uvm_swap.c revision 1.207 1 1.207 chs /* $NetBSD: uvm_swap.c,v 1.207 2022/12/21 02:28:06 chs Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.144 mrg * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg *
16 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 1.1 mrg * SUCH DAMAGE.
27 1.3 mrg *
28 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 1.1 mrg */
31 1.57 lukem
32 1.57 lukem #include <sys/cdefs.h>
33 1.207 chs __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.207 2022/12/21 02:28:06 chs Exp $");
34 1.5 mrg
35 1.5 mrg #include "opt_uvmhist.h"
36 1.16 mrg #include "opt_compat_netbsd.h"
37 1.41 chs #include "opt_ddb.h"
38 1.205 riastrad #include "opt_vmswap.h"
39 1.1 mrg
40 1.1 mrg #include <sys/param.h>
41 1.1 mrg #include <sys/systm.h>
42 1.183 uwe #include <sys/atomic.h>
43 1.1 mrg #include <sys/buf.h>
44 1.89 yamt #include <sys/bufq.h>
45 1.36 mrg #include <sys/conf.h>
46 1.187 riastrad #include <sys/cprng.h>
47 1.1 mrg #include <sys/proc.h>
48 1.1 mrg #include <sys/namei.h>
49 1.1 mrg #include <sys/disklabel.h>
50 1.1 mrg #include <sys/errno.h>
51 1.1 mrg #include <sys/kernel.h>
52 1.1 mrg #include <sys/vnode.h>
53 1.1 mrg #include <sys/file.h>
54 1.110 yamt #include <sys/vmem.h>
55 1.90 yamt #include <sys/blist.h>
56 1.1 mrg #include <sys/mount.h>
57 1.12 pk #include <sys/pool.h>
58 1.159 para #include <sys/kmem.h>
59 1.1 mrg #include <sys/syscallargs.h>
60 1.17 mrg #include <sys/swap.h>
61 1.100 elad #include <sys/kauth.h>
62 1.125 ad #include <sys/sysctl.h>
63 1.130 hannken #include <sys/workqueue.h>
64 1.1 mrg
65 1.1 mrg #include <uvm/uvm.h>
66 1.1 mrg
67 1.1 mrg #include <miscfs/specfs/specdev.h>
68 1.1 mrg
69 1.194 riastrad #include <crypto/aes/aes.h>
70 1.198 riastrad #include <crypto/aes/aes_cbc.h>
71 1.187 riastrad
72 1.1 mrg /*
73 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
74 1.1 mrg */
75 1.1 mrg
76 1.1 mrg /*
77 1.1 mrg * swap space is managed in the following way:
78 1.51 chs *
79 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
80 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
81 1.1 mrg * information that is passed up to the user (via system calls).
82 1.1 mrg *
83 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
84 1.199 msaitoh * swap partition usage.
85 1.1 mrg *
86 1.1 mrg * the system maintains a global data structure describing all swap
87 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
88 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
89 1.51 chs * by the "swap_priority" global var. each "swappri" contains a
90 1.164 christos * TAILQ of "swapdev" structures at that priority.
91 1.1 mrg *
92 1.1 mrg * locking:
93 1.127 ad * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
94 1.1 mrg * system call and prevents the swap priority list from changing
95 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
96 1.127 ad * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
97 1.1 mrg * structures including the priority list, the swapdev structures,
98 1.110 yamt * and the swapmap arena.
99 1.1 mrg *
100 1.1 mrg * each swap device has the following info:
101 1.1 mrg * - swap device in use (could be disabled, preventing future use)
102 1.1 mrg * - swap enabled (allows new allocations on swap)
103 1.1 mrg * - map info in /dev/drum
104 1.1 mrg * - vnode pointer
105 1.1 mrg * for swap files only:
106 1.1 mrg * - block size
107 1.1 mrg * - max byte count in buffer
108 1.1 mrg * - buffer
109 1.1 mrg *
110 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
111 1.1 mrg * the sys_swapctl performs the following operations:
112 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
113 1.51 chs * [2] SWAP_STATS: given a pointer to an array of swapent structures
114 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
115 1.85 junyoung * the current swap config into the array. The actual work is done
116 1.155 rmind * in the uvm_swap_stats() function.
117 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
118 1.1 mrg * priority in "misc", start swapping on it.
119 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
120 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
121 1.1 mrg * "misc")
122 1.1 mrg */
123 1.1 mrg
124 1.1 mrg /*
125 1.1 mrg * swapdev: describes a single swap partition/file
126 1.1 mrg *
127 1.1 mrg * note the following should be true:
128 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
129 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
130 1.1 mrg */
131 1.1 mrg struct swapdev {
132 1.144 mrg dev_t swd_dev; /* device id */
133 1.144 mrg int swd_flags; /* flags:inuse/enable/fake */
134 1.144 mrg int swd_priority; /* our priority */
135 1.144 mrg int swd_nblks; /* blocks in this device */
136 1.16 mrg char *swd_path; /* saved pathname of device */
137 1.16 mrg int swd_pathlen; /* length of pathname */
138 1.16 mrg int swd_npages; /* #pages we can use */
139 1.16 mrg int swd_npginuse; /* #pages in use */
140 1.32 chs int swd_npgbad; /* #pages bad */
141 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
142 1.16 mrg int swd_drumsize; /* #pages in drum */
143 1.90 yamt blist_t swd_blist; /* blist for this swapdev */
144 1.16 mrg struct vnode *swd_vp; /* backing vnode */
145 1.165 christos TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
146 1.1 mrg
147 1.16 mrg int swd_bsize; /* blocksize (bytes) */
148 1.16 mrg int swd_maxactive; /* max active i/o reqs */
149 1.96 yamt struct bufq_state *swd_tab; /* buffer list */
150 1.33 thorpej int swd_active; /* number of active buffers */
151 1.187 riastrad
152 1.190 riastrad volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */
153 1.194 riastrad struct aesenc swd_enckey; /* AES key expanded for enc */
154 1.194 riastrad struct aesdec swd_deckey; /* AES key expanded for dec */
155 1.187 riastrad bool swd_encinit; /* true if keys initialized */
156 1.1 mrg };
157 1.1 mrg
158 1.1 mrg /*
159 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
160 1.1 mrg */
161 1.1 mrg struct swappri {
162 1.1 mrg int spi_priority; /* priority */
163 1.164 christos TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 1.165 christos /* tailq of swapdevs at this priority */
165 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 1.1 mrg };
167 1.1 mrg
168 1.1 mrg /*
169 1.1 mrg * The following two structures are used to keep track of data transfers
170 1.1 mrg * on swap devices associated with regular files.
171 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
172 1.1 mrg * structure names here to ease porting..
173 1.1 mrg */
174 1.1 mrg struct vndxfer {
175 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
176 1.1 mrg struct swapdev *vx_sdp;
177 1.1 mrg int vx_error;
178 1.1 mrg int vx_pending; /* # of pending aux buffers */
179 1.1 mrg int vx_flags;
180 1.1 mrg #define VX_BUSY 1
181 1.1 mrg #define VX_DEAD 2
182 1.1 mrg };
183 1.1 mrg
184 1.1 mrg struct vndbuf {
185 1.1 mrg struct buf vb_buf;
186 1.1 mrg struct vndxfer *vb_xfer;
187 1.1 mrg };
188 1.1 mrg
189 1.144 mrg /*
190 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
191 1.1 mrg */
192 1.146 pooka static struct pool vndxfer_pool, vndbuf_pool;
193 1.1 mrg
194 1.1 mrg /*
195 1.1 mrg * local variables
196 1.1 mrg */
197 1.110 yamt static vmem_t *swapmap; /* controls the mapping of /dev/drum */
198 1.1 mrg
199 1.1 mrg /* list of all active swap devices [by priority] */
200 1.1 mrg LIST_HEAD(swap_priority, swappri);
201 1.1 mrg static struct swap_priority swap_priority;
202 1.1 mrg
203 1.1 mrg /* locks */
204 1.182 ad static kmutex_t uvm_swap_data_lock __cacheline_aligned;
205 1.117 ad static krwlock_t swap_syscall_lock;
206 1.204 mrg bool uvm_swap_init_done = false;
207 1.1 mrg
208 1.130 hannken /* workqueue and use counter for swap to regular files */
209 1.130 hannken static int sw_reg_count = 0;
210 1.130 hannken static struct workqueue *sw_reg_workqueue;
211 1.130 hannken
212 1.141 ad /* tuneables */
213 1.141 ad u_int uvm_swapisfull_factor = 99;
214 1.205 riastrad #if VMSWAP_DEFAULT_PLAINTEXT
215 1.189 riastrad bool uvm_swap_encrypt = false;
216 1.205 riastrad #else
217 1.205 riastrad bool uvm_swap_encrypt = true;
218 1.205 riastrad #endif
219 1.141 ad
220 1.1 mrg /*
221 1.1 mrg * prototypes
222 1.1 mrg */
223 1.85 junyoung static struct swapdev *swapdrum_getsdp(int);
224 1.1 mrg
225 1.120 matt static struct swapdev *swaplist_find(struct vnode *, bool);
226 1.85 junyoung static void swaplist_insert(struct swapdev *,
227 1.85 junyoung struct swappri *, int);
228 1.85 junyoung static void swaplist_trim(void);
229 1.1 mrg
230 1.97 christos static int swap_on(struct lwp *, struct swapdev *);
231 1.97 christos static int swap_off(struct lwp *, struct swapdev *);
232 1.1 mrg
233 1.85 junyoung static void sw_reg_strategy(struct swapdev *, struct buf *, int);
234 1.130 hannken static void sw_reg_biodone(struct buf *);
235 1.130 hannken static void sw_reg_iodone(struct work *wk, void *dummy);
236 1.85 junyoung static void sw_reg_start(struct swapdev *);
237 1.1 mrg
238 1.85 junyoung static int uvm_swap_io(struct vm_page **, int, int, int);
239 1.1 mrg
240 1.187 riastrad static void uvm_swap_genkey(struct swapdev *);
241 1.189 riastrad static void uvm_swap_encryptpage(struct swapdev *, void *, int);
242 1.189 riastrad static void uvm_swap_decryptpage(struct swapdev *, void *, int);
243 1.187 riastrad
244 1.190 riastrad static size_t
245 1.190 riastrad encmap_size(size_t npages)
246 1.190 riastrad {
247 1.190 riastrad struct swapdev *sdp;
248 1.190 riastrad const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
249 1.190 riastrad const size_t bitsperword = NBBY * bytesperword;
250 1.190 riastrad const size_t nbits = npages; /* one bit for each page */
251 1.190 riastrad const size_t nwords = howmany(nbits, bitsperword);
252 1.190 riastrad const size_t nbytes = nwords * bytesperword;
253 1.190 riastrad
254 1.190 riastrad return nbytes;
255 1.190 riastrad }
256 1.190 riastrad
257 1.1 mrg /*
258 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
259 1.1 mrg *
260 1.51 chs * => called at boot time from init_main.c after the filesystems
261 1.1 mrg * are brought up (which happens after uvm_init())
262 1.1 mrg */
263 1.1 mrg void
264 1.93 thorpej uvm_swap_init(void)
265 1.1 mrg {
266 1.197 skrll UVMHIST_FUNC(__func__);
267 1.1 mrg
268 1.1 mrg UVMHIST_CALLED(pdhist);
269 1.1 mrg /*
270 1.1 mrg * first, init the swap list, its counter, and its lock.
