Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.26
      1  1.26      chs /*	$NetBSD: uvm_swap.c,v 1.26 1999/03/26 17:34:16 chs Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5   1.1      mrg  * All rights reserved.
      6   1.1      mrg  *
      7   1.1      mrg  * Redistribution and use in source and binary forms, with or without
      8   1.1      mrg  * modification, are permitted provided that the following conditions
      9   1.1      mrg  * are met:
     10   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     11   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     12   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     15   1.1      mrg  * 3. The name of the author may not be used to endorse or promote products
     16   1.1      mrg  *    derived from this software without specific prior written permission.
     17   1.1      mrg  *
     18   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19   1.1      mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20   1.1      mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21   1.1      mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22   1.1      mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23   1.1      mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24   1.1      mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25   1.1      mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26   1.1      mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28   1.1      mrg  * SUCH DAMAGE.
     29   1.3      mrg  *
     30   1.3      mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31   1.3      mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32   1.1      mrg  */
     33   1.5      mrg 
     34   1.6  thorpej #include "fs_nfs.h"
     35   1.5      mrg #include "opt_uvmhist.h"
     36  1.16      mrg #include "opt_compat_netbsd.h"
     37   1.1      mrg 
     38   1.1      mrg #include <sys/param.h>
     39   1.1      mrg #include <sys/systm.h>
     40   1.1      mrg #include <sys/buf.h>
     41   1.1      mrg #include <sys/proc.h>
     42   1.1      mrg #include <sys/namei.h>
     43   1.1      mrg #include <sys/disklabel.h>
     44   1.1      mrg #include <sys/errno.h>
     45   1.1      mrg #include <sys/kernel.h>
     46   1.1      mrg #include <sys/malloc.h>
     47   1.1      mrg #include <sys/vnode.h>
     48   1.1      mrg #include <sys/file.h>
     49   1.1      mrg #include <sys/extent.h>
     50   1.1      mrg #include <sys/mount.h>
     51  1.12       pk #include <sys/pool.h>
     52   1.1      mrg #include <sys/syscallargs.h>
     53  1.17      mrg #include <sys/swap.h>
     54   1.1      mrg 
     55   1.1      mrg #include <vm/vm.h>
     56   1.1      mrg #include <vm/vm_conf.h>
     57   1.1      mrg 
     58   1.1      mrg #include <uvm/uvm.h>
     59   1.1      mrg 
     60   1.1      mrg #include <miscfs/specfs/specdev.h>
     61   1.1      mrg 
     62   1.1      mrg /*
     63   1.1      mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     64   1.1      mrg  */
     65   1.1      mrg 
     66   1.1      mrg /*
     67   1.1      mrg  * swap space is managed in the following way:
     68   1.1      mrg  *
     69   1.1      mrg  * each swap partition or file is described by a "swapdev" structure.
     70   1.1      mrg  * each "swapdev" structure contains a "swapent" structure which contains
     71   1.1      mrg  * information that is passed up to the user (via system calls).
     72   1.1      mrg  *
     73   1.1      mrg  * each swap partition is assigned a "priority" (int) which controls
     74   1.1      mrg  * swap parition usage.
     75   1.1      mrg  *
     76   1.1      mrg  * the system maintains a global data structure describing all swap
     77   1.1      mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     78   1.1      mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     79   1.1      mrg  * by the "swap_priority" global var.    each "swappri" contains a
     80   1.1      mrg  * CIRCLEQ of "swapdev" structures at that priority.
     81   1.1      mrg  *
     82   1.1      mrg  * the system maintains a fixed pool of "swapbuf" structures for use
     83   1.1      mrg  * at swap i/o time.  a swapbuf includes a "buf" structure and an
     84   1.1      mrg  * "aiodone" [we want to avoid malloc()'ing anything at swapout time
     85   1.1      mrg  * since memory may be low].
     86   1.1      mrg  *
     87   1.1      mrg  * locking:
     88   1.1      mrg  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89   1.1      mrg  *    system call and prevents the swap priority list from changing
     90   1.1      mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  1.26      chs  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92   1.1      mrg  *    structures including the priority list, the swapdev structures,
     93   1.1      mrg  *    and the swapmap extent.
     94   1.1      mrg  *  - swap_buf_lock (simple_lock): this lock protects the free swapbuf
     95   1.1      mrg  *    pool.
     96   1.1      mrg  *
     97   1.1      mrg  * each swap device has the following info:
     98   1.1      mrg  *  - swap device in use (could be disabled, preventing future use)
     99   1.1      mrg  *  - swap enabled (allows new allocations on swap)
    100   1.1      mrg  *  - map info in /dev/drum
    101   1.1      mrg  *  - vnode pointer
    102   1.1      mrg  * for swap files only:
    103   1.1      mrg  *  - block size
    104   1.1      mrg  *  - max byte count in buffer
    105   1.1      mrg  *  - buffer
    106   1.1      mrg  *  - credentials to use when doing i/o to file
    107   1.1      mrg  *
    108   1.1      mrg  * userland controls and configures swap with the swapctl(2) system call.
    109   1.1      mrg  * the sys_swapctl performs the following operations:
    110   1.1      mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    111   1.1      mrg  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    112   1.1      mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    113   1.1      mrg  *	the current swap config into the array.
    114   1.1      mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    115   1.1      mrg  *	priority in "misc", start swapping on it.
    116   1.1      mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    117   1.1      mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    118   1.1      mrg  *	"misc")
    119   1.1      mrg  */
    120   1.1      mrg 
    121   1.1      mrg /*
    122   1.1      mrg  * SWAP_TO_FILES: allows swapping to plain files.
    123   1.1      mrg  */
    124   1.1      mrg 
    125   1.1      mrg #define SWAP_TO_FILES
    126   1.1      mrg 
    127   1.1      mrg /*
    128   1.1      mrg  * swapdev: describes a single swap partition/file
    129   1.1      mrg  *
    130   1.1      mrg  * note the following should be true:
    131   1.1      mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    132   1.1      mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    133   1.1      mrg  */
    134   1.1      mrg struct swapdev {
    135  1.16      mrg 	struct oswapent swd_ose;
    136  1.16      mrg #define	swd_dev		swd_ose.ose_dev		/* device id */
    137  1.16      mrg #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    138  1.16      mrg #define	swd_priority	swd_ose.ose_priority	/* our priority */
    139  1.16      mrg 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    140  1.16      mrg 	char			*swd_path;	/* saved pathname of device */
    141  1.16      mrg 	int			swd_pathlen;	/* length of pathname */
    142  1.16      mrg 	int			swd_npages;	/* #pages we can use */
    143  1.16      mrg 	int			swd_npginuse;	/* #pages in use */
    144  1.16      mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    145  1.16      mrg 	int			swd_drumsize;	/* #pages in drum */
    146  1.16      mrg 	struct extent		*swd_ex;	/* extent for this swapdev */
    147  1.16      mrg 	struct vnode		*swd_vp;	/* backing vnode */
    148  1.16      mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    149   1.1      mrg 
    150   1.1      mrg #ifdef SWAP_TO_FILES
    151  1.16      mrg 	int			swd_bsize;	/* blocksize (bytes) */
    152  1.16      mrg 	int			swd_maxactive;	/* max active i/o reqs */
    153  1.16      mrg 	struct buf		swd_tab;	/* buffer list */
    154  1.16      mrg 	struct ucred		*swd_cred;	/* cred for file access */
    155   1.1      mrg #endif
    156   1.1      mrg };
    157   1.1      mrg 
    158   1.1      mrg /*
    159   1.1      mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    160   1.1      mrg  */
    161   1.1      mrg struct swappri {
    162   1.1      mrg 	int			spi_priority;     /* priority */
    163   1.1      mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    164   1.1      mrg 	/* circleq of swapdevs at this priority */
    165   1.1      mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    166   1.1      mrg };
    167   1.1      mrg 
    168   1.1      mrg /*
    169   1.1      mrg  * swapbuf, swapbuffer plus async i/o info
    170   1.1      mrg  */
    171   1.1      mrg struct swapbuf {
    172   1.1      mrg 	struct buf sw_buf;		/* a buffer structure */
    173   1.1      mrg 	struct uvm_aiodesc sw_aio;	/* aiodesc structure, used if ASYNC */
    174   1.1      mrg 	SIMPLEQ_ENTRY(swapbuf) sw_sq;	/* free list pointer */
    175   1.1      mrg };
    176   1.1      mrg 
    177   1.1      mrg /*
    178   1.1      mrg  * The following two structures are used to keep track of data transfers
    179   1.1      mrg  * on swap devices associated with regular files.
    180   1.1      mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    181   1.1      mrg  * structure names here to ease porting..
    182   1.1      mrg  */
    183   1.1      mrg struct vndxfer {
    184   1.1      mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    185   1.1      mrg 	struct swapdev	*vx_sdp;
    186   1.1      mrg 	int		vx_error;
    187   1.1      mrg 	int		vx_pending;	/* # of pending aux buffers */
    188   1.1      mrg 	int		vx_flags;
    189   1.1      mrg #define VX_BUSY		1
    190   1.1      mrg #define VX_DEAD		2
    191   1.1      mrg };
    192   1.1      mrg 
    193   1.1      mrg struct vndbuf {
    194   1.1      mrg 	struct buf	vb_buf;
    195   1.1      mrg 	struct vndxfer	*vb_xfer;
    196   1.1      mrg };
    197   1.1      mrg 
    198  1.12       pk 
    199   1.1      mrg /*
    200  1.12       pk  * We keep a of pool vndbuf's and vndxfer structures.
    201   1.1      mrg  */
    202  1.12       pk struct pool *vndxfer_pool;
    203  1.12       pk struct pool *vndbuf_pool;
    204   1.1      mrg 
    205  1.12       pk #define	getvndxfer(vnx)	do {						\
    206  1.12       pk 	int s = splbio();						\
    207  1.12       pk 	vnx = (struct vndxfer *)					\
    208  1.12       pk 		pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    209  1.12       pk 	splx(s);							\
    210  1.12       pk } while (0)
    211  1.12       pk 
    212  1.12       pk #define putvndxfer(vnx) {						\
    213  1.12       pk 	pool_put(vndxfer_pool, (void *)(vnx));				\
    214  1.12       pk }
    215  1.12       pk 
    216  1.12       pk #define	getvndbuf(vbp)	do {						\
    217  1.12       pk 	int s = splbio();						\
    218  1.12       pk 	vbp = (struct vndbuf *)						\
    219  1.12       pk 		pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    220  1.12       pk 	splx(s);							\
    221  1.12       pk } while (0)
    222   1.1      mrg 
    223  1.12       pk #define putvndbuf(vbp) {						\
    224  1.12       pk 	pool_put(vndbuf_pool, (void *)(vbp));				\
    225  1.12       pk }
    226   1.1      mrg 
    227   1.1      mrg 
    228   1.1      mrg /*
    229   1.1      mrg  * local variables
    230   1.1      mrg  */
    231   1.1      mrg static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    232   1.1      mrg SIMPLEQ_HEAD(swapbufhead, swapbuf);
    233  1.12       pk struct pool *swapbuf_pool;
    234   1.1      mrg 
    235   1.1      mrg /* list of all active swap devices [by priority] */
    236   1.1      mrg LIST_HEAD(swap_priority, swappri);
    237   1.1      mrg static struct swap_priority swap_priority;
    238   1.1      mrg 
    239   1.1      mrg /* locks */
    240   1.1      mrg lock_data_t swap_syscall_lock;
    241   1.1      mrg 
    242   1.1      mrg /*
    243   1.1      mrg  * prototypes
    244   1.1      mrg  */
    245   1.1      mrg static void		 swapdrum_add __P((struct swapdev *, int));
    246   1.1      mrg static struct swapdev	*swapdrum_getsdp __P((int));
    247   1.1      mrg 
    248   1.1      mrg static struct swapdev	*swaplist_find __P((struct vnode *, int));
    249   1.1      mrg static void		 swaplist_insert __P((struct swapdev *,
    250   1.1      mrg 					     struct swappri *, int));
    251   1.1      mrg static void		 swaplist_trim __P((void));
    252   1.1      mrg 
    253   1.1      mrg static int swap_on __P((struct proc *, struct swapdev *));
    254   1.1      mrg #ifdef SWAP_OFF_WORKS
    255   1.1      mrg static int swap_off __P((struct proc *, struct swapdev *));
    256   1.1      mrg #endif
    257   1.1      mrg 
    258   1.1      mrg #ifdef SWAP_TO_FILES
    259   1.1      mrg static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    260   1.1      mrg static void sw_reg_iodone __P((struct buf *));
    261   1.1      mrg static void sw_reg_start __P((struct swapdev *));
    262   1.1      mrg #endif
    263   1.1      mrg 
    264   1.1      mrg static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
    265   1.1      mrg static void uvm_swap_bufdone __P((struct buf *));
    266   1.1      mrg static int uvm_swap_io __P((struct vm_page **, int, int, int));
    267   1.1      mrg 
    268   1.1      mrg /*
    269   1.1      mrg  * uvm_swap_init: init the swap system data structures and locks
    270   1.1      mrg  *
    271   1.1      mrg  * => called at boot time from init_main.c after the filesystems
    272   1.1      mrg  *	are brought up (which happens after uvm_init())
    273   1.1      mrg  */
    274   1.1      mrg void
    275   1.1      mrg uvm_swap_init()
    276   1.1      mrg {
    277   1.1      mrg 	UVMHIST_FUNC("uvm_swap_init");
    278   1.1      mrg 
    279   1.1      mrg 	UVMHIST_CALLED(pdhist);
    280   1.1      mrg 	/*
    281   1.1      mrg 	 * first, init the swap list, its counter, and its lock.
