1440 1.1 mrg
1441 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1442 1.1 mrg
1443 1.1 mrg /*
1444 1.1 mrg * Just sort by block number
1445 1.1 mrg */
1446 1.1 mrg s = splbio();
1447 1.1 mrg if (vnx->vx_error != 0) {
1448 1.134 ad buf_destroy(&nbp->vb_buf);
1449 1.134 ad pool_put(&vndbuf_pool, nbp);
1450 1.1 mrg goto out;
1451 1.1 mrg }
1452 1.1 mrg vnx->vx_pending++;
1453 1.1 mrg
1454 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1455 1.134 ad /* XXXAD locking */
1456 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf);
1457 1.1 mrg sw_reg_start(sdp);
1458 1.1 mrg splx(s);
1459 1.1 mrg
1460 1.1 mrg /*
1461 1.1 mrg * advance to the next I/O
1462 1.1 mrg */
1463 1.9 mrg byteoff += sz;
1464 1.1 mrg addr += sz;
1465 1.1 mrg }
1466 1.1 mrg
1467 1.1 mrg s = splbio();
1468 1.1 mrg
1469 1.1 mrg out: /* Arrive here at splbio */
1470 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1471 1.1 mrg if (vnx->vx_pending == 0) {
1472 1.134 ad error = vnx->vx_error;
1473 1.134 ad pool_put(&vndxfer_pool, vnx);
1474 1.134 ad bp->b_error = error;
1475 1.1 mrg biodone(bp);
1476 1.1 mrg }
1477 1.1 mrg splx(s);
1478 1.1 mrg }
1479 1.1 mrg
1480 1.1 mrg /*
1481 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1482 1.1 mrg *
1483 1.65 hannken * => reqs are sorted by b_rawblkno (above)
1484 1.1 mrg */
1485 1.1 mrg static void
1486 1.93 thorpej sw_reg_start(struct swapdev *sdp)
1487 1.1 mrg {
1488 1.1 mrg struct buf *bp;
1489 1.134 ad struct vnode *vp;
1490 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1491 1.1 mrg
1492 1.8 mrg /* recursion control */
1493 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1494 1.1 mrg return;
1495 1.1 mrg
1496 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1497 1.1 mrg
1498 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1499 1.143 yamt bp = bufq_get(sdp->swd_tab);
1500 1.1 mrg if (bp == NULL)
1501 1.1 mrg break;
1502 1.33 thorpej sdp->swd_active++;
1503 1.1 mrg
1504 1.1 mrg UVMHIST_LOG(pdhist,
1505 1.175 pgoyette "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1506 1.175 pgoyette (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1507 1.175 pgoyette bp->b_bcount);
1508 1.134 ad vp = bp->b_vp;
1509 1.156 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1510 1.134 ad if ((bp->b_flags & B_READ) == 0) {
1511 1.156 rmind mutex_enter(vp->v_interlock);
1512 1.134 ad vp->v_numoutput++;
1513 1.156 rmind mutex_exit(vp->v_interlock);
1514 1.134 ad }
1515 1.134 ad VOP_STRATEGY(vp, bp);
1516 1.1 mrg }
1517 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1518 1.1 mrg }
1519 1.1 mrg
1520 1.1 mrg /*
1521 1.130 hannken * sw_reg_biodone: one of our i/o's has completed
1522 1.130 hannken */
1523 1.130 hannken static void
1524 1.130 hannken sw_reg_biodone(struct buf *bp)
1525 1.130 hannken {
1526 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1527 1.130 hannken }
1528 1.130 hannken
1529 1.130 hannken /*
1530 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1531 1.1 mrg *
1532 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1533 1.1 mrg */
1534 1.1 mrg static void
1535 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy)
1536 1.1 mrg {
1537 1.130 hannken struct vndbuf *vbp = (void *)wk;
1538 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1539 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1540 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1541 1.72 chs int s, resid, error;
1542 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk);
1543 1.197 skrll UVMHIST_FUNC(__func__);
1544 1.197 skrll UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1545 1.175 pgoyette (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1546 1.175 pgoyette (uintptr_t)vbp->vb_buf.b_data);
1547 1.175 pgoyette UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1548 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1549 1.1 mrg
1550 1.1 mrg /*
1551 1.1 mrg * protect vbp at splbio and update.