271 1.1 mrg * then get a handle on the vnode for /dev/drum by using
272 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
273 1.1 mrg */
274 1.1 mrg
275 1.1 mrg LIST_INIT(&swap_priority);
276 1.1 mrg uvmexp.nswapdev = 0;
277 1.117 ad rw_init(&swap_syscall_lock);
278 1.134 ad mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
279 1.12 pk
280 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
281 1.145 mrg panic("%s: can't get vnode for swap device", __func__);
282 1.136 hannken if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
283 1.145 mrg panic("%s: can't lock swap device", __func__);
284 1.135 hannken if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
285 1.145 mrg panic("%s: can't open swap device", __func__);
286 1.151 hannken VOP_UNLOCK(swapdev_vp);
287 1.1 mrg
288 1.1 mrg /*
289 1.1 mrg * create swap block resource map to map /dev/drum. the range
290 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
291 1.51 chs * that block 0 is reserved (used to indicate an allocation
292 1.1 mrg * failure, or no allocation).
293 1.1 mrg */
294 1.110 yamt swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
295 1.126 ad VM_NOSLEEP, IPL_NONE);
296 1.147 rmind if (swapmap == 0) {
297 1.145 mrg panic("%s: vmem_create failed", __func__);
298 1.147 rmind }
299 1.146 pooka
300 1.146 pooka pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
301 1.146 pooka NULL, IPL_BIO);
302 1.146 pooka pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
303 1.146 pooka NULL, IPL_BIO);
304 1.147 rmind
305 1.204 mrg uvm_swap_init_done = true;
306 1.204 mrg
307 1.147 rmind UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
308 1.1 mrg }
309 1.1 mrg
310 1.1 mrg /*
311 1.1 mrg * swaplist functions: functions that operate on the list of swap
312 1.1 mrg * devices on the system.
313 1.1 mrg */
314 1.1 mrg
315 1.1 mrg /*
316 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
317 1.1 mrg *
318 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
319 1.154 rmind * => caller must provide a newly allocated swappri structure (we will
320 1.154 rmind * FREE it if we don't need it... this it to prevent allocation
321 1.154 rmind * blocking here while adding swap)
322 1.1 mrg */
323 1.1 mrg static void
324 1.93 thorpej swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
325 1.1 mrg {
326 1.1 mrg struct swappri *spp, *pspp;
327 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
328 1.1 mrg
329 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
330 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
331 1.190 riastrad
332 1.1 mrg /*
333 1.1 mrg * find entry at or after which to insert the new device.
334 1.1 mrg */
335 1.55 chs pspp = NULL;
336 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
337 1.1 mrg if (priority <= spp->spi_priority)
338 1.1 mrg break;
339 1.1 mrg pspp = spp;
340 1.1 mrg }
341 1.1 mrg
342 1.1 mrg /*
343 1.1 mrg * new priority?
344 1.1 mrg */
345 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
346 1.1 mrg spp = newspp; /* use newspp! */
347 1.175 pgoyette UVMHIST_LOG(pdhist, "created new swappri = %jd",
348 1.32 chs priority, 0, 0, 0);
349 1.1 mrg
350 1.1 mrg spp->spi_priority = priority;
351 1.164 christos TAILQ_INIT(&spp->spi_swapdev);
352 1.1 mrg
353 1.1 mrg if (pspp)
354 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
355 1.1 mrg else
356 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
357 1.1 mrg } else {
358 1.1 mrg /* we don't need a new priority structure, free it */
359 1.159 para kmem_free(newspp, sizeof(*newspp));
360 1.1 mrg }
361 1.1 mrg
362 1.1 mrg /*
363 1.1 mrg * priority found (or created). now insert on the priority's
364 1.165 christos * tailq list and bump the total number of swapdevs.
365 1.1 mrg */
366 1.1 mrg sdp->swd_priority = priority;
367 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
368 1.1 mrg uvmexp.nswapdev++;
369 1.1 mrg }
370 1.1 mrg
371 1.1 mrg /*
372 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
373 1.1 mrg * global list.
374 1.1 mrg *
375 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
376 1.1 mrg * => we return the swapdev we found (and removed)
377 1.1 mrg */
378 1.1 mrg static struct swapdev *
379 1.119 thorpej swaplist_find(struct vnode *vp, bool remove)
380 1.1 mrg {
381 1.1 mrg struct swapdev *sdp;
382 1.1 mrg struct swappri *spp;
383 1.1 mrg
384 1.190 riastrad KASSERT(rw_lock_held(&swap_syscall_lock));
385 1.190 riastrad KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
386 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
387 1.190 riastrad
388 1.1 mrg /*
389 1.1 mrg * search the lists for the requested vp
390 1.1 mrg */
391 1.55 chs
392 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
393 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
394 1.1 mrg if (sdp->swd_vp == vp) {
395 1.1 mrg if (remove) {
396 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev,
397 1.1 mrg sdp, swd_next);
398 1.1 mrg uvmexp.nswapdev--;
399 1.1 mrg }
400 1.1 mrg return(sdp);
401 1.1 mrg }
402 1.55 chs }
403 1.1 mrg }
404 1.1 mrg return (NULL);
405 1.1 mrg }
406 1.1 mrg
407 1.113 elad /*
408 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
409 1.1 mrg * them.
410 1.1 mrg *
411 1.127 ad * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
412 1.1 mrg */
413 1.1 mrg static void
414 1.93 thorpej swaplist_trim(void)
415 1.1 mrg {
416 1.1 mrg struct swappri *spp, *nextspp;
417 1.1 mrg
418 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
419 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
420 1.190 riastrad
421 1.161 rmind LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
422 1.167 mlelstv if (!TAILQ_EMPTY(&spp->spi_swapdev))
423 1.1 mrg continue;
424 1.1 mrg LIST_REMOVE(spp, spi_swappri);
425 1.159 para kmem_free(spp, sizeof(*spp));
426 1.1 mrg }
427 1.1 mrg }
428 1.1 mrg
429 1.1 mrg /*
430 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
431 1.1 mrg * to the "swapdev" that maps that section of the drum.
432 1.1 mrg *
433 1.1 mrg * => each swapdev takes one big contig chunk of the drum
434 1.127 ad * => caller must hold uvm_swap_data_lock
435 1.1 mrg */
436 1.1 mrg static struct swapdev *
437 1.93 thorpej swapdrum_getsdp(int pgno)
438 1.1 mrg {
439 1.1 mrg struct swapdev *sdp;
440 1.1 mrg struct swappri *spp;
441 1.51 chs
442 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
443 1.190 riastrad
444 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
445 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
446 1.48 fvdl if (sdp->swd_flags & SWF_FAKE)
447 1.48 fvdl continue;
448 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
449 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
450 1.1 mrg return sdp;
451 1.1 mrg }
452 1.48 fvdl }
453 1.55 chs }
454 1.1 mrg return NULL;
455 1.1 mrg }
456 1.1 mrg
457 1.190 riastrad /*
458 1.190 riastrad * swapdrum_sdp_is: true iff the swap device for pgno is sdp
459 1.190 riastrad *
460 1.190 riastrad * => for use in positive assertions only; result is not stable
461 1.190 riastrad */
462 1.190 riastrad static bool __debugused
463 1.190 riastrad swapdrum_sdp_is(int pgno, struct swapdev *sdp)
464 1.190 riastrad {
465 1.190 riastrad bool result;
466 1.190 riastrad
467 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
468 1.190 riastrad result = swapdrum_getsdp(pgno) == sdp;
469 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
470 1.190 riastrad
471 1.190 riastrad return result;
472 1.190 riastrad }
473 1.190 riastrad
474 1.173 maxv void swapsys_lock(krw_t op)
475 1.173 maxv {
476 1.173 maxv rw_enter(&swap_syscall_lock, op);
477 1.173 maxv }
478 1.173 maxv
479 1.173 maxv void swapsys_unlock(void)
480 1.173 maxv {
481 1.173 maxv rw_exit(&swap_syscall_lock);
482 1.173 maxv }
483 1.1 mrg
484 1.176 christos static void
485 1.176 christos swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
486 1.176 christos {
487 1.176 christos se->se_dev = sdp->swd_dev;
488 1.176 christos se->se_flags = sdp->swd_flags;
489 1.176 christos se->se_nblks = sdp->swd_nblks;
490 1.176 christos se->se_inuse = inuse;
491 1.176 christos se->se_priority = sdp->swd_priority;
492 1.176 christos KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
493 1.176 christos strcpy(se->se_path, sdp->swd_path);
494 1.176 christos }
495 1.176 christos
496 1.180 kre int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
497 1.177 christos (void *)enosys;
498 1.177 christos int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
499 1.177 christos (void *)enosys;
500 1.176 christos
501 1.1 mrg /*
502 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
503 1.1 mrg * [with two helper functions: swap_on and swap_off]
504 1.1 mrg */
505 1.1 mrg int
506 1.133 dsl sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
507 1.1 mrg {
508 1.133 dsl /* {
509 1.1 mrg syscallarg(int) cmd;
510 1.1 mrg syscallarg(void *) arg;
511 1.1 mrg syscallarg(int) misc;
512 1.133 dsl } */
513 1.1 mrg struct vnode *vp;
514 1.1 mrg struct nameidata nd;
515 1.1 mrg struct swappri *spp;
516 1.1 mrg struct swapdev *sdp;
517 1.101 christos #define SWAP_PATH_MAX (PATH_MAX + 1)
518 1.101 christos char *userpath;
519 1.161 rmind size_t len = 0;
520 1.176 christos int error;
521 1.1 mrg int priority;
522 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
523 1.1 mrg
524 1.1 mrg /*
525 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
526 1.1 mrg *
527 1.51 chs * SWAP_NSWAP: return number of config'd swap devices
528 1.1 mrg * [can also be obtained with uvmexp sysctl]
529 1.1 mrg */
530 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
531 1.161 rmind const int nswapdev = uvmexp.nswapdev;
532 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
533 1.175 pgoyette 0, 0, 0);
534 1.161 rmind *retval = nswapdev;
535 1.161 rmind return 0;
536 1.1 mrg }
537 1.1 mrg
538 1.161 rmind userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
539 1.161 rmind
540 1.161 rmind /*
541 1.161 rmind * ensure serialized syscall access by grabbing the swap_syscall_lock
542 1.161 rmind */
543 1.161 rmind rw_enter(&swap_syscall_lock, RW_WRITER);
544 1.161 rmind
545 1.1 mrg /*
546 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
547 1.1 mrg *
548 1.51 chs * note that the swap_priority list can't change as long
549 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
550 1.127 ad * to grab the uvm_swap_data_lock because we may fault&sleep during
551 1.1 mrg * copyout() and we don't want to be holding that lock then!
552 1.1 mrg */
553 1.176 christos switch (SCARG(uap, cmd)) {
554 1.177 christos case SWAP_STATS13:
555 1.177 christos error = (*uvm_swap_stats13)(uap, retval);
556 1.177 christos goto out;
557 1.177 christos case SWAP_STATS50:
558 1.177 christos error = (*uvm_swap_stats50)(uap, retval);
559 1.177 christos goto out;
560 1.176 christos case SWAP_STATS:
561 1.176 christos error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
562 1.177 christos NULL, sizeof(struct swapent), retval);
563 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
564 1.16 mrg goto out;
565 1.196 skrll
566 1.176 christos case SWAP_GETDUMPDEV:
567 1.176 christos error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
568 1.55 chs goto out;
569 1.176 christos default:
570 1.176 christos break;
571 1.55 chs }
572 1.1 mrg
573 1.1 mrg /*
574 1.1 mrg * all other requests require superuser privs. verify.