    282   1.1      mrg 	 * then get a handle on the vnode for /dev/drum by using
    283   1.1      mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    284   1.1      mrg 	 */
    285   1.1      mrg 
    286   1.1      mrg 	LIST_INIT(&swap_priority);
    287   1.1      mrg 	uvmexp.nswapdev = 0;
    288   1.1      mrg 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    289  1.26      chs 	simple_lock_init(&uvm.swap_data_lock);
    290  1.12       pk 
    291   1.1      mrg 	if (bdevvp(swapdev, &swapdev_vp))
    292   1.1      mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    293   1.1      mrg 
    294   1.1      mrg 	/*
    295   1.1      mrg 	 * create swap block resource map to map /dev/drum.   the range
    296   1.1      mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    297   1.1      mrg 	 * that block 0 is reserved (used to indicate an allocation
    298   1.1      mrg 	 * failure, or no allocation).
    299   1.1      mrg 	 */
    300   1.1      mrg 	swapmap = extent_create("swapmap", 1, INT_MAX,
    301   1.1      mrg 				M_VMSWAP, 0, 0, EX_NOWAIT);
    302   1.1      mrg 	if (swapmap == 0)
    303   1.1      mrg 		panic("uvm_swap_init: extent_create failed");
    304   1.1      mrg 
    305   1.1      mrg 	/*
    306   1.1      mrg 	 * allocate our private pool of "swapbuf" structures (includes
    307   1.1      mrg 	 * a "buf" structure).  ["nswbuf" comes from param.c and can
    308   1.1      mrg 	 * be adjusted by MD code before we get here].
    309   1.1      mrg 	 */
    310   1.1      mrg 
    311  1.12       pk 	swapbuf_pool =
    312  1.12       pk 		pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
    313  1.12       pk 			    NULL, NULL, 0);
    314  1.12       pk 	if (swapbuf_pool == NULL)
    315  1.12       pk 		panic("swapinit: pool_create failed");
    316  1.12       pk 	/* XXX - set a maximum on swapbuf_pool? */
    317  1.12       pk 
    318  1.12       pk 	vndxfer_pool =
    319  1.12       pk 		pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
    320  1.12       pk 			    NULL, NULL, 0);
    321  1.12       pk 	if (vndxfer_pool == NULL)
    322  1.12       pk 		panic("swapinit: pool_create failed");
    323  1.12       pk 
    324  1.12       pk 	vndbuf_pool =
    325  1.12       pk 		pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
    326  1.12       pk 			    NULL, NULL, 0);
    327  1.12       pk 	if (vndbuf_pool == NULL)
    328  1.12       pk 		panic("swapinit: pool_create failed");
    329   1.1      mrg 	/*
    330   1.1      mrg 	 * done!
    331   1.1      mrg 	 */
    332   1.1      mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    333   1.1      mrg }
    334   1.1      mrg 
    335   1.1      mrg /*
    336   1.1      mrg  * swaplist functions: functions that operate on the list of swap
    337   1.1      mrg  * devices on the system.
    338   1.1      mrg  */
    339   1.1      mrg 
    340   1.1      mrg /*
    341   1.1      mrg  * swaplist_insert: insert swap device "sdp" into the global list
    342   1.1      mrg  *
    343  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    344   1.1      mrg  * => caller must provide a newly malloc'd swappri structure (we will
    345   1.1      mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    346   1.1      mrg  *	here while adding swap)
    347   1.1      mrg  */
    348   1.1      mrg static void
    349   1.1      mrg swaplist_insert(sdp, newspp, priority)
    350   1.1      mrg 	struct swapdev *sdp;
    351   1.1      mrg 	struct swappri *newspp;
    352   1.1      mrg 	int priority;
    353   1.1      mrg {
    354   1.1      mrg 	struct swappri *spp, *pspp;
    355   1.1      mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    356   1.1      mrg 
    357   1.1      mrg 	/*
    358   1.1      mrg 	 * find entry at or after which to insert the new device.
    359   1.1      mrg 	 */
    360   1.1      mrg 	for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
    361   1.1      mrg 	     spp = spp->spi_swappri.le_next) {
    362   1.1      mrg 		if (priority <= spp->spi_priority)
    363   1.1      mrg 			break;
    364   1.1      mrg 		pspp = spp;
    365   1.1      mrg 	}
    366   1.1      mrg 
    367   1.1      mrg 	/*
    368   1.1      mrg 	 * new priority?
    369   1.1      mrg 	 */
    370   1.1      mrg 	if (spp == NULL || spp->spi_priority != priority) {
    371   1.1      mrg 		spp = newspp;  /* use newspp! */
    372   1.1      mrg 		UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
    373   1.1      mrg 
    374   1.1      mrg 		spp->spi_priority = priority;
    375   1.1      mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    376   1.1      mrg 
    377   1.1      mrg 		if (pspp)
    378   1.1      mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    379   1.1      mrg 		else
    380   1.1      mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    381   1.1      mrg 	} else {
    382   1.1      mrg 	  	/* we don't need a new priority structure, free it */
    383   1.1      mrg 		FREE(newspp, M_VMSWAP);
    384   1.1      mrg 	}
    385   1.1      mrg 
    386   1.1      mrg 	/*
    387   1.1      mrg 	 * priority found (or created).   now insert on the priority's
    388   1.1      mrg 	 * circleq list and bump the total number of swapdevs.
    389   1.1      mrg 	 */
    390   1.1      mrg 	sdp->swd_priority = priority;
    391   1.1      mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    392   1.1      mrg 	uvmexp.nswapdev++;
    393   1.1      mrg 
    394   1.1      mrg 	/*
    395   1.1      mrg 	 * done!
    396   1.1      mrg 	 */
    397   1.1      mrg }
    398   1.1      mrg 
    399   1.1      mrg /*
    400   1.1      mrg  * swaplist_find: find and optionally remove a swap device from the
    401   1.1      mrg  *	global list.
    402   1.1      mrg  *
    403  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    404   1.1      mrg  * => we return the swapdev we found (and removed)
    405   1.1      mrg  */
    406   1.1      mrg static struct swapdev *
    407   1.1      mrg swaplist_find(vp, remove)
    408   1.1      mrg 	struct vnode *vp;
    409   1.1      mrg 	boolean_t remove;
    410   1.1      mrg {
    411   1.1      mrg 	struct swapdev *sdp;
    412   1.1      mrg 	struct swappri *spp;
    413   1.1      mrg 
    414   1.1      mrg 	/*
    415   1.1      mrg 	 * search the lists for the requested vp
    416   1.1      mrg 	 */
    417   1.1      mrg 	for (spp = swap_priority.lh_first; spp != NULL;
    418   1.1      mrg 	     spp = spp->spi_swappri.le_next) {
    419   1.1      mrg 		for (sdp = spp->spi_swapdev.cqh_first;
    420   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
    421   1.1      mrg 		     sdp = sdp->swd_next.cqe_next)
    422   1.1      mrg 			if (sdp->swd_vp == vp) {
    423   1.1      mrg 				if (remove) {
    424   1.1      mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    425   1.1      mrg 					    sdp, swd_next);
    426   1.1      mrg 					uvmexp.nswapdev--;
    427   1.1      mrg 				}
    428   1.1      mrg 				return(sdp);
    429   1.1      mrg 			}
    430   1.1      mrg 	}
    431   1.1      mrg 	return (NULL);
    432   1.1      mrg }
    433   1.1      mrg 
    434   1.1      mrg 
    435   1.1      mrg /*
    436   1.1      mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    437   1.1      mrg  *	them.
    438   1.1      mrg  *
    439  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    440   1.1      mrg  */
    441   1.1      mrg static void
    442   1.1      mrg swaplist_trim()
    443   1.1      mrg {
    444   1.1      mrg 	struct swappri *spp, *nextspp;
    445   1.1      mrg 
    446   1.1      mrg 	for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
    447   1.1      mrg 		nextspp = spp->spi_swappri.le_next;
    448   1.1      mrg 		if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
    449   1.1      mrg 			continue;
    450   1.1      mrg 		LIST_REMOVE(spp, spi_swappri);
    451   1.1      mrg 		free((caddr_t)spp, M_VMSWAP);
    452   1.1      mrg 	}
    453   1.1      mrg }
    454   1.1      mrg 
    455   1.1      mrg /*
    456   1.1      mrg  * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
    457   1.1      mrg  *
    458   1.1      mrg  * => caller must hold swap_syscall_lock
    459  1.26      chs  * => uvm.swap_data_lock should be unlocked (we may sleep)
    460   1.1      mrg  */
    461   1.1      mrg static void
    462   1.1      mrg swapdrum_add(sdp, npages)
    463   1.1      mrg 	struct swapdev *sdp;
    464   1.1      mrg 	int	npages;
    465   1.1      mrg {
    466   1.1      mrg 	u_long result;
    467   1.1      mrg 
    468   1.1      mrg 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    469   1.1      mrg 	    EX_WAITOK, &result))
    470   1.1      mrg 		panic("swapdrum_add");
    471   1.1      mrg 
    472   1.1      mrg 	sdp->swd_drumoffset = result;
    473   1.1      mrg 	sdp->swd_drumsize = npages;
    474   1.1      mrg }
    475   1.1      mrg 
    476   1.1      mrg /*
    477   1.1      mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    478   1.1      mrg  *	to the "swapdev" that maps that section of the drum.
    479   1.1      mrg  *
    480   1.1      mrg  * => each swapdev takes one big contig chunk of the drum
    481  1.26      chs  * => caller must hold uvm.swap_data_lock
    482   1.1      mrg  */
    483   1.1      mrg static struct swapdev *
    484   1.1      mrg swapdrum_getsdp(pgno)
    485   1.1      mrg 	int pgno;
    486   1.1      mrg {
    487   1.1      mrg 	struct swapdev *sdp;
    488   1.1      mrg 	struct swappri *spp;
    489   1.1      mrg 
    490   1.1      mrg 	for (spp = swap_priority.lh_first; spp != NULL;
    491   1.1      mrg 	     spp = spp->spi_swappri.le_next)
    492   1.1      mrg 		for (sdp = spp->spi_swapdev.cqh_first;
    493   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
    494   1.1      mrg 		     sdp = sdp->swd_next.cqe_next)
    495   1.1      mrg 			if (pgno >= sdp->swd_drumoffset &&
    496   1.1      mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    497   1.1      mrg 				return sdp;
    498   1.1      mrg 			}
    499   1.1      mrg 	return NULL;
    500   1.1      mrg }
    501   1.1      mrg 
    502   1.1      mrg 
    503   1.1      mrg /*
    504   1.1      mrg  * sys_swapctl: main entry point for swapctl(2) system call
    505   1.1      mrg  * 	[with two helper functions: swap_on and swap_off]
    506   1.1      mrg  */
    507   1.1      mrg int
    508   1.1      mrg sys_swapctl(p, v, retval)
    509   1.1      mrg 	struct proc *p;
    510   1.1      mrg 	void *v;
    511   1.1      mrg 	register_t *retval;
    512   1.1      mrg {
    513   1.1      mrg 	struct sys_swapctl_args /* {
    514   1.1      mrg 		syscallarg(int) cmd;
    515   1.1      mrg 		syscallarg(void *) arg;
    516   1.1      mrg 		syscallarg(int) misc;
    517   1.1      mrg 	} */ *uap = (struct sys_swapctl_args *)v;
    518   1.1      mrg 	struct vnode *vp;
    519   1.1      mrg 	struct nameidata nd;
    520   1.1      mrg 	struct swappri *spp;
    521   1.1      mrg 	struct swapdev *sdp;
    522   1.1      mrg 	struct swapent *sep;
    523  1.16      mrg 	char	userpath[PATH_MAX + 1];
    524  1.18    enami 	size_t	len;
    525  1.18    enami 	int	count, error, misc;
    526   1.1      mrg 	int	priority;
    527   1.1      mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    528   1.1      mrg 
    529   1.1      mrg 	misc = SCARG(uap, misc);
    530   1.1      mrg 
    531   1.1      mrg 	/*
    532   1.1      mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    533   1.1      mrg 	 */
    534   1.7     fvdl 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
    535  1.24      mrg 
    536   1.1      mrg 	/*
    537   1.1      mrg 	 * we handle the non-priv NSWAP and STATS request first.
