Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.206.4.1
      1  1.206.4.1    martin /*	$NetBSD: uvm_swap.c,v 1.206.4.1 2022/12/21 09:33:17 martin Exp $	*/
      2        1.1       mrg 
      3        1.1       mrg /*
      4      1.144       mrg  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5        1.1       mrg  * All rights reserved.
      6        1.1       mrg  *
      7        1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8        1.1       mrg  * modification, are permitted provided that the following conditions
      9        1.1       mrg  * are met:
     10        1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11        1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12        1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13        1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14        1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15        1.1       mrg  *
     16        1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17        1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18        1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19        1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20        1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21        1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22        1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23        1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24        1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25        1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26        1.1       mrg  * SUCH DAMAGE.
     27        1.3       mrg  *
     28        1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29        1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30        1.1       mrg  */
     31       1.57     lukem 
     32       1.57     lukem #include <sys/cdefs.h>
     33  1.206.4.1    martin __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.206.4.1 2022/12/21 09:33:17 martin Exp $");
     34        1.5       mrg 
     35        1.5       mrg #include "opt_uvmhist.h"
     36       1.16       mrg #include "opt_compat_netbsd.h"
     37       1.41       chs #include "opt_ddb.h"
     38      1.205  riastrad #include "opt_vmswap.h"
     39        1.1       mrg 
     40        1.1       mrg #include <sys/param.h>
     41        1.1       mrg #include <sys/systm.h>
     42      1.183       uwe #include <sys/atomic.h>
     43        1.1       mrg #include <sys/buf.h>
     44       1.89      yamt #include <sys/bufq.h>
     45       1.36       mrg #include <sys/conf.h>
     46      1.187  riastrad #include <sys/cprng.h>
     47        1.1       mrg #include <sys/proc.h>
     48        1.1       mrg #include <sys/namei.h>
     49        1.1       mrg #include <sys/disklabel.h>
     50        1.1       mrg #include <sys/errno.h>
     51        1.1       mrg #include <sys/kernel.h>
     52        1.1       mrg #include <sys/vnode.h>
     53        1.1       mrg #include <sys/file.h>
     54      1.110      yamt #include <sys/vmem.h>
     55       1.90      yamt #include <sys/blist.h>
     56        1.1       mrg #include <sys/mount.h>
     57       1.12        pk #include <sys/pool.h>
     58      1.159      para #include <sys/kmem.h>
     59        1.1       mrg #include <sys/syscallargs.h>
     60       1.17       mrg #include <sys/swap.h>
     61      1.100      elad #include <sys/kauth.h>
     62      1.125        ad #include <sys/sysctl.h>
     63      1.130   hannken #include <sys/workqueue.h>
     64        1.1       mrg 
     65        1.1       mrg #include <uvm/uvm.h>
     66        1.1       mrg 
     67        1.1       mrg #include <miscfs/specfs/specdev.h>
     68        1.1       mrg 
     69      1.194  riastrad #include <crypto/aes/aes.h>
     70      1.198  riastrad #include <crypto/aes/aes_cbc.h>
     71      1.187  riastrad 
     72        1.1       mrg /*
     73        1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     74        1.1       mrg  */
     75        1.1       mrg 
     76        1.1       mrg /*
     77        1.1       mrg  * swap space is managed in the following way:
     78       1.51       chs  *
     79        1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     80        1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     81        1.1       mrg  * information that is passed up to the user (via system calls).
     82        1.1       mrg  *
     83        1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     84      1.199   msaitoh  * swap partition usage.
     85        1.1       mrg  *
     86        1.1       mrg  * the system maintains a global data structure describing all swap
     87        1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     88        1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     89       1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     90      1.164  christos  * TAILQ of "swapdev" structures at that priority.
     91        1.1       mrg  *
     92        1.1       mrg  * locking:
     93      1.127        ad  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     94        1.1       mrg  *    system call and prevents the swap priority list from changing
     95        1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     96      1.127        ad  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     97        1.1       mrg  *    structures including the priority list, the swapdev structures,
     98      1.110      yamt  *    and the swapmap arena.
     99        1.1       mrg  *
    100        1.1       mrg  * each swap device has the following info:
    101        1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
    102        1.1       mrg  *  - swap enabled (allows new allocations on swap)
    103        1.1       mrg  *  - map info in /dev/drum
    104        1.1       mrg  *  - vnode pointer
    105        1.1       mrg  * for swap files only:
    106        1.1       mrg  *  - block size
    107        1.1       mrg  *  - max byte count in buffer
    108        1.1       mrg  *  - buffer
    109        1.1       mrg  *
    110        1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    111        1.1       mrg  * the sys_swapctl performs the following operations:
    112        1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    113       1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    114        1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    115       1.85  junyoung  *	the current swap config into the array. The actual work is done
    116      1.155     rmind  *	in the uvm_swap_stats() function.
    117        1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    118        1.1       mrg  *	priority in "misc", start swapping on it.
    119        1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    120        1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    121        1.1       mrg  *	"misc")
    122        1.1       mrg  */
    123        1.1       mrg 
    124        1.1       mrg /*
    125        1.1       mrg  * swapdev: describes a single swap partition/file
    126        1.1       mrg  *
    127        1.1       mrg  * note the following should be true:
    128        1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    129        1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    130        1.1       mrg  */
    131        1.1       mrg struct swapdev {
    132      1.144       mrg 	dev_t			swd_dev;	/* device id */
    133      1.144       mrg 	int			swd_flags;	/* flags:inuse/enable/fake */
    134      1.144       mrg 	int			swd_priority;	/* our priority */
    135      1.144       mrg 	int			swd_nblks;	/* blocks in this device */
    136       1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    137       1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    138       1.16       mrg 	int			swd_npages;	/* #pages we can use */
    139       1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    140       1.32       chs 	int			swd_npgbad;	/* #pages bad */
    141       1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    142       1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    143       1.90      yamt 	blist_t			swd_blist;	/* blist for this swapdev */
    144       1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    145      1.165  christos 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    146        1.1       mrg 
    147       1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    148       1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    149       1.96      yamt 	struct bufq_state	*swd_tab;	/* buffer list */
    150       1.33   thorpej 	int			swd_active;	/* number of active buffers */
    151      1.187  riastrad 
    152      1.190  riastrad 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
    153      1.194  riastrad 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
    154      1.194  riastrad 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
    155      1.187  riastrad 	bool			swd_encinit;	/* true if keys initialized */
    156        1.1       mrg };
    157        1.1       mrg 
    158        1.1       mrg /*
    159        1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    160        1.1       mrg  */
    161        1.1       mrg struct swappri {
    162        1.1       mrg 	int			spi_priority;     /* priority */
    163      1.164  christos 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    164      1.165  christos 	/* tailq of swapdevs at this priority */
    165        1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    166        1.1       mrg };
    167        1.1       mrg 
    168        1.1       mrg /*
    169        1.1       mrg  * The following two structures are used to keep track of data transfers
    170        1.1       mrg  * on swap devices associated with regular files.
    171        1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    172        1.1       mrg  * structure names here to ease porting..
    173        1.1       mrg  */
    174        1.1       mrg struct vndxfer {
    175        1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    176        1.1       mrg 	struct swapdev	*vx_sdp;
    177        1.1       mrg 	int		vx_error;
    178        1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    179        1.1       mrg 	int		vx_flags;
    180        1.1       mrg #define VX_BUSY		1
    181        1.1       mrg #define VX_DEAD		2
    182        1.1       mrg };
    183        1.1       mrg 
    184        1.1       mrg struct vndbuf {
    185        1.1       mrg 	struct buf	vb_buf;
    186        1.1       mrg 	struct vndxfer	*vb_xfer;
    187        1.1       mrg };
    188        1.1       mrg 
    189      1.144       mrg /*
    190       1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    191        1.1       mrg  */
    192      1.146     pooka static struct pool vndxfer_pool, vndbuf_pool;
    193        1.1       mrg 
    194        1.1       mrg /*
    195        1.1       mrg  * local variables
    196        1.1       mrg  */
    197      1.110      yamt static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    198        1.1       mrg 
    199        1.1       mrg /* list of all active swap devices [by priority] */
    200        1.1       mrg LIST_HEAD(swap_priority, swappri);
    201        1.1       mrg static struct swap_priority swap_priority;
    202        1.1       mrg 
    203        1.1       mrg /* locks */
    204      1.182        ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    205      1.117        ad static krwlock_t swap_syscall_lock;
    206      1.204       mrg bool uvm_swap_init_done = false;
    207        1.1       mrg 
    208      1.130   hannken /* workqueue and use counter for swap to regular files */
    209      1.130   hannken static int sw_reg_count = 0;
    210      1.130   hannken static struct workqueue *sw_reg_workqueue;
    211      1.130   hannken 
    212      1.141        ad /* tuneables */
    213      1.141        ad u_int uvm_swapisfull_factor = 99;
    214      1.205  riastrad #if VMSWAP_DEFAULT_PLAINTEXT
    215      1.189  riastrad bool uvm_swap_encrypt = false;
    216      1.205  riastrad #else
    217      1.205  riastrad bool uvm_swap_encrypt = true;
    218      1.205  riastrad #endif
    219      1.141        ad 
    220        1.1       mrg /*
    221        1.1       mrg  * prototypes
    222        1.1       mrg  */
    223       1.85  junyoung static struct swapdev	*swapdrum_getsdp(int);
    224        1.1       mrg 
    225      1.120      matt static struct swapdev	*swaplist_find(struct vnode *, bool);
    226       1.85  junyoung static void		 swaplist_insert(struct swapdev *,
    227       1.85  junyoung 					 struct swappri *, int);
    228       1.85  junyoung static void		 swaplist_trim(void);
    229        1.1       mrg 
    230       1.97  christos static int swap_on(struct lwp *, struct swapdev *);
    231       1.97  christos static int swap_off(struct lwp *, struct swapdev *);
    232        1.1       mrg 
    233       1.85  junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    234      1.130   hannken static void sw_reg_biodone(struct buf *);
    235      1.130   hannken static void sw_reg_iodone(struct work *wk, void *dummy);
    236       1.85  junyoung static void sw_reg_start(struct swapdev *);
    237        1.1       mrg 
    238       1.85  junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
    239        1.1       mrg 
    240      1.187  riastrad static void uvm_swap_genkey(struct swapdev *);
    241      1.189  riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int);
    242      1.189  riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int);
    243      1.187  riastrad 
    244      1.190  riastrad static size_t
    245      1.190  riastrad encmap_size(size_t npages)
    246      1.190  riastrad {
    247      1.190  riastrad 	struct swapdev *sdp;
    248      1.190  riastrad 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
    249      1.190  riastrad 	const size_t bitsperword = NBBY * bytesperword;
    250      1.190  riastrad 	const size_t nbits = npages; /* one bit for each page */
    251      1.190  riastrad 	const size_t nwords = howmany(nbits, bitsperword);
    252      1.190  riastrad 	const size_t nbytes = nwords * bytesperword;
    253      1.190  riastrad 
    254      1.190  riastrad 	return nbytes;
    255      1.190  riastrad }
    256      1.190  riastrad 
    257        1.1       mrg /*
    258        1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    259        1.1       mrg  *
    260       1.51       chs  * => called at boot time from init_main.c after the filesystems
    261        1.1       mrg  *	are brought up (which happens after uvm_init())
    262        1.1       mrg  */
    263        1.1       mrg void
    264       1.93   thorpej uvm_swap_init(void)
    265        1.1       mrg {
    266      1.197     skrll 	UVMHIST_FUNC(__func__);
    267        1.1       mrg 
    268        1.1       mrg 	UVMHIST_CALLED(pdhist);
    269        1.1       mrg 	/*
    270        1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    271        1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    272        1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    273        1.1       mrg 	 */
    274        1.1       mrg 
    275        1.1       mrg 	LIST_INIT(&swap_priority);
    276        1.1       mrg 	uvmexp.nswapdev = 0;
    277      1.117        ad 	rw_init(&swap_syscall_lock);
    278      1.134        ad 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    279       1.12        pk 
    280        1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    281      1.145       mrg 		panic("%s: can't get vnode for swap device", __func__);
    282      1.136   hannken 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    283      1.145       mrg 		panic("%s: can't lock swap device", __func__);
    284      1.135   hannken 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    285      1.145       mrg 		panic("%s: can't open swap device", __func__);
    286      1.151   hannken 	VOP_UNLOCK(swapdev_vp);
    287        1.1       mrg 
    288        1.1       mrg 	/*
    289        1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    290        1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    291       1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    292        1.1       mrg 	 * failure, or no allocation).