575 1.1 mrg */
576 1.106 elad if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
577 1.106 elad 0, NULL, NULL, NULL)))
578 1.16 mrg goto out;
579 1.1 mrg
580 1.104 martin if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
581 1.104 martin /* drop the current dump device */
582 1.104 martin dumpdev = NODEV;
583 1.138 kardel dumpcdev = NODEV;
584 1.104 martin cpu_dumpconf();
585 1.104 martin goto out;
586 1.104 martin }
587 1.104 martin
588 1.1 mrg /*
589 1.1 mrg * at this point we expect a path name in arg. we will
590 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
591 1.1 mrg * the vnode (VOP_LOCK).
592 1.1 mrg *
593 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
594 1.16 mrg * miniroot)
595 1.1 mrg */
596 1.1 mrg if (SCARG(uap, arg) == NULL) {
597 1.1 mrg vp = rootvp; /* miniroot */
598 1.152 hannken vref(vp);
599 1.152 hannken if (vn_lock(vp, LK_EXCLUSIVE)) {
600 1.152 hannken vrele(vp);
601 1.16 mrg error = EBUSY;
602 1.16 mrg goto out;
603 1.1 mrg }
604 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
605 1.101 christos copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
606 1.16 mrg panic("swapctl: miniroot copy failed");
607 1.1 mrg } else {
608 1.153 dholland struct pathbuf *pb;
609 1.16 mrg
610 1.153 dholland /*
611 1.153 dholland * This used to allow copying in one extra byte
612 1.153 dholland * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
613 1.153 dholland * This was completely pointless because if anyone
614 1.153 dholland * used that extra byte namei would fail with
615 1.153 dholland * ENAMETOOLONG anyway, so I've removed the excess
616 1.153 dholland * logic. - dholland 20100215
617 1.153 dholland */
618 1.153 dholland
619 1.153 dholland error = pathbuf_copyin(SCARG(uap, arg), &pb);
620 1.153 dholland if (error) {
621 1.153 dholland goto out;
622 1.153 dholland }
623 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
624 1.153 dholland /* get a copy of the string */
625 1.153 dholland pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
626 1.153 dholland len = strlen(userpath) + 1;
627 1.153 dholland }
628 1.153 dholland NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
629 1.153 dholland if ((error = namei(&nd))) {
630 1.153 dholland pathbuf_destroy(pb);
631 1.153 dholland goto out;
632 1.1 mrg }
633 1.1 mrg vp = nd.ni_vp;
634 1.153 dholland pathbuf_destroy(pb);
635 1.1 mrg }
636 1.1 mrg /* note: "vp" is referenced and locked */
637 1.1 mrg
638 1.1 mrg error = 0; /* assume no error */
639 1.1 mrg switch(SCARG(uap, cmd)) {
640 1.40 mrg
641 1.24 mrg case SWAP_DUMPDEV:
642 1.24 mrg if (vp->v_type != VBLK) {
643 1.24 mrg error = ENOTBLK;
644 1.45 pk break;
645 1.24 mrg }
646 1.138 kardel if (bdevsw_lookup(vp->v_rdev)) {
647 1.109 mrg dumpdev = vp->v_rdev;
648 1.138 kardel dumpcdev = devsw_blk2chr(dumpdev);
649 1.138 kardel } else
650 1.109 mrg dumpdev = NODEV;
651 1.68 drochner cpu_dumpconf();
652 1.24 mrg break;
653 1.24 mrg
654 1.1 mrg case SWAP_CTL:
655 1.1 mrg /*
656 1.1 mrg * get new priority, remove old entry (if any) and then
657 1.1 mrg * reinsert it in the correct place. finally, prune out
658 1.1 mrg * any empty priority structures.
659 1.1 mrg */
660 1.1 mrg priority = SCARG(uap, misc);
661 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
662 1.127 ad mutex_enter(&uvm_swap_data_lock);
663 1.120 matt if ((sdp = swaplist_find(vp, true)) == NULL) {
664 1.1 mrg error = ENOENT;
665 1.1 mrg } else {
666 1.1 mrg swaplist_insert(sdp, spp, priority);
667 1.1 mrg swaplist_trim();
668 1.1 mrg }
669 1.127 ad mutex_exit(&uvm_swap_data_lock);
670 1.1 mrg if (error)
671 1.159 para kmem_free(spp, sizeof(*spp));
672 1.1 mrg break;
673 1.1 mrg
674 1.1 mrg case SWAP_ON:
675 1.32 chs
676 1.1 mrg /*
677 1.1 mrg * check for duplicates. if none found, then insert a
678 1.1 mrg * dummy entry on the list to prevent someone else from
679 1.1 mrg * trying to enable this device while we are working on
680 1.1 mrg * it.
681 1.1 mrg */
682 1.32 chs
683 1.1 mrg priority = SCARG(uap, misc);
684 1.160 rmind sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
685 1.159 para spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
686 1.67 chs sdp->swd_flags = SWF_FAKE;
687 1.67 chs sdp->swd_vp = vp;
688 1.67 chs sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
689 1.96 yamt bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
690 1.127 ad mutex_enter(&uvm_swap_data_lock);
691 1.120 matt if (swaplist_find(vp, false) != NULL) {
692 1.1 mrg error = EBUSY;
693 1.127 ad mutex_exit(&uvm_swap_data_lock);
694 1.96 yamt bufq_free(sdp->swd_tab);
695 1.159 para kmem_free(sdp, sizeof(*sdp));
696 1.159 para kmem_free(spp, sizeof(*spp));
697 1.16 mrg break;
698 1.1 mrg }
699 1.1 mrg swaplist_insert(sdp, spp, priority);
700 1.127 ad mutex_exit(&uvm_swap_data_lock);
701 1.1 mrg
702 1.161 rmind KASSERT(len > 0);
703 1.16 mrg sdp->swd_pathlen = len;
704 1.161 rmind sdp->swd_path = kmem_alloc(len, KM_SLEEP);
705 1.161 rmind if (copystr(userpath, sdp->swd_path, len, 0) != 0)
706 1.19 pk panic("swapctl: copystr");
707 1.32 chs
708 1.1 mrg /*
709 1.1 mrg * we've now got a FAKE placeholder in the swap list.
710 1.1 mrg * now attempt to enable swap on it. if we fail, undo
711 1.1 mrg * what we've done and kill the fake entry we just inserted.
712 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
713 1.1 mrg */
714 1.32 chs
715 1.97 christos if ((error = swap_on(l, sdp)) != 0) {
716 1.127 ad mutex_enter(&uvm_swap_data_lock);
717 1.120 matt (void) swaplist_find(vp, true); /* kill fake entry */
718 1.1 mrg swaplist_trim();
719 1.127 ad mutex_exit(&uvm_swap_data_lock);
720 1.96 yamt bufq_free(sdp->swd_tab);
721 1.159 para kmem_free(sdp->swd_path, sdp->swd_pathlen);
722 1.159 para kmem_free(sdp, sizeof(*sdp));
723 1.1 mrg break;
724 1.1 mrg }
725 1.1 mrg break;
726 1.1 mrg
727 1.1 mrg case SWAP_OFF:
728 1.127 ad mutex_enter(&uvm_swap_data_lock);
729 1.120 matt if ((sdp = swaplist_find(vp, false)) == NULL) {
730 1.127 ad mutex_exit(&uvm_swap_data_lock);
731 1.1 mrg error = ENXIO;
732 1.1 mrg break;
733 1.1 mrg }
734 1.32 chs
735 1.1 mrg /*
736 1.1 mrg * If a device isn't in use or enabled, we
737 1.1 mrg * can't stop swapping from it (again).
738 1.1 mrg */
739 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
740 1.127 ad mutex_exit(&uvm_swap_data_lock);
741 1.1 mrg error = EBUSY;
742 1.16 mrg break;
743 1.1 mrg }
744 1.1 mrg
745 1.1 mrg /*
746 1.32 chs * do the real work.
747 1.1 mrg */
748 1.97 christos error = swap_off(l, sdp);
749 1.1 mrg break;
750 1.1 mrg
751 1.1 mrg default:
752 1.1 mrg error = EINVAL;
753 1.1 mrg }
754 1.1 mrg
755 1.1 mrg /*
756 1.39 chs * done! release the ref gained by namei() and unlock.
757 1.1 mrg */
758 1.1 mrg vput(vp);
759 1.16 mrg out:
760 1.160 rmind rw_exit(&swap_syscall_lock);
761 1.159 para kmem_free(userpath, SWAP_PATH_MAX);
762 1.1 mrg
763 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
764 1.1 mrg return (error);
765 1.61 manu }
766 1.61 manu
767 1.85 junyoung /*
768 1.155 rmind * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
769 1.85 junyoung * away from sys_swapctl() in order to allow COMPAT_* swapctl()
770 1.61 manu * emulation to use it directly without going through sys_swapctl().
771 1.61 manu * The problem with using sys_swapctl() there is that it involves
772 1.61 manu * copying the swapent array to the stackgap, and this array's size
773 1.85 junyoung * is not known at build time. Hence it would not be possible to
774 1.61 manu * ensure it would fit in the stackgap in any case.
775 1.61 manu */
776 1.176 christos int
777 1.180 kre uvm_swap_stats(char *ptr, int misc,
778 1.176 christos void (*f)(void *, const struct swapent *), size_t len,
779 1.176 christos register_t *retval)
780 1.61 manu {
781 1.61 manu struct swappri *spp;
782 1.61 manu struct swapdev *sdp;
783 1.176 christos struct swapent sep;
784 1.61 manu int count = 0;
785 1.176 christos int error;
786 1.176 christos
787 1.176 christos KASSERT(len <= sizeof(sep));
788 1.176 christos if (len == 0)
789 1.176 christos return ENOSYS;
790 1.176 christos
791 1.176 christos if (misc < 0)
792 1.176 christos return EINVAL;
793 1.176 christos
794 1.176 christos if (misc == 0 || uvmexp.nswapdev == 0)
795 1.176 christos return 0;
796 1.176 christos
797 1.176 christos /* Make sure userland cannot exhaust kernel memory */
798 1.176 christos if ((size_t)misc > (size_t)uvmexp.nswapdev)
799 1.176 christos misc = uvmexp.nswapdev;
800 1.61 manu
801 1.173 maxv KASSERT(rw_lock_held(&swap_syscall_lock));
802 1.173 maxv
803 1.61 manu LIST_FOREACH(spp, &swap_priority, spi_swappri) {
804 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
805 1.144 mrg int inuse;
806 1.144 mrg
807 1.176 christos if (misc-- <= 0)
808 1.161 rmind break;
809 1.161 rmind
810 1.144 mrg inuse = btodb((uint64_t)sdp->swd_npginuse <<
811 1.61 manu PAGE_SHIFT);
812 1.85 junyoung
813 1.178 maxv memset(&sep, 0, sizeof(sep));
814 1.176 christos swapent_cvt(&sep, sdp, inuse);
815 1.176 christos if (f)
816 1.176 christos (*f)(&sep, &sep);
817 1.176 christos if ((error = copyout(&sep, ptr, len)) != 0)
818 1.176 christos return error;
819 1.176 christos ptr += len;
820 1.61 manu count++;
821 1.61 manu }
822 1.61 manu }
823 1.61 manu *retval = count;
824 1.176 christos return 0;
825 1.1 mrg }
826 1.1 mrg
827 1.1 mrg /*
828 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
829 1.1 mrg * swapdev is already on the global list, but disabled (marked
830 1.1 mrg * SWF_FAKE).
831 1.1 mrg *
832 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
833 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
834 1.127 ad * => caller should leave uvm_swap_data_lock unlocked, we may lock it
835 1.1 mrg * if needed.