    538   1.1      mrg 	 *
    539   1.1      mrg 	 * SWAP_NSWAP: return number of config'd swap devices
    540   1.1      mrg 	 * [can also be obtained with uvmexp sysctl]
    541   1.1      mrg 	 */
    542   1.1      mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    543   1.8      mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    544   1.8      mrg 		    0, 0, 0);
    545   1.1      mrg 		*retval = uvmexp.nswapdev;
    546  1.16      mrg 		error = 0;
    547  1.16      mrg 		goto out;
    548   1.1      mrg 	}
    549   1.1      mrg 
    550   1.1      mrg 	/*
    551   1.1      mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    552   1.1      mrg 	 *
    553   1.1      mrg 	 * note that the swap_priority list can't change as long
    554   1.1      mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    555  1.26      chs 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    556   1.1      mrg 	 * copyout() and we don't want to be holding that lock then!
    557   1.1      mrg 	 */
    558  1.16      mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    559  1.16      mrg #if defined(COMPAT_13)
    560  1.16      mrg 	    || SCARG(uap, cmd) == SWAP_OSTATS
    561  1.16      mrg #endif
    562  1.16      mrg 	    ) {
    563   1.1      mrg 		sep = (struct swapent *)SCARG(uap, arg);
    564   1.1      mrg 		count = 0;
    565   1.1      mrg 
    566   1.1      mrg 		for (spp = swap_priority.lh_first; spp != NULL;
    567   1.1      mrg 		    spp = spp->spi_swappri.le_next) {
    568   1.1      mrg 			for (sdp = spp->spi_swapdev.cqh_first;
    569   1.1      mrg 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    570   1.1      mrg 			     sdp = sdp->swd_next.cqe_next) {
    571  1.16      mrg 			  	/*
    572  1.16      mrg 				 * backwards compatibility for system call.
    573  1.16      mrg 				 * note that we use 'struct oswapent' as an
    574  1.16      mrg 				 * overlay into both 'struct swapdev' and
    575  1.16      mrg 				 * the userland 'struct swapent', as we
    576  1.16      mrg 				 * want to retain backwards compatibility
    577  1.16      mrg 				 * with NetBSD 1.3.
    578  1.16      mrg 				 */
    579  1.16      mrg 				sdp->swd_ose.ose_inuse =
    580  1.20      chs 				    btodb(sdp->swd_npginuse << PAGE_SHIFT);
    581  1.16      mrg 				error = copyout((caddr_t)&sdp->swd_ose,
    582  1.16      mrg 				    (caddr_t)sep, sizeof(struct oswapent));
    583  1.16      mrg 
    584  1.16      mrg 				/* now copy out the path if necessary */
    585  1.16      mrg #if defined(COMPAT_13)
    586  1.16      mrg 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    587  1.16      mrg #else
    588  1.16      mrg 				if (error == 0)
    589  1.16      mrg #endif
    590  1.16      mrg 					error = copyout((caddr_t)sdp->swd_path,
    591  1.16      mrg 					    (caddr_t)&sep->se_path,
    592  1.16      mrg 					    sdp->swd_pathlen);
    593  1.16      mrg 
    594  1.16      mrg 				if (error)
    595  1.16      mrg 					goto out;
    596   1.1      mrg 				count++;
    597  1.16      mrg #if defined(COMPAT_13)
    598  1.16      mrg 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    599  1.16      mrg 					((struct oswapent *)sep)++;
    600  1.16      mrg 				else
    601  1.16      mrg #endif
    602  1.16      mrg 					sep++;
    603   1.1      mrg 			}
    604   1.1      mrg 		}
    605   1.1      mrg 
    606  1.16      mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    607   1.1      mrg 
    608   1.1      mrg 		*retval = count;
    609  1.16      mrg 		error = 0;
    610  1.16      mrg 		goto out;
    611   1.1      mrg 	}
    612   1.1      mrg 
    613   1.1      mrg 	/*
    614   1.1      mrg 	 * all other requests require superuser privs.   verify.
    615   1.1      mrg 	 */
    616  1.16      mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    617  1.16      mrg 		goto out;
    618   1.1      mrg 
    619   1.1      mrg 	/*
    620   1.1      mrg 	 * at this point we expect a path name in arg.   we will
    621   1.1      mrg 	 * use namei() to gain a vnode reference (vref), and lock
    622   1.1      mrg 	 * the vnode (VOP_LOCK).
    623   1.1      mrg 	 *
    624   1.1      mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    625  1.16      mrg 	 * miniroot)
    626   1.1      mrg 	 */
    627   1.1      mrg 	if (SCARG(uap, arg) == NULL) {
    628   1.1      mrg 		vp = rootvp;		/* miniroot */
    629   1.7     fvdl 		if (vget(vp, LK_EXCLUSIVE)) {
    630  1.16      mrg 			error = EBUSY;
    631  1.16      mrg 			goto out;
    632   1.1      mrg 		}
    633  1.16      mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    634  1.16      mrg 		    copystr("miniroot", userpath, sizeof userpath, &len))
    635  1.16      mrg 			panic("swapctl: miniroot copy failed");
    636   1.1      mrg 	} else {
    637  1.16      mrg 		int	space;
    638  1.16      mrg 		char	*where;
    639  1.16      mrg 
    640  1.16      mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    641  1.16      mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    642  1.16      mrg 			    sizeof userpath, &len)))
    643  1.16      mrg 				goto out;
    644  1.16      mrg 			space = UIO_SYSSPACE;
    645  1.16      mrg 			where = userpath;
    646  1.16      mrg 		} else {
    647  1.16      mrg 			space = UIO_USERSPACE;
    648  1.16      mrg 			where = (char *)SCARG(uap, arg);
    649   1.1      mrg 		}
    650  1.16      mrg 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    651  1.16      mrg 		if ((error = namei(&nd)))
    652  1.16      mrg 			goto out;
    653   1.1      mrg 		vp = nd.ni_vp;
    654   1.1      mrg 	}
    655   1.1      mrg 	/* note: "vp" is referenced and locked */
    656   1.1      mrg 
    657   1.1      mrg 	error = 0;		/* assume no error */
    658   1.1      mrg 	switch(SCARG(uap, cmd)) {
    659  1.24      mrg 	case SWAP_DUMPDEV:
    660  1.24      mrg 		if (vp->v_type != VBLK) {
    661  1.24      mrg 			error = ENOTBLK;
    662  1.24      mrg 			goto out;
    663  1.24      mrg 		}
    664  1.24      mrg 		dumpdev = vp->v_rdev;
    665  1.24      mrg 
    666  1.24      mrg 		break;
    667  1.24      mrg 
    668   1.1      mrg 	case SWAP_CTL:
    669   1.1      mrg 		/*
    670   1.1      mrg 		 * get new priority, remove old entry (if any) and then
    671   1.1      mrg 		 * reinsert it in the correct place.  finally, prune out
    672   1.1      mrg 		 * any empty priority structures.
    673   1.1      mrg 		 */
    674   1.1      mrg 		priority = SCARG(uap, misc);
    675   1.1      mrg 		spp = (struct swappri *)
    676   1.1      mrg 			malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    677  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    678   1.1      mrg 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    679   1.1      mrg 			error = ENOENT;
    680   1.1      mrg 		} else {
    681   1.1      mrg 			swaplist_insert(sdp, spp, priority);
    682   1.1      mrg 			swaplist_trim();
    683   1.1      mrg 		}
    684  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    685   1.1      mrg 		if (error)
    686   1.1      mrg 			free(spp, M_VMSWAP);
    687   1.1      mrg 		break;
    688   1.1      mrg 
    689   1.1      mrg 	case SWAP_ON:
    690   1.1      mrg 		/*
    691   1.1      mrg 		 * check for duplicates.   if none found, then insert a
    692   1.1      mrg 		 * dummy entry on the list to prevent someone else from
    693   1.1      mrg 		 * trying to enable this device while we are working on
    694   1.1      mrg 		 * it.
    695   1.1      mrg 		 */
    696   1.1      mrg 		priority = SCARG(uap, misc);
    697  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    698   1.1      mrg 		if ((sdp = swaplist_find(vp, 0)) != NULL) {
    699   1.1      mrg 			error = EBUSY;
    700  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    701  1.16      mrg 			break;
    702   1.1      mrg 		}
    703   1.1      mrg 		sdp = (struct swapdev *)
    704   1.1      mrg 			malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    705   1.1      mrg 		spp = (struct swappri *)
    706   1.1      mrg 			malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    707  1.14    perry 		memset(sdp, 0, sizeof(*sdp));
    708   1.1      mrg 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    709   1.1      mrg 		sdp->swd_vp = vp;
    710   1.1      mrg 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    711   1.1      mrg #ifdef SWAP_TO_FILES
    712   1.1      mrg 		/*
    713   1.1      mrg 		 * XXX Is NFS elaboration necessary?
    714   1.1      mrg 		 */
    715   1.1      mrg 		if (vp->v_type == VREG)
    716   1.1      mrg 			sdp->swd_cred = crdup(p->p_ucred);
    717   1.1      mrg #endif
    718   1.1      mrg 		swaplist_insert(sdp, spp, priority);
    719  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    720   1.1      mrg 
    721  1.16      mrg 		sdp->swd_pathlen = len;
    722  1.16      mrg 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    723  1.19       pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    724  1.19       pk 			panic("swapctl: copystr");
    725   1.1      mrg 		/*
    726   1.1      mrg 		 * we've now got a FAKE placeholder in the swap list.
    727   1.1      mrg 		 * now attempt to enable swap on it.  if we fail, undo
    728   1.1      mrg 		 * what we've done and kill the fake entry we just inserted.
    729   1.1      mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    730   1.1      mrg 		 */
    731   1.1      mrg 		if ((error = swap_on(p, sdp)) != 0) {
    732  1.26      chs 			simple_lock(&uvm.swap_data_lock);
    733   1.8      mrg 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    734   1.1      mrg 			swaplist_trim();
    735  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    736   1.1      mrg #ifdef SWAP_TO_FILES
    737   1.1      mrg 			if (vp->v_type == VREG)
    738   1.1      mrg 				crfree(sdp->swd_cred);
    739   1.1      mrg #endif
    740  1.19       pk 			free(sdp->swd_path, M_VMSWAP);
    741   1.1      mrg 			free((caddr_t)sdp, M_VMSWAP);
    742   1.1      mrg 			break;
    743   1.1      mrg 		}
    744   1.1      mrg 
    745   1.1      mrg 		/*
    746   1.1      mrg 		 * got it!   now add a second reference to vp so that
    747   1.1      mrg 		 * we keep a reference to the vnode after we return.
    748   1.1      mrg 		 */
    749   1.1      mrg 		vref(vp);
    750   1.1      mrg 		break;
    751   1.1      mrg 
    752   1.1      mrg 	case SWAP_OFF:
    753   1.1      mrg 		UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
    754   1.1      mrg #ifdef SWAP_OFF_WORKS
    755   1.1      mrg 		/*
    756   1.1      mrg 		 * find the entry of interest and ensure it is enabled.