1552 1.1 mrg */
1553 1.1 mrg
1554 1.1 mrg s = splbio();
1555 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1556 1.1 mrg pbp->b_resid -= resid;
1557 1.1 mrg vnx->vx_pending--;
1558 1.1 mrg
1559 1.129 ad if (vbp->vb_buf.b_error != 0) {
1560 1.1 mrg /* pass error upward */
1561 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1562 1.175 pgoyette UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1563 1.72 chs vnx->vx_error = error;
1564 1.35 chs }
1565 1.35 chs
1566 1.35 chs /*
1567 1.1 mrg * kill vbp structure
1568 1.1 mrg */
1569 1.134 ad buf_destroy(&vbp->vb_buf);
1570 1.134 ad pool_put(&vndbuf_pool, vbp);
1571 1.1 mrg
1572 1.1 mrg /*
1573 1.1 mrg * wrap up this transaction if it has run to completion or, in
1574 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1575 1.1 mrg */
1576 1.1 mrg if (vnx->vx_error != 0) {
1577 1.1 mrg /* pass error upward */
1578 1.134 ad error = vnx->vx_error;
1579 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1580 1.134 ad pbp->b_error = error;
1581 1.1 mrg biodone(pbp);
1582 1.134 ad pool_put(&vndxfer_pool, vnx);
1583 1.1 mrg }
1584 1.11 pk } else if (pbp->b_resid == 0) {
1585 1.46 chs KASSERT(vnx->vx_pending == 0);
1586 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1587 1.175 pgoyette UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1588 1.175 pgoyette (uintptr_t)pbp, vnx->vx_error, 0, 0);
1589 1.1 mrg biodone(pbp);
1590 1.134 ad pool_put(&vndxfer_pool, vnx);
1591 1.1 mrg }
1592 1.1 mrg }
1593 1.1 mrg
1594 1.1 mrg /*
1595 1.1 mrg * done! start next swapdev I/O if one is pending
1596 1.1 mrg */
1597 1.33 thorpej sdp->swd_active--;
1598 1.1 mrg sw_reg_start(sdp);
1599 1.1 mrg splx(s);
1600 1.1 mrg }
1601 1.1 mrg
1602 1.1 mrg
1603 1.1 mrg /*
1604 1.1 mrg * uvm_swap_alloc: allocate space on swap
1605 1.1 mrg *
1606 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1607 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1608 1.1 mrg * => space can be freed with uvm_swap_free
1609 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1610 1.127 ad * => we lock uvm_swap_data_lock
1611 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1612 1.1 mrg */
1613 1.1 mrg int
1614 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1615 1.1 mrg {
1616 1.1 mrg struct swapdev *sdp;
1617 1.1 mrg struct swappri *spp;
1618 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1619 1.1 mrg
1620 1.1 mrg /*
1621 1.1 mrg * no swap devices configured yet? definite failure.
1622 1.1 mrg */
1623 1.1 mrg if (uvmexp.nswapdev < 1)
1624 1.1 mrg return 0;
1625 1.51 chs
1626 1.1 mrg /*
1627 1.162 jakllsch * XXXJAK: BEGIN HACK
1628 1.162 jakllsch *
1629 1.162 jakllsch * blist_alloc() in subr_blist.c will panic if we try to allocate
1630 1.162 jakllsch * too many slots.
1631 1.162 jakllsch */
1632 1.162 jakllsch if (*nslots > BLIST_MAX_ALLOC) {
1633 1.162 jakllsch if (__predict_false(lessok == false))
1634 1.162 jakllsch return 0;
1635 1.162 jakllsch *nslots = BLIST_MAX_ALLOC;
1636 1.162 jakllsch }
1637 1.162 jakllsch /* XXXJAK: END HACK */
1638 1.162 jakllsch
1639 1.162 jakllsch /*
1640 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1641 1.1 mrg */
1642 1.127 ad mutex_enter(&uvm_swap_data_lock);
1643 1.1 mrg
1644 1.1 mrg ReTry: /* XXXMRG */
1645 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1646 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1647 1.90 yamt uint64_t result;
1648 1.90 yamt
1649 1.1 mrg /* if it's not enabled, then we can't swap from it */
1650 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1651 1.1 mrg continue;
1652 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1653 1.1 mrg continue;
1654 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots);
1655 1.90 yamt if (result == BLIST_NONE) {
1656 1.1 mrg continue;
1657 1.1 mrg }
1658 1.90 yamt KASSERT(result < sdp->swd_drumsize);
1659 1.1 mrg
1660 1.1 mrg /*
1661 1.165 christos * successful allocation! now rotate the tailq.
