uvm_swap.c revision 1.37.4.2 1 1.37.4.2 he /* $NetBSD: uvm_swap.c,v 1.37.4.2 2002/02/14 19:53:13 he Exp $ */
2 1.1 mrg
3 1.1 mrg /*
4 1.1 mrg * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 1.1 mrg * All rights reserved.
6 1.1 mrg *
7 1.1 mrg * Redistribution and use in source and binary forms, with or without
8 1.1 mrg * modification, are permitted provided that the following conditions
9 1.1 mrg * are met:
10 1.1 mrg * 1. Redistributions of source code must retain the above copyright
11 1.1 mrg * notice, this list of conditions and the following disclaimer.
12 1.1 mrg * 2. Redistributions in binary form must reproduce the above copyright
13 1.1 mrg * notice, this list of conditions and the following disclaimer in the
14 1.1 mrg * documentation and/or other materials provided with the distribution.
15 1.1 mrg * 3. The name of the author may not be used to endorse or promote products
16 1.1 mrg * derived from this software without specific prior written permission.
17 1.1 mrg *
18 1.1 mrg * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 1.1 mrg * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 1.1 mrg * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 1.1 mrg * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 1.1 mrg * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 1.1 mrg * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 1.1 mrg * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 1.1 mrg * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 1.1 mrg * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 1.1 mrg * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 1.1 mrg * SUCH DAMAGE.
29 1.3 mrg *
30 1.3 mrg * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 1.3 mrg * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 1.1 mrg */
33 1.5 mrg
34 1.6 thorpej #include "fs_nfs.h"
35 1.5 mrg #include "opt_uvmhist.h"
36 1.16 mrg #include "opt_compat_netbsd.h"
37 1.1 mrg
38 1.1 mrg #include <sys/param.h>
39 1.1 mrg #include <sys/systm.h>
40 1.1 mrg #include <sys/buf.h>
41 1.36 mrg #include <sys/conf.h>
42 1.1 mrg #include <sys/proc.h>
43 1.1 mrg #include <sys/namei.h>
44 1.1 mrg #include <sys/disklabel.h>
45 1.1 mrg #include <sys/errno.h>
46 1.1 mrg #include <sys/kernel.h>
47 1.1 mrg #include <sys/malloc.h>
48 1.1 mrg #include <sys/vnode.h>
49 1.1 mrg #include <sys/file.h>
50 1.1 mrg #include <sys/extent.h>
51 1.1 mrg #include <sys/mount.h>
52 1.12 pk #include <sys/pool.h>
53 1.1 mrg #include <sys/syscallargs.h>
54 1.17 mrg #include <sys/swap.h>
55 1.1 mrg
56 1.1 mrg #include <vm/vm.h>
57 1.1 mrg #include <uvm/uvm.h>
58 1.1 mrg
59 1.1 mrg #include <miscfs/specfs/specdev.h>
60 1.1 mrg
61 1.1 mrg /*
62 1.1 mrg * uvm_swap.c: manage configuration and i/o to swap space.
63 1.1 mrg */
64 1.1 mrg
65 1.1 mrg /*
66 1.1 mrg * swap space is managed in the following way:
67 1.1 mrg *
68 1.1 mrg * each swap partition or file is described by a "swapdev" structure.
69 1.1 mrg * each "swapdev" structure contains a "swapent" structure which contains
70 1.1 mrg * information that is passed up to the user (via system calls).
71 1.1 mrg *
72 1.1 mrg * each swap partition is assigned a "priority" (int) which controls
73 1.1 mrg * swap parition usage.
74 1.1 mrg *
75 1.1 mrg * the system maintains a global data structure describing all swap
76 1.1 mrg * partitions/files. there is a sorted LIST of "swappri" structures
77 1.1 mrg * which describe "swapdev"'s at that priority. this LIST is headed
78 1.1 mrg * by the "swap_priority" global var. each "swappri" contains a
79 1.1 mrg * CIRCLEQ of "swapdev" structures at that priority.