    757   1.1      mrg 		 */
    758  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    759   1.1      mrg 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    760  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    761   1.1      mrg 			error = ENXIO;
    762   1.1      mrg 			break;
    763   1.1      mrg 		}
    764   1.1      mrg 		/*
    765   1.1      mrg 		 * If a device isn't in use or enabled, we
    766   1.1      mrg 		 * can't stop swapping from it (again).
    767   1.1      mrg 		 */
    768   1.1      mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    769  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    770   1.1      mrg 			error = EBUSY;
    771  1.16      mrg 			break;
    772   1.1      mrg 		}
    773   1.1      mrg 		/* XXXCDC: should we call with list locked or unlocked? */
    774   1.1      mrg 		if ((error = swap_off(p, sdp)) != 0)
    775  1.16      mrg 			break;
    776   1.1      mrg 		/* XXXCDC: might need relock here */
    777   1.1      mrg 
    778   1.1      mrg 		/*
    779   1.1      mrg 		 * now we can kill the entry.
    780   1.1      mrg 		 */
    781   1.1      mrg 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    782   1.1      mrg 			error = ENXIO;
    783   1.1      mrg 			break;
    784   1.1      mrg 		}
    785  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    786   1.1      mrg 		free((caddr_t)sdp, M_VMSWAP);
    787   1.1      mrg #else
    788   1.1      mrg 		error = EINVAL;
    789   1.1      mrg #endif
    790   1.1      mrg 		break;
    791   1.1      mrg 
    792   1.1      mrg 	default:
    793   1.1      mrg 		UVMHIST_LOG(pdhist, "unhandled command: %#x",
    794   1.1      mrg 		    SCARG(uap, cmd), 0, 0, 0);
    795   1.1      mrg 		error = EINVAL;
    796   1.1      mrg 	}
    797   1.1      mrg 
    798   1.1      mrg 	/*
    799   1.1      mrg 	 * done!   use vput to drop our reference and unlock
    800   1.1      mrg 	 */
    801   1.1      mrg 	vput(vp);
    802  1.16      mrg out:
    803   1.7     fvdl 	lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
    804   1.1      mrg 
    805   1.1      mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    806   1.1      mrg 	return (error);
    807   1.1      mrg }
    808   1.1      mrg 
    809   1.1      mrg /*
    810   1.1      mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    811   1.1      mrg  *	swapdev is already on the global list, but disabled (marked
    812   1.1      mrg  *	SWF_FAKE).
    813   1.1      mrg  *
    814   1.1      mrg  * => we avoid the start of the disk (to protect disk labels)
    815   1.1      mrg  * => we also avoid the miniroot, if we are swapping to root.
    816  1.26      chs  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    817   1.1      mrg  *	if needed.
    818   1.1      mrg  */
    819   1.1      mrg static int
    820   1.1      mrg swap_on(p, sdp)
    821   1.1      mrg 	struct proc *p;
    822   1.1      mrg 	struct swapdev *sdp;
    823   1.1      mrg {
    824   1.1      mrg 	static int count = 0;	/* static */
    825   1.1      mrg 	struct vnode *vp;
    826   1.1      mrg 	int error, npages, nblocks, size;
    827   1.1      mrg 	long addr;
    828   1.1      mrg #ifdef SWAP_TO_FILES
    829   1.1      mrg 	struct vattr va;
    830   1.1      mrg #endif
    831   1.1      mrg #ifdef NFS
    832   1.1      mrg 	extern int (**nfsv2_vnodeop_p) __P((void *));
    833   1.1      mrg #endif /* NFS */
    834   1.1      mrg 	dev_t dev;
    835   1.1      mrg 	char *name;
    836   1.1      mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    837   1.1      mrg 
    838   1.1      mrg 	/*
    839   1.1      mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    840   1.1      mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    841   1.1      mrg 	 * contains the dev_t of the file, if it a block device.
    842   1.1      mrg 	 */
    843   1.1      mrg 
    844   1.1      mrg 	vp = sdp->swd_vp;
    845   1.1      mrg 	dev = sdp->swd_dev;
    846   1.1      mrg 
    847   1.1      mrg 	/*
    848   1.1      mrg 	 * open the swap file (mostly useful for block device files to
    849   1.1      mrg 	 * let device driver know what is up).
    850   1.1      mrg 	 *
    851   1.1      mrg 	 * we skip the open/close for root on swap because the root
    852   1.1      mrg 	 * has already been opened when root was mounted (mountroot).
    853   1.1      mrg 	 */
    854   1.1      mrg 	if (vp != rootvp) {
    855   1.1      mrg 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    856   1.1      mrg 			return (error);
    857   1.1      mrg 	}
    858   1.1      mrg 
    859   1.1      mrg 	/* XXX this only works for block devices */
    860   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    861   1.1      mrg 
    862   1.1      mrg 	/*
    863   1.1      mrg 	 * we now need to determine the size of the swap area.   for
    864   1.1      mrg 	 * block specials we can call the d_psize function.
    865   1.1      mrg 	 * for normal files, we must stat [get attrs].
    866   1.1      mrg 	 *
    867   1.1      mrg 	 * we put the result in nblks.
    868   1.1      mrg 	 * for normal files, we also want the filesystem block size
    869   1.1      mrg 	 * (which we get with statfs).
    870   1.1      mrg 	 */
    871   1.1      mrg 	switch (vp->v_type) {
    872   1.1      mrg 	case VBLK:
    873   1.1      mrg 		if (bdevsw[major(dev)].d_psize == 0 ||
    874   1.1      mrg 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    875   1.1      mrg 			error = ENXIO;
    876   1.1      mrg 			goto bad;
    877   1.1      mrg 		}
    878   1.1      mrg 		break;
    879   1.1      mrg 
    880   1.1      mrg #ifdef SWAP_TO_FILES
    881   1.1      mrg 	case VREG:
    882   1.1      mrg 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    883   1.1      mrg 			goto bad;
    884   1.1      mrg 		nblocks = (int)btodb(va.va_size);
    885   1.1      mrg 		if ((error =
    886   1.1      mrg 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    887   1.1      mrg 			goto bad;
    888   1.1      mrg 
    889   1.1      mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    890   1.1      mrg 		/*
    891   1.1      mrg 		 * limit the max # of outstanding I/O requests we issue
    892   1.1      mrg 		 * at any one time.   take it easy on NFS servers.
    893   1.1      mrg 		 */
    894   1.1      mrg #ifdef NFS
    895   1.1      mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    896   1.1      mrg 			sdp->swd_maxactive = 2; /* XXX */
    897   1.1      mrg 		else
    898   1.1      mrg #endif /* NFS */
    899   1.1      mrg 			sdp->swd_maxactive = 8; /* XXX */
    900   1.1      mrg 		break;
    901   1.1      mrg #endif
    902   1.1      mrg 
    903   1.1      mrg 	default:
    904   1.1      mrg 		error = ENXIO;
    905   1.1      mrg 		goto bad;
    906   1.1      mrg 	}
    907   1.1      mrg 
    908   1.1      mrg 	/*
    909   1.1      mrg 	 * save nblocks in a safe place and convert to pages.
    910   1.1      mrg 	 */
    911   1.1      mrg 
    912  1.16      mrg 	sdp->swd_ose.ose_nblks = nblocks;
    913  1.20      chs 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    914   1.1      mrg 
    915   1.1      mrg 	/*
    916   1.1      mrg 	 * for block special files, we want to make sure that leave
    917   1.1      mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    918   1.1      mrg 	 * over them (randomly choosing to skip PAGE_SIZE bytes).
    919   1.1      mrg 	 * note that because of this the "size" can be less than the
    920   1.1      mrg 	 * actual number of blocks on the device.
    921   1.1      mrg 	 */
    922   1.1      mrg 	if (vp->v_type == VBLK) {
    923   1.1      mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    924   1.1      mrg 		size = npages - 1;
    925   1.1      mrg 		addr = 1;
    926   1.1      mrg 	} else {
    927   1.1      mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    928   1.1      mrg 		size = npages;
    929   1.1      mrg 		addr = 0;
    930   1.1      mrg 	}
    931   1.1      mrg 
    932   1.1      mrg 	/*
    933   1.1      mrg 	 * make sure we have enough blocks for a reasonable sized swap
    934   1.1      mrg 	 * area.   we want at least one page.
    935   1.1      mrg 	 */
    936   1.1      mrg 
    937   1.1      mrg 	if (size < 1) {
    938   1.1      mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    939   1.1      mrg 		error = EINVAL;
    940   1.1      mrg 		goto bad;
    941   1.1      mrg 	}
    942   1.1      mrg 
    943   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    944   1.1      mrg 
    945   1.1      mrg 	/*
    946   1.1      mrg 	 * now we need to allocate an extent to manage this swap device
    947   1.1      mrg 	 */
    948   1.1      mrg 	name = malloc(12, M_VMSWAP, M_WAITOK);
    949   1.1      mrg 	sprintf(name, "swap0x%04x", count++);
    950   1.1      mrg 
    951   1.1      mrg 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    952   1.1      mrg 	sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
    953  1.12       pk 				    0, 0, EX_WAITOK);
    954   1.1      mrg 	/* allocate the `saved' region from the extent so it won't be used */
    955   1.1      mrg 	if (addr) {
    956   1.1      mrg 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    957   1.1      mrg 			panic("disklabel region");
    958   1.1      mrg 		sdp->swd_npginuse += addr;
    959  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    960   1.1      mrg 		uvmexp.swpginuse += addr;
    961  1.26      chs 		uvmexp.swpgonly += addr;
    962  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    963   1.1      mrg 	}
    964   1.1      mrg 
    965   1.1      mrg 	/*
    966   1.1      mrg 	 * if the vnode we are swapping to is the root vnode
    967   1.1      mrg 	 * (i.e. we are swapping to the miniroot) then we want
    968   1.1      mrg 	 * to make sure we don't overwrite it.   do a statfs to
    969   1.1      mrg 	 * find its size and skip over it.
    970   1.1      mrg 	 */
    971   1.1      mrg 	if (vp == rootvp) {
    972   1.1      mrg 		struct mount *mp;
    973   1.1      mrg 		struct statfs *sp;
    974   1.1      mrg 		int rootblocks, rootpages;
    975   1.1      mrg 
    976   1.1      mrg 		mp = rootvnode->v_mount;
    977   1.1      mrg 		sp = &mp->mnt_stat;
    978   1.1      mrg 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    979  1.20      chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    980   1.1      mrg 		if (rootpages > npages)
    981   1.1      mrg 			panic("swap_on: miniroot larger than swap?");
    982   1.1      mrg 
    983   1.1      mrg 		if (extent_alloc_region(sdp->swd_ex, addr,
    984   1.1      mrg 					rootpages, EX_WAITOK))
    985   1.1      mrg 			panic("swap_on: unable to preserve miniroot");
    986   1.1      mrg 
    987  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    988   1.1      mrg 		sdp->swd_npginuse += (rootpages - addr);
    989   1.1      mrg 		uvmexp.swpginuse += (rootpages - addr);
    990  1.26      chs 		uvmexp.swpgonly += (rootpages - addr);
    991  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    992   1.1      mrg 
    993   1.1      mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    994   1.1      mrg 		printf("leaving %d pages of swap\n", size - rootpages);
    995   1.1      mrg 	}
    996   1.1      mrg 
    997   1.1      mrg 	/*
    998   1.1      mrg 	 * now add the new swapdev to the drum and enable.
    999   1.1      mrg 	 */
   1000  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1001   1.1      mrg 	swapdrum_add(sdp, npages);
   1002   1.1      mrg 	sdp->swd_npages = npages;
   1003   1.1      mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1004   1.1      mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1005  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1006   1.1      mrg 	uvmexp.swpages += npages;
   1007   1.1      mrg 
   1008   1.1      mrg 	/*
   1009   1.1      mrg 	 * add anon's to reflect the swap space we added
   1010   1.1      mrg 	 */
   1011   1.1      mrg 	uvm_anon_add(size);
   1012   1.1      mrg 
   1013  1.12       pk #if 0
   1014  1.12       pk 	/*
   1015  1.12       pk 	 * At this point we could arrange to reserve memory for the
   1016  1.12       pk 	 * swap buffer pools.
   1017  1.12       pk 	 *
   1018  1.12       pk 	 * I don't think this is necessary, since swapping starts well
   1019  1.12       pk 	 * ahead of serious memory deprivation and the memory resource
   1020  1.12       pk 	 * pools hold on to actively used memory. This should ensure
   1021  1.12       pk 	 * we always have some resources to continue operation.