836 1.1 mrg */
837 1.1 mrg static int
838 1.97 christos swap_on(struct lwp *l, struct swapdev *sdp)
839 1.1 mrg {
840 1.1 mrg struct vnode *vp;
841 1.1 mrg int error, npages, nblocks, size;
842 1.1 mrg long addr;
843 1.157 dyoung vmem_addr_t result;
844 1.1 mrg struct vattr va;
845 1.1 mrg dev_t dev;
846 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
847 1.1 mrg
848 1.1 mrg /*
849 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
850 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
851 1.1 mrg * contains the dev_t of the file, if it a block device.
852 1.1 mrg */
853 1.1 mrg
854 1.1 mrg vp = sdp->swd_vp;
855 1.1 mrg dev = sdp->swd_dev;
856 1.1 mrg
857 1.1 mrg /*
858 1.1 mrg * open the swap file (mostly useful for block device files to
859 1.1 mrg * let device driver know what is up).
860 1.1 mrg *
861 1.1 mrg * we skip the open/close for root on swap because the root
862 1.1 mrg * has already been opened when root was mounted (mountroot).
863 1.1 mrg */
864 1.1 mrg if (vp != rootvp) {
865 1.131 pooka if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
866 1.1 mrg return (error);
867 1.1 mrg }
868 1.1 mrg
869 1.1 mrg /* XXX this only works for block devices */
870 1.175 pgoyette UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
871 1.1 mrg
872 1.1 mrg /*
873 1.1 mrg * we now need to determine the size of the swap area. for
874 1.1 mrg * block specials we can call the d_psize function.
875 1.1 mrg * for normal files, we must stat [get attrs].
876 1.1 mrg *
877 1.1 mrg * we put the result in nblks.
878 1.1 mrg * for normal files, we also want the filesystem block size
879 1.1 mrg * (which we get with statfs).
880 1.1 mrg */
881 1.1 mrg switch (vp->v_type) {
882 1.1 mrg case VBLK:
883 1.158 mrg if ((nblocks = bdev_size(dev)) == -1) {
884 1.1 mrg error = ENXIO;
885 1.1 mrg goto bad;
886 1.1 mrg }
887 1.1 mrg break;
888 1.1 mrg
889 1.1 mrg case VREG:
890 1.131 pooka if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
891 1.1 mrg goto bad;
892 1.1 mrg nblocks = (int)btodb(va.va_size);
893 1.149 mlelstv sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
894 1.1 mrg /*
895 1.1 mrg * limit the max # of outstanding I/O requests we issue
896 1.1 mrg * at any one time. take it easy on NFS servers.
897 1.1 mrg */
898 1.150 pooka if (vp->v_tag == VT_NFS)
899 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
900 1.1 mrg else
901 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
902 1.1 mrg break;
903 1.1 mrg
904 1.1 mrg default:
905 1.1 mrg error = ENXIO;
906 1.1 mrg goto bad;
907 1.1 mrg }
908 1.1 mrg
909 1.1 mrg /*
910 1.1 mrg * save nblocks in a safe place and convert to pages.
911 1.1 mrg */
912 1.1 mrg
913 1.144 mrg sdp->swd_nblks = nblocks;
914 1.99 matt npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
915 1.1 mrg
916 1.1 mrg /*
917 1.1 mrg * for block special files, we want to make sure that leave
918 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
919 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
920 1.1 mrg * note that because of this the "size" can be less than the
921 1.1 mrg * actual number of blocks on the device.
922 1.1 mrg */
923 1.1 mrg if (vp->v_type == VBLK) {
924 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
925 1.1 mrg size = npages - 1;
926 1.1 mrg addr = 1;
927 1.1 mrg } else {
928 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
929 1.1 mrg size = npages;
930 1.1 mrg addr = 0;
931 1.1 mrg }
932 1.1 mrg
933 1.1 mrg /*
934 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
935 1.1 mrg * area. we want at least one page.
936 1.1 mrg */
937 1.1 mrg
938 1.1 mrg if (size < 1) {
939 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
940 1.1 mrg error = EINVAL;
941 1.1 mrg goto bad;
942 1.1 mrg }
943 1.1 mrg
944 1.203 skrll UVMHIST_LOG(pdhist, " dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
945 1.1 mrg
946 1.1 mrg /*
947 1.1 mrg * now we need to allocate an extent to manage this swap device
948 1.1 mrg */
949 1.1 mrg
950 1.90 yamt sdp->swd_blist = blist_create(npages);
951 1.90 yamt /* mark all expect the `saved' region free. */
952 1.90 yamt blist_free(sdp->swd_blist, addr, size);
953 1.1 mrg
954 1.1 mrg /*
955 1.187 riastrad * allocate space to for swap encryption state and mark the
956 1.187 riastrad * keys uninitialized so we generate them lazily
957 1.187 riastrad */
958 1.190 riastrad sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
959 1.187 riastrad sdp->swd_encinit = false;
960 1.187 riastrad
961 1.187 riastrad /*
962 1.51 chs * if the vnode we are swapping to is the root vnode
963 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
964 1.51 chs * to make sure we don't overwrite it. do a statfs to
965 1.1 mrg * find its size and skip over it.
966 1.1 mrg */
967 1.1 mrg if (vp == rootvp) {
968 1.1 mrg struct mount *mp;
969 1.86 christos struct statvfs *sp;
970 1.1 mrg int rootblocks, rootpages;
971 1.1 mrg
972 1.1 mrg mp = rootvnode->v_mount;
973 1.1 mrg sp = &mp->mnt_stat;
974 1.86 christos rootblocks = sp->f_blocks * btodb(sp->f_frsize);
975 1.64 fredette /*
976 1.64 fredette * XXX: sp->f_blocks isn't the total number of
977 1.64 fredette * blocks in the filesystem, it's the number of
978 1.64 fredette * data blocks. so, our rootblocks almost
979 1.85 junyoung * definitely underestimates the total size
980 1.64 fredette * of the filesystem - how badly depends on the
981 1.85 junyoung * details of the filesystem type. there isn't
982 1.64 fredette * an obvious way to deal with this cleanly
983 1.85 junyoung * and perfectly, so for now we just pad our
984 1.64 fredette * rootblocks estimate with an extra 5 percent.
985 1.64 fredette */
986 1.64 fredette rootblocks += (rootblocks >> 5) +
987 1.64 fredette (rootblocks >> 6) +
988 1.64 fredette (rootblocks >> 7);
989 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
990 1.32 chs if (rootpages > size)
991 1.1 mrg panic("swap_on: miniroot larger than swap?");
992 1.1 mrg
993 1.90 yamt if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
994 1.1 mrg panic("swap_on: unable to preserve miniroot");
995 1.90 yamt }
996 1.1 mrg
997 1.32 chs size -= rootpages;
998 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
999 1.32 chs printf("leaving %d pages of swap\n", size);
1000 1.1 mrg }
1001 1.1 mrg
1002 1.39 chs /*
1003 1.39 chs * add a ref to vp to reflect usage as a swap device.
1004 1.39 chs */
1005 1.39 chs vref(vp);
1006 1.39 chs
1007 1.1 mrg /*
1008 1.1 mrg * now add the new swapdev to the drum and enable.
1009 1.1 mrg */
1010 1.157 dyoung error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1011 1.157 dyoung if (error != 0)
1012 1.48 fvdl panic("swapdrum_add");
1013 1.130 hannken /*
1014 1.130 hannken * If this is the first regular swap create the workqueue.
1015 1.130 hannken * => Protected by swap_syscall_lock.
1016 1.130 hannken */
1017 1.130 hannken if (vp->v_type != VBLK) {
1018 1.130 hannken if (sw_reg_count++ == 0) {
1019 1.130 hannken KASSERT(sw_reg_workqueue == NULL);
1020 1.130 hannken if (workqueue_create(&sw_reg_workqueue, "swapiod",
1021 1.130 hannken sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1022 1.145 mrg panic("%s: workqueue_create failed", __func__);
1023 1.130 hannken }
1024 1.130 hannken }
1025 1.48 fvdl
1026 1.48 fvdl sdp->swd_drumoffset = (int)result;
1027 1.48 fvdl sdp->swd_drumsize = npages;
1028 1.48 fvdl sdp->swd_npages = size;
1029 1.127 ad mutex_enter(&uvm_swap_data_lock);
1030 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
1031 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1032 1.32 chs uvmexp.swpages += size;
1033 1.81 pk uvmexp.swpgavail += size;
1034 1.127 ad mutex_exit(&uvm_swap_data_lock);
1035 1.1 mrg return (0);
1036 1.1 mrg
1037 1.1 mrg /*
1038 1.43 chs * failure: clean up and return error.
1039 1.1 mrg */
1040 1.43 chs
1041 1.43 chs bad:
1042 1.90 yamt if (sdp->swd_blist) {
1043 1.90 yamt blist_destroy(sdp->swd_blist);
1044 1.43 chs }
1045 1.43 chs if (vp != rootvp) {
1046 1.131 pooka (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1047 1.43 chs }
1048 1.1 mrg return (error);
1049 1.1 mrg }
1050 1.1 mrg
1051 1.1 mrg /*
1052 1.1 mrg * swap_off: stop swapping on swapdev
1053 1.1 mrg *
1054 1.32 chs * => swap data should be locked, we will unlock.
1055 1.1 mrg */
1056 1.1 mrg static int
1057 1.97 christos swap_off(struct lwp *l, struct swapdev *sdp)
1058 1.1 mrg {
1059 1.91 yamt int npages = sdp->swd_npages;
1060 1.91 yamt int error = 0;
1061 1.81 pk
1062 1.197 skrll UVMHIST_FUNC(__func__);
1063 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1064 1.1 mrg
1065 1.190 riastrad KASSERT(rw_write_held(&swap_syscall_lock));
1066 1.190 riastrad KASSERT(mutex_owned(&uvm_swap_data_lock));
1067 1.190 riastrad
1068 1.32 chs /* disable the swap area being removed */
1069 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1070 1.81 pk uvmexp.swpgavail -= npages;
1071 1.127 ad mutex_exit(&uvm_swap_data_lock);
1072 1.32 chs
1073 1.32 chs /*
1074 1.32 chs * the idea is to find all the pages that are paged out to this
1075 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1076 1.32 chs * memory can take two forms: aobjs and anons. call the
1077 1.32 chs * swapoff hook for each subsystem to bring in pages.
1078 1.32 chs */
1079 1.1 mrg
1080 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1081 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1082 1.91 yamt amap_swap_off(sdp->swd_drumoffset,
1083 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1084 1.91 yamt error = ENOMEM;
1085 1.91 yamt } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1086 1.91 yamt error = EBUSY;
1087 1.91 yamt }
1088 1.51 chs
1089 1.91 yamt if (error) {
1090 1.127 ad mutex_enter(&uvm_swap_data_lock);
1091 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1092 1.81 pk uvmexp.swpgavail += npages;
1093 1.127 ad mutex_exit(&uvm_swap_data_lock);
1094 1.91 yamt
1095 1.91 yamt return error;
1096 1.32 chs }
1097 1.1 mrg
1098 1.1 mrg /*
1099 1.130 hannken * If this is the last regular swap destroy the workqueue.
1100 1.130 hannken * => Protected by swap_syscall_lock.