1662 1.1 mrg */
1663 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1664 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1665 1.1 mrg sdp->swd_npginuse += *nslots;
1666 1.1 mrg uvmexp.swpginuse += *nslots;
1667 1.127 ad mutex_exit(&uvm_swap_data_lock);
1668 1.1 mrg /* done! return drum slot number */
1669 1.1 mrg UVMHIST_LOG(pdhist,
1670 1.175 pgoyette "success! returning %jd slots starting at %jd",
1671 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1672 1.55 chs return (result + sdp->swd_drumoffset);
1673 1.1 mrg }
1674 1.1 mrg }
1675 1.1 mrg
1676 1.1 mrg /* XXXMRG: BEGIN HACK */
1677 1.1 mrg if (*nslots > 1 && lessok) {
1678 1.1 mrg *nslots = 1;
1679 1.90 yamt /* XXXMRG: ugh! blist should support this for us */
1680 1.90 yamt goto ReTry;
1681 1.1 mrg }
1682 1.1 mrg /* XXXMRG: END HACK */
1683 1.1 mrg
1684 1.127 ad mutex_exit(&uvm_swap_data_lock);
1685 1.55 chs return 0;
1686 1.1 mrg }
1687 1.1 mrg
1688 1.141 ad /*
1689 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated
1690 1.141 ad * and in use. we don't count some small portion as it may be inaccessible
1691 1.141 ad * to us at any given moment, for example if there is lock contention or if
1692 1.141 ad * pages are busy.
1693 1.141 ad */
1694 1.119 thorpej bool
1695 1.81 pk uvm_swapisfull(void)
1696 1.81 pk {
1697 1.141 ad int swpgonly;
1698 1.119 thorpej bool rv;
1699 1.81 pk
1700 1.200 chs if (uvmexp.swpages == 0) {
1701 1.200 chs return true;
1702 1.200 chs }
1703 1.200 chs
1704 1.127 ad mutex_enter(&uvm_swap_data_lock);
1705 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1706 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1707 1.141 ad uvm_swapisfull_factor);
1708 1.141 ad rv = (swpgonly >= uvmexp.swpgavail);
1709 1.127 ad mutex_exit(&uvm_swap_data_lock);
1710 1.81 pk
1711 1.81 pk return (rv);
1712 1.81 pk }
1713 1.81 pk
1714 1.1 mrg /*
1715 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1716 1.32 chs *
1717 1.127 ad * => we lock uvm_swap_data_lock
1718 1.32 chs */
1719 1.32 chs void
1720 1.93 thorpej uvm_swap_markbad(int startslot, int nslots)
1721 1.32 chs {
1722 1.32 chs struct swapdev *sdp;
1723 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1724 1.32 chs
1725 1.127 ad mutex_enter(&uvm_swap_data_lock);
1726 1.32 chs sdp = swapdrum_getsdp(startslot);
1727 1.82 pk KASSERT(sdp != NULL);
1728 1.32 chs
1729 1.32 chs /*
1730 1.32 chs * we just keep track of how many pages have been marked bad
1731 1.32 chs * in this device, to make everything add up in swap_off().
1732 1.32 chs * we assume here that the range of slots will all be within
1733 1.32 chs * one swap device.