   1022  1.12       pk 	 */
   1023  1.12       pk 
   1024  1.12       pk 	int s = splbio();
   1025  1.12       pk 	int n = 8 * sdp->swd_maxactive;
   1026  1.12       pk 
   1027  1.12       pk 	(void)pool_prime(swapbuf_pool, n, 0);
   1028  1.12       pk 
   1029  1.12       pk 	if (vp->v_type == VREG) {
   1030  1.12       pk 		/* Allocate additional vnx and vnd buffers */
   1031  1.12       pk 		/*
   1032  1.12       pk 		 * Allocation Policy:
   1033  1.12       pk 		 *	(8  * swd_maxactive) vnx headers per swap dev
   1034  1.12       pk 		 *	(16 * swd_maxactive) vnd buffers per swap dev
   1035  1.12       pk 		 */
   1036  1.12       pk 
   1037  1.12       pk 		n = 8 * sdp->swd_maxactive;
   1038  1.12       pk 		(void)pool_prime(vndxfer_pool, n, 0);
   1039  1.12       pk 
   1040  1.12       pk 		n = 16 * sdp->swd_maxactive;
   1041  1.12       pk 		(void)pool_prime(vndbuf_pool, n, 0);
   1042  1.12       pk 	}
   1043  1.12       pk 	splx(s);
   1044  1.12       pk #endif
   1045  1.12       pk 
   1046   1.1      mrg 	return (0);
   1047   1.1      mrg 
   1048   1.1      mrg bad:
   1049   1.1      mrg 	/*
   1050   1.1      mrg 	 * failure: close device if necessary and return error.
   1051   1.1      mrg 	 */
   1052   1.1      mrg 	if (vp != rootvp)
   1053   1.1      mrg 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
   1054   1.1      mrg 	return (error);
   1055   1.1      mrg }
   1056   1.1      mrg 
   1057   1.1      mrg #ifdef SWAP_OFF_WORKS
   1058   1.1      mrg /*
   1059   1.1      mrg  * swap_off: stop swapping on swapdev
   1060   1.1      mrg  *
   1061   1.1      mrg  * XXXCDC: what conditions go here?
   1062   1.1      mrg  */
   1063   1.1      mrg static int
   1064   1.1      mrg swap_off(p, sdp)
   1065   1.1      mrg 	struct proc *p;
   1066   1.1      mrg 	struct swapdev *sdp;
   1067   1.1      mrg {
   1068   1.1      mrg 	char	*name;
   1069   1.1      mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1070   1.1      mrg 
   1071   1.1      mrg 	/* turn off the enable flag */
   1072   1.1      mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1073   1.1      mrg 
   1074   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev);
   1075   1.1      mrg 
   1076   1.1      mrg 	/*
   1077   1.1      mrg 	 * XXX write me
   1078   1.1      mrg 	 *
   1079   1.1      mrg 	 * the idea is to find out which processes are using this swap
   1080   1.1      mrg 	 * device, and page them all in.
   1081   1.1      mrg 	 *
   1082   1.1      mrg 	 * eventually, we should try to move them out to other swap areas
   1083   1.1      mrg 	 * if available.
   1084   1.1      mrg 	 *
   1085   1.1      mrg 	 * The alternative is to create a redirection map for this swap
   1086   1.1      mrg 	 * device.  This should work by moving all the pages of data from
   1087   1.1      mrg 	 * the ex-swap device to another one, and making an entry in the
   1088   1.1      mrg 	 * redirection map for it.  locking is going to be important for
   1089   1.1      mrg 	 * this!
   1090   1.1      mrg 	 *
   1091   1.1      mrg 	 * XXXCDC: also need to shrink anon pool
   1092   1.1      mrg 	 */
   1093   1.1      mrg 
   1094   1.1      mrg 	/* until the above code is written, we must ENODEV */
   1095   1.1      mrg 	return ENODEV;
   1096   1.1      mrg 
   1097   1.1      mrg 	extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
   1098   1.1      mrg 	name = sdp->swd_ex->ex_name;
   1099   1.1      mrg 	extent_destroy(sdp->swd_ex);
   1100   1.1      mrg 	free(name, M_VMSWAP);
   1101   1.1      mrg 	free((caddr_t)sdp->swd_ex, M_VMSWAP);
   1102   1.1      mrg 	if (sdp->swp_vp != rootvp)
   1103   1.1      mrg 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1104   1.1      mrg 	if (sdp->swd_vp)
   1105   1.1      mrg 		vrele(sdp->swd_vp);
   1106   1.1      mrg 	free((caddr_t)sdp, M_VMSWAP);
   1107   1.1      mrg 	return (0);
   1108   1.1      mrg }
   1109   1.1      mrg #endif
   1110   1.1      mrg 
   1111   1.1      mrg /*
   1112   1.1      mrg  * /dev/drum interface and i/o functions
   1113   1.1      mrg  */
   1114   1.1      mrg 
   1115   1.1      mrg /*
   1116   1.1      mrg  * swread: the read function for the drum (just a call to physio)
   1117   1.1      mrg  */
   1118   1.1      mrg /*ARGSUSED*/
   1119   1.1      mrg int
   1120   1.1      mrg swread(dev, uio, ioflag)
   1121   1.1      mrg 	dev_t dev;
   1122   1.1      mrg 	struct uio *uio;
   1123   1.1      mrg 	int ioflag;
   1124   1.1      mrg {
   1125   1.1      mrg 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1126   1.1      mrg 
   1127   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1128   1.1      mrg 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1129   1.1      mrg }
   1130   1.1      mrg 
   1131   1.1      mrg /*
   1132   1.1      mrg  * swwrite: the write function for the drum (just a call to physio)
   1133   1.1      mrg  */
   1134   1.1      mrg /*ARGSUSED*/
   1135   1.1      mrg int
   1136   1.1      mrg swwrite(dev, uio, ioflag)
   1137   1.1      mrg 	dev_t dev;
   1138   1.1      mrg 	struct uio *uio;
   1139   1.1      mrg 	int ioflag;
   1140   1.1      mrg {
   1141   1.1      mrg 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1142   1.1      mrg 
   1143   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1144   1.1      mrg 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1145   1.1      mrg }
   1146   1.1      mrg 
   1147   1.1      mrg /*
   1148   1.1      mrg  * swstrategy: perform I/O on the drum
   1149   1.1      mrg  *
   1150   1.1      mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1151   1.1      mrg  */
   1152   1.1      mrg void
   1153   1.1      mrg swstrategy(bp)
   1154   1.1      mrg 	struct buf *bp;
   1155   1.1      mrg {
   1156   1.1      mrg 	struct swapdev *sdp;
   1157   1.1      mrg 	struct vnode *vp;
   1158  1.25      chs 	int s, pageno, bn;
   1159   1.1      mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1160   1.1      mrg 
   1161   1.1      mrg 	/*
   1162   1.1      mrg 	 * convert block number to swapdev.   note that swapdev can't
   1163   1.1      mrg 	 * be yanked out from under us because we are holding resources
   1164   1.1      mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1165   1.1      mrg 	 */
   1166  1.20      chs 	pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
   1167  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1168   1.1      mrg 	sdp = swapdrum_getsdp(pageno);
   1169  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1170   1.1      mrg 	if (sdp == NULL) {
   1171   1.1      mrg 		bp->b_error = EINVAL;
   1172   1.1      mrg 		bp->b_flags |= B_ERROR;
   1173   1.1      mrg 		biodone(bp);
   1174   1.1      mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1175   1.1      mrg 		return;
   1176   1.1      mrg 	}
   1177   1.1      mrg 
   1178   1.1      mrg 	/*
   1179   1.1      mrg 	 * convert drum page number to block number on this swapdev.
   1180   1.1      mrg 	 */
   1181   1.1      mrg 
   1182   1.1      mrg 	pageno = pageno - sdp->swd_drumoffset;	/* page # on swapdev */
   1183  1.20      chs 	bn = btodb(pageno << PAGE_SHIFT);	/* convert to diskblock */
   1184   1.1      mrg 
   1185   1.1      mrg 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld\n",
   1186   1.1      mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1187   1.1      mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1188   1.1      mrg 
   1189   1.1      mrg 
   1190   1.1      mrg 	/*
   1191   1.1      mrg 	 * for block devices we finish up here.
   1192   1.1      mrg 	 * for regular files we have to do more work which we deligate
   1193   1.1      mrg 	 * to sw_reg_strategy().
   1194   1.1      mrg 	 */
   1195   1.1      mrg 
   1196   1.1      mrg 	switch (sdp->swd_vp->v_type) {
   1197   1.1      mrg 	default:
   1198   1.1      mrg 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1199   1.1      mrg 	case VBLK:
   1200   1.1      mrg 
   1201   1.1      mrg 		/*
   1202   1.1      mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1203   1.1      mrg 		 * on the swapdev (sdp).
   1204   1.1      mrg 		 */
   1205  1.25      chs 		s = splbio();
   1206   1.1      mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1207   1.1      mrg 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1208   1.1      mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1209   1.1      mrg 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
   1210   1.1      mrg 
   1211   1.1      mrg 		/*
   1212   1.1      mrg 		 * if we are doing a write, we have to redirect the i/o on
   1213   1.1      mrg 		 * drum's v_numoutput counter to the swapdevs.
   1214   1.1      mrg 		 */
   1215   1.1      mrg 		if ((bp->b_flags & B_READ) == 0) {
   1216   1.1      mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1217   1.1      mrg 			vp->v_numoutput++;	/* put it on swapdev */
   1218   1.1      mrg 		}
   1219   1.1      mrg 
   1220   1.1      mrg 		/*
   1221   1.1      mrg 		 * dissassocate buffer with /dev/drum vnode
   1222   1.1      mrg 		 * [could be null if buf was from physio]
   1223   1.1      mrg 		 */
   1224   1.1      mrg 		if (bp->b_vp != NULLVP)
   1225   1.1      mrg 			brelvp(bp);
   1226   1.1      mrg 
   1227   1.1      mrg 		/*
   1228   1.1      mrg 		 * finally plug in swapdev vnode and start I/O
   1229   1.1      mrg 		 */
   1230   1.1      mrg 		bp->b_vp = vp;
   1231  1.25      chs 		splx(s);
   1232   1.1      mrg 		VOP_STRATEGY(bp);
   1233   1.1      mrg 		return;
   1234   1.1      mrg #ifdef SWAP_TO_FILES
   1235   1.1      mrg 	case VREG:
   1236   1.1      mrg 		/*
   1237   1.1      mrg 		 * deligate to sw_reg_strategy function.
   1238   1.1      mrg 		 */
   1239   1.1      mrg 		sw_reg_strategy(sdp, bp, bn);
   1240   1.1      mrg 		return;
   1241   1.1      mrg #endif
   1242   1.1      mrg 	}
   1243   1.1      mrg 	/* NOTREACHED */
   1244   1.1      mrg }
   1245   1.1      mrg 
   1246   1.1      mrg #ifdef SWAP_TO_FILES
   1247   1.1      mrg /*
   1248   1.1      mrg  * sw_reg_strategy: handle swap i/o to regular files
   1249   1.1      mrg  */
   1250   1.1      mrg static void
   1251   1.1      mrg sw_reg_strategy(sdp, bp, bn)
   1252   1.1      mrg 	struct swapdev	*sdp;
   1253   1.1      mrg 	struct buf	*bp;
   1254   1.1      mrg 	int		bn;
   1255   1.1      mrg {
   1256   1.1      mrg 	struct vnode	*vp;
   1257   1.1      mrg 	struct vndxfer	*vnx;
   1258   1.9      mrg 	daddr_t		nbn, byteoff;
   1259   1.1      mrg 	caddr_t		addr;
   1260   1.9      mrg 	int		s, off, nra, error, sz, resid;
   1261   1.1      mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1262   1.1      mrg 
   1263   1.1      mrg 	/*
   1264   1.1      mrg 	 * allocate a vndxfer head for this transfer and point it to
   1265   1.1      mrg 	 * our buffer.
   1266   1.1      mrg 	 */
   1267  1.12       pk 	getvndxfer(vnx);
   1268   1.1      mrg 	vnx->vx_flags = VX_BUSY;
   1269   1.1      mrg 	vnx->vx_error = 0;
   1270   1.1      mrg 	vnx->vx_pending = 0;
   1271   1.1      mrg 	vnx->vx_bp = bp;
   1272   1.1      mrg 	vnx->vx_sdp = sdp;
   1273   1.1      mrg 
   1274   1.1      mrg 	/*
   1275   1.1      mrg 	 * setup for main loop where we read filesystem blocks into
   1276   1.1      mrg 	 * our buffer.