    293        1.1       mrg 	 */
    294      1.110      yamt 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    295      1.126        ad 	    VM_NOSLEEP, IPL_NONE);
    296      1.147     rmind 	if (swapmap == 0) {
    297      1.145       mrg 		panic("%s: vmem_create failed", __func__);
    298      1.147     rmind 	}
    299      1.146     pooka 
    300      1.146     pooka 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    301      1.146     pooka 	    NULL, IPL_BIO);
    302      1.146     pooka 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    303      1.146     pooka 	    NULL, IPL_BIO);
    304      1.147     rmind 
    305      1.204       mrg 	uvm_swap_init_done = true;
    306      1.204       mrg 
    307      1.147     rmind 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    308        1.1       mrg }
    309        1.1       mrg 
    310        1.1       mrg /*
    311        1.1       mrg  * swaplist functions: functions that operate on the list of swap
    312        1.1       mrg  * devices on the system.
    313        1.1       mrg  */
    314        1.1       mrg 
    315        1.1       mrg /*
    316        1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    317        1.1       mrg  *
    318      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    319      1.154     rmind  * => caller must provide a newly allocated swappri structure (we will
    320      1.154     rmind  *	FREE it if we don't need it... this it to prevent allocation
    321      1.154     rmind  *	blocking here while adding swap)
    322        1.1       mrg  */
    323        1.1       mrg static void
    324       1.93   thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    325        1.1       mrg {
    326        1.1       mrg 	struct swappri *spp, *pspp;
    327      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    328        1.1       mrg 
    329      1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    330      1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    331      1.190  riastrad 
    332        1.1       mrg 	/*
    333        1.1       mrg 	 * find entry at or after which to insert the new device.
    334        1.1       mrg 	 */
    335       1.55       chs 	pspp = NULL;
    336       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    337        1.1       mrg 		if (priority <= spp->spi_priority)
    338        1.1       mrg 			break;
    339        1.1       mrg 		pspp = spp;
    340        1.1       mrg 	}
    341        1.1       mrg 
    342        1.1       mrg 	/*
    343        1.1       mrg 	 * new priority?
    344        1.1       mrg 	 */
    345        1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    346        1.1       mrg 		spp = newspp;  /* use newspp! */
    347      1.175  pgoyette 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    348       1.32       chs 			    priority, 0, 0, 0);
    349        1.1       mrg 
    350        1.1       mrg 		spp->spi_priority = priority;
    351      1.164  christos 		TAILQ_INIT(&spp->spi_swapdev);
    352        1.1       mrg 
    353        1.1       mrg 		if (pspp)
    354        1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    355        1.1       mrg 		else
    356        1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    357        1.1       mrg 	} else {
    358        1.1       mrg 	  	/* we don't need a new priority structure, free it */
    359      1.159      para 		kmem_free(newspp, sizeof(*newspp));
    360        1.1       mrg 	}
    361        1.1       mrg 
    362        1.1       mrg 	/*
    363        1.1       mrg 	 * priority found (or created).   now insert on the priority's
    364      1.165  christos 	 * tailq list and bump the total number of swapdevs.
    365        1.1       mrg 	 */
    366        1.1       mrg 	sdp->swd_priority = priority;
    367      1.164  christos 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    368        1.1       mrg 	uvmexp.nswapdev++;
    369        1.1       mrg }
    370        1.1       mrg 
    371        1.1       mrg /*
    372        1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    373        1.1       mrg  *	global list.
    374        1.1       mrg  *
    375      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    376        1.1       mrg  * => we return the swapdev we found (and removed)
    377        1.1       mrg  */
    378        1.1       mrg static struct swapdev *
    379      1.119   thorpej swaplist_find(struct vnode *vp, bool remove)
    380        1.1       mrg {
    381        1.1       mrg 	struct swapdev *sdp;
    382        1.1       mrg 	struct swappri *spp;
    383        1.1       mrg 
    384      1.190  riastrad 	KASSERT(rw_lock_held(&swap_syscall_lock));
    385      1.190  riastrad 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
    386      1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    387      1.190  riastrad 
    388        1.1       mrg 	/*
    389        1.1       mrg 	 * search the lists for the requested vp
    390        1.1       mrg 	 */
    391       1.55       chs 
    392       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    393      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    394        1.1       mrg 			if (sdp->swd_vp == vp) {
    395        1.1       mrg 				if (remove) {
    396      1.164  christos 					TAILQ_REMOVE(&spp->spi_swapdev,
    397        1.1       mrg 					    sdp, swd_next);
    398        1.1       mrg 					uvmexp.nswapdev--;
    399        1.1       mrg 				}
    400        1.1       mrg 				return(sdp);
    401        1.1       mrg 			}
    402       1.55       chs 		}
    403        1.1       mrg 	}
    404        1.1       mrg 	return (NULL);
    405        1.1       mrg }
    406        1.1       mrg 
    407      1.113      elad /*
    408        1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    409        1.1       mrg  *	them.
    410        1.1       mrg  *
    411      1.127        ad  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    412        1.1       mrg  */
    413        1.1       mrg static void
    414       1.93   thorpej swaplist_trim(void)
    415        1.1       mrg {
    416        1.1       mrg 	struct swappri *spp, *nextspp;
    417        1.1       mrg 
    418      1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
    419      1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    420      1.190  riastrad 
    421      1.161     rmind 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    422      1.167   mlelstv 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    423        1.1       mrg 			continue;
    424        1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    425      1.159      para 		kmem_free(spp, sizeof(*spp));
    426        1.1       mrg 	}
    427        1.1       mrg }
    428        1.1       mrg 
    429        1.1       mrg /*
    430        1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    431        1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    432        1.1       mrg  *
    433        1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    434      1.127        ad  * => caller must hold uvm_swap_data_lock
    435        1.1       mrg  */
    436        1.1       mrg static struct swapdev *
    437       1.93   thorpej swapdrum_getsdp(int pgno)
    438        1.1       mrg {
    439        1.1       mrg 	struct swapdev *sdp;
    440        1.1       mrg 	struct swappri *spp;
    441       1.51       chs 
    442      1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    443      1.190  riastrad 
    444       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    445      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    446       1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    447       1.48      fvdl 				continue;
    448        1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    449        1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    450        1.1       mrg 				return sdp;
    451        1.1       mrg 			}
    452       1.48      fvdl 		}
    453       1.55       chs 	}
    454        1.1       mrg 	return NULL;
    455        1.1       mrg }
    456        1.1       mrg 
    457      1.190  riastrad /*
    458      1.190  riastrad  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
    459      1.190  riastrad  *
    460      1.190  riastrad  * => for use in positive assertions only; result is not stable
    461      1.190  riastrad  */
    462      1.190  riastrad static bool __debugused
    463      1.190  riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp)
    464      1.190  riastrad {
    465      1.190  riastrad 	bool result;
    466      1.190  riastrad 
    467      1.190  riastrad 	mutex_enter(&uvm_swap_data_lock);
    468      1.190  riastrad 	result = swapdrum_getsdp(pgno) == sdp;
    469      1.190  riastrad 	mutex_exit(&uvm_swap_data_lock);
    470      1.190  riastrad 
    471      1.190  riastrad 	return result;
    472      1.190  riastrad }
    473      1.190  riastrad 
    474      1.173      maxv void swapsys_lock(krw_t op)
    475      1.173      maxv {
    476      1.173      maxv 	rw_enter(&swap_syscall_lock, op);
    477      1.173      maxv }
    478      1.173      maxv 
    479      1.173      maxv void swapsys_unlock(void)
    480      1.173      maxv {
    481      1.173      maxv 	rw_exit(&swap_syscall_lock);
    482      1.173      maxv }
    483        1.1       mrg 
    484      1.176  christos static void
    485      1.176  christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    486      1.176  christos {
    487      1.176  christos 	se->se_dev = sdp->swd_dev;
    488      1.176  christos 	se->se_flags = sdp->swd_flags;
    489      1.176  christos 	se->se_nblks = sdp->swd_nblks;
    490      1.176  christos 	se->se_inuse = inuse;
    491      1.176  christos 	se->se_priority = sdp->swd_priority;
    492      1.176  christos 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    493      1.176  christos 	strcpy(se->se_path, sdp->swd_path);
    494      1.176  christos }
    495      1.176  christos 
    496      1.180       kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    497      1.177  christos     (void *)enosys;
    498      1.177  christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    499      1.177  christos     (void *)enosys;
    500      1.176  christos 
    501        1.1       mrg /*
    502        1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    503        1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    504        1.1       mrg  */
    505        1.1       mrg int
    506      1.133       dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    507        1.1       mrg {
    508      1.133       dsl 	/* {
    509        1.1       mrg 		syscallarg(int) cmd;
    510        1.1       mrg 		syscallarg(void *) arg;
    511        1.1       mrg 		syscallarg(int) misc;
    512      1.133       dsl 	} */
    513        1.1       mrg 	struct vnode *vp;
    514        1.1       mrg 	struct nameidata nd;
    515        1.1       mrg 	struct swappri *spp;
    516        1.1       mrg 	struct swapdev *sdp;
    517      1.101  christos #define SWAP_PATH_MAX (PATH_MAX + 1)
    518      1.101  christos 	char	*userpath;
    519      1.161     rmind 	size_t	len = 0;
    520      1.176  christos 	int	error;
    521        1.1       mrg 	int	priority;
    522      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    523        1.1       mrg 
    524        1.1       mrg 	/*
    525        1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    526        1.1       mrg 	 *
    527       1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    528        1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    529        1.1       mrg 	 */
    530        1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    531      1.161     rmind 		const int nswapdev = uvmexp.nswapdev;
    532      1.175  pgoyette 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    533      1.175  pgoyette 		    0, 0, 0);
    534      1.161     rmind 		*retval = nswapdev;
    535      1.161     rmind 		return 0;
    536        1.1       mrg 	}
    537        1.1       mrg 
    538      1.161     rmind 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    539      1.161     rmind 
    540      1.161     rmind 	/*
    541      1.161     rmind 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    542      1.161     rmind 	 */
    543      1.161     rmind 	rw_enter(&swap_syscall_lock, RW_WRITER);
    544      1.161     rmind 
    545        1.1       mrg 	/*
    546        1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    547        1.1       mrg 	 *
    548       1.51       chs 	 * note that the swap_priority list can't change as long
    549        1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    550      1.127        ad 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    551        1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    552        1.1       mrg 	 */
    553      1.176  christos 	switch (SCARG(uap, cmd)) {
    554      1.177  christos 	case SWAP_STATS13:
    555      1.177  christos 		error = (*uvm_swap_stats13)(uap, retval);
    556      1.177  christos 		goto out;
    557      1.177  christos 	case SWAP_STATS50:
    558      1.177  christos 		error = (*uvm_swap_stats50)(uap, retval);
    559      1.177  christos 		goto out;
    560      1.176  christos 	case SWAP_STATS:
    561      1.176  christos 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    562      1.177  christos 		    NULL, sizeof(struct swapent), retval);
    563       1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    564       1.16       mrg 		goto out;
    565      1.196     skrll 
    566      1.176  christos 	case SWAP_GETDUMPDEV:
    567      1.176  christos 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    568       1.55       chs 		goto out;
    569      1.176  christos 	default:
    570      1.176  christos 		break;
    571       1.55       chs 	}
    572        1.1       mrg 
    573        1.1       mrg 	/*
    574        1.1       mrg 	 * all other requests require superuser privs.   verify.