1734 1.32 chs */
1735 1.41 chs
1736 1.82 pk KASSERT(uvmexp.swpgonly >= nslots);
1737 1.182 ad atomic_add_int(&uvmexp.swpgonly, -nslots);
1738 1.32 chs sdp->swd_npgbad += nslots;
1739 1.175 pgoyette UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1740 1.127 ad mutex_exit(&uvm_swap_data_lock);
1741 1.32 chs }
1742 1.32 chs
1743 1.32 chs /*
1744 1.1 mrg * uvm_swap_free: free swap slots
1745 1.1 mrg *
1746 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1747 1.127 ad * => we lock uvm_swap_data_lock
1748 1.1 mrg */
1749 1.1 mrg void
1750 1.93 thorpej uvm_swap_free(int startslot, int nslots)
1751 1.1 mrg {
1752 1.1 mrg struct swapdev *sdp;
1753 1.197 skrll UVMHIST_FUNC(__func__);
1754 1.197 skrll UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
1755 1.1 mrg startslot, 0, 0);
1756 1.32 chs
1757 1.32 chs /*
1758 1.32 chs * ignore attempts to free the "bad" slot.
1759 1.32 chs */
1760 1.46 chs
1761 1.32 chs if (startslot == SWSLOT_BAD) {
1762 1.32 chs return;
1763 1.32 chs }
1764 1.32 chs
1765 1.1 mrg /*
1766 1.51 chs * convert drum slot offset back to sdp, free the blocks
1767 1.51 chs * in the extent, and return. must hold pri lock to do
1768 1.1 mrg * lookup and access the extent.
1769 1.1 mrg */
1770 1.46 chs
1771 1.127 ad mutex_enter(&uvm_swap_data_lock);
1772 1.1 mrg sdp = swapdrum_getsdp(startslot);
1773 1.46 chs KASSERT(uvmexp.nswapdev >= 1);
1774 1.46 chs KASSERT(sdp != NULL);
1775 1.46 chs KASSERT(sdp->swd_npginuse >= nslots);
1776 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1777 1.1 mrg sdp->swd_npginuse -= nslots;
1778 1.1 mrg uvmexp.swpginuse -= nslots;
1779 1.127 ad mutex_exit(&uvm_swap_data_lock);
1780 1.1 mrg }
1781 1.1 mrg
1782 1.1 mrg /*
1783 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1784 1.1 mrg *
1785 1.1 mrg * => can be sync or async
1786 1.1 mrg */
1787 1.54 chs
1788 1.1 mrg int
1789 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1790 1.1 mrg {
1791 1.56 chs int error;
1792 1.1 mrg
1793 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1794 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1795 1.56 chs return error;
1796 1.1 mrg }
1797 1.1 mrg
1798 1.1 mrg /*
1799 1.1 mrg * uvm_swap_get: get a single page from swap
1800 1.1 mrg *
1801 1.1 mrg * => usually a sync op (from fault)
1802 1.1 mrg */
1803 1.54 chs
1804 1.1 mrg int
1805 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
1806 1.1 mrg {
1807 1.56 chs int error;
1808 1.1 mrg
1809 1.184 ad atomic_inc_uint(&uvmexp.nswget);
1810 1.46 chs KASSERT(flags & PGO_SYNCIO);
1811 1.32 chs if (swslot == SWSLOT_BAD) {
1812 1.47 chs return EIO;
1813 1.32 chs }
1814 1.81 pk
1815 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ |
1816 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1817 1.56 chs if (error == 0) {
1818 1.47 chs
1819 1.26 chs /*
1820 1.54 chs * this page is no longer only in swap.
1821 1.26 chs */
1822 1.47 chs
1823 1.56 chs KASSERT(uvmexp.swpgonly > 0);
1824 1.182 ad atomic_dec_uint(&uvmexp.swpgonly);
1825 1.26 chs }
1826 1.56 chs return error;
1827 1.1 mrg }
1828 1.1 mrg
1829 1.1 mrg /*
1830 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1831 1.1 mrg */
1832 1.1 mrg
1833 1.1 mrg static int
1834 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1835 1.1 mrg {
1836 1.1 mrg daddr_t startblk;
1837 1.1 mrg struct buf *bp;
1838 1.15 eeh vaddr_t kva;
1839 1.134 ad int error, mapinflags;
1840 1.187 riastrad bool write, async, swap_encrypt;
1841 1.197 skrll UVMHIST_FUNC(__func__);
1842 1.197 skrll UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1843 1.1 mrg startslot, npages, flags, 0);
1844 1.32 chs
1845 1.41 chs write = (flags & B_READ) == 0;
1846 1.41 chs async = (flags & B_ASYNC) != 0;
1847 1.189 riastrad swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1848 1.41 chs
1849 1.1 mrg /*
1850 1.137 yamt * allocate a buf for the i/o.