   1277   1.1      mrg 	 */
   1278   1.1      mrg 	error = 0;
   1279   1.1      mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1280   1.1      mrg 	addr = bp->b_data;		/* current position in buffer */
   1281   1.9      mrg 	byteoff = dbtob(bn);
   1282   1.1      mrg 
   1283   1.1      mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1284   1.1      mrg 		struct vndbuf	*nbp;
   1285   1.1      mrg 
   1286   1.1      mrg 		/*
   1287   1.1      mrg 		 * translate byteoffset into block number.  return values:
   1288   1.1      mrg 		 *   vp = vnode of underlying device
   1289   1.1      mrg 		 *  nbn = new block number (on underlying vnode dev)
   1290   1.1      mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1291   1.1      mrg 		 *	block)
   1292   1.1      mrg 		 */
   1293   1.1      mrg 		nra = 0;
   1294   1.1      mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1295   1.1      mrg 				 	&vp, &nbn, &nra);
   1296   1.1      mrg 
   1297  1.23     marc 		if (error == 0 && (long)nbn == -1) {
   1298  1.23     marc 			/*
   1299  1.23     marc 			 * this used to just set error, but that doesn't
   1300  1.23     marc 			 * do the right thing.  Instead, it causes random
   1301  1.23     marc 			 * memory errors.  The panic() should remain until
   1302  1.23     marc 			 * this condition doesn't destabilize the system.
   1303  1.23     marc 			 */
   1304  1.23     marc #if 1
   1305  1.23     marc 			panic("sw_reg_strategy: swap to sparse file");
   1306  1.23     marc #else
   1307   1.1      mrg 			error = EIO;	/* failure */
   1308  1.23     marc #endif
   1309  1.23     marc 		}
   1310   1.1      mrg 
   1311   1.1      mrg 		/*
   1312   1.1      mrg 		 * punt if there was an error or a hole in the file.
   1313   1.1      mrg 		 * we must wait for any i/o ops we have already started
   1314   1.1      mrg 		 * to finish before returning.
   1315   1.1      mrg 		 *
   1316   1.1      mrg 		 * XXX we could deal with holes here but it would be
   1317   1.1      mrg 		 * a hassle (in the write case).
   1318   1.1      mrg 		 */
   1319   1.1      mrg 		if (error) {
   1320   1.1      mrg 			s = splbio();
   1321   1.1      mrg 			vnx->vx_error = error;	/* pass error up */
   1322   1.1      mrg 			goto out;
   1323   1.1      mrg 		}
   1324   1.1      mrg 
   1325   1.1      mrg 		/*
   1326   1.1      mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1327   1.1      mrg 		 * XXXCDC: ignores read-ahead for non-zero offset
   1328   1.1      mrg 		 */
   1329   1.1      mrg 		if ((off = (byteoff % sdp->swd_bsize)) != 0)
   1330   1.1      mrg 			sz = sdp->swd_bsize - off;
   1331   1.1      mrg 		else
   1332   1.1      mrg 			sz = (1 + nra) * sdp->swd_bsize;
   1333   1.1      mrg 
   1334   1.1      mrg 		if (resid < sz)
   1335   1.1      mrg 			sz = resid;
   1336   1.1      mrg 
   1337   1.9      mrg 		UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
   1338   1.9      mrg 				sdp->swd_vp, vp, byteoff, nbn);
   1339   1.1      mrg 
   1340   1.1      mrg 		/*
   1341   1.1      mrg 		 * now get a buf structure.   note that the vb_buf is
   1342   1.1      mrg 		 * at the front of the nbp structure so that you can
   1343   1.1      mrg 		 * cast pointers between the two structure easily.
   1344   1.1      mrg 		 */
   1345  1.12       pk 		getvndbuf(nbp);
   1346   1.1      mrg 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1347   1.1      mrg 		nbp->vb_buf.b_bcount   = sz;
   1348  1.12       pk #if 0
   1349   1.1      mrg 		nbp->vb_buf.b_bufsize  = bp->b_bufsize; /* XXXCDC: really? */
   1350  1.12       pk #endif
   1351  1.12       pk 		nbp->vb_buf.b_bufsize  = sz;
   1352   1.1      mrg 		nbp->vb_buf.b_error    = 0;
   1353   1.1      mrg 		nbp->vb_buf.b_data     = addr;
   1354   1.1      mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1355   1.1      mrg 		nbp->vb_buf.b_proc     = bp->b_proc;
   1356   1.1      mrg 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1357   1.1      mrg 		nbp->vb_buf.b_vp       = NULLVP;
   1358  1.12       pk 		nbp->vb_buf.b_vnbufs.le_next = NOLIST;
   1359   1.1      mrg 		nbp->vb_buf.b_rcred    = sdp->swd_cred;
   1360   1.1      mrg 		nbp->vb_buf.b_wcred    = sdp->swd_cred;
   1361   1.1      mrg 
   1362   1.1      mrg 		/*
   1363  1.12       pk 		 * set b_dirtyoff/end and b_validoff/end.   this is
   1364   1.1      mrg 		 * required by the NFS client code (otherwise it will
   1365   1.1      mrg 		 * just discard our I/O request).
   1366   1.1      mrg 		 */
   1367   1.1      mrg 		if (bp->b_dirtyend == 0) {
   1368   1.1      mrg 			nbp->vb_buf.b_dirtyoff = 0;
   1369   1.1      mrg 			nbp->vb_buf.b_dirtyend = sz;
   1370   1.1      mrg 		} else {
   1371   1.1      mrg 			nbp->vb_buf.b_dirtyoff =
   1372   1.1      mrg 			    max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
   1373   1.1      mrg 			nbp->vb_buf.b_dirtyend =
   1374   1.1      mrg 			    min(sz,
   1375   1.1      mrg 				max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
   1376   1.1      mrg 		}
   1377   1.1      mrg 		if (bp->b_validend == 0) {
   1378   1.1      mrg 			nbp->vb_buf.b_validoff = 0;
   1379   1.1      mrg 			nbp->vb_buf.b_validend = sz;
   1380   1.1      mrg 		} else {
   1381   1.1      mrg 			nbp->vb_buf.b_validoff =
   1382   1.1      mrg 			    max(0, bp->b_validoff - (bp->b_bcount-resid));
   1383   1.1      mrg 			nbp->vb_buf.b_validend =
   1384   1.1      mrg 			    min(sz,
   1385   1.1      mrg 				max(0, bp->b_validend - (bp->b_bcount-resid)));
   1386   1.1      mrg 		}
   1387   1.1      mrg 
   1388   1.1      mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1389   1.1      mrg 
   1390   1.1      mrg 		/*
   1391   1.1      mrg 		 * Just sort by block number
   1392   1.1      mrg 		 */
   1393   1.1      mrg 		nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
   1394   1.1      mrg 		s = splbio();
   1395   1.1      mrg 		if (vnx->vx_error != 0) {
   1396   1.1      mrg 			putvndbuf(nbp);
   1397   1.1      mrg 			goto out;
   1398   1.1      mrg 		}
   1399   1.1      mrg 		vnx->vx_pending++;
   1400   1.1      mrg 
   1401   1.1      mrg 		/* assoc new buffer with underlying vnode */
   1402   1.1      mrg 		bgetvp(vp, &nbp->vb_buf);
   1403   1.1      mrg 
   1404   1.1      mrg 		/* sort it in and start I/O if we are not over our limit */
   1405   1.1      mrg 		disksort(&sdp->swd_tab, &nbp->vb_buf);
   1406   1.1      mrg 		sw_reg_start(sdp);
   1407   1.1      mrg 		splx(s);
   1408   1.1      mrg 
   1409   1.1      mrg 		/*
   1410   1.1      mrg 		 * advance to the next I/O
   1411   1.1      mrg 		 */
   1412   1.9      mrg 		byteoff += sz;
   1413   1.1      mrg 		addr += sz;
   1414   1.1      mrg 	}
   1415   1.1      mrg 
   1416   1.1      mrg 	s = splbio();
   1417   1.1      mrg 
   1418   1.1      mrg out: /* Arrive here at splbio */
   1419   1.1      mrg 	vnx->vx_flags &= ~VX_BUSY;
   1420   1.1      mrg 	if (vnx->vx_pending == 0) {
   1421   1.1      mrg 		if (vnx->vx_error != 0) {
   1422   1.1      mrg 			bp->b_error = vnx->vx_error;
   1423   1.1      mrg 			bp->b_flags |= B_ERROR;
   1424   1.1      mrg 		}
   1425   1.1      mrg 		putvndxfer(vnx);
   1426   1.1      mrg 		biodone(bp);
   1427   1.1      mrg 	}
   1428   1.1      mrg 	splx(s);
   1429   1.1      mrg }
   1430   1.1      mrg 
   1431   1.1      mrg /*
   1432   1.1      mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1433   1.1      mrg  *
   1434   1.1      mrg  * => reqs are sorted by disksort (above)
   1435   1.1      mrg  */
   1436   1.1      mrg static void
   1437   1.1      mrg sw_reg_start(sdp)
   1438   1.1      mrg 	struct swapdev	*sdp;
   1439   1.1      mrg {
   1440   1.1      mrg 	struct buf	*bp;
   1441   1.1      mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1442   1.1      mrg 
   1443   1.8      mrg 	/* recursion control */
   1444   1.1      mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1445   1.1      mrg 		return;
   1446   1.1      mrg 
   1447   1.1      mrg 	sdp->swd_flags |= SWF_BUSY;
   1448   1.1      mrg 
   1449   1.1      mrg 	while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
   1450   1.1      mrg 		bp = sdp->swd_tab.b_actf;
   1451   1.1      mrg 		if (bp == NULL)
   1452   1.1      mrg 			break;
   1453   1.1      mrg 		sdp->swd_tab.b_actf = bp->b_actf;
   1454   1.1      mrg 		sdp->swd_tab.b_active++;
   1455   1.1      mrg 
   1456   1.1      mrg 		UVMHIST_LOG(pdhist,
   1457   1.1      mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1458   1.1      mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1459   1.1      mrg 		if ((bp->b_flags & B_READ) == 0)
   1460   1.1      mrg 			bp->b_vp->v_numoutput++;
   1461   1.1      mrg 		VOP_STRATEGY(bp);
   1462   1.1      mrg 	}
   1463   1.1      mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1464   1.1      mrg }
   1465   1.1      mrg 
   1466   1.1      mrg /*
   1467   1.1      mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1468   1.1      mrg  *
   1469   1.1      mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1470   1.1      mrg  */
   1471   1.1      mrg static void
   1472   1.1      mrg sw_reg_iodone(bp)
   1473   1.1      mrg 	struct buf *bp;
   1474   1.1      mrg {
   1475   1.1      mrg 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1476   1.1      mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1477   1.1      mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1478   1.1      mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1479   1.1      mrg 	int		s, resid;
   1480   1.1      mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1481   1.1      mrg 
   1482   1.1      mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1483   1.1      mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1484   1.1      mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1485   1.1      mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1486   1.1      mrg 
   1487   1.1      mrg 	/*
   1488   1.1      mrg 	 * protect vbp at splbio and update.
   1489   1.1      mrg 	 */
   1490   1.1      mrg 
   1491   1.1      mrg 	s = splbio();
   1492   1.1      mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1493   1.1      mrg 	pbp->b_resid -= resid;
   1494   1.1      mrg 	vnx->vx_pending--;
   1495   1.1      mrg 
   1496   1.1      mrg 	if (vbp->vb_buf.b_error) {
   1497   1.1      mrg 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1498   1.1      mrg 		    vbp->vb_buf.b_error, 0, 0, 0);
   1499   1.1      mrg 
   1500   1.1      mrg 		/* pass error upward */
   1501   1.1      mrg 		vnx->vx_error = vbp->vb_buf.b_error;
   1502   1.1      mrg 	}
   1503   1.1      mrg 
   1504   1.1      mrg 	/*
   1505   1.1      mrg 	 * drop "hold" reference to vnode (if one)
   1506   1.1      mrg 	 * XXXCDC: always set to NULLVP, this is useless, right?