1101 1.130 hannken */
1102 1.130 hannken if (sdp->swd_vp->v_type != VBLK) {
1103 1.130 hannken KASSERT(sw_reg_count > 0);
1104 1.130 hannken KASSERT(sw_reg_workqueue != NULL);
1105 1.130 hannken if (--sw_reg_count == 0) {
1106 1.130 hannken workqueue_destroy(sw_reg_workqueue);
1107 1.130 hannken sw_reg_workqueue = NULL;
1108 1.130 hannken }
1109 1.130 hannken }
1110 1.130 hannken
1111 1.130 hannken /*
1112 1.58 enami * done with the vnode.
1113 1.39 chs * drop our ref on the vnode before calling VOP_CLOSE()
1114 1.39 chs * so that spec_close() can tell if this is the last close.
1115 1.1 mrg */
1116 1.39 chs vrele(sdp->swd_vp);
1117 1.32 chs if (sdp->swd_vp != rootvp) {
1118 1.131 pooka (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1119 1.32 chs }
1120 1.32 chs
1121 1.127 ad mutex_enter(&uvm_swap_data_lock);
1122 1.81 pk uvmexp.swpages -= npages;
1123 1.82 pk uvmexp.swpginuse -= sdp->swd_npgbad;
1124 1.1 mrg
1125 1.120 matt if (swaplist_find(sdp->swd_vp, true) == NULL)
1126 1.145 mrg panic("%s: swapdev not in list", __func__);
1127 1.32 chs swaplist_trim();
1128 1.127 ad mutex_exit(&uvm_swap_data_lock);
1129 1.1 mrg
1130 1.32 chs /*
1131 1.32 chs * free all resources!
1132 1.32 chs */
1133 1.110 yamt vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1134 1.90 yamt blist_destroy(sdp->swd_blist);
1135 1.96 yamt bufq_free(sdp->swd_tab);
1136 1.190 riastrad kmem_free(__UNVOLATILE(sdp->swd_encmap),
1137 1.190 riastrad encmap_size(sdp->swd_drumsize));
1138 1.187 riastrad explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1139 1.187 riastrad explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1140 1.159 para kmem_free(sdp, sizeof(*sdp));
1141 1.1 mrg return (0);
1142 1.1 mrg }
1143 1.1 mrg
1144 1.164 christos void
1145 1.164 christos uvm_swap_shutdown(struct lwp *l)
1146 1.164 christos {
1147 1.164 christos struct swapdev *sdp;
1148 1.164 christos struct swappri *spp;
1149 1.164 christos struct vnode *vp;
1150 1.164 christos int error;
1151 1.164 christos
1152 1.206 hannken if (!uvm_swap_init_done || uvmexp.nswapdev == 0)
1153 1.204 mrg return;
1154 1.182 ad printf("turning off swap...");
1155 1.164 christos rw_enter(&swap_syscall_lock, RW_WRITER);
1156 1.164 christos mutex_enter(&uvm_swap_data_lock);
1157 1.164 christos again:
1158 1.164 christos LIST_FOREACH(spp, &swap_priority, spi_swappri)
1159 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1160 1.164 christos if (sdp->swd_flags & SWF_FAKE)
1161 1.164 christos continue;
1162 1.164 christos if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1163 1.164 christos continue;
1164 1.164 christos #ifdef DEBUG
1165 1.201 hannken printf("\nturning off swap on %s...", sdp->swd_path);
1166 1.164 christos #endif
1167 1.201 hannken /* Have to lock and reference vnode for swap_off(). */
1168 1.202 hannken vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
1169 1.202 hannken vref(vp);
1170 1.202 hannken error = swap_off(l, sdp);
1171 1.202 hannken vput(vp);
1172 1.202 hannken mutex_enter(&uvm_swap_data_lock);
1173 1.164 christos if (error) {
1174 1.164 christos printf("stopping swap on %s failed "
1175 1.164 christos "with error %d\n", sdp->swd_path, error);
1176 1.201 hannken TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1177 1.164 christos uvmexp.nswapdev--;
1178 1.164 christos swaplist_trim();
1179 1.164 christos }
1180 1.164 christos goto again;
1181 1.164 christos }
1182 1.164 christos printf(" done\n");
1183 1.164 christos mutex_exit(&uvm_swap_data_lock);
1184 1.164 christos rw_exit(&swap_syscall_lock);
1185 1.164 christos }
1186 1.164 christos
1187 1.164 christos
1188 1.1 mrg /*
1189 1.1 mrg * /dev/drum interface and i/o functions
1190 1.1 mrg */
1191 1.1 mrg
1192 1.1 mrg /*
1193 1.207 chs * swopen: allow the initial open from uvm_swap_init() and reject all others.
1194 1.207 chs */
1195 1.207 chs
1196 1.207 chs static int
1197 1.207 chs swopen(dev_t dev, int flag, int mode, struct lwp *l)
1198 1.207 chs {
1199 1.207 chs static bool inited = false;
1200 1.207 chs
1201 1.207 chs if (!inited) {
1202 1.207 chs inited = true;
1203 1.207 chs return 0;
1204 1.207 chs }
1205 1.207 chs return ENODEV;
1206 1.207 chs }
1207 1.207 chs
1208 1.207 chs /*
1209 1.1 mrg * swstrategy: perform I/O on the drum
1210 1.1 mrg *
1211 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1212 1.1 mrg */
1213 1.94 thorpej static void
1214 1.93 thorpej swstrategy(struct buf *bp)
1215 1.1 mrg {
1216 1.1 mrg struct swapdev *sdp;
1217 1.1 mrg struct vnode *vp;
1218 1.134 ad int pageno, bn;
1219 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1220 1.1 mrg
1221 1.1 mrg /*
1222 1.1 mrg * convert block number to swapdev. note that swapdev can't
1223 1.1 mrg * be yanked out from under us because we are holding resources
1224 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1225 1.1 mrg */
1226 1.41 chs pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1227 1.127 ad mutex_enter(&uvm_swap_data_lock);
1228 1.1 mrg sdp = swapdrum_getsdp(pageno);
1229 1.127 ad mutex_exit(&uvm_swap_data_lock);
1230 1.1 mrg if (sdp == NULL) {
1231 1.1 mrg bp->b_error = EINVAL;
1232 1.163 riastrad bp->b_resid = bp->b_bcount;
1233 1.1 mrg biodone(bp);
1234 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1235 1.1 mrg return;
1236 1.1 mrg }
1237 1.1 mrg
1238 1.1 mrg /*
1239 1.1 mrg * convert drum page number to block number on this swapdev.
1240 1.1 mrg */
1241 1.1 mrg
1242 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1243 1.99 matt bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1244 1.1 mrg
1245 1.203 skrll UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
1246 1.175 pgoyette ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1247 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1248 1.1 mrg
1249 1.1 mrg /*
1250 1.1 mrg * for block devices we finish up here.
1251 1.32 chs * for regular files we have to do more work which we delegate
1252 1.1 mrg * to sw_reg_strategy().
1253 1.1 mrg */
1254 1.1 mrg
1255 1.134 ad vp = sdp->swd_vp; /* swapdev vnode pointer */
1256 1.134 ad switch (vp->v_type) {
1257 1.1 mrg default:
1258 1.145 mrg panic("%s: vnode type 0x%x", __func__, vp->v_type);
1259 1.32 chs
1260 1.1 mrg case VBLK:
1261 1.1 mrg
1262 1.1 mrg /*
1263 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1264 1.1 mrg * on the swapdev (sdp).
1265 1.1 mrg */
1266 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1267 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1268 1.1 mrg
1269 1.1 mrg /*
1270 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1271 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1272 1.1 mrg */
1273 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1274 1.134 ad mutex_enter(bp->b_objlock);
1275 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1276 1.134 ad mutex_exit(bp->b_objlock);
1277 1.156 rmind mutex_enter(vp->v_interlock);
1278 1.134 ad vp->v_numoutput++; /* put it on swapdev */
1279 1.156 rmind mutex_exit(vp->v_interlock);
1280 1.1 mrg }
1281 1.1 mrg
1282 1.41 chs /*
1283 1.1 mrg * finally plug in swapdev vnode and start I/O
1284 1.1 mrg */
1285 1.1 mrg bp->b_vp = vp;
1286 1.156 rmind bp->b_objlock = vp->v_interlock;
1287 1.84 hannken VOP_STRATEGY(vp, bp);
1288 1.1 mrg return;
1289 1.32 chs
1290 1.1 mrg case VREG:
1291 1.1 mrg /*
1292 1.32 chs * delegate to sw_reg_strategy function.
1293 1.1 mrg */
1294 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1295 1.1 mrg return;
1296 1.1 mrg }
1297 1.1 mrg /* NOTREACHED */
1298 1.1 mrg }
1299 1.1 mrg
1300 1.1 mrg /*
1301 1.94 thorpej * swread: the read function for the drum (just a call to physio)
1302 1.94 thorpej */
1303 1.94 thorpej /*ARGSUSED*/
1304 1.94 thorpej static int
1305 1.112 yamt swread(dev_t dev, struct uio *uio, int ioflag)
1306 1.94 thorpej {
1307 1.197 skrll UVMHIST_FUNC(__func__);
1308 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1309 1.94 thorpej
1310 1.94 thorpej return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1311 1.94 thorpej }
1312 1.94 thorpej
1313 1.94 thorpej /*
1314 1.94 thorpej * swwrite: the write function for the drum (just a call to physio)
1315 1.94 thorpej */
1316 1.94 thorpej /*ARGSUSED*/
1317 1.94 thorpej static int
1318 1.112 yamt swwrite(dev_t dev, struct uio *uio, int ioflag)
1319 1.94 thorpej {
1320 1.197 skrll UVMHIST_FUNC(__func__);
1321 1.203 skrll UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1322 1.94 thorpej
1323 1.94 thorpej return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1324 1.94 thorpej }
1325 1.94 thorpej
1326 1.94 thorpej const struct bdevsw swap_bdevsw = {
1327 1.207 chs .d_open = swopen,
1328 1.207 chs .d_close = noclose,
1329 1.168 dholland .d_strategy = swstrategy,
1330 1.168 dholland .d_ioctl = noioctl,
1331 1.168 dholland .d_dump = nodump,
1332 1.168 dholland .d_psize = nosize,
1333 1.171 dholland .d_discard = nodiscard,
1334 1.168 dholland .d_flag = D_OTHER
1335 1.94 thorpej };
1336 1.94 thorpej
1337 1.94 thorpej const struct cdevsw swap_cdevsw = {
1338 1.168 dholland .d_open = nullopen,
1339 1.168 dholland .d_close = nullclose,
1340 1.168 dholland .d_read = swread,
1341 1.168 dholland .d_write = swwrite,
1342 1.168 dholland .d_ioctl = noioctl,
1343 1.168 dholland .d_stop = nostop,
1344 1.168 dholland .d_tty = notty,
1345 1.168 dholland .d_poll = nopoll,
1346 1.168 dholland .d_mmap = nommap,
1347 1.168 dholland .d_kqfilter = nokqfilter,
1348 1.172 dholland .d_discard = nodiscard,
1349 1.168 dholland .d_flag = D_OTHER,
1350 1.94 thorpej };
1351 1.94 thorpej
1352 1.94 thorpej /*
1353 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1354 1.1 mrg */
1355 1.1 mrg static void
1356 1.93 thorpej sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1357 1.1 mrg {
1358 1.1 mrg struct vnode *vp;
1359 1.1 mrg struct vndxfer *vnx;
1360 1.44 enami daddr_t nbn;
1361 1.122 christos char *addr;
1362 1.44 enami off_t byteoff;
1363 1.9 mrg int s, off, nra, error, sz, resid;
1364 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1365 1.1 mrg
1366 1.1 mrg /*
1367 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1368 1.1 mrg * our buffer.