1851 1.137 yamt */
1852 1.137 yamt
1853 1.137 yamt KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1854 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1855 1.137 yamt if (bp == NULL) {
1856 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1857 1.137 yamt return ENOMEM;
1858 1.137 yamt }
1859 1.137 yamt
1860 1.137 yamt /*
1861 1.1 mrg * convert starting drum slot to block number
1862 1.1 mrg */
1863 1.54 chs
1864 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1865 1.1 mrg
1866 1.1 mrg /*
1867 1.54 chs * first, map the pages into the kernel.
1868 1.41 chs */
1869 1.41 chs
1870 1.54 chs mapinflags = !write ?
1871 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1872 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1873 1.187 riastrad if (write && swap_encrypt) /* need to encrypt in-place */
1874 1.187 riastrad mapinflags |= UVMPAGER_MAPIN_READ;
1875 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags);
1876 1.1 mrg
1877 1.51 chs /*
1878 1.187 riastrad * encrypt writes in place if requested
1879 1.187 riastrad */
1880 1.187 riastrad
1881 1.187 riastrad if (write) do {
1882 1.187 riastrad struct swapdev *sdp;
1883 1.187 riastrad int i;
1884 1.187 riastrad
1885 1.187 riastrad /*
1886 1.187 riastrad * Get the swapdev so we can discriminate on the
1887 1.187 riastrad * encryption state. There may or may not be an
1888 1.187 riastrad * encryption key generated; we may or may not be asked
1889 1.187 riastrad * to encrypt swap.
1890 1.187 riastrad *
1891 1.187 riastrad * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1892 1.187 riastrad *
1893 1.187 riastrad * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1894 1.187 riastrad * and mark the slots encrypted.
1895 1.187 riastrad *
1896 1.187 riastrad * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1897 1.187 riastrad * marked encrypted from a past life. Mark them not
1898 1.187 riastrad * encrypted.
1899 1.187 riastrad *
1900 1.187 riastrad * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1901 1.187 riastrad * encrypted.
1902 1.187 riastrad */
1903 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
1904 1.187 riastrad sdp = swapdrum_getsdp(startslot);
1905 1.187 riastrad if (!sdp->swd_encinit) {
1906 1.190 riastrad if (!swap_encrypt) {
1907 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
1908 1.187 riastrad break;
1909 1.190 riastrad }
1910 1.187 riastrad uvm_swap_genkey(sdp);
1911 1.187 riastrad }
1912 1.187 riastrad KASSERT(sdp->swd_encinit);
1913 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
1914 1.187 riastrad
1915 1.192 jdolecek for (i = 0; i < npages; i++) {
1916 1.192 jdolecek int s = startslot + i;
1917 1.192 jdolecek KDASSERT(swapdrum_sdp_is(s, sdp));
1918 1.192 jdolecek KASSERT(s >= sdp->swd_drumoffset);
1919 1.192 jdolecek s -= sdp->swd_drumoffset;
1920 1.192 jdolecek KASSERT(s < sdp->swd_drumsize);
1921 1.192 jdolecek
1922 1.192 jdolecek if (swap_encrypt) {
1923 1.189 riastrad uvm_swap_encryptpage(sdp,
1924 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1925 1.190 riastrad atomic_or_32(&sdp->swd_encmap[s/32],
1926 1.190 riastrad __BIT(s%32));
1927 1.192 jdolecek } else {
1928 1.190 riastrad atomic_and_32(&sdp->swd_encmap[s/32],
1929 1.190 riastrad ~__BIT(s%32));
1930 1.187 riastrad }
1931 1.187 riastrad }
1932 1.187 riastrad } while (0);
1933 1.187 riastrad
1934 1.187 riastrad /*
1935 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1936 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1937 1.1 mrg */
1938 1.54 chs
1939 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE;
1940 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC));
1941 1.1 mrg bp->b_proc = &proc0; /* XXX */
1942 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1943 1.122 christos bp->b_data = (void *)kva;
1944 1.1 mrg bp->b_blkno = startblk;
1945 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1946 1.1 mrg
1947 1.51 chs /*
1948 1.41 chs * bump v_numoutput (counter of number of active outputs).