   1507   1.1      mrg 	 */
   1508   1.1      mrg 	if (vbp->vb_buf.b_vp != NULLVP)
   1509   1.1      mrg 		brelvp(&vbp->vb_buf);
   1510   1.1      mrg 
   1511   1.1      mrg 	/*
   1512   1.1      mrg 	 * kill vbp structure
   1513   1.1      mrg 	 */
   1514   1.1      mrg 	putvndbuf(vbp);
   1515   1.1      mrg 
   1516   1.1      mrg 	/*
   1517   1.1      mrg 	 * wrap up this transaction if it has run to completion or, in
   1518   1.1      mrg 	 * case of an error, when all auxiliary buffers have returned.
   1519   1.1      mrg 	 */
   1520   1.1      mrg 	if (vnx->vx_error != 0) {
   1521   1.1      mrg 		/* pass error upward */
   1522   1.1      mrg 		pbp->b_flags |= B_ERROR;
   1523   1.1      mrg 		pbp->b_error = vnx->vx_error;
   1524   1.1      mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1525   1.1      mrg 			putvndxfer(vnx);
   1526   1.1      mrg 			biodone(pbp);
   1527   1.1      mrg 		}
   1528  1.11       pk 	} else if (pbp->b_resid == 0) {
   1529   1.1      mrg #ifdef DIAGNOSTIC
   1530   1.1      mrg 		if (vnx->vx_pending != 0)
   1531   1.8      mrg 			panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
   1532   1.1      mrg #endif
   1533   1.1      mrg 
   1534   1.1      mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1535   1.8      mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1536   1.8      mrg 			    pbp, vnx->vx_error, 0, 0);
   1537   1.8      mrg 			putvndxfer(vnx);
   1538   1.1      mrg 			biodone(pbp);
   1539   1.1      mrg 		}
   1540   1.1      mrg 	}
   1541   1.1      mrg 
   1542   1.1      mrg 	/*
   1543   1.1      mrg 	 * done!   start next swapdev I/O if one is pending
   1544   1.1      mrg 	 */
   1545   1.1      mrg 	sdp->swd_tab.b_active--;
   1546   1.1      mrg 	sw_reg_start(sdp);
   1547   1.1      mrg 
   1548   1.1      mrg 	splx(s);
   1549   1.1      mrg }
   1550   1.1      mrg #endif /* SWAP_TO_FILES */
   1551   1.1      mrg 
   1552   1.1      mrg 
   1553   1.1      mrg /*
   1554   1.1      mrg  * uvm_swap_alloc: allocate space on swap
   1555   1.1      mrg  *
   1556   1.1      mrg  * => allocation is done "round robin" down the priority list, as we
   1557   1.1      mrg  *	allocate in a priority we "rotate" the circle queue.
   1558   1.1      mrg  * => space can be freed with uvm_swap_free
   1559   1.1      mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1560  1.26      chs  * => we lock uvm.swap_data_lock
   1561   1.1      mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1562   1.1      mrg  */
   1563   1.1      mrg int
   1564   1.1      mrg uvm_swap_alloc(nslots, lessok)
   1565   1.1      mrg 	int *nslots;	/* IN/OUT */
   1566   1.1      mrg 	boolean_t lessok;
   1567   1.1      mrg {
   1568   1.1      mrg 	struct swapdev *sdp;
   1569   1.1      mrg 	struct swappri *spp;
   1570   1.1      mrg 	u_long	result;
   1571   1.1      mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1572   1.1      mrg 
   1573   1.1      mrg 	/*
   1574   1.1      mrg 	 * no swap devices configured yet?   definite failure.
   1575   1.1      mrg 	 */
   1576   1.1      mrg 	if (uvmexp.nswapdev < 1)
   1577   1.1      mrg 		return 0;
   1578   1.1      mrg 
   1579   1.1      mrg 	/*
   1580   1.1      mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1581   1.1      mrg 	 */
   1582  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1583   1.1      mrg 
   1584   1.1      mrg ReTry:	/* XXXMRG */
   1585   1.1      mrg 	for (spp = swap_priority.lh_first; spp != NULL;
   1586   1.1      mrg 	     spp = spp->spi_swappri.le_next) {
   1587   1.1      mrg 		for (sdp = spp->spi_swapdev.cqh_first;
   1588   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
   1589   1.1      mrg 		     sdp = sdp->swd_next.cqe_next) {
   1590   1.1      mrg 			/* if it's not enabled, then we can't swap from it */
   1591   1.1      mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1592   1.1      mrg 				continue;
   1593   1.1      mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1594   1.1      mrg 				continue;
   1595   1.1      mrg 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1596   1.1      mrg 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1597   1.1      mrg 					 &result) != 0) {
   1598   1.1      mrg 				continue;
   1599   1.1      mrg 			}
   1600   1.1      mrg 
   1601   1.1      mrg 			/*
   1602   1.1      mrg 			 * successful allocation!  now rotate the circleq.
   1603   1.1      mrg 			 */
   1604   1.1      mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1605   1.1      mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1606   1.1      mrg 			sdp->swd_npginuse += *nslots;
   1607   1.1      mrg 			uvmexp.swpginuse += *nslots;
   1608  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
   1609   1.1      mrg 			/* done!  return drum slot number */
   1610   1.1      mrg 			UVMHIST_LOG(pdhist,
   1611   1.1      mrg 			    "success!  returning %d slots starting at %d",
   1612   1.1      mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1613   1.1      mrg #if 0
   1614   1.1      mrg {
   1615   1.1      mrg 	struct swapdev *sdp2;
   1616   1.1      mrg 
   1617   1.1      mrg 	sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
   1618   1.1      mrg 	if (sdp2 == NULL) {
   1619   1.1      mrg printf("uvm_swap_alloc:  nslots=%d, dev=%x, drumoff=%d, result=%ld",
   1620   1.1      mrg     *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
   1621   1.1      mrg panic("uvm_swap_alloc:  allocating unmapped swap block!");
   1622   1.1      mrg 	}
   1623   1.1      mrg }
   1624   1.1      mrg #endif
   1625   1.1      mrg 			return(result + sdp->swd_drumoffset);
   1626   1.1      mrg 		}
   1627   1.1      mrg 	}
   1628   1.1      mrg 
   1629   1.1      mrg 	/* XXXMRG: BEGIN HACK */
   1630   1.1      mrg 	if (*nslots > 1 && lessok) {
   1631   1.1      mrg 		*nslots = 1;
   1632   1.1      mrg 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1633   1.1      mrg 	}
   1634   1.1      mrg 	/* XXXMRG: END HACK */
   1635   1.1      mrg 
   1636  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1637   1.1      mrg 	return 0;		/* failed */
   1638   1.1      mrg }
   1639   1.1      mrg 
   1640   1.1      mrg /*
   1641   1.1      mrg  * uvm_swap_free: free swap slots
   1642   1.1      mrg  *
   1643   1.1      mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1644  1.26      chs  * => we lock uvm.swap_data_lock
   1645   1.1      mrg  */
   1646   1.1      mrg void
   1647   1.1      mrg uvm_swap_free(startslot, nslots)
   1648   1.1      mrg 	int startslot;
   1649   1.1      mrg 	int nslots;
   1650   1.1      mrg {
   1651   1.1      mrg 	struct swapdev *sdp;
   1652   1.1      mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1653   1.1      mrg 
   1654   1.1      mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1655   1.1      mrg 	    startslot, 0, 0);
   1656   1.1      mrg 	/*
   1657   1.1      mrg 	 * convert drum slot offset back to sdp, free the blocks
   1658   1.1      mrg 	 * in the extent, and return.   must hold pri lock to do
   1659   1.1      mrg 	 * lookup and access the extent.
   1660   1.1      mrg 	 */
   1661  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1662   1.1      mrg 	sdp = swapdrum_getsdp(startslot);
   1663   1.1      mrg 
   1664   1.1      mrg #ifdef DIAGNOSTIC
   1665   1.1      mrg 	if (uvmexp.nswapdev < 1)
   1666   1.1      mrg 		panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
   1667   1.1      mrg 	if (sdp == NULL) {
   1668   1.1      mrg 		printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
   1669   1.1      mrg 		    nslots);
   1670   1.1      mrg 		panic("uvm_swap_free: unmapped address\n");
   1671   1.1      mrg 	}
   1672   1.1      mrg #endif
   1673  1.12       pk 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1674  1.12       pk 			EX_MALLOCOK|EX_NOWAIT) != 0)
   1675  1.12       pk 		printf("warning: resource shortage: %d slots of swap lost\n",
   1676  1.12       pk 			nslots);
   1677  1.12       pk 
   1678   1.1      mrg 	sdp->swd_npginuse -= nslots;
   1679   1.1      mrg 	uvmexp.swpginuse -= nslots;
   1680   1.1      mrg #ifdef DIAGNOSTIC
   1681   1.1      mrg 	if (sdp->swd_npginuse < 0)
   1682   1.1      mrg 		panic("uvm_swap_free: inuse < 0");
   1683   1.1      mrg #endif
   1684  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1685   1.1      mrg }
   1686   1.1      mrg 
   1687   1.1      mrg /*
   1688   1.1      mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1689   1.1      mrg  *
   1690   1.1      mrg  * => can be sync or async
   1691   1.1      mrg  * => XXXMRG: consider making it an inline or macro
   1692   1.1      mrg  */
   1693   1.1      mrg int
   1694   1.1      mrg uvm_swap_put(swslot, ppsp, npages, flags)
   1695   1.1      mrg 	int swslot;
   1696   1.1      mrg 	struct vm_page **ppsp;
   1697   1.1      mrg 	int	npages;
   1698   1.1      mrg 	int	flags;
   1699   1.1      mrg {
   1700   1.1      mrg 	int	result;
   1701   1.1      mrg 
   1702   1.1      mrg #if 0
   1703   1.1      mrg 	flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
   1704   1.1      mrg #endif
   1705   1.1      mrg 
   1706   1.1      mrg 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1707   1.1      mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1708   1.1      mrg 
   1709   1.1      mrg 	return (result);
   1710   1.1      mrg }
   1711   1.1      mrg 
   1712   1.1      mrg /*
   1713   1.1      mrg  * uvm_swap_get: get a single page from swap
   1714   1.1      mrg  *
   1715   1.1      mrg  * => usually a sync op (from fault)
   1716   1.1      mrg  * => XXXMRG: consider making it an inline or macro
   1717   1.1      mrg  */
   1718   1.1      mrg int
   1719   1.1      mrg uvm_swap_get(page, swslot, flags)
   1720   1.1      mrg 	struct vm_page *page;
   1721   1.1      mrg 	int swslot, flags;
   1722   1.1      mrg {
   1723   1.1      mrg 	int	result;
   1724   1.1      mrg 
   1725   1.1      mrg 	uvmexp.nswget++;
   1726   1.1      mrg #ifdef DIAGNOSTIC
   1727   1.1      mrg 	if ((flags & PGO_SYNCIO) == 0)
   1728   1.1      mrg 		printf("uvm_swap_get: ASYNC get requested?\n");
   1729   1.1      mrg #endif
   1730   1.1      mrg 
   1731  1.26      chs 	/*
   1732  1.26      chs 	 * this page is (about to be) no longer only in swap.
   1733  1.26      chs 	 */
   1734  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1735  1.26      chs 	uvmexp.swpgonly--;
   1736  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1737  1.26      chs 
   1738   1.1      mrg 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1739   1.1      mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1740  1.26      chs 
   1741  1.26      chs 	if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
   1742  1.26      chs 		/*
   1743  1.26      chs 		 * oops, the read failed so it really is still only in swap.