    575        1.1       mrg 	 */
    576      1.106      elad 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    577      1.106      elad 	    0, NULL, NULL, NULL)))
    578       1.16       mrg 		goto out;
    579        1.1       mrg 
    580      1.104    martin 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    581      1.104    martin 		/* drop the current dump device */
    582      1.104    martin 		dumpdev = NODEV;
    583      1.138    kardel 		dumpcdev = NODEV;
    584      1.104    martin 		cpu_dumpconf();
    585      1.104    martin 		goto out;
    586      1.104    martin 	}
    587      1.104    martin 
    588        1.1       mrg 	/*
    589        1.1       mrg 	 * at this point we expect a path name in arg.   we will
    590        1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    591        1.1       mrg 	 * the vnode (VOP_LOCK).
    592        1.1       mrg 	 *
    593        1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    594       1.16       mrg 	 * miniroot)
    595        1.1       mrg 	 */
    596        1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    597        1.1       mrg 		vp = rootvp;		/* miniroot */
    598      1.152   hannken 		vref(vp);
    599      1.152   hannken 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    600      1.152   hannken 			vrele(vp);
    601       1.16       mrg 			error = EBUSY;
    602       1.16       mrg 			goto out;
    603        1.1       mrg 		}
    604       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    605      1.101  christos 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    606       1.16       mrg 			panic("swapctl: miniroot copy failed");
    607        1.1       mrg 	} else {
    608      1.153  dholland 		struct pathbuf *pb;
    609       1.16       mrg 
    610      1.153  dholland 		/*
    611      1.153  dholland 		 * This used to allow copying in one extra byte
    612      1.153  dholland 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    613      1.153  dholland 		 * This was completely pointless because if anyone
    614      1.153  dholland 		 * used that extra byte namei would fail with
    615      1.153  dholland 		 * ENAMETOOLONG anyway, so I've removed the excess
    616      1.153  dholland 		 * logic. - dholland 20100215
    617      1.153  dholland 		 */
    618      1.153  dholland 
    619      1.153  dholland 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    620      1.153  dholland 		if (error) {
    621      1.153  dholland 			goto out;
    622      1.153  dholland 		}
    623       1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    624      1.153  dholland 			/* get a copy of the string */
    625      1.153  dholland 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    626      1.153  dholland 			len = strlen(userpath) + 1;
    627      1.153  dholland 		}
    628      1.153  dholland 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    629      1.153  dholland 		if ((error = namei(&nd))) {
    630      1.153  dholland 			pathbuf_destroy(pb);
    631      1.153  dholland 			goto out;
    632        1.1       mrg 		}
    633        1.1       mrg 		vp = nd.ni_vp;
    634      1.153  dholland 		pathbuf_destroy(pb);
    635        1.1       mrg 	}
    636        1.1       mrg 	/* note: "vp" is referenced and locked */
    637        1.1       mrg 
    638        1.1       mrg 	error = 0;		/* assume no error */
    639        1.1       mrg 	switch(SCARG(uap, cmd)) {
    640       1.40       mrg 
    641       1.24       mrg 	case SWAP_DUMPDEV:
    642       1.24       mrg 		if (vp->v_type != VBLK) {
    643       1.24       mrg 			error = ENOTBLK;
    644       1.45        pk 			break;
    645       1.24       mrg 		}
    646      1.138    kardel 		if (bdevsw_lookup(vp->v_rdev)) {
    647      1.109       mrg 			dumpdev = vp->v_rdev;
    648      1.138    kardel 			dumpcdev = devsw_blk2chr(dumpdev);
    649      1.138    kardel 		} else
    650      1.109       mrg 			dumpdev = NODEV;
    651       1.68  drochner 		cpu_dumpconf();
    652       1.24       mrg 		break;
    653       1.24       mrg 
    654        1.1       mrg 	case SWAP_CTL:
    655        1.1       mrg 		/*
    656        1.1       mrg 		 * get new priority, remove old entry (if any) and then
    657        1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    658        1.1       mrg 		 * any empty priority structures.
    659        1.1       mrg 		 */
    660        1.1       mrg 		priority = SCARG(uap, misc);
    661      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    662      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    663      1.120      matt 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    664        1.1       mrg 			error = ENOENT;
    665        1.1       mrg 		} else {
    666        1.1       mrg 			swaplist_insert(sdp, spp, priority);
    667        1.1       mrg 			swaplist_trim();
    668        1.1       mrg 		}
    669      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    670        1.1       mrg 		if (error)
    671      1.159      para 			kmem_free(spp, sizeof(*spp));
    672        1.1       mrg 		break;
    673        1.1       mrg 
    674        1.1       mrg 	case SWAP_ON:
    675       1.32       chs 
    676        1.1       mrg 		/*
    677        1.1       mrg 		 * check for duplicates.   if none found, then insert a
    678        1.1       mrg 		 * dummy entry on the list to prevent someone else from
    679        1.1       mrg 		 * trying to enable this device while we are working on
    680        1.1       mrg 		 * it.
    681        1.1       mrg 		 */
    682       1.32       chs 
    683        1.1       mrg 		priority = SCARG(uap, misc);
    684      1.160     rmind 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    685      1.159      para 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    686       1.67       chs 		sdp->swd_flags = SWF_FAKE;
    687       1.67       chs 		sdp->swd_vp = vp;
    688       1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    689       1.96      yamt 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    690      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    691      1.120      matt 		if (swaplist_find(vp, false) != NULL) {
    692        1.1       mrg 			error = EBUSY;
    693      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    694       1.96      yamt 			bufq_free(sdp->swd_tab);
    695      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    696      1.159      para 			kmem_free(spp, sizeof(*spp));
    697       1.16       mrg 			break;
    698        1.1       mrg 		}
    699        1.1       mrg 		swaplist_insert(sdp, spp, priority);
    700      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
    701        1.1       mrg 
    702      1.161     rmind 		KASSERT(len > 0);
    703       1.16       mrg 		sdp->swd_pathlen = len;
    704      1.161     rmind 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    705      1.161     rmind 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    706       1.19        pk 			panic("swapctl: copystr");
    707       1.32       chs 
    708        1.1       mrg 		/*
    709        1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    710        1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    711        1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    712        1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    713        1.1       mrg 		 */
    714       1.32       chs 
    715       1.97  christos 		if ((error = swap_on(l, sdp)) != 0) {
    716      1.127        ad 			mutex_enter(&uvm_swap_data_lock);
    717      1.120      matt 			(void) swaplist_find(vp, true);  /* kill fake entry */
    718        1.1       mrg 			swaplist_trim();
    719      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    720       1.96      yamt 			bufq_free(sdp->swd_tab);
    721      1.159      para 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    722      1.159      para 			kmem_free(sdp, sizeof(*sdp));
    723        1.1       mrg 			break;
    724        1.1       mrg 		}
    725        1.1       mrg 		break;
    726        1.1       mrg 
    727        1.1       mrg 	case SWAP_OFF:
    728      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
    729      1.120      matt 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    730      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    731        1.1       mrg 			error = ENXIO;
    732        1.1       mrg 			break;
    733        1.1       mrg 		}
    734       1.32       chs 
    735        1.1       mrg 		/*
    736        1.1       mrg 		 * If a device isn't in use or enabled, we
    737        1.1       mrg 		 * can't stop swapping from it (again).
    738        1.1       mrg 		 */
    739        1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    740      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
    741        1.1       mrg 			error = EBUSY;
    742       1.16       mrg 			break;
    743        1.1       mrg 		}
    744        1.1       mrg 
    745        1.1       mrg 		/*
    746       1.32       chs 		 * do the real work.
    747        1.1       mrg 		 */
    748       1.97  christos 		error = swap_off(l, sdp);
    749        1.1       mrg 		break;
    750        1.1       mrg 
    751        1.1       mrg 	default:
    752        1.1       mrg 		error = EINVAL;
    753        1.1       mrg 	}
    754        1.1       mrg 
    755        1.1       mrg 	/*
    756       1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    757        1.1       mrg 	 */
    758        1.1       mrg 	vput(vp);
    759       1.16       mrg out:
    760      1.160     rmind 	rw_exit(&swap_syscall_lock);
    761      1.159      para 	kmem_free(userpath, SWAP_PATH_MAX);
    762        1.1       mrg 
    763      1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    764        1.1       mrg 	return (error);
    765       1.61      manu }
    766       1.61      manu 
    767       1.85  junyoung /*
    768      1.155     rmind  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    769       1.85  junyoung  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    770       1.61      manu  * emulation to use it directly without going through sys_swapctl().
    771       1.61      manu  * The problem with using sys_swapctl() there is that it involves
    772       1.61      manu  * copying the swapent array to the stackgap, and this array's size
    773       1.85  junyoung  * is not known at build time. Hence it would not be possible to
    774       1.61      manu  * ensure it would fit in the stackgap in any case.
    775       1.61      manu  */
    776      1.176  christos int
    777      1.180       kre uvm_swap_stats(char *ptr, int misc,
    778      1.176  christos     void (*f)(void *, const struct swapent *), size_t len,
    779      1.176  christos     register_t *retval)
    780       1.61      manu {
    781       1.61      manu 	struct swappri *spp;
    782       1.61      manu 	struct swapdev *sdp;
    783      1.176  christos 	struct swapent sep;
    784       1.61      manu 	int count = 0;
    785      1.176  christos 	int error;
    786      1.176  christos 
    787      1.176  christos 	KASSERT(len <= sizeof(sep));
    788      1.176  christos 	if (len == 0)
    789      1.176  christos 		return ENOSYS;
    790      1.176  christos 
    791      1.176  christos 	if (misc < 0)
    792      1.176  christos 		return EINVAL;
    793      1.176  christos 
    794      1.176  christos 	if (misc == 0 || uvmexp.nswapdev == 0)
    795      1.176  christos 		return 0;
    796      1.176  christos 
    797      1.176  christos 	/* Make sure userland cannot exhaust kernel memory */
    798      1.176  christos 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    799      1.176  christos 		misc = uvmexp.nswapdev;
    800       1.61      manu 
    801      1.173      maxv 	KASSERT(rw_lock_held(&swap_syscall_lock));
    802      1.173      maxv 
    803       1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    804      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    805      1.144       mrg 			int inuse;
    806      1.144       mrg 
    807      1.176  christos 			if (misc-- <= 0)
    808      1.161     rmind 				break;
    809      1.161     rmind 
    810      1.144       mrg 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    811       1.61      manu 			    PAGE_SHIFT);
    812       1.85  junyoung 
    813      1.178      maxv 			memset(&sep, 0, sizeof(sep));
    814      1.176  christos 			swapent_cvt(&sep, sdp, inuse);
    815      1.176  christos 			if (f)
    816      1.176  christos 				(*f)(&sep, &sep);
    817      1.176  christos 			if ((error = copyout(&sep, ptr, len)) != 0)
    818      1.176  christos 				return error;
    819      1.176  christos 			ptr += len;
    820       1.61      manu 			count++;
    821       1.61      manu 		}
    822       1.61      manu 	}
    823       1.61      manu 	*retval = count;
    824      1.176  christos 	return 0;
    825        1.1       mrg }
    826        1.1       mrg 
    827        1.1       mrg /*
    828        1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    829        1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    830        1.1       mrg  *	SWF_FAKE).
    831        1.1       mrg  *
    832        1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    833        1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    834      1.127        ad  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    835        1.1       mrg  *	if needed.