1949 1.1 mrg */
1950 1.54 chs
1951 1.41 chs if (write) {
1952 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
1953 1.134 ad swapdev_vp->v_numoutput++;
1954 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
1955 1.1 mrg }
1956 1.1 mrg
1957 1.1 mrg /*
1958 1.41 chs * for async ops we must set up the iodone handler.
1959 1.1 mrg */
1960 1.54 chs
1961 1.41 chs if (async) {
1962 1.186 chs bp->b_iodone = uvm_aio_aiodone;
1963 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1964 1.126 ad if (curlwp == uvm.pagedaemon_lwp)
1965 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1966 1.83 yamt else
1967 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1968 1.83 yamt } else {
1969 1.134 ad bp->b_iodone = NULL;
1970 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1971 1.1 mrg }
1972 1.1 mrg UVMHIST_LOG(pdhist,
1973 1.175 pgoyette "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1974 1.175 pgoyette (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1975 1.1 mrg
1976 1.1 mrg /*
1977 1.1 mrg * now we start the I/O, and if async, return.
1978 1.1 mrg */
1979 1.54 chs
1980 1.84 hannken VOP_STRATEGY(swapdev_vp, bp);
1981 1.190 riastrad if (async) {
1982 1.190 riastrad /*
1983 1.190 riastrad * Reads are always synchronous; if this changes, we
1984 1.190 riastrad * need to add an asynchronous path for decryption.
1985 1.190 riastrad */
1986 1.193 jdolecek KASSERT(write);
1987 1.47 chs return 0;
1988 1.190 riastrad }
1989 1.1 mrg
1990 1.1 mrg /*
1991 1.1 mrg * must be sync i/o. wait for it to finish
1992 1.1 mrg */
1993 1.54 chs
1994 1.47 chs error = biowait(bp);
1995 1.191 riastrad if (error)
1996 1.191 riastrad goto out;
1997 1.1 mrg
1998 1.1 mrg /*
1999 1.187 riastrad * decrypt reads in place if needed
2000 1.187 riastrad */
2001 1.187 riastrad
2002 1.187 riastrad if (!write) do {
2003 1.187 riastrad struct swapdev *sdp;
2004 1.190 riastrad bool encinit;
2005 1.187 riastrad int i;
2006 1.187 riastrad
2007 1.190 riastrad /*
2008 1.190 riastrad * Get the sdp. Everything about it except the encinit
2009 1.190 riastrad * bit, saying whether the encryption key is
2010 1.190 riastrad * initialized or not, and the encrypted bit for each
2011 1.190 riastrad * page, is stable until all swap pages have been
2012 1.190 riastrad * released and the device is removed.
2013 1.190 riastrad */
2014 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
2015 1.187 riastrad sdp = swapdrum_getsdp(startslot);
2016 1.190 riastrad encinit = sdp->swd_encinit;
2017 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
2018 1.190 riastrad
2019 1.190 riastrad if (!encinit)
2020 1.187 riastrad /*
2021 1.187 riastrad * If there's no encryption key, there's no way
2022 1.187 riastrad * any of these slots can be encrypted, so
2023 1.187 riastrad * nothing to do here.
2024 1.187 riastrad */
2025 1.187 riastrad break;
2026 1.187 riastrad for (i = 0; i < npages; i++) {
2027 1.187 riastrad int s = startslot + i;
2028 1.190 riastrad KDASSERT(swapdrum_sdp_is(s, sdp));
2029 1.187 riastrad KASSERT(s >= sdp->swd_drumoffset);
2030 1.187 riastrad s -= sdp->swd_drumoffset;
2031 1.187 riastrad KASSERT(s < sdp->swd_drumsize);
2032 1.190 riastrad if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2033 1.190 riastrad __BIT(s%32)) == 0)
2034 1.187 riastrad continue;
2035 1.189 riastrad uvm_swap_decryptpage(sdp,
2036 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2037 1.187 riastrad }
2038 1.187 riastrad } while (0);
2039 1.191 riastrad out:
2040 1.187 riastrad /*
2041 1.1 mrg * kill the pager mapping
2042 1.1 mrg */
2043 1.54 chs
2044 1.1 mrg uvm_pagermapout(kva, npages);
2045 1.1 mrg
2046 1.1 mrg /*
2047 1.54 chs * now dispose of the buf and we're done.