1369 1.1 mrg */
1370 1.134 ad vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1371 1.1 mrg vnx->vx_flags = VX_BUSY;
1372 1.1 mrg vnx->vx_error = 0;
1373 1.1 mrg vnx->vx_pending = 0;
1374 1.1 mrg vnx->vx_bp = bp;
1375 1.1 mrg vnx->vx_sdp = sdp;
1376 1.1 mrg
1377 1.1 mrg /*
1378 1.1 mrg * setup for main loop where we read filesystem blocks into
1379 1.1 mrg * our buffer.
1380 1.1 mrg */
1381 1.1 mrg error = 0;
1382 1.185 msaitoh bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1383 1.1 mrg addr = bp->b_data; /* current position in buffer */
1384 1.99 matt byteoff = dbtob((uint64_t)bn);
1385 1.1 mrg
1386 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1387 1.1 mrg struct vndbuf *nbp;
1388 1.1 mrg
1389 1.1 mrg /*
1390 1.1 mrg * translate byteoffset into block number. return values:
1391 1.1 mrg * vp = vnode of underlying device
1392 1.1 mrg * nbn = new block number (on underlying vnode dev)
1393 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1394 1.1 mrg * block)
1395 1.1 mrg */
1396 1.1 mrg nra = 0;
1397 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1398 1.1 mrg &vp, &nbn, &nra);
1399 1.1 mrg
1400 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1401 1.51 chs /*
1402 1.23 marc * this used to just set error, but that doesn't
1403 1.23 marc * do the right thing. Instead, it causes random
1404 1.23 marc * memory errors. The panic() should remain until
1405 1.23 marc * this condition doesn't destabilize the system.
1406 1.23 marc */
1407 1.23 marc #if 1
1408 1.145 mrg panic("%s: swap to sparse file", __func__);
1409 1.23 marc #else
1410 1.1 mrg error = EIO; /* failure */
1411 1.23 marc #endif
1412 1.23 marc }
1413 1.1 mrg
1414 1.1 mrg /*
1415 1.1 mrg * punt if there was an error or a hole in the file.
1416 1.1 mrg * we must wait for any i/o ops we have already started
1417 1.1 mrg * to finish before returning.
1418 1.1 mrg *
1419 1.1 mrg * XXX we could deal with holes here but it would be
1420 1.1 mrg * a hassle (in the write case).
1421 1.1 mrg */
1422 1.1 mrg if (error) {
1423 1.1 mrg s = splbio();
1424 1.1 mrg vnx->vx_error = error; /* pass error up */
1425 1.1 mrg goto out;
1426 1.1 mrg }
1427 1.1 mrg
1428 1.1 mrg /*
1429 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1430 1.1 mrg */
1431 1.41 chs off = byteoff % sdp->swd_bsize;
1432 1.41 chs sz = (1 + nra) * sdp->swd_bsize - off;
1433 1.41 chs if (sz > resid)
1434 1.1 mrg sz = resid;
1435 1.1 mrg
1436 1.41 chs UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1437 1.203 skrll "vp %#jx/%#jx offset %#jx/%#jx",
1438 1.175 pgoyette (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1439 1.1 mrg
1440 1.1 mrg /*
1441 1.1 mrg * now get a buf structure. note that the vb_buf is
1442 1.1 mrg * at the front of the nbp structure so that you can
1443 1.1 mrg * cast pointers between the two structure easily.
1444 1.1 mrg */
1445 1.134 ad nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1446 1.134 ad buf_init(&nbp->vb_buf);
1447 1.134 ad nbp->vb_buf.b_flags = bp->b_flags;
1448 1.134 ad nbp->vb_buf.b_cflags = bp->b_cflags;
1449 1.134 ad nbp->vb_buf.b_oflags = bp->b_oflags;
1450 1.1 mrg nbp->vb_buf.b_bcount = sz;
1451 1.12 pk nbp->vb_buf.b_bufsize = sz;
1452 1.1 mrg nbp->vb_buf.b_error = 0;
1453 1.1 mrg nbp->vb_buf.b_data = addr;
1454 1.41 chs nbp->vb_buf.b_lblkno = 0;
1455 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1456 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1457 1.130 hannken nbp->vb_buf.b_iodone = sw_reg_biodone;
1458 1.53 chs nbp->vb_buf.b_vp = vp;
1459 1.156 rmind nbp->vb_buf.b_objlock = vp->v_interlock;
1460 1.53 chs if (vp->v_type == VBLK) {
1461 1.53 chs nbp->vb_buf.b_dev = vp->v_rdev;
1462 1.53 chs }
1463 1.1 mrg
1464 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1465 1.1 mrg
1466 1.1 mrg /*
1467 1.1 mrg * Just sort by block number
1468 1.1 mrg */
1469 1.1 mrg s = splbio();
1470 1.1 mrg if (vnx->vx_error != 0) {
1471 1.134 ad buf_destroy(&nbp->vb_buf);
1472 1.134 ad pool_put(&vndbuf_pool, nbp);
1473 1.1 mrg goto out;
1474 1.1 mrg }
1475 1.1 mrg vnx->vx_pending++;
1476 1.1 mrg
1477 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1478 1.134 ad /* XXXAD locking */
1479 1.143 yamt bufq_put(sdp->swd_tab, &nbp->vb_buf);
1480 1.1 mrg sw_reg_start(sdp);
1481 1.1 mrg splx(s);
1482 1.1 mrg
1483 1.1 mrg /*
1484 1.1 mrg * advance to the next I/O
1485 1.1 mrg */
1486 1.9 mrg byteoff += sz;
1487 1.1 mrg addr += sz;
1488 1.1 mrg }
1489 1.1 mrg
1490 1.1 mrg s = splbio();
1491 1.1 mrg
1492 1.1 mrg out: /* Arrive here at splbio */
1493 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1494 1.1 mrg if (vnx->vx_pending == 0) {
1495 1.134 ad error = vnx->vx_error;
1496 1.134 ad pool_put(&vndxfer_pool, vnx);
1497 1.134 ad bp->b_error = error;
1498 1.1 mrg biodone(bp);
1499 1.1 mrg }
1500 1.1 mrg splx(s);
1501 1.1 mrg }
1502 1.1 mrg
1503 1.1 mrg /*
1504 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1505 1.1 mrg *
1506 1.65 hannken * => reqs are sorted by b_rawblkno (above)
1507 1.1 mrg */
1508 1.1 mrg static void
1509 1.93 thorpej sw_reg_start(struct swapdev *sdp)
1510 1.1 mrg {
1511 1.1 mrg struct buf *bp;
1512 1.134 ad struct vnode *vp;
1513 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1514 1.1 mrg
1515 1.8 mrg /* recursion control */
1516 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1517 1.1 mrg return;
1518 1.1 mrg
1519 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1520 1.1 mrg
1521 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1522 1.143 yamt bp = bufq_get(sdp->swd_tab);
1523 1.1 mrg if (bp == NULL)
1524 1.1 mrg break;
1525 1.33 thorpej sdp->swd_active++;
1526 1.1 mrg
1527 1.1 mrg UVMHIST_LOG(pdhist,
1528 1.203 skrll "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %#jx",
1529 1.175 pgoyette (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1530 1.175 pgoyette bp->b_bcount);
1531 1.134 ad vp = bp->b_vp;
1532 1.156 rmind KASSERT(bp->b_objlock == vp->v_interlock);
1533 1.134 ad if ((bp->b_flags & B_READ) == 0) {
1534 1.156 rmind mutex_enter(vp->v_interlock);
1535 1.134 ad vp->v_numoutput++;
1536 1.156 rmind mutex_exit(vp->v_interlock);
1537 1.134 ad }
1538 1.134 ad VOP_STRATEGY(vp, bp);
1539 1.1 mrg }
1540 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1541 1.1 mrg }
1542 1.1 mrg
1543 1.1 mrg /*
1544 1.130 hannken * sw_reg_biodone: one of our i/o's has completed
1545 1.130 hannken */
1546 1.130 hannken static void
1547 1.130 hannken sw_reg_biodone(struct buf *bp)
1548 1.130 hannken {
1549 1.130 hannken workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1550 1.130 hannken }
1551 1.130 hannken
1552 1.130 hannken /*
1553 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1554 1.1 mrg *
1555 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1556 1.1 mrg */
1557 1.1 mrg static void
1558 1.130 hannken sw_reg_iodone(struct work *wk, void *dummy)
1559 1.1 mrg {
1560 1.130 hannken struct vndbuf *vbp = (void *)wk;
1561 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1562 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1563 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1564 1.72 chs int s, resid, error;
1565 1.130 hannken KASSERT(&vbp->vb_buf.b_work == wk);
1566 1.197 skrll UVMHIST_FUNC(__func__);
1567 1.203 skrll UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
1568 1.175 pgoyette (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1569 1.175 pgoyette (uintptr_t)vbp->vb_buf.b_data);
1570 1.203 skrll UVMHIST_LOG(pdhist, " cnt=%#jx resid=%#jx",
1571 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1572 1.1 mrg
1573 1.1 mrg /*
1574 1.1 mrg * protect vbp at splbio and update.
1575 1.1 mrg */
1576 1.1 mrg
1577 1.1 mrg s = splbio();
1578 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1579 1.1 mrg pbp->b_resid -= resid;
1580 1.1 mrg vnx->vx_pending--;
1581 1.1 mrg
1582 1.129 ad if (vbp->vb_buf.b_error != 0) {
1583 1.1 mrg /* pass error upward */
1584 1.134 ad error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1585 1.175 pgoyette UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1586 1.72 chs vnx->vx_error = error;
1587 1.35 chs }
1588 1.35 chs
1589 1.35 chs /*
1590 1.1 mrg * kill vbp structure
1591 1.1 mrg */
1592 1.134 ad buf_destroy(&vbp->vb_buf);
1593 1.134 ad pool_put(&vndbuf_pool, vbp);
1594 1.1 mrg
1595 1.1 mrg /*
1596 1.1 mrg * wrap up this transaction if it has run to completion or, in
1597 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1598 1.1 mrg */
1599 1.1 mrg if (vnx->vx_error != 0) {
1600 1.1 mrg /* pass error upward */
1601 1.134 ad error = vnx->vx_error;
1602 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1603 1.134 ad pbp->b_error = error;
1604 1.1 mrg biodone(pbp);
1605 1.134 ad pool_put(&vndxfer_pool, vnx);
1606 1.1 mrg }
1607 1.11 pk } else if (pbp->b_resid == 0) {
1608 1.46 chs KASSERT(vnx->vx_pending == 0);
1609 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1610 1.175 pgoyette UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1611 1.175 pgoyette (uintptr_t)pbp, vnx->vx_error, 0, 0);
1612 1.1 mrg biodone(pbp);
1613 1.134 ad pool_put(&vndxfer_pool, vnx);
1614 1.1 mrg }
1615 1.1 mrg }
1616 1.1 mrg
1617 1.1 mrg /*
1618 1.1 mrg * done! start next swapdev I/O if one is pending
1619 1.1 mrg */
1620 1.33 thorpej sdp->swd_active--;
1621 1.1 mrg sw_reg_start(sdp);
1622 1.1 mrg splx(s);
1623 1.1 mrg }
1624 1.1 mrg
1625 1.1 mrg
1626 1.1 mrg /*
1627 1.1 mrg * uvm_swap_alloc: allocate space on swap
1628 1.1 mrg *
1629 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1630 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1631 1.1 mrg * => space can be freed with uvm_swap_free
1632 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1633 1.127 ad * => we lock uvm_swap_data_lock
1634 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1635 1.1 mrg */
1636 1.1 mrg int
1637 1.119 thorpej uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1638 1.1 mrg {
1639 1.1 mrg struct swapdev *sdp;
1640 1.1 mrg struct swappri *spp;
1641 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1642 1.1 mrg
1643 1.1 mrg /*
1644 1.1 mrg * no swap devices configured yet? definite failure.