    836        1.1       mrg  */
    837        1.1       mrg static int
    838       1.97  christos swap_on(struct lwp *l, struct swapdev *sdp)
    839        1.1       mrg {
    840        1.1       mrg 	struct vnode *vp;
    841        1.1       mrg 	int error, npages, nblocks, size;
    842        1.1       mrg 	long addr;
    843      1.157    dyoung 	vmem_addr_t result;
    844        1.1       mrg 	struct vattr va;
    845        1.1       mrg 	dev_t dev;
    846      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    847        1.1       mrg 
    848        1.1       mrg 	/*
    849        1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    850        1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    851        1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    852        1.1       mrg 	 */
    853        1.1       mrg 
    854        1.1       mrg 	vp = sdp->swd_vp;
    855        1.1       mrg 	dev = sdp->swd_dev;
    856        1.1       mrg 
    857        1.1       mrg 	/*
    858        1.1       mrg 	 * open the swap file (mostly useful for block device files to
    859        1.1       mrg 	 * let device driver know what is up).
    860        1.1       mrg 	 *
    861        1.1       mrg 	 * we skip the open/close for root on swap because the root
    862        1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    863        1.1       mrg 	 */
    864        1.1       mrg 	if (vp != rootvp) {
    865      1.131     pooka 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    866        1.1       mrg 			return (error);
    867        1.1       mrg 	}
    868        1.1       mrg 
    869        1.1       mrg 	/* XXX this only works for block devices */
    870      1.175  pgoyette 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    871        1.1       mrg 
    872        1.1       mrg 	/*
    873        1.1       mrg 	 * we now need to determine the size of the swap area.   for
    874        1.1       mrg 	 * block specials we can call the d_psize function.
    875        1.1       mrg 	 * for normal files, we must stat [get attrs].
    876        1.1       mrg 	 *
    877        1.1       mrg 	 * we put the result in nblks.
    878        1.1       mrg 	 * for normal files, we also want the filesystem block size
    879        1.1       mrg 	 * (which we get with statfs).
    880        1.1       mrg 	 */
    881        1.1       mrg 	switch (vp->v_type) {
    882        1.1       mrg 	case VBLK:
    883      1.158       mrg 		if ((nblocks = bdev_size(dev)) == -1) {
    884        1.1       mrg 			error = ENXIO;
    885        1.1       mrg 			goto bad;
    886        1.1       mrg 		}
    887        1.1       mrg 		break;
    888        1.1       mrg 
    889        1.1       mrg 	case VREG:
    890      1.131     pooka 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    891        1.1       mrg 			goto bad;
    892        1.1       mrg 		nblocks = (int)btodb(va.va_size);
    893      1.149   mlelstv 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    894        1.1       mrg 		/*
    895        1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    896        1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    897        1.1       mrg 		 */
    898      1.150     pooka 		if (vp->v_tag == VT_NFS)
    899        1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    900        1.1       mrg 		else
    901        1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    902        1.1       mrg 		break;
    903        1.1       mrg 
    904        1.1       mrg 	default:
    905        1.1       mrg 		error = ENXIO;
    906        1.1       mrg 		goto bad;
    907        1.1       mrg 	}
    908        1.1       mrg 
    909        1.1       mrg 	/*
    910        1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    911        1.1       mrg 	 */
    912        1.1       mrg 
    913      1.144       mrg 	sdp->swd_nblks = nblocks;
    914       1.99      matt 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    915        1.1       mrg 
    916        1.1       mrg 	/*
    917        1.1       mrg 	 * for block special files, we want to make sure that leave
    918        1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    919       1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    920        1.1       mrg 	 * note that because of this the "size" can be less than the
    921        1.1       mrg 	 * actual number of blocks on the device.
    922        1.1       mrg 	 */
    923        1.1       mrg 	if (vp->v_type == VBLK) {
    924        1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    925        1.1       mrg 		size = npages - 1;
    926        1.1       mrg 		addr = 1;
    927        1.1       mrg 	} else {
    928        1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    929        1.1       mrg 		size = npages;
    930        1.1       mrg 		addr = 0;
    931        1.1       mrg 	}
    932        1.1       mrg 
    933        1.1       mrg 	/*
    934        1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    935        1.1       mrg 	 * area.   we want at least one page.
    936        1.1       mrg 	 */
    937        1.1       mrg 
    938        1.1       mrg 	if (size < 1) {
    939        1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    940        1.1       mrg 		error = EINVAL;
    941        1.1       mrg 		goto bad;
    942        1.1       mrg 	}
    943        1.1       mrg 
    944      1.203     skrll 	UVMHIST_LOG(pdhist, "  dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
    945        1.1       mrg 
    946        1.1       mrg 	/*
    947        1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    948        1.1       mrg 	 */
    949        1.1       mrg 
    950       1.90      yamt 	sdp->swd_blist = blist_create(npages);
    951       1.90      yamt 	/* mark all expect the `saved' region free. */
    952       1.90      yamt 	blist_free(sdp->swd_blist, addr, size);
    953        1.1       mrg 
    954        1.1       mrg 	/*
    955      1.187  riastrad 	 * allocate space to for swap encryption state and mark the
    956      1.187  riastrad 	 * keys uninitialized so we generate them lazily
    957      1.187  riastrad 	 */
    958      1.190  riastrad 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
    959      1.187  riastrad 	sdp->swd_encinit = false;
    960      1.187  riastrad 
    961      1.187  riastrad 	/*
    962       1.51       chs 	 * if the vnode we are swapping to is the root vnode
    963        1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    964       1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    965        1.1       mrg 	 * find its size and skip over it.
    966        1.1       mrg 	 */
    967        1.1       mrg 	if (vp == rootvp) {
    968        1.1       mrg 		struct mount *mp;
    969       1.86  christos 		struct statvfs *sp;
    970        1.1       mrg 		int rootblocks, rootpages;
    971        1.1       mrg 
    972        1.1       mrg 		mp = rootvnode->v_mount;
    973        1.1       mrg 		sp = &mp->mnt_stat;
    974       1.86  christos 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    975       1.64  fredette 		/*
    976       1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    977       1.64  fredette 		 * blocks in the filesystem, it's the number of
    978       1.64  fredette 		 * data blocks.  so, our rootblocks almost
    979       1.85  junyoung 		 * definitely underestimates the total size
    980       1.64  fredette 		 * of the filesystem - how badly depends on the
    981       1.85  junyoung 		 * details of the filesystem type.  there isn't
    982       1.64  fredette 		 * an obvious way to deal with this cleanly
    983       1.85  junyoung 		 * and perfectly, so for now we just pad our
    984       1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    985       1.64  fredette 		 */
    986       1.64  fredette 		rootblocks += (rootblocks >> 5) +
    987       1.64  fredette 			(rootblocks >> 6) +
    988       1.64  fredette 			(rootblocks >> 7);
    989       1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    990       1.32       chs 		if (rootpages > size)
    991        1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    992        1.1       mrg 
    993       1.90      yamt 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    994        1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    995       1.90      yamt 		}
    996        1.1       mrg 
    997       1.32       chs 		size -= rootpages;
    998        1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    999       1.32       chs 		printf("leaving %d pages of swap\n", size);
   1000        1.1       mrg 	}
   1001        1.1       mrg 
   1002       1.39       chs 	/*
   1003       1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
   1004       1.39       chs 	 */
   1005       1.39       chs 	vref(vp);
   1006       1.39       chs 
   1007        1.1       mrg 	/*
   1008        1.1       mrg 	 * now add the new swapdev to the drum and enable.
   1009        1.1       mrg 	 */
   1010      1.157    dyoung 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
   1011      1.157    dyoung 	if (error != 0)
   1012       1.48      fvdl 		panic("swapdrum_add");
   1013      1.130   hannken 	/*
   1014      1.130   hannken 	 * If this is the first regular swap create the workqueue.
   1015      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1016      1.130   hannken 	 */
   1017      1.130   hannken 	if (vp->v_type != VBLK) {
   1018      1.130   hannken 		if (sw_reg_count++ == 0) {
   1019      1.130   hannken 			KASSERT(sw_reg_workqueue == NULL);
   1020      1.130   hannken 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1021      1.130   hannken 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1022      1.145       mrg 				panic("%s: workqueue_create failed", __func__);
   1023      1.130   hannken 		}
   1024      1.130   hannken 	}
   1025       1.48      fvdl 
   1026       1.48      fvdl 	sdp->swd_drumoffset = (int)result;
   1027       1.48      fvdl 	sdp->swd_drumsize = npages;
   1028       1.48      fvdl 	sdp->swd_npages = size;
   1029      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1030        1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1031        1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1032       1.32       chs 	uvmexp.swpages += size;
   1033       1.81        pk 	uvmexp.swpgavail += size;
   1034      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1035        1.1       mrg 	return (0);
   1036        1.1       mrg 
   1037        1.1       mrg 	/*
   1038       1.43       chs 	 * failure: clean up and return error.
   1039        1.1       mrg 	 */
   1040       1.43       chs 
   1041       1.43       chs bad:
   1042       1.90      yamt 	if (sdp->swd_blist) {
   1043       1.90      yamt 		blist_destroy(sdp->swd_blist);
   1044       1.43       chs 	}
   1045       1.43       chs 	if (vp != rootvp) {
   1046      1.131     pooka 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1047       1.43       chs 	}
   1048        1.1       mrg 	return (error);
   1049        1.1       mrg }
   1050        1.1       mrg 
   1051        1.1       mrg /*
   1052        1.1       mrg  * swap_off: stop swapping on swapdev
   1053        1.1       mrg  *
   1054       1.32       chs  * => swap data should be locked, we will unlock.
   1055        1.1       mrg  */
   1056        1.1       mrg static int
   1057       1.97  christos swap_off(struct lwp *l, struct swapdev *sdp)
   1058        1.1       mrg {
   1059       1.91      yamt 	int npages = sdp->swd_npages;
   1060       1.91      yamt 	int error = 0;
   1061       1.81        pk 
   1062      1.197     skrll 	UVMHIST_FUNC(__func__);
   1063      1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1064        1.1       mrg 
   1065      1.190  riastrad 	KASSERT(rw_write_held(&swap_syscall_lock));
   1066      1.190  riastrad 	KASSERT(mutex_owned(&uvm_swap_data_lock));
   1067      1.190  riastrad 
   1068       1.32       chs 	/* disable the swap area being removed */
   1069        1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1070       1.81        pk 	uvmexp.swpgavail -= npages;
   1071      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1072       1.32       chs 
   1073       1.32       chs 	/*
   1074       1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1075       1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1076       1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1077       1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1078       1.32       chs 	 */
   1079        1.1       mrg 
   1080       1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1081       1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1082       1.91      yamt 	    amap_swap_off(sdp->swd_drumoffset,
   1083       1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1084       1.91      yamt 		error = ENOMEM;
   1085       1.91      yamt 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1086       1.91      yamt 		error = EBUSY;
   1087       1.91      yamt 	}
   1088       1.51       chs 
   1089       1.91      yamt 	if (error) {
   1090      1.127        ad 		mutex_enter(&uvm_swap_data_lock);
   1091       1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1092       1.81        pk 		uvmexp.swpgavail += npages;
   1093      1.127        ad 		mutex_exit(&uvm_swap_data_lock);
   1094       1.91      yamt 
   1095       1.91      yamt 		return error;
   1096       1.32       chs 	}
   1097        1.1       mrg 
   1098        1.1       mrg 	/*
   1099      1.130   hannken 	 * If this is the last regular swap destroy the workqueue.
   1100      1.130   hannken 	 * => Protected by swap_syscall_lock.
   1101      1.130   hannken 	 */
   1102      1.130   hannken 	if (sdp->swd_vp->v_type != VBLK) {
   1103      1.130   hannken 		KASSERT(sw_reg_count > 0);
   1104      1.130   hannken 		KASSERT(sw_reg_workqueue != NULL);
   1105      1.130   hannken 		if (--sw_reg_count == 0) {
   1106      1.130   hannken 			workqueue_destroy(sw_reg_workqueue);
   1107      1.130   hannken 			sw_reg_workqueue = NULL;
   1108      1.130   hannken 		}
   1109      1.130   hannken 	}
   1110      1.130   hannken 
   1111      1.130   hannken 	/*
   1112       1.58     enami 	 * done with the vnode.