2048 1.1 mrg */
2049 1.54 chs
2050 1.134 ad if (write) {
2051 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
2052 1.41 chs vwakeup(bp);
2053 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
2054 1.134 ad }
2055 1.98 yamt putiobuf(bp);
2056 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
2057 1.134 ad
2058 1.47 chs return (error);
2059 1.1 mrg }
2060 1.187 riastrad
2061 1.187 riastrad /*
2062 1.187 riastrad * uvm_swap_genkey(sdp)
2063 1.187 riastrad *
2064 1.187 riastrad * Generate a key for swap encryption.
2065 1.187 riastrad */
2066 1.187 riastrad static void
2067 1.187 riastrad uvm_swap_genkey(struct swapdev *sdp)
2068 1.187 riastrad {
2069 1.187 riastrad uint8_t key[32];
2070 1.187 riastrad
2071 1.187 riastrad KASSERT(!sdp->swd_encinit);
2072 1.187 riastrad
2073 1.187 riastrad cprng_strong(kern_cprng, key, sizeof key, 0);
2074 1.194 riastrad aes_setenckey256(&sdp->swd_enckey, key);
2075 1.194 riastrad aes_setdeckey256(&sdp->swd_deckey, key);
2076 1.187 riastrad explicit_memset(key, 0, sizeof key);
2077 1.187 riastrad
2078 1.187 riastrad sdp->swd_encinit = true;
2079 1.187 riastrad }
2080 1.187 riastrad
2081 1.187 riastrad /*
2082 1.189 riastrad * uvm_swap_encryptpage(sdp, kva, slot)
2083 1.187 riastrad *
2084 1.187 riastrad * Encrypt one page of data at kva for the specified slot number
2085 1.187 riastrad * in the swap device.
2086 1.187 riastrad */
2087 1.187 riastrad static void
2088 1.189 riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2089 1.187 riastrad {
2090 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2091 1.187 riastrad
2092 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */
2093 1.187 riastrad le32enc(preiv, slot);
2094 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2095 1.187 riastrad
2096 1.187 riastrad /* *kva := AES-CBC_k(iv, *kva) */
2097 1.194 riastrad aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2098 1.194 riastrad AES_256_NROUNDS);
2099 1.187 riastrad
2100 1.187 riastrad explicit_memset(&iv, 0, sizeof iv);
2101 1.187 riastrad }
2102 1.187 riastrad
2103 1.187 riastrad /*
2104 1.189 riastrad * uvm_swap_decryptpage(sdp, kva, slot)
2105 1.187 riastrad *
2106 1.187 riastrad * Decrypt one page of data at kva for the specified slot number
2107 1.187 riastrad * in the swap device.
2108 1.187 riastrad */
2109 1.187 riastrad static void
2110 1.189 riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2111 1.187 riastrad {
2112 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2113 1.187 riastrad
2114 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */
2115 1.187 riastrad le32enc(preiv, slot);
2116 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2117 1.187 riastrad
2118 1.187 riastrad /* *kva := AES-CBC^{-1}_k(iv, *kva) */
2119 1.194 riastrad aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2120 1.194 riastrad AES_256_NROUNDS);
2121 1.187 riastrad
2122 1.187 riastrad explicit_memset(&iv, 0, sizeof iv);
2123 1.187 riastrad }
2124 1.187 riastrad
2125 1.187 riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2126 1.187 riastrad {
2127 1.187 riastrad
2128 1.187 riastrad sysctl_createv(clog, 0, NULL, NULL,
2129 1.187 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2130 1.187 riastrad SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2131 1.189 riastrad NULL, 0, &uvm_swap_encrypt, 0,
2132 1.187 riastrad CTL_VM, CTL_CREATE, CTL_EOL);
2133 1.187 riastrad }
2134