1645 1.1 mrg */
1646 1.1 mrg if (uvmexp.nswapdev < 1)
1647 1.1 mrg return 0;
1648 1.51 chs
1649 1.1 mrg /*
1650 1.162 jakllsch * XXXJAK: BEGIN HACK
1651 1.162 jakllsch *
1652 1.162 jakllsch * blist_alloc() in subr_blist.c will panic if we try to allocate
1653 1.162 jakllsch * too many slots.
1654 1.162 jakllsch */
1655 1.162 jakllsch if (*nslots > BLIST_MAX_ALLOC) {
1656 1.162 jakllsch if (__predict_false(lessok == false))
1657 1.162 jakllsch return 0;
1658 1.162 jakllsch *nslots = BLIST_MAX_ALLOC;
1659 1.162 jakllsch }
1660 1.162 jakllsch /* XXXJAK: END HACK */
1661 1.162 jakllsch
1662 1.162 jakllsch /*
1663 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1664 1.1 mrg */
1665 1.127 ad mutex_enter(&uvm_swap_data_lock);
1666 1.1 mrg
1667 1.1 mrg ReTry: /* XXXMRG */
1668 1.55 chs LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1669 1.164 christos TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1670 1.90 yamt uint64_t result;
1671 1.90 yamt
1672 1.1 mrg /* if it's not enabled, then we can't swap from it */
1673 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1674 1.1 mrg continue;
1675 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1676 1.1 mrg continue;
1677 1.90 yamt result = blist_alloc(sdp->swd_blist, *nslots);
1678 1.90 yamt if (result == BLIST_NONE) {
1679 1.1 mrg continue;
1680 1.1 mrg }
1681 1.90 yamt KASSERT(result < sdp->swd_drumsize);
1682 1.1 mrg
1683 1.1 mrg /*
1684 1.165 christos * successful allocation! now rotate the tailq.
1685 1.1 mrg */
1686 1.164 christos TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1687 1.164 christos TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1688 1.1 mrg sdp->swd_npginuse += *nslots;
1689 1.1 mrg uvmexp.swpginuse += *nslots;
1690 1.127 ad mutex_exit(&uvm_swap_data_lock);
1691 1.1 mrg /* done! return drum slot number */
1692 1.1 mrg UVMHIST_LOG(pdhist,
1693 1.175 pgoyette "success! returning %jd slots starting at %jd",
1694 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1695 1.55 chs return (result + sdp->swd_drumoffset);
1696 1.1 mrg }
1697 1.1 mrg }
1698 1.1 mrg
1699 1.1 mrg /* XXXMRG: BEGIN HACK */
1700 1.1 mrg if (*nslots > 1 && lessok) {
1701 1.1 mrg *nslots = 1;
1702 1.90 yamt /* XXXMRG: ugh! blist should support this for us */
1703 1.90 yamt goto ReTry;
1704 1.1 mrg }
1705 1.1 mrg /* XXXMRG: END HACK */
1706 1.1 mrg
1707 1.127 ad mutex_exit(&uvm_swap_data_lock);
1708 1.55 chs return 0;
1709 1.1 mrg }
1710 1.1 mrg
1711 1.141 ad /*
1712 1.141 ad * uvm_swapisfull: return true if most of available swap is allocated
1713 1.141 ad * and in use. we don't count some small portion as it may be inaccessible
1714 1.141 ad * to us at any given moment, for example if there is lock contention or if
1715 1.141 ad * pages are busy.
1716 1.141 ad */
1717 1.119 thorpej bool
1718 1.81 pk uvm_swapisfull(void)
1719 1.81 pk {
1720 1.141 ad int swpgonly;
1721 1.119 thorpej bool rv;
1722 1.81 pk
1723 1.200 chs if (uvmexp.swpages == 0) {
1724 1.200 chs return true;
1725 1.200 chs }
1726 1.200 chs
1727 1.127 ad mutex_enter(&uvm_swap_data_lock);
1728 1.81 pk KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1729 1.141 ad swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1730 1.141 ad uvm_swapisfull_factor);
1731 1.141 ad rv = (swpgonly >= uvmexp.swpgavail);
1732 1.127 ad mutex_exit(&uvm_swap_data_lock);
1733 1.81 pk
1734 1.81 pk return (rv);
1735 1.81 pk }
1736 1.81 pk
1737 1.1 mrg /*
1738 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1739 1.32 chs *
1740 1.127 ad * => we lock uvm_swap_data_lock
1741 1.32 chs */
1742 1.32 chs void
1743 1.93 thorpej uvm_swap_markbad(int startslot, int nslots)
1744 1.32 chs {
1745 1.32 chs struct swapdev *sdp;
1746 1.197 skrll UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1747 1.32 chs
1748 1.127 ad mutex_enter(&uvm_swap_data_lock);
1749 1.32 chs sdp = swapdrum_getsdp(startslot);
1750 1.82 pk KASSERT(sdp != NULL);
1751 1.32 chs
1752 1.32 chs /*
1753 1.32 chs * we just keep track of how many pages have been marked bad
1754 1.32 chs * in this device, to make everything add up in swap_off().
1755 1.32 chs * we assume here that the range of slots will all be within
1756 1.32 chs * one swap device.
1757 1.32 chs */
1758 1.41 chs
1759 1.82 pk KASSERT(uvmexp.swpgonly >= nslots);
1760 1.182 ad atomic_add_int(&uvmexp.swpgonly, -nslots);
1761 1.32 chs sdp->swd_npgbad += nslots;
1762 1.175 pgoyette UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1763 1.127 ad mutex_exit(&uvm_swap_data_lock);
1764 1.32 chs }
1765 1.32 chs
1766 1.32 chs /*
1767 1.1 mrg * uvm_swap_free: free swap slots
1768 1.1 mrg *
1769 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1770 1.127 ad * => we lock uvm_swap_data_lock
1771 1.1 mrg */
1772 1.1 mrg void
1773 1.93 thorpej uvm_swap_free(int startslot, int nslots)
1774 1.1 mrg {
1775 1.1 mrg struct swapdev *sdp;
1776 1.197 skrll UVMHIST_FUNC(__func__);
1777 1.197 skrll UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
1778 1.1 mrg startslot, 0, 0);
1779 1.32 chs
1780 1.32 chs /*
1781 1.32 chs * ignore attempts to free the "bad" slot.
1782 1.32 chs */
1783 1.46 chs
1784 1.32 chs if (startslot == SWSLOT_BAD) {
1785 1.32 chs return;
1786 1.32 chs }
1787 1.32 chs
1788 1.1 mrg /*
1789 1.51 chs * convert drum slot offset back to sdp, free the blocks
1790 1.51 chs * in the extent, and return. must hold pri lock to do
1791 1.1 mrg * lookup and access the extent.
1792 1.1 mrg */
1793 1.46 chs
1794 1.127 ad mutex_enter(&uvm_swap_data_lock);
1795 1.1 mrg sdp = swapdrum_getsdp(startslot);
1796 1.46 chs KASSERT(uvmexp.nswapdev >= 1);
1797 1.46 chs KASSERT(sdp != NULL);
1798 1.46 chs KASSERT(sdp->swd_npginuse >= nslots);
1799 1.90 yamt blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1800 1.1 mrg sdp->swd_npginuse -= nslots;
1801 1.1 mrg uvmexp.swpginuse -= nslots;
1802 1.127 ad mutex_exit(&uvm_swap_data_lock);
1803 1.1 mrg }
1804 1.1 mrg
1805 1.1 mrg /*
1806 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1807 1.1 mrg *
1808 1.1 mrg * => can be sync or async
1809 1.1 mrg */
1810 1.54 chs
1811 1.1 mrg int
1812 1.93 thorpej uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1813 1.1 mrg {
1814 1.56 chs int error;
1815 1.1 mrg
1816 1.56 chs error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1817 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1818 1.56 chs return error;
1819 1.1 mrg }
1820 1.1 mrg
1821 1.1 mrg /*
1822 1.1 mrg * uvm_swap_get: get a single page from swap
1823 1.1 mrg *
1824 1.1 mrg * => usually a sync op (from fault)
1825 1.1 mrg */
1826 1.54 chs
1827 1.1 mrg int
1828 1.93 thorpej uvm_swap_get(struct vm_page *page, int swslot, int flags)
1829 1.1 mrg {
1830 1.56 chs int error;
1831 1.1 mrg
1832 1.184 ad atomic_inc_uint(&uvmexp.nswget);
1833 1.46 chs KASSERT(flags & PGO_SYNCIO);
1834 1.32 chs if (swslot == SWSLOT_BAD) {
1835 1.47 chs return EIO;
1836 1.32 chs }
1837 1.81 pk
1838 1.56 chs error = uvm_swap_io(&page, swslot, 1, B_READ |
1839 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1840 1.56 chs if (error == 0) {
1841 1.47 chs
1842 1.26 chs /*
1843 1.54 chs * this page is no longer only in swap.
1844 1.26 chs */
1845 1.47 chs
1846 1.56 chs KASSERT(uvmexp.swpgonly > 0);
1847 1.182 ad atomic_dec_uint(&uvmexp.swpgonly);
1848 1.26 chs }
1849 1.56 chs return error;
1850 1.1 mrg }
1851 1.1 mrg
1852 1.1 mrg /*
1853 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1854 1.1 mrg */
1855 1.1 mrg
1856 1.1 mrg static int
1857 1.93 thorpej uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1858 1.1 mrg {
1859 1.1 mrg daddr_t startblk;
1860 1.1 mrg struct buf *bp;
1861 1.15 eeh vaddr_t kva;
1862 1.134 ad int error, mapinflags;
1863 1.187 riastrad bool write, async, swap_encrypt;
1864 1.197 skrll UVMHIST_FUNC(__func__);
1865 1.203 skrll UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
1866 1.1 mrg startslot, npages, flags, 0);
1867 1.32 chs
1868 1.41 chs write = (flags & B_READ) == 0;
1869 1.41 chs async = (flags & B_ASYNC) != 0;
1870 1.189 riastrad swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1871 1.41 chs
1872 1.1 mrg /*
1873 1.137 yamt * allocate a buf for the i/o.
1874 1.137 yamt */
1875 1.137 yamt
1876 1.137 yamt KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1877 1.137 yamt bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1878 1.137 yamt if (bp == NULL) {
1879 1.137 yamt uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1880 1.137 yamt return ENOMEM;
1881 1.137 yamt }
1882 1.137 yamt
1883 1.137 yamt /*
1884 1.1 mrg * convert starting drum slot to block number
1885 1.1 mrg */
1886 1.54 chs
1887 1.99 matt startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1888 1.1 mrg
1889 1.1 mrg /*
1890 1.54 chs * first, map the pages into the kernel.
1891 1.41 chs */
1892 1.41 chs
1893 1.54 chs mapinflags = !write ?
1894 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1895 1.54 chs UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1896 1.187 riastrad if (write && swap_encrypt) /* need to encrypt in-place */
1897 1.187 riastrad mapinflags |= UVMPAGER_MAPIN_READ;
1898 1.41 chs kva = uvm_pagermapin(pps, npages, mapinflags);
1899 1.1 mrg
1900 1.51 chs /*
1901 1.187 riastrad * encrypt writes in place if requested
1902 1.187 riastrad */
1903 1.187 riastrad
1904 1.187 riastrad if (write) do {
1905 1.187 riastrad struct swapdev *sdp;
1906 1.187 riastrad int i;
1907 1.187 riastrad
1908 1.187 riastrad /*
1909 1.187 riastrad * Get the swapdev so we can discriminate on the
1910 1.187 riastrad * encryption state. There may or may not be an
1911 1.187 riastrad * encryption key generated; we may or may not be asked
1912 1.187 riastrad * to encrypt swap.