   1113       1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1114       1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1115        1.1       mrg 	 */
   1116       1.39       chs 	vrele(sdp->swd_vp);
   1117       1.32       chs 	if (sdp->swd_vp != rootvp) {
   1118      1.131     pooka 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1119       1.32       chs 	}
   1120       1.32       chs 
   1121      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1122       1.81        pk 	uvmexp.swpages -= npages;
   1123       1.82        pk 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1124        1.1       mrg 
   1125      1.120      matt 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1126      1.145       mrg 		panic("%s: swapdev not in list", __func__);
   1127       1.32       chs 	swaplist_trim();
   1128      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1129        1.1       mrg 
   1130       1.32       chs 	/*
   1131       1.32       chs 	 * free all resources!
   1132       1.32       chs 	 */
   1133      1.110      yamt 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1134       1.90      yamt 	blist_destroy(sdp->swd_blist);
   1135       1.96      yamt 	bufq_free(sdp->swd_tab);
   1136      1.190  riastrad 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
   1137      1.190  riastrad 	    encmap_size(sdp->swd_drumsize));
   1138      1.187  riastrad 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
   1139      1.187  riastrad 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
   1140      1.159      para 	kmem_free(sdp, sizeof(*sdp));
   1141        1.1       mrg 	return (0);
   1142        1.1       mrg }
   1143        1.1       mrg 
   1144      1.164  christos void
   1145      1.164  christos uvm_swap_shutdown(struct lwp *l)
   1146      1.164  christos {
   1147      1.164  christos 	struct swapdev *sdp;
   1148      1.164  christos 	struct swappri *spp;
   1149      1.164  christos 	struct vnode *vp;
   1150      1.164  christos 	int error;
   1151      1.164  christos 
   1152      1.206   hannken 	if (!uvm_swap_init_done || uvmexp.nswapdev == 0)
   1153      1.204       mrg 		return;
   1154      1.182        ad 	printf("turning off swap...");
   1155      1.164  christos 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1156      1.164  christos 	mutex_enter(&uvm_swap_data_lock);
   1157      1.164  christos again:
   1158      1.164  christos 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1159      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1160      1.164  christos 			if (sdp->swd_flags & SWF_FAKE)
   1161      1.164  christos 				continue;
   1162      1.164  christos 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1163      1.164  christos 				continue;
   1164      1.164  christos #ifdef DEBUG
   1165      1.201   hannken 			printf("\nturning off swap on %s...", sdp->swd_path);
   1166      1.164  christos #endif
   1167      1.201   hannken 			/* Have to lock and reference vnode for swap_off(). */
   1168      1.202   hannken 			vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
   1169      1.202   hannken 			vref(vp);
   1170      1.202   hannken 			error = swap_off(l, sdp);
   1171      1.202   hannken 			vput(vp);
   1172      1.202   hannken 			mutex_enter(&uvm_swap_data_lock);
   1173      1.164  christos 			if (error) {
   1174      1.164  christos 				printf("stopping swap on %s failed "
   1175      1.164  christos 				    "with error %d\n", sdp->swd_path, error);
   1176      1.201   hannken 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1177      1.164  christos 				uvmexp.nswapdev--;
   1178      1.164  christos 				swaplist_trim();
   1179      1.164  christos 			}
   1180      1.164  christos 			goto again;
   1181      1.164  christos 		}
   1182      1.164  christos 	printf(" done\n");
   1183      1.164  christos 	mutex_exit(&uvm_swap_data_lock);
   1184      1.164  christos 	rw_exit(&swap_syscall_lock);
   1185      1.164  christos }
   1186      1.164  christos 
   1187      1.164  christos 
   1188        1.1       mrg /*
   1189        1.1       mrg  * /dev/drum interface and i/o functions
   1190        1.1       mrg  */
   1191        1.1       mrg 
   1192        1.1       mrg /*
   1193  1.206.4.1    martin  * swopen: allow the initial open from uvm_swap_init() and reject all others.
   1194  1.206.4.1    martin  */
   1195  1.206.4.1    martin 
   1196  1.206.4.1    martin static int
   1197  1.206.4.1    martin swopen(dev_t dev, int flag, int mode, struct lwp *l)
   1198  1.206.4.1    martin {
   1199  1.206.4.1    martin 	static bool inited = false;
   1200  1.206.4.1    martin 
   1201  1.206.4.1    martin 	if (!inited) {
   1202  1.206.4.1    martin 		inited = true;
   1203  1.206.4.1    martin 		return 0;
   1204  1.206.4.1    martin 	}
   1205  1.206.4.1    martin 	return ENODEV;
   1206  1.206.4.1    martin }
   1207  1.206.4.1    martin 
   1208  1.206.4.1    martin /*
   1209        1.1       mrg  * swstrategy: perform I/O on the drum
   1210        1.1       mrg  *
   1211        1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1212        1.1       mrg  */
   1213       1.94   thorpej static void
   1214       1.93   thorpej swstrategy(struct buf *bp)
   1215        1.1       mrg {
   1216        1.1       mrg 	struct swapdev *sdp;
   1217        1.1       mrg 	struct vnode *vp;
   1218      1.134        ad 	int pageno, bn;
   1219      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1220        1.1       mrg 
   1221        1.1       mrg 	/*
   1222        1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1223        1.1       mrg 	 * be yanked out from under us because we are holding resources
   1224        1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1225        1.1       mrg 	 */
   1226       1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1227      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1228        1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1229      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1230        1.1       mrg 	if (sdp == NULL) {
   1231        1.1       mrg 		bp->b_error = EINVAL;
   1232      1.163  riastrad 		bp->b_resid = bp->b_bcount;
   1233        1.1       mrg 		biodone(bp);
   1234        1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1235        1.1       mrg 		return;
   1236        1.1       mrg 	}
   1237        1.1       mrg 
   1238        1.1       mrg 	/*
   1239        1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1240        1.1       mrg 	 */
   1241        1.1       mrg 
   1242       1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1243       1.99      matt 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1244        1.1       mrg 
   1245      1.203     skrll 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
   1246      1.175  pgoyette 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1247        1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1248        1.1       mrg 
   1249        1.1       mrg 	/*
   1250        1.1       mrg 	 * for block devices we finish up here.
   1251       1.32       chs 	 * for regular files we have to do more work which we delegate
   1252        1.1       mrg 	 * to sw_reg_strategy().
   1253        1.1       mrg 	 */
   1254        1.1       mrg 
   1255      1.134        ad 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1256      1.134        ad 	switch (vp->v_type) {
   1257        1.1       mrg 	default:
   1258      1.145       mrg 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1259       1.32       chs 
   1260        1.1       mrg 	case VBLK:
   1261        1.1       mrg 
   1262        1.1       mrg 		/*
   1263        1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1264        1.1       mrg 		 * on the swapdev (sdp).
   1265        1.1       mrg 		 */
   1266        1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1267        1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1268        1.1       mrg 
   1269        1.1       mrg 		/*
   1270        1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1271        1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1272        1.1       mrg 		 */
   1273        1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1274      1.134        ad 			mutex_enter(bp->b_objlock);
   1275        1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1276      1.134        ad 			mutex_exit(bp->b_objlock);
   1277      1.156     rmind 			mutex_enter(vp->v_interlock);
   1278      1.134        ad 			vp->v_numoutput++;	/* put it on swapdev */
   1279      1.156     rmind 			mutex_exit(vp->v_interlock);
   1280        1.1       mrg 		}
   1281        1.1       mrg 
   1282       1.41       chs 		/*
   1283        1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1284        1.1       mrg 		 */
   1285        1.1       mrg 		bp->b_vp = vp;
   1286      1.156     rmind 		bp->b_objlock = vp->v_interlock;
   1287       1.84   hannken 		VOP_STRATEGY(vp, bp);
   1288        1.1       mrg 		return;
   1289       1.32       chs 
   1290        1.1       mrg 	case VREG:
   1291        1.1       mrg 		/*
   1292       1.32       chs 		 * delegate to sw_reg_strategy function.
   1293        1.1       mrg 		 */
   1294        1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1295        1.1       mrg 		return;
   1296        1.1       mrg 	}
   1297        1.1       mrg 	/* NOTREACHED */
   1298        1.1       mrg }
   1299        1.1       mrg 
   1300        1.1       mrg /*
   1301       1.94   thorpej  * swread: the read function for the drum (just a call to physio)
   1302       1.94   thorpej  */
   1303       1.94   thorpej /*ARGSUSED*/
   1304       1.94   thorpej static int
   1305      1.112      yamt swread(dev_t dev, struct uio *uio, int ioflag)
   1306       1.94   thorpej {
   1307      1.197     skrll 	UVMHIST_FUNC(__func__);
   1308      1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1309       1.94   thorpej 
   1310       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1311       1.94   thorpej }
   1312       1.94   thorpej 
   1313       1.94   thorpej /*
   1314       1.94   thorpej  * swwrite: the write function for the drum (just a call to physio)
   1315       1.94   thorpej  */
   1316       1.94   thorpej /*ARGSUSED*/
   1317       1.94   thorpej static int
   1318      1.112      yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
   1319       1.94   thorpej {
   1320      1.197     skrll 	UVMHIST_FUNC(__func__);
   1321      1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1322       1.94   thorpej 
   1323       1.94   thorpej 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1324       1.94   thorpej }
   1325       1.94   thorpej 
   1326       1.94   thorpej const struct bdevsw swap_bdevsw = {
   1327  1.206.4.1    martin 	.d_open = swopen,
   1328  1.206.4.1    martin 	.d_close = noclose,
   1329      1.168  dholland 	.d_strategy = swstrategy,
   1330      1.168  dholland 	.d_ioctl = noioctl,
   1331      1.168  dholland 	.d_dump = nodump,
   1332      1.168  dholland 	.d_psize = nosize,
   1333      1.171  dholland 	.d_discard = nodiscard,
   1334      1.168  dholland 	.d_flag = D_OTHER
   1335       1.94   thorpej };
   1336       1.94   thorpej 
   1337       1.94   thorpej const struct cdevsw swap_cdevsw = {
   1338      1.168  dholland 	.d_open = nullopen,
   1339      1.168  dholland 	.d_close = nullclose,
   1340      1.168  dholland 	.d_read = swread,
   1341      1.168  dholland 	.d_write = swwrite,
   1342      1.168  dholland 	.d_ioctl = noioctl,
   1343      1.168  dholland 	.d_stop = nostop,
   1344      1.168  dholland 	.d_tty = notty,
   1345      1.168  dholland 	.d_poll = nopoll,
   1346      1.168  dholland 	.d_mmap = nommap,
   1347      1.168  dholland 	.d_kqfilter = nokqfilter,
   1348      1.172  dholland 	.d_discard = nodiscard,
   1349      1.168  dholland 	.d_flag = D_OTHER,
   1350       1.94   thorpej };
   1351       1.94   thorpej 
   1352       1.94   thorpej /*
   1353        1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1354        1.1       mrg  */
   1355        1.1       mrg static void
   1356       1.93   thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1357        1.1       mrg {
   1358        1.1       mrg 	struct vnode	*vp;
   1359        1.1       mrg 	struct vndxfer	*vnx;
   1360       1.44     enami 	daddr_t		nbn;
   1361      1.122  christos 	char 		*addr;
   1362       1.44     enami 	off_t		byteoff;
   1363        1.9       mrg 	int		s, off, nra, error, sz, resid;
   1364      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1365        1.1       mrg 
   1366        1.1       mrg 	/*
   1367        1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1368        1.1       mrg 	 * our buffer.