   1744  1.26      chs 		 */
   1745  1.26      chs 		simple_lock(&uvm.swap_data_lock);
   1746  1.26      chs 		uvmexp.swpgonly++;
   1747  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
   1748  1.26      chs 	}
   1749   1.1      mrg 
   1750   1.1      mrg 	return (result);
   1751   1.1      mrg }
   1752   1.1      mrg 
   1753   1.1      mrg /*
   1754   1.1      mrg  * uvm_swap_io: do an i/o operation to swap
   1755   1.1      mrg  */
   1756   1.1      mrg 
   1757   1.1      mrg static int
   1758   1.1      mrg uvm_swap_io(pps, startslot, npages, flags)
   1759   1.1      mrg 	struct vm_page **pps;
   1760   1.1      mrg 	int startslot, npages, flags;
   1761   1.1      mrg {
   1762   1.1      mrg 	daddr_t startblk;
   1763   1.1      mrg 	struct swapbuf *sbp;
   1764   1.1      mrg 	struct	buf *bp;
   1765  1.15      eeh 	vaddr_t kva;
   1766  1.12       pk 	int	result, s, waitf, pflag;
   1767   1.1      mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1768   1.1      mrg 
   1769   1.1      mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1770   1.1      mrg 	    startslot, npages, flags, 0);
   1771   1.1      mrg 	/*
   1772   1.1      mrg 	 * convert starting drum slot to block number
   1773   1.1      mrg 	 */
   1774  1.20      chs 	startblk = btodb(startslot << PAGE_SHIFT);
   1775   1.1      mrg 
   1776   1.1      mrg 	/*
   1777   1.1      mrg 	 * first, map the pages into the kernel (XXX: currently required
   1778   1.1      mrg 	 * by buffer system).   note that we don't let pagermapin alloc
   1779   1.1      mrg 	 * an aiodesc structure because we don't want to chance a malloc.
   1780   1.1      mrg 	 * we've got our own pool of aiodesc structures (in swapbuf).
   1781   1.1      mrg 	 */
   1782   1.1      mrg 	waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
   1783   1.1      mrg 	kva = uvm_pagermapin(pps, npages, NULL, waitf);
   1784   1.1      mrg 	if (kva == NULL)
   1785   1.1      mrg 		return (VM_PAGER_AGAIN);
   1786   1.1      mrg 
   1787   1.1      mrg 	/*
   1788   1.1      mrg 	 * now allocate a swap buffer off of freesbufs
   1789   1.1      mrg 	 * [make sure we don't put the pagedaemon to sleep...]
   1790   1.1      mrg 	 */
   1791   1.1      mrg 	s = splbio();
   1792  1.12       pk 	pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
   1793  1.12       pk 		? 0
   1794  1.12       pk 		: PR_WAITOK;
   1795  1.12       pk 	sbp = pool_get(swapbuf_pool, pflag);
   1796   1.1      mrg 	splx(s);		/* drop splbio */
   1797   1.1      mrg 
   1798   1.1      mrg 	/*
   1799   1.1      mrg 	 * if we failed to get a swapbuf, return "try again"
   1800   1.1      mrg 	 */
   1801   1.1      mrg 	if (sbp == NULL)
   1802   1.1      mrg 		return (VM_PAGER_AGAIN);
   1803   1.1      mrg 
   1804   1.1      mrg 	/*
   1805   1.1      mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1806   1.1      mrg 	 * /dev/drum's vnode [swapdev_vp].
   1807   1.1      mrg 	 */
   1808   1.1      mrg 	bp = &sbp->sw_buf;
   1809  1.21  mycroft 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1810   1.1      mrg 	bp->b_proc = &proc0;	/* XXX */
   1811  1.12       pk 	bp->b_rcred = bp->b_wcred = proc0.p_ucred;
   1812  1.12       pk 	bp->b_vnbufs.le_next = NOLIST;
   1813   1.1      mrg 	bp->b_data = (caddr_t)kva;
   1814   1.1      mrg 	bp->b_blkno = startblk;
   1815  1.25      chs 	s = splbio();
   1816   1.1      mrg 	VHOLD(swapdev_vp);
   1817   1.1      mrg 	bp->b_vp = swapdev_vp;
   1818  1.25      chs 	splx(s);
   1819   1.1      mrg 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
   1820   1.1      mrg 	/* XXXMRG: probably -- this is obviously something inherited... */
   1821   1.1      mrg 	if (swapdev_vp->v_type == VBLK)
   1822   1.1      mrg 		bp->b_dev = swapdev_vp->v_rdev;
   1823  1.20      chs 	bp->b_bcount = npages << PAGE_SHIFT;
   1824   1.1      mrg 
   1825   1.1      mrg 	/*
   1826   1.1      mrg 	 * for pageouts we must set "dirtyoff" [NFS client code needs it].
   1827   1.1      mrg 	 * and we bump v_numoutput (counter of number of active outputs).
   1828   1.1      mrg 	 */
   1829   1.1      mrg 	if ((bp->b_flags & B_READ) == 0) {
   1830   1.1      mrg 		bp->b_dirtyoff = 0;
   1831  1.20      chs 		bp->b_dirtyend = npages << PAGE_SHIFT;
   1832   1.1      mrg 		s = splbio();
   1833   1.1      mrg 		swapdev_vp->v_numoutput++;
   1834   1.1      mrg 		splx(s);
   1835   1.1      mrg 	}
   1836   1.1      mrg 
   1837   1.1      mrg 	/*
   1838   1.1      mrg 	 * for async ops we must set up the aiodesc and setup the callback
   1839   1.1      mrg 	 * XXX: we expect no async-reads, but we don't prevent it here.
   1840   1.1      mrg 	 */
   1841   1.1      mrg 	if (flags & B_ASYNC) {
   1842   1.1      mrg 		sbp->sw_aio.aiodone = uvm_swap_aiodone;
   1843   1.1      mrg 		sbp->sw_aio.kva = kva;
   1844   1.1      mrg 		sbp->sw_aio.npages = npages;
   1845   1.1      mrg 		sbp->sw_aio.pd_ptr = sbp;	/* backpointer */
   1846   1.1      mrg 		bp->b_flags |= B_CALL;		/* set callback */
   1847   1.1      mrg 		bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
   1848   1.1      mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1849   1.1      mrg 	}
   1850   1.1      mrg 	UVMHIST_LOG(pdhist,
   1851   1.1      mrg 	    "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
   1852   1.1      mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1853   1.1      mrg 
   1854   1.1      mrg 	/*
   1855   1.1      mrg 	 * now we start the I/O, and if async, return.
   1856   1.1      mrg 	 */
   1857   1.1      mrg 	VOP_STRATEGY(bp);
   1858   1.1      mrg 	if (flags & B_ASYNC)
   1859   1.1      mrg 		return (VM_PAGER_PEND);
   1860   1.1      mrg 
   1861   1.1      mrg 	/*
   1862   1.1      mrg 	 * must be sync i/o.   wait for it to finish
   1863   1.1      mrg 	 */
   1864   1.1      mrg 	bp->b_error = biowait(bp);
   1865   1.1      mrg 	result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
   1866   1.1      mrg 
   1867   1.1      mrg 	/*
   1868   1.1      mrg 	 * kill the pager mapping
   1869   1.1      mrg 	 */
   1870   1.1      mrg 	uvm_pagermapout(kva, npages);
   1871   1.1      mrg 
   1872   1.1      mrg 	/*
   1873   1.1      mrg 	 * now dispose of the swap buffer
   1874   1.1      mrg 	 */
   1875   1.1      mrg 	s = splbio();
   1876   1.1      mrg 	if (bp->b_vp)
   1877   1.1      mrg 		brelvp(bp);
   1878  1.12       pk 
   1879  1.12       pk 	pool_put(swapbuf_pool, sbp);
   1880   1.1      mrg 	splx(s);
   1881   1.1      mrg 
   1882   1.1      mrg 	/*
   1883   1.1      mrg 	 * finally return.
   1884   1.1      mrg 	 */
   1885   1.1      mrg 	UVMHIST_LOG(pdhist, "<- done (sync)  result=%d", result, 0, 0, 0);
   1886   1.1      mrg 	return (result);
   1887   1.1      mrg }
   1888   1.1      mrg 
   1889   1.1      mrg /*
   1890   1.1      mrg  * uvm_swap_bufdone: called from the buffer system when the i/o is done
   1891   1.1      mrg  */
   1892   1.1      mrg static void
   1893   1.1      mrg uvm_swap_bufdone(bp)
   1894   1.1      mrg 	struct buf *bp;
   1895   1.1      mrg {
   1896   1.1      mrg 	struct swapbuf *sbp = (struct swapbuf *) bp;
   1897   1.1      mrg 	int	s = splbio();
   1898   1.1      mrg 	UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
   1899   1.1      mrg 
   1900   1.1      mrg 	UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
   1901   1.1      mrg #ifdef DIAGNOSTIC
   1902   1.1      mrg 	/*
   1903   1.1      mrg 	 * sanity check: swapbufs are private, so they shouldn't be wanted
   1904   1.1      mrg 	 */
   1905   1.1      mrg 	if (bp->b_flags & B_WANTED)
   1906   1.1      mrg 		panic("uvm_swap_bufdone: private buf wanted");
   1907   1.1      mrg #endif
   1908   1.1      mrg 
   1909   1.1      mrg 	/*
   1910  1.25      chs 	 * drop the buffer's reference to the vnode.
   1911   1.1      mrg 	 */
   1912   1.1      mrg 	if (bp->b_vp)
   1913   1.1      mrg 		brelvp(bp);
   1914   1.1      mrg 
   1915   1.1      mrg 	/*
   1916   1.1      mrg 	 * now put the aio on the uvm.aio_done list and wake the
   1917   1.1      mrg 	 * pagedaemon (which will finish up our job in its context).
   1918   1.1      mrg 	 */
   1919   1.1      mrg 	simple_lock(&uvm.pagedaemon_lock);	/* locks uvm.aio_done */
   1920   1.1      mrg 	TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
   1921   1.1      mrg 	simple_unlock(&uvm.pagedaemon_lock);
   1922   1.1      mrg 
   1923   1.1      mrg 	thread_wakeup(&uvm.pagedaemon);
   1924   1.1      mrg 	splx(s);
   1925   1.1      mrg }
   1926   1.1      mrg 
   1927   1.1      mrg /*
   1928   1.1      mrg  * uvm_swap_aiodone: aiodone function for anonymous memory
   1929   1.1      mrg  *
   1930   1.1      mrg  * => this is called in the context of the pagedaemon (but with the
   1931   1.1      mrg  *	page queues unlocked!)
   1932   1.1      mrg  * => our "aio" structure must be part of a "swapbuf"
   1933   1.1      mrg  */
   1934   1.1      mrg static void
   1935   1.1      mrg uvm_swap_aiodone(aio)
   1936   1.1      mrg 	struct uvm_aiodesc *aio;
   1937   1.1      mrg {
   1938   1.1      mrg 	struct swapbuf *sbp = aio->pd_ptr;
   1939  1.20      chs 	struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
   1940   1.1      mrg 	int lcv, s;
   1941  1.15      eeh 	vaddr_t addr;
   1942   1.1      mrg 	UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
   1943   1.8      mrg 
   1944   1.1      mrg 	UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
   1945   1.1      mrg #ifdef DIAGNOSTIC
   1946   1.1      mrg 	/*
   1947   1.1      mrg 	 * sanity check
   1948   1.1      mrg 	 */
   1949  1.20      chs 	if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
   1950   1.1      mrg 		panic("uvm_swap_aiodone: aio too big!");
   1951   1.1      mrg #endif
   1952   1.1      mrg 
   1953   1.1      mrg 	/*
   1954   1.1      mrg 	 * first, we have to recover the page pointers (pps) by poking in the
   1955   1.1      mrg 	 * kernel pmap (XXX: should be saved in the buf structure).
   1956   1.1      mrg 	 */
   1957   1.1      mrg 	for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
   1958   1.1      mrg 		addr += PAGE_SIZE, lcv++) {
   1959   1.1      mrg 		pps[lcv] = uvm_pageratop(addr);
   1960   1.1      mrg 	}
   1961   1.1      mrg 
   1962   1.1      mrg 	/*
   1963   1.1      mrg 	 * now we can dispose of the kernel mappings of the buffer
   1964   1.1      mrg 	 */
   1965   1.1      mrg 	uvm_pagermapout(aio->kva, aio->npages);
   1966   1.1      mrg 
   1967   1.1      mrg 	/*
   1968   1.1      mrg 	 * now we can dispose of the pages by using the dropcluster function
   1969   1.1      mrg 	 * [note that we have no "page of interest" so we pass in null]
   1970   1.1      mrg 	 */
   1971   1.1      mrg 	uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
   1972   1.1      mrg 				PGO_PDFREECLUST, 0);
   1973   1.1      mrg 
   1974   1.1      mrg 	/*
   1975   1.1      mrg 	 * finally, we can dispose of the swapbuf
   1976   1.1      mrg 	 */
   1977   1.1      mrg 	s = splbio();
   1978  1.12       pk 	pool_put(swapbuf_pool, sbp);
   1979   1.1      mrg 	splx(s);
   1980   1.1      mrg }
   1981