1913 1.187 riastrad *
1914 1.187 riastrad * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1915 1.187 riastrad *
1916 1.187 riastrad * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1917 1.187 riastrad * and mark the slots encrypted.
1918 1.187 riastrad *
1919 1.187 riastrad * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1920 1.187 riastrad * marked encrypted from a past life. Mark them not
1921 1.187 riastrad * encrypted.
1922 1.187 riastrad *
1923 1.187 riastrad * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1924 1.187 riastrad * encrypted.
1925 1.187 riastrad */
1926 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
1927 1.187 riastrad sdp = swapdrum_getsdp(startslot);
1928 1.187 riastrad if (!sdp->swd_encinit) {
1929 1.190 riastrad if (!swap_encrypt) {
1930 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
1931 1.187 riastrad break;
1932 1.190 riastrad }
1933 1.187 riastrad uvm_swap_genkey(sdp);
1934 1.187 riastrad }
1935 1.187 riastrad KASSERT(sdp->swd_encinit);
1936 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
1937 1.187 riastrad
1938 1.192 jdolecek for (i = 0; i < npages; i++) {
1939 1.192 jdolecek int s = startslot + i;
1940 1.192 jdolecek KDASSERT(swapdrum_sdp_is(s, sdp));
1941 1.192 jdolecek KASSERT(s >= sdp->swd_drumoffset);
1942 1.192 jdolecek s -= sdp->swd_drumoffset;
1943 1.192 jdolecek KASSERT(s < sdp->swd_drumsize);
1944 1.192 jdolecek
1945 1.192 jdolecek if (swap_encrypt) {
1946 1.189 riastrad uvm_swap_encryptpage(sdp,
1947 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1948 1.190 riastrad atomic_or_32(&sdp->swd_encmap[s/32],
1949 1.190 riastrad __BIT(s%32));
1950 1.192 jdolecek } else {
1951 1.190 riastrad atomic_and_32(&sdp->swd_encmap[s/32],
1952 1.190 riastrad ~__BIT(s%32));
1953 1.187 riastrad }
1954 1.187 riastrad }
1955 1.187 riastrad } while (0);
1956 1.187 riastrad
1957 1.187 riastrad /*
1958 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1959 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1960 1.1 mrg */
1961 1.54 chs
1962 1.134 ad bp->b_cflags = BC_BUSY | BC_NOCACHE;
1963 1.134 ad bp->b_flags = (flags & (B_READ|B_ASYNC));
1964 1.1 mrg bp->b_proc = &proc0; /* XXX */
1965 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1966 1.122 christos bp->b_data = (void *)kva;
1967 1.1 mrg bp->b_blkno = startblk;
1968 1.41 chs bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1969 1.1 mrg
1970 1.51 chs /*
1971 1.41 chs * bump v_numoutput (counter of number of active outputs).
1972 1.1 mrg */
1973 1.54 chs
1974 1.41 chs if (write) {
1975 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
1976 1.134 ad swapdev_vp->v_numoutput++;
1977 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
1978 1.1 mrg }
1979 1.1 mrg
1980 1.1 mrg /*
1981 1.41 chs * for async ops we must set up the iodone handler.
1982 1.1 mrg */
1983 1.54 chs
1984 1.41 chs if (async) {
1985 1.186 chs bp->b_iodone = uvm_aio_aiodone;
1986 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1987 1.126 ad if (curlwp == uvm.pagedaemon_lwp)
1988 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1989 1.83 yamt else
1990 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1991 1.83 yamt } else {
1992 1.134 ad bp->b_iodone = NULL;
1993 1.83 yamt BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1994 1.1 mrg }
1995 1.1 mrg UVMHIST_LOG(pdhist,
1996 1.203 skrll "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
1997 1.175 pgoyette (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1998 1.1 mrg
1999 1.1 mrg /*
2000 1.1 mrg * now we start the I/O, and if async, return.
2001 1.1 mrg */
2002 1.54 chs
2003 1.84 hannken VOP_STRATEGY(swapdev_vp, bp);
2004 1.190 riastrad if (async) {
2005 1.190 riastrad /*
2006 1.190 riastrad * Reads are always synchronous; if this changes, we
2007 1.190 riastrad * need to add an asynchronous path for decryption.
2008 1.190 riastrad */
2009 1.193 jdolecek KASSERT(write);
2010 1.47 chs return 0;
2011 1.190 riastrad }
2012 1.1 mrg
2013 1.1 mrg /*
2014 1.1 mrg * must be sync i/o. wait for it to finish
2015 1.1 mrg */
2016 1.54 chs
2017 1.47 chs error = biowait(bp);
2018 1.191 riastrad if (error)
2019 1.191 riastrad goto out;
2020 1.1 mrg
2021 1.1 mrg /*
2022 1.187 riastrad * decrypt reads in place if needed
2023 1.187 riastrad */
2024 1.187 riastrad
2025 1.187 riastrad if (!write) do {
2026 1.187 riastrad struct swapdev *sdp;
2027 1.190 riastrad bool encinit;
2028 1.187 riastrad int i;
2029 1.187 riastrad
2030 1.190 riastrad /*
2031 1.190 riastrad * Get the sdp. Everything about it except the encinit
2032 1.190 riastrad * bit, saying whether the encryption key is
2033 1.190 riastrad * initialized or not, and the encrypted bit for each
2034 1.190 riastrad * page, is stable until all swap pages have been
2035 1.190 riastrad * released and the device is removed.
2036 1.190 riastrad */
2037 1.190 riastrad mutex_enter(&uvm_swap_data_lock);
2038 1.187 riastrad sdp = swapdrum_getsdp(startslot);
2039 1.190 riastrad encinit = sdp->swd_encinit;
2040 1.190 riastrad mutex_exit(&uvm_swap_data_lock);
2041 1.190 riastrad
2042 1.190 riastrad if (!encinit)
2043 1.187 riastrad /*
2044 1.187 riastrad * If there's no encryption key, there's no way
2045 1.187 riastrad * any of these slots can be encrypted, so
2046 1.187 riastrad * nothing to do here.
2047 1.187 riastrad */
2048 1.187 riastrad break;
2049 1.187 riastrad for (i = 0; i < npages; i++) {
2050 1.187 riastrad int s = startslot + i;
2051 1.190 riastrad KDASSERT(swapdrum_sdp_is(s, sdp));
2052 1.187 riastrad KASSERT(s >= sdp->swd_drumoffset);
2053 1.187 riastrad s -= sdp->swd_drumoffset;
2054 1.187 riastrad KASSERT(s < sdp->swd_drumsize);
2055 1.190 riastrad if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2056 1.190 riastrad __BIT(s%32)) == 0)
2057 1.187 riastrad continue;
2058 1.189 riastrad uvm_swap_decryptpage(sdp,
2059 1.188 riastrad (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2060 1.187 riastrad }
2061 1.187 riastrad } while (0);
2062 1.191 riastrad out:
2063 1.187 riastrad /*
2064 1.1 mrg * kill the pager mapping
2065 1.1 mrg */
2066 1.54 chs
2067 1.1 mrg uvm_pagermapout(kva, npages);
2068 1.1 mrg
2069 1.1 mrg /*
2070 1.54 chs * now dispose of the buf and we're done.
2071 1.1 mrg */
2072 1.54 chs
2073 1.134 ad if (write) {
2074 1.156 rmind mutex_enter(swapdev_vp->v_interlock);
2075 1.41 chs vwakeup(bp);
2076 1.156 rmind mutex_exit(swapdev_vp->v_interlock);
2077 1.134 ad }
2078 1.98 yamt putiobuf(bp);
2079 1.175 pgoyette UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
2080 1.134 ad
2081 1.47 chs return (error);
2082 1.1 mrg }
2083 1.187 riastrad
2084 1.187 riastrad /*
2085 1.187 riastrad * uvm_swap_genkey(sdp)
2086 1.187 riastrad *
2087 1.187 riastrad * Generate a key for swap encryption.
2088 1.187 riastrad */
2089 1.187 riastrad static void
2090 1.187 riastrad uvm_swap_genkey(struct swapdev *sdp)
2091 1.187 riastrad {
2092 1.187 riastrad uint8_t key[32];
2093 1.187 riastrad
2094 1.187 riastrad KASSERT(!sdp->swd_encinit);
2095 1.187 riastrad
2096 1.187 riastrad cprng_strong(kern_cprng, key, sizeof key, 0);
2097 1.194 riastrad aes_setenckey256(&sdp->swd_enckey, key);
2098 1.194 riastrad aes_setdeckey256(&sdp->swd_deckey, key);
2099 1.187 riastrad explicit_memset(key, 0, sizeof key);
2100 1.187 riastrad
2101 1.187 riastrad sdp->swd_encinit = true;
2102 1.187 riastrad }
2103 1.187 riastrad
2104 1.187 riastrad /*
2105 1.189 riastrad * uvm_swap_encryptpage(sdp, kva, slot)
2106 1.187 riastrad *
2107 1.187 riastrad * Encrypt one page of data at kva for the specified slot number
2108 1.187 riastrad * in the swap device.
2109 1.187 riastrad */
2110 1.187 riastrad static void
2111 1.189 riastrad uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2112 1.187 riastrad {
2113 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2114 1.187 riastrad
2115 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */
2116 1.187 riastrad le32enc(preiv, slot);
2117 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2118 1.187 riastrad
2119 1.187 riastrad /* *kva := AES-CBC_k(iv, *kva) */
2120 1.194 riastrad aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2121 1.194 riastrad AES_256_NROUNDS);
2122 1.187 riastrad
2123 1.187 riastrad explicit_memset(&iv, 0, sizeof iv);
2124 1.187 riastrad }
2125 1.187 riastrad
2126 1.187 riastrad /*
2127 1.189 riastrad * uvm_swap_decryptpage(sdp, kva, slot)
2128 1.187 riastrad *
2129 1.187 riastrad * Decrypt one page of data at kva for the specified slot number
2130 1.187 riastrad * in the swap device.
2131 1.187 riastrad */
2132 1.187 riastrad static void
2133 1.189 riastrad uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2134 1.187 riastrad {
2135 1.195 riastrad uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2136 1.187 riastrad
2137 1.187 riastrad /* iv := AES_k(le32enc(slot) || 0^96) */
2138 1.187 riastrad le32enc(preiv, slot);
2139 1.194 riastrad aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2140 1.187 riastrad
2141 1.187 riastrad /* *kva := AES-CBC^{-1}_k(iv, *kva) */
2142 1.194 riastrad aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2143 1.194 riastrad AES_256_NROUNDS);
2144 1.187 riastrad
2145 1.187 riastrad explicit_memset(&iv, 0, sizeof iv);
2146 1.187 riastrad }
2147 1.187 riastrad
2148 1.187 riastrad SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2149 1.187 riastrad {
2150 1.187 riastrad
2151 1.187 riastrad sysctl_createv(clog, 0, NULL, NULL,
2152 1.187 riastrad CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2153 1.187 riastrad SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2154 1.189 riastrad NULL, 0, &uvm_swap_encrypt, 0,
2155 1.187 riastrad CTL_VM, CTL_CREATE, CTL_EOL);
2156 1.187 riastrad }
2157