   1369        1.1       mrg 	 */
   1370      1.134        ad 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1371        1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1372        1.1       mrg 	vnx->vx_error = 0;
   1373        1.1       mrg 	vnx->vx_pending = 0;
   1374        1.1       mrg 	vnx->vx_bp = bp;
   1375        1.1       mrg 	vnx->vx_sdp = sdp;
   1376        1.1       mrg 
   1377        1.1       mrg 	/*
   1378        1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1379        1.1       mrg 	 * our buffer.
   1380        1.1       mrg 	 */
   1381        1.1       mrg 	error = 0;
   1382      1.185   msaitoh 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1383        1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1384       1.99      matt 	byteoff = dbtob((uint64_t)bn);
   1385        1.1       mrg 
   1386        1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1387        1.1       mrg 		struct vndbuf	*nbp;
   1388        1.1       mrg 
   1389        1.1       mrg 		/*
   1390        1.1       mrg 		 * translate byteoffset into block number.  return values:
   1391        1.1       mrg 		 *   vp = vnode of underlying device
   1392        1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1393        1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1394        1.1       mrg 		 *	block)
   1395        1.1       mrg 		 */
   1396        1.1       mrg 		nra = 0;
   1397        1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1398        1.1       mrg 				 	&vp, &nbn, &nra);
   1399        1.1       mrg 
   1400       1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1401       1.51       chs 			/*
   1402       1.23      marc 			 * this used to just set error, but that doesn't
   1403       1.23      marc 			 * do the right thing.  Instead, it causes random
   1404       1.23      marc 			 * memory errors.  The panic() should remain until
   1405       1.23      marc 			 * this condition doesn't destabilize the system.
   1406       1.23      marc 			 */
   1407       1.23      marc #if 1
   1408      1.145       mrg 			panic("%s: swap to sparse file", __func__);
   1409       1.23      marc #else
   1410        1.1       mrg 			error = EIO;	/* failure */
   1411       1.23      marc #endif
   1412       1.23      marc 		}
   1413        1.1       mrg 
   1414        1.1       mrg 		/*
   1415        1.1       mrg 		 * punt if there was an error or a hole in the file.
   1416        1.1       mrg 		 * we must wait for any i/o ops we have already started
   1417        1.1       mrg 		 * to finish before returning.
   1418        1.1       mrg 		 *
   1419        1.1       mrg 		 * XXX we could deal with holes here but it would be
   1420        1.1       mrg 		 * a hassle (in the write case).
   1421        1.1       mrg 		 */
   1422        1.1       mrg 		if (error) {
   1423        1.1       mrg 			s = splbio();
   1424        1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1425        1.1       mrg 			goto out;
   1426        1.1       mrg 		}
   1427        1.1       mrg 
   1428        1.1       mrg 		/*
   1429        1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1430        1.1       mrg 		 */
   1431       1.41       chs 		off = byteoff % sdp->swd_bsize;
   1432       1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1433       1.41       chs 		if (sz > resid)
   1434        1.1       mrg 			sz = resid;
   1435        1.1       mrg 
   1436       1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1437      1.203     skrll 		    "vp %#jx/%#jx offset %#jx/%#jx",
   1438      1.175  pgoyette 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1439        1.1       mrg 
   1440        1.1       mrg 		/*
   1441        1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1442        1.1       mrg 		 * at the front of the nbp structure so that you can
   1443        1.1       mrg 		 * cast pointers between the two structure easily.
   1444        1.1       mrg 		 */
   1445      1.134        ad 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1446      1.134        ad 		buf_init(&nbp->vb_buf);
   1447      1.134        ad 		nbp->vb_buf.b_flags    = bp->b_flags;
   1448      1.134        ad 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1449      1.134        ad 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1450        1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1451       1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1452        1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1453        1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1454       1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1455        1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1456       1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1457      1.130   hannken 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1458       1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1459      1.156     rmind 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1460       1.53       chs 		if (vp->v_type == VBLK) {
   1461       1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1462       1.53       chs 		}
   1463        1.1       mrg 
   1464        1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1465        1.1       mrg 
   1466        1.1       mrg 		/*
   1467        1.1       mrg 		 * Just sort by block number
   1468        1.1       mrg 		 */
   1469        1.1       mrg 		s = splbio();
   1470        1.1       mrg 		if (vnx->vx_error != 0) {
   1471      1.134        ad 			buf_destroy(&nbp->vb_buf);
   1472      1.134        ad 			pool_put(&vndbuf_pool, nbp);
   1473        1.1       mrg 			goto out;
   1474        1.1       mrg 		}
   1475        1.1       mrg 		vnx->vx_pending++;
   1476        1.1       mrg 
   1477        1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1478      1.134        ad 		/* XXXAD locking */
   1479      1.143      yamt 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1480        1.1       mrg 		sw_reg_start(sdp);
   1481        1.1       mrg 		splx(s);
   1482        1.1       mrg 
   1483        1.1       mrg 		/*
   1484        1.1       mrg 		 * advance to the next I/O
   1485        1.1       mrg 		 */
   1486        1.9       mrg 		byteoff += sz;
   1487        1.1       mrg 		addr += sz;
   1488        1.1       mrg 	}
   1489        1.1       mrg 
   1490        1.1       mrg 	s = splbio();
   1491        1.1       mrg 
   1492        1.1       mrg out: /* Arrive here at splbio */
   1493        1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1494        1.1       mrg 	if (vnx->vx_pending == 0) {
   1495      1.134        ad 		error = vnx->vx_error;
   1496      1.134        ad 		pool_put(&vndxfer_pool, vnx);
   1497      1.134        ad 		bp->b_error = error;
   1498        1.1       mrg 		biodone(bp);
   1499        1.1       mrg 	}
   1500        1.1       mrg 	splx(s);
   1501        1.1       mrg }
   1502        1.1       mrg 
   1503        1.1       mrg /*
   1504        1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1505        1.1       mrg  *
   1506       1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1507        1.1       mrg  */
   1508        1.1       mrg static void
   1509       1.93   thorpej sw_reg_start(struct swapdev *sdp)
   1510        1.1       mrg {
   1511        1.1       mrg 	struct buf	*bp;
   1512      1.134        ad 	struct vnode	*vp;
   1513      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1514        1.1       mrg 
   1515        1.8       mrg 	/* recursion control */
   1516        1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1517        1.1       mrg 		return;
   1518        1.1       mrg 
   1519        1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1520        1.1       mrg 
   1521       1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1522      1.143      yamt 		bp = bufq_get(sdp->swd_tab);
   1523        1.1       mrg 		if (bp == NULL)
   1524        1.1       mrg 			break;
   1525       1.33   thorpej 		sdp->swd_active++;
   1526        1.1       mrg 
   1527        1.1       mrg 		UVMHIST_LOG(pdhist,
   1528      1.203     skrll 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %#jx",
   1529      1.175  pgoyette 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1530      1.175  pgoyette 		    bp->b_bcount);
   1531      1.134        ad 		vp = bp->b_vp;
   1532      1.156     rmind 		KASSERT(bp->b_objlock == vp->v_interlock);
   1533      1.134        ad 		if ((bp->b_flags & B_READ) == 0) {
   1534      1.156     rmind 			mutex_enter(vp->v_interlock);
   1535      1.134        ad 			vp->v_numoutput++;
   1536      1.156     rmind 			mutex_exit(vp->v_interlock);
   1537      1.134        ad 		}
   1538      1.134        ad 		VOP_STRATEGY(vp, bp);
   1539        1.1       mrg 	}
   1540        1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1541        1.1       mrg }
   1542        1.1       mrg 
   1543        1.1       mrg /*
   1544      1.130   hannken  * sw_reg_biodone: one of our i/o's has completed
   1545      1.130   hannken  */
   1546      1.130   hannken static void
   1547      1.130   hannken sw_reg_biodone(struct buf *bp)
   1548      1.130   hannken {
   1549      1.130   hannken 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1550      1.130   hannken }
   1551      1.130   hannken 
   1552      1.130   hannken /*
   1553        1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1554        1.1       mrg  *
   1555        1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1556        1.1       mrg  */
   1557        1.1       mrg static void
   1558      1.130   hannken sw_reg_iodone(struct work *wk, void *dummy)
   1559        1.1       mrg {
   1560      1.130   hannken 	struct vndbuf *vbp = (void *)wk;
   1561        1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1562        1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1563        1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1564       1.72       chs 	int s, resid, error;
   1565      1.130   hannken 	KASSERT(&vbp->vb_buf.b_work == wk);
   1566      1.197     skrll 	UVMHIST_FUNC(__func__);
   1567      1.203     skrll 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
   1568      1.175  pgoyette 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1569      1.175  pgoyette 	    (uintptr_t)vbp->vb_buf.b_data);
   1570      1.203     skrll 	UVMHIST_LOG(pdhist, "  cnt=%#jx resid=%#jx",
   1571        1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1572        1.1       mrg 
   1573        1.1       mrg 	/*
   1574        1.1       mrg 	 * protect vbp at splbio and update.
   1575        1.1       mrg 	 */
   1576        1.1       mrg 
   1577        1.1       mrg 	s = splbio();
   1578        1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1579        1.1       mrg 	pbp->b_resid -= resid;
   1580        1.1       mrg 	vnx->vx_pending--;
   1581        1.1       mrg 
   1582      1.129        ad 	if (vbp->vb_buf.b_error != 0) {
   1583        1.1       mrg 		/* pass error upward */
   1584      1.134        ad 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1585      1.175  pgoyette 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1586       1.72       chs 		vnx->vx_error = error;
   1587       1.35       chs 	}
   1588       1.35       chs 
   1589       1.35       chs 	/*
   1590        1.1       mrg 	 * kill vbp structure
   1591        1.1       mrg 	 */
   1592      1.134        ad 	buf_destroy(&vbp->vb_buf);
   1593      1.134        ad 	pool_put(&vndbuf_pool, vbp);
   1594        1.1       mrg 
   1595        1.1       mrg 	/*
   1596        1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1597        1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1598        1.1       mrg 	 */
   1599        1.1       mrg 	if (vnx->vx_error != 0) {
   1600        1.1       mrg 		/* pass error upward */
   1601      1.134        ad 		error = vnx->vx_error;
   1602        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1603      1.134        ad 			pbp->b_error = error;
   1604        1.1       mrg 			biodone(pbp);
   1605      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1606        1.1       mrg 		}
   1607       1.11        pk 	} else if (pbp->b_resid == 0) {
   1608       1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1609        1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1610      1.175  pgoyette 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1611      1.175  pgoyette 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1612        1.1       mrg 			biodone(pbp);
   1613      1.134        ad 			pool_put(&vndxfer_pool, vnx);
   1614        1.1       mrg 		}
   1615        1.1       mrg 	}
   1616        1.1       mrg 
   1617        1.1       mrg 	/*
   1618        1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1619        1.1       mrg 	 */
   1620       1.33   thorpej 	sdp->swd_active--;
   1621        1.1       mrg 	sw_reg_start(sdp);
   1622        1.1       mrg 	splx(s);
   1623        1.1       mrg }
   1624        1.1       mrg 
   1625        1.1       mrg 
   1626        1.1       mrg /*
   1627        1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1628        1.1       mrg  *
   1629        1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1630        1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1631        1.1       mrg  * => space can be freed with uvm_swap_free
   1632        1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1633      1.127        ad  * => we lock uvm_swap_data_lock
   1634        1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1635        1.1       mrg  */
   1636        1.1       mrg int
   1637      1.119   thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1638        1.1       mrg {
   1639        1.1       mrg 	struct swapdev *sdp;
   1640        1.1       mrg 	struct swappri *spp;
   1641      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1642        1.1       mrg 
   1643        1.1       mrg 	/*
   1644        1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1645        1.1       mrg 	 */
   1646        1.1       mrg 	if (uvmexp.nswapdev < 1)
   1647        1.1       mrg 		return 0;
   1648       1.51       chs 
   1649        1.1       mrg 	/*
   1650      1.162  jakllsch 	 * XXXJAK: BEGIN HACK
   1651      1.162  jakllsch 	 *
   1652      1.162  jakllsch 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1653      1.162  jakllsch 	 * too many slots.
   1654      1.162  jakllsch 	 */
   1655      1.162  jakllsch 	if (*nslots > BLIST_MAX_ALLOC) {
   1656      1.162  jakllsch 		if (__predict_false(lessok == false))
   1657      1.162  jakllsch 			return 0;
   1658      1.162  jakllsch 		*nslots = BLIST_MAX_ALLOC;
   1659      1.162  jakllsch 	}
   1660      1.162  jakllsch 	/* XXXJAK: END HACK */
   1661      1.162  jakllsch 
   1662      1.162  jakllsch 	/*
   1663        1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1664        1.1       mrg 	 */
   1665      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1666        1.1       mrg 
   1667        1.1       mrg ReTry:	/* XXXMRG */
   1668       1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1669      1.164  christos 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1670       1.90      yamt 			uint64_t result;
   1671       1.90      yamt 
   1672        1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1673        1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1674        1.1       mrg 				continue;
   1675        1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1676        1.1       mrg 				continue;
   1677       1.90      yamt 			result = blist_alloc(sdp->swd_blist, *nslots);
   1678       1.90      yamt 			if (result == BLIST_NONE) {
   1679        1.1       mrg 				continue;
   1680        1.1       mrg 			}
   1681       1.90      yamt 			KASSERT(result < sdp->swd_drumsize);
   1682        1.1       mrg 
   1683        1.1       mrg 			/*
   1684      1.165  christos 			 * successful allocation!  now rotate the tailq.
   1685        1.1       mrg 			 */
   1686      1.164  christos 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1687      1.164  christos 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1688        1.1       mrg 			sdp->swd_npginuse += *nslots;
   1689        1.1       mrg 			uvmexp.swpginuse += *nslots;
   1690      1.127        ad 			mutex_exit(&uvm_swap_data_lock);
   1691        1.1       mrg 			/* done!  return drum slot number */
   1692        1.1       mrg 			UVMHIST_LOG(pdhist,
   1693      1.175  pgoyette 			    "success!  returning %jd slots starting at %jd",
   1694        1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1695       1.55       chs 			return (result + sdp->swd_drumoffset);
   1696        1.1       mrg 		}
   1697        1.1       mrg 	}
   1698        1.1       mrg 
   1699        1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1700        1.1       mrg 	if (*nslots > 1 && lessok) {
   1701        1.1       mrg 		*nslots = 1;
   1702       1.90      yamt 		/* XXXMRG: ugh!  blist should support this for us */
   1703       1.90      yamt 		goto ReTry;
   1704        1.1       mrg 	}
   1705        1.1       mrg 	/* XXXMRG: END HACK */
   1706        1.1       mrg 
   1707      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1708       1.55       chs 	return 0;
   1709        1.1       mrg }
   1710        1.1       mrg 
   1711      1.141        ad /*
   1712      1.141        ad  * uvm_swapisfull: return true if most of available swap is allocated
   1713      1.141        ad  * and in use.  we don't count some small portion as it may be inaccessible
   1714      1.141        ad  * to us at any given moment, for example if there is lock contention or if
   1715      1.141        ad  * pages are busy.
   1716      1.141        ad  */
   1717      1.119   thorpej bool
   1718       1.81        pk uvm_swapisfull(void)
   1719       1.81        pk {
   1720      1.141        ad 	int swpgonly;
   1721      1.119   thorpej 	bool rv;
   1722       1.81        pk 
   1723      1.200       chs 	if (uvmexp.swpages == 0) {
   1724      1.200       chs 		return true;
   1725      1.200       chs 	}
   1726      1.200       chs 
   1727      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1728       1.81        pk 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1729      1.141        ad 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1730      1.141        ad 	    uvm_swapisfull_factor);
   1731      1.141        ad 	rv = (swpgonly >= uvmexp.swpgavail);
   1732      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1733       1.81        pk 
   1734       1.81        pk 	return (rv);
   1735       1.81        pk }
   1736       1.81        pk 
   1737        1.1       mrg /*
   1738       1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1739       1.32       chs  *
   1740      1.127        ad  * => we lock uvm_swap_data_lock
   1741       1.32       chs  */
   1742       1.32       chs void
   1743       1.93   thorpej uvm_swap_markbad(int startslot, int nslots)
   1744       1.32       chs {
   1745       1.32       chs 	struct swapdev *sdp;
   1746      1.197     skrll 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1747       1.32       chs 
   1748      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1749       1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1750       1.82        pk 	KASSERT(sdp != NULL);
   1751       1.32       chs 
   1752       1.32       chs 	/*
   1753       1.32       chs 	 * we just keep track of how many pages have been marked bad
   1754       1.32       chs 	 * in this device, to make everything add up in swap_off().
   1755       1.32       chs 	 * we assume here that the range of slots will all be within
   1756       1.32       chs 	 * one swap device.
   1757       1.32       chs 	 */
   1758       1.41       chs 
   1759       1.82        pk 	KASSERT(uvmexp.swpgonly >= nslots);
   1760      1.182        ad 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1761       1.32       chs 	sdp->swd_npgbad += nslots;
   1762      1.175  pgoyette 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1763      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1764       1.32       chs }
   1765       1.32       chs 
   1766       1.32       chs /*
   1767        1.1       mrg  * uvm_swap_free: free swap slots
   1768        1.1       mrg  *
   1769        1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1770      1.127        ad  * => we lock uvm_swap_data_lock
   1771        1.1       mrg  */
   1772        1.1       mrg void
   1773       1.93   thorpej uvm_swap_free(int startslot, int nslots)
   1774        1.1       mrg {
   1775        1.1       mrg 	struct swapdev *sdp;
   1776      1.197     skrll 	UVMHIST_FUNC(__func__);
   1777      1.197     skrll 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
   1778        1.1       mrg 	    startslot, 0, 0);
   1779       1.32       chs 
   1780       1.32       chs 	/*
   1781       1.32       chs 	 * ignore attempts to free the "bad" slot.
   1782       1.32       chs 	 */
   1783       1.46       chs 
   1784       1.32       chs 	if (startslot == SWSLOT_BAD) {
   1785       1.32       chs 		return;
   1786       1.32       chs 	}
   1787       1.32       chs 
   1788        1.1       mrg 	/*
   1789       1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1790       1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1791        1.1       mrg 	 * lookup and access the extent.
   1792        1.1       mrg 	 */
   1793       1.46       chs 
   1794      1.127        ad 	mutex_enter(&uvm_swap_data_lock);
   1795        1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1796       1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1797       1.46       chs 	KASSERT(sdp != NULL);
   1798       1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1799       1.90      yamt 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1800        1.1       mrg 	sdp->swd_npginuse -= nslots;
   1801        1.1       mrg 	uvmexp.swpginuse -= nslots;
   1802      1.127        ad 	mutex_exit(&uvm_swap_data_lock);
   1803        1.1       mrg }
   1804        1.1       mrg 
   1805        1.1       mrg /*
   1806        1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1807        1.1       mrg  *
   1808        1.1       mrg  * => can be sync or async
   1809        1.1       mrg  */
   1810       1.54       chs 
   1811        1.1       mrg int
   1812       1.93   thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1813        1.1       mrg {
   1814       1.56       chs 	int error;
   1815        1.1       mrg 
   1816       1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1817        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1818       1.56       chs 	return error;
   1819        1.1       mrg }
   1820        1.1       mrg 
   1821        1.1       mrg /*
   1822        1.1       mrg  * uvm_swap_get: get a single page from swap
   1823        1.1       mrg  *
   1824        1.1       mrg  * => usually a sync op (from fault)
   1825        1.1       mrg  */
   1826       1.54       chs 
   1827        1.1       mrg int
   1828       1.93   thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1829        1.1       mrg {
   1830       1.56       chs 	int error;
   1831        1.1       mrg 
   1832      1.184        ad 	atomic_inc_uint(&uvmexp.nswget);
   1833       1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1834       1.32       chs 	if (swslot == SWSLOT_BAD) {
   1835       1.47       chs 		return EIO;
   1836       1.32       chs 	}
   1837       1.81        pk 
   1838       1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1839        1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1840       1.56       chs 	if (error == 0) {
   1841       1.47       chs 
   1842       1.26       chs 		/*
   1843       1.54       chs 		 * this page is no longer only in swap.
   1844       1.26       chs 		 */
   1845       1.47       chs 
   1846       1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1847      1.182        ad 		atomic_dec_uint(&uvmexp.swpgonly);
   1848       1.26       chs 	}
   1849       1.56       chs 	return error;
   1850        1.1       mrg }
   1851        1.1       mrg 
   1852        1.1       mrg /*
   1853        1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1854        1.1       mrg  */
   1855        1.1       mrg 
   1856        1.1       mrg static int
   1857       1.93   thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1858        1.1       mrg {
   1859        1.1       mrg 	daddr_t startblk;
   1860        1.1       mrg 	struct	buf *bp;
   1861       1.15       eeh 	vaddr_t kva;
   1862      1.134        ad 	int	error, mapinflags;
   1863      1.187  riastrad 	bool write, async, swap_encrypt;
   1864      1.197     skrll 	UVMHIST_FUNC(__func__);
   1865      1.203     skrll 	UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
   1866        1.1       mrg 	    startslot, npages, flags, 0);
   1867       1.32       chs 
   1868       1.41       chs 	write = (flags & B_READ) == 0;
   1869       1.41       chs 	async = (flags & B_ASYNC) != 0;
   1870      1.189  riastrad 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
   1871       1.41       chs 
   1872        1.1       mrg 	/*
   1873      1.137      yamt 	 * allocate a buf for the i/o.
   1874      1.137      yamt 	 */
   1875      1.137      yamt 
   1876      1.137      yamt 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1877      1.137      yamt 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1878      1.137      yamt 	if (bp == NULL) {
   1879      1.137      yamt 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1880      1.137      yamt 		return ENOMEM;
   1881      1.137      yamt 	}
   1882      1.137      yamt 
   1883      1.137      yamt 	/*
   1884        1.1       mrg 	 * convert starting drum slot to block number
   1885        1.1       mrg 	 */
   1886       1.54       chs 
   1887       1.99      matt 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1888        1.1       mrg 
   1889        1.1       mrg 	/*
   1890       1.54       chs 	 * first, map the pages into the kernel.
   1891       1.41       chs 	 */
   1892       1.41       chs 
   1893       1.54       chs 	mapinflags = !write ?
   1894       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1895       1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1896      1.187  riastrad 	if (write && swap_encrypt)	/* need to encrypt in-place */
   1897      1.187  riastrad 		mapinflags |= UVMPAGER_MAPIN_READ;
   1898       1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1899        1.1       mrg 
   1900       1.51       chs 	/*
   1901      1.187  riastrad 	 * encrypt writes in place if requested
   1902      1.187  riastrad 	 */
   1903      1.187  riastrad 
   1904      1.187  riastrad 	if (write) do {
   1905      1.187  riastrad 		struct swapdev *sdp;
   1906      1.187  riastrad 		int i;
   1907      1.187  riastrad 
   1908      1.187  riastrad 		/*
   1909      1.187  riastrad 		 * Get the swapdev so we can discriminate on the
   1910      1.187  riastrad 		 * encryption state.  There may or may not be an
   1911      1.187  riastrad 		 * encryption key generated; we may or may not be asked
   1912      1.187  riastrad 		 * to encrypt swap.
   1913      1.187  riastrad 		 *
   1914      1.187  riastrad 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
   1915      1.187  riastrad 		 *
   1916      1.187  riastrad 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
   1917      1.187  riastrad 		 *    and mark the slots encrypted.
   1918      1.187  riastrad 		 *
   1919      1.187  riastrad 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
   1920      1.187  riastrad 		 *    marked encrypted from a past life.  Mark them not
   1921      1.187  riastrad 		 *    encrypted.
   1922      1.187  riastrad 		 *
   1923      1.187  riastrad 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
   1924      1.187  riastrad 		 *    encrypted.
   1925      1.187  riastrad 		 */
   1926      1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   1927      1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   1928      1.187  riastrad 		if (!sdp->swd_encinit) {
   1929      1.190  riastrad 			if (!swap_encrypt) {
   1930      1.190  riastrad 				mutex_exit(&uvm_swap_data_lock);
   1931      1.187  riastrad 				break;
   1932      1.190  riastrad 			}
   1933      1.187  riastrad 			uvm_swap_genkey(sdp);
   1934      1.187  riastrad 		}
   1935      1.187  riastrad 		KASSERT(sdp->swd_encinit);
   1936      1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   1937      1.187  riastrad 
   1938      1.192  jdolecek 		for (i = 0; i < npages; i++) {
   1939      1.192  jdolecek 			int s = startslot + i;
   1940      1.192  jdolecek 			KDASSERT(swapdrum_sdp_is(s, sdp));
   1941      1.192  jdolecek 			KASSERT(s >= sdp->swd_drumoffset);
   1942      1.192  jdolecek 			s -= sdp->swd_drumoffset;
   1943      1.192  jdolecek 			KASSERT(s < sdp->swd_drumsize);
   1944      1.192  jdolecek 
   1945      1.192  jdolecek 			if (swap_encrypt) {
   1946      1.189  riastrad 				uvm_swap_encryptpage(sdp,
   1947      1.188  riastrad 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   1948      1.190  riastrad 				atomic_or_32(&sdp->swd_encmap[s/32],
   1949      1.190  riastrad 				    __BIT(s%32));
   1950      1.192  jdolecek 			} else {
   1951      1.190  riastrad 				atomic_and_32(&sdp->swd_encmap[s/32],
   1952      1.190  riastrad 				    ~__BIT(s%32));
   1953      1.187  riastrad 			}
   1954      1.187  riastrad 		}
   1955      1.187  riastrad 	} while (0);
   1956      1.187  riastrad 
   1957      1.187  riastrad 	/*
   1958        1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1959        1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1960        1.1       mrg 	 */
   1961       1.54       chs 
   1962      1.134        ad 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1963      1.134        ad 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1964        1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1965       1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1966      1.122  christos 	bp->b_data = (void *)kva;
   1967        1.1       mrg 	bp->b_blkno = startblk;
   1968       1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1969        1.1       mrg 
   1970       1.51       chs 	/*
   1971       1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1972        1.1       mrg 	 */
   1973       1.54       chs 
   1974       1.41       chs 	if (write) {
   1975      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   1976      1.134        ad 		swapdev_vp->v_numoutput++;
   1977      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   1978        1.1       mrg 	}
   1979        1.1       mrg 
   1980        1.1       mrg 	/*
   1981       1.41       chs 	 * for async ops we must set up the iodone handler.
   1982        1.1       mrg 	 */
   1983       1.54       chs 
   1984       1.41       chs 	if (async) {
   1985      1.186       chs 		bp->b_iodone = uvm_aio_aiodone;
   1986        1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1987      1.126        ad 		if (curlwp == uvm.pagedaemon_lwp)
   1988       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1989       1.83      yamt 		else
   1990       1.83      yamt 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1991       1.83      yamt 	} else {
   1992      1.134        ad 		bp->b_iodone = NULL;
   1993       1.83      yamt 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1994        1.1       mrg 	}
   1995        1.1       mrg 	UVMHIST_LOG(pdhist,
   1996      1.203     skrll 	    "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
   1997      1.175  pgoyette 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1998        1.1       mrg 
   1999        1.1       mrg 	/*
   2000        1.1       mrg 	 * now we start the I/O, and if async, return.
   2001        1.1       mrg 	 */
   2002       1.54       chs 
   2003       1.84   hannken 	VOP_STRATEGY(swapdev_vp, bp);
   2004      1.190  riastrad 	if (async) {
   2005      1.190  riastrad 		/*
   2006      1.190  riastrad 		 * Reads are always synchronous; if this changes, we
   2007      1.190  riastrad 		 * need to add an asynchronous path for decryption.
   2008      1.190  riastrad 		 */
   2009      1.193  jdolecek 		KASSERT(write);
   2010       1.47       chs 		return 0;
   2011      1.190  riastrad 	}
   2012        1.1       mrg 
   2013        1.1       mrg 	/*
   2014        1.1       mrg 	 * must be sync i/o.   wait for it to finish
   2015        1.1       mrg 	 */
   2016       1.54       chs 
   2017       1.47       chs 	error = biowait(bp);
   2018      1.191  riastrad 	if (error)
   2019      1.191  riastrad 		goto out;
   2020        1.1       mrg 
   2021        1.1       mrg 	/*
   2022      1.187  riastrad 	 * decrypt reads in place if needed
   2023      1.187  riastrad 	 */
   2024      1.187  riastrad 
   2025      1.187  riastrad 	if (!write) do {
   2026      1.187  riastrad 		struct swapdev *sdp;
   2027      1.190  riastrad 		bool encinit;
   2028      1.187  riastrad 		int i;
   2029      1.187  riastrad 
   2030      1.190  riastrad 		/*
   2031      1.190  riastrad 		 * Get the sdp.  Everything about it except the encinit
   2032      1.190  riastrad 		 * bit, saying whether the encryption key is
   2033      1.190  riastrad 		 * initialized or not, and the encrypted bit for each
   2034      1.190  riastrad 		 * page, is stable until all swap pages have been
   2035      1.190  riastrad 		 * released and the device is removed.
   2036      1.190  riastrad 		 */
   2037      1.190  riastrad 		mutex_enter(&uvm_swap_data_lock);
   2038      1.187  riastrad 		sdp = swapdrum_getsdp(startslot);
   2039      1.190  riastrad 		encinit = sdp->swd_encinit;
   2040      1.190  riastrad 		mutex_exit(&uvm_swap_data_lock);
   2041      1.190  riastrad 
   2042      1.190  riastrad 		if (!encinit)
   2043      1.187  riastrad 			/*
   2044      1.187  riastrad 			 * If there's no encryption key, there's no way
   2045      1.187  riastrad 			 * any of these slots can be encrypted, so
   2046      1.187  riastrad 			 * nothing to do here.
   2047      1.187  riastrad 			 */
   2048      1.187  riastrad 			break;
   2049      1.187  riastrad 		for (i = 0; i < npages; i++) {
   2050      1.187  riastrad 			int s = startslot + i;
   2051      1.190  riastrad 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2052      1.187  riastrad 			KASSERT(s >= sdp->swd_drumoffset);
   2053      1.187  riastrad 			s -= sdp->swd_drumoffset;
   2054      1.187  riastrad 			KASSERT(s < sdp->swd_drumsize);
   2055      1.190  riastrad 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
   2056      1.190  riastrad 				__BIT(s%32)) == 0)
   2057      1.187  riastrad 				continue;
   2058      1.189  riastrad 			uvm_swap_decryptpage(sdp,
   2059      1.188  riastrad 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2060      1.187  riastrad 		}
   2061      1.187  riastrad 	} while (0);
   2062      1.191  riastrad out:
   2063      1.187  riastrad 	/*
   2064        1.1       mrg 	 * kill the pager mapping
   2065        1.1       mrg 	 */
   2066       1.54       chs 
   2067        1.1       mrg 	uvm_pagermapout(kva, npages);
   2068        1.1       mrg 
   2069        1.1       mrg 	/*
   2070       1.54       chs 	 * now dispose of the buf and we're done.
   2071        1.1       mrg 	 */
   2072       1.54       chs 
   2073      1.134        ad 	if (write) {
   2074      1.156     rmind 		mutex_enter(swapdev_vp->v_interlock);
   2075       1.41       chs 		vwakeup(bp);
   2076      1.156     rmind 		mutex_exit(swapdev_vp->v_interlock);
   2077      1.134        ad 	}
   2078       1.98      yamt 	putiobuf(bp);
   2079      1.175  pgoyette 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   2080      1.134        ad 
   2081       1.47       chs 	return (error);
   2082        1.1       mrg }
   2083      1.187  riastrad 
   2084      1.187  riastrad /*
   2085      1.187  riastrad  * uvm_swap_genkey(sdp)
   2086      1.187  riastrad  *
   2087      1.187  riastrad  *	Generate a key for swap encryption.
   2088      1.187  riastrad  */
   2089      1.187  riastrad static void
   2090      1.187  riastrad uvm_swap_genkey(struct swapdev *sdp)
   2091      1.187  riastrad {
   2092      1.187  riastrad 	uint8_t key[32];
   2093      1.187  riastrad 
   2094      1.187  riastrad 	KASSERT(!sdp->swd_encinit);
   2095      1.187  riastrad 
   2096      1.187  riastrad 	cprng_strong(kern_cprng, key, sizeof key, 0);
   2097      1.194  riastrad 	aes_setenckey256(&sdp->swd_enckey, key);
   2098      1.194  riastrad 	aes_setdeckey256(&sdp->swd_deckey, key);
   2099      1.187  riastrad 	explicit_memset(key, 0, sizeof key);
   2100      1.187  riastrad 
   2101      1.187  riastrad 	sdp->swd_encinit = true;
   2102      1.187  riastrad }
   2103      1.187  riastrad 
   2104      1.187  riastrad /*
   2105      1.189  riastrad  * uvm_swap_encryptpage(sdp, kva, slot)
   2106      1.187  riastrad  *
   2107      1.187  riastrad  *	Encrypt one page of data at kva for the specified slot number
   2108      1.187  riastrad  *	in the swap device.
   2109      1.187  riastrad  */
   2110      1.187  riastrad static void
   2111      1.189  riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
   2112      1.187  riastrad {
   2113      1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2114      1.187  riastrad 
   2115      1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2116      1.187  riastrad 	le32enc(preiv, slot);
   2117      1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2118      1.187  riastrad 
   2119      1.187  riastrad 	/* *kva := AES-CBC_k(iv, *kva) */
   2120      1.194  riastrad 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
   2121      1.194  riastrad 	    AES_256_NROUNDS);
   2122      1.187  riastrad 
   2123      1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2124      1.187  riastrad }
   2125      1.187  riastrad 
   2126      1.187  riastrad /*
   2127      1.189  riastrad  * uvm_swap_decryptpage(sdp, kva, slot)
   2128      1.187  riastrad  *
   2129      1.187  riastrad  *	Decrypt one page of data at kva for the specified slot number
   2130      1.187  riastrad  *	in the swap device.
   2131      1.187  riastrad  */
   2132      1.187  riastrad static void
   2133      1.189  riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
   2134      1.187  riastrad {
   2135      1.195  riastrad 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2136      1.187  riastrad 
   2137      1.187  riastrad 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2138      1.187  riastrad 	le32enc(preiv, slot);
   2139      1.194  riastrad 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2140      1.187  riastrad 
   2141      1.187  riastrad 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
   2142      1.194  riastrad 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
   2143      1.194  riastrad 	    AES_256_NROUNDS);
   2144      1.187  riastrad 
   2145      1.187  riastrad 	explicit_memset(&iv, 0, sizeof iv);
   2146      1.187  riastrad }
   2147      1.187  riastrad 
   2148      1.187  riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
   2149      1.187  riastrad {
   2150      1.187  riastrad 
   2151      1.187  riastrad 	sysctl_createv(clog, 0, NULL, NULL,
   2152      1.187  riastrad 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
   2153      1.187  riastrad 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
   2154      1.189  riastrad 	    NULL, 0, &uvm_swap_encrypt, 0,
   2155      1.187  riastrad 	    CTL_VM, CTL_CREATE, CTL_EOL);
   2156      1.187  riastrad }
   2157