80 1.1 mrg *
81 1.1 mrg * the system maintains a fixed pool of "swapbuf" structures for use
82 1.1 mrg * at swap i/o time. a swapbuf includes a "buf" structure and an
83 1.1 mrg * "aiodone" [we want to avoid malloc()'ing anything at swapout time
84 1.1 mrg * since memory may be low].
85 1.1 mrg *
86 1.1 mrg * locking:
87 1.1 mrg * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88 1.1 mrg * system call and prevents the swap priority list from changing
89 1.1 mrg * while we are in the middle of a system call (e.g. SWAP_STATS).
90 1.26 chs * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
91 1.1 mrg * structures including the priority list, the swapdev structures,
92 1.1 mrg * and the swapmap extent.
93 1.1 mrg * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
94 1.1 mrg * pool.
95 1.1 mrg *
96 1.1 mrg * each swap device has the following info:
97 1.1 mrg * - swap device in use (could be disabled, preventing future use)
98 1.1 mrg * - swap enabled (allows new allocations on swap)
99 1.1 mrg * - map info in /dev/drum
100 1.1 mrg * - vnode pointer
101 1.1 mrg * for swap files only:
102 1.1 mrg * - block size
103 1.1 mrg * - max byte count in buffer
104 1.1 mrg * - buffer
105 1.1 mrg * - credentials to use when doing i/o to file
106 1.1 mrg *
107 1.1 mrg * userland controls and configures swap with the swapctl(2) system call.
108 1.1 mrg * the sys_swapctl performs the following operations:
109 1.1 mrg * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 1.1 mrg * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 1.1 mrg * (passed in via "arg") of a size passed in via "misc" ... we load
112 1.1 mrg * the current swap config into the array.
113 1.1 mrg * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 1.1 mrg * priority in "misc", start swapping on it.
115 1.1 mrg * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 1.1 mrg * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 1.1 mrg * "misc")
118 1.1 mrg */
119 1.1 mrg
120 1.1 mrg /*
121 1.1 mrg * swapdev: describes a single swap partition/file
122 1.1 mrg *
123 1.1 mrg * note the following should be true:
124 1.1 mrg * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 1.1 mrg * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 1.1 mrg */
127 1.1 mrg struct swapdev {
128 1.16 mrg struct oswapent swd_ose;
129 1.16 mrg #define swd_dev swd_ose.ose_dev /* device id */
130 1.16 mrg #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 1.16 mrg #define swd_priority swd_ose.ose_priority /* our priority */
132 1.16 mrg /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 1.16 mrg char *swd_path; /* saved pathname of device */
134 1.16 mrg int swd_pathlen; /* length of pathname */
135 1.16 mrg int swd_npages; /* #pages we can use */
136 1.16 mrg int swd_npginuse; /* #pages in use */
137 1.32 chs int swd_npgbad; /* #pages bad */
138 1.16 mrg int swd_drumoffset; /* page0 offset in drum */
139 1.16 mrg int swd_drumsize; /* #pages in drum */
140 1.16 mrg struct extent *swd_ex; /* extent for this swapdev */
141 1.16 mrg struct vnode *swd_vp; /* backing vnode */
142 1.16 mrg CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143 1.1 mrg
144 1.16 mrg int swd_bsize; /* blocksize (bytes) */
145 1.16 mrg int swd_maxactive; /* max active i/o reqs */
146 1.33 thorpej struct buf_queue swd_tab; /* buffer list */
147 1.33 thorpej int swd_active; /* number of active buffers */
148 1.16 mrg struct ucred *swd_cred; /* cred for file access */
149 1.1 mrg };
150 1.1 mrg
151 1.1 mrg /*
152 1.1 mrg * swap device priority entry; the list is kept sorted on `spi_priority'.
153 1.1 mrg */
154 1.1 mrg struct swappri {
155 1.1 mrg int spi_priority; /* priority */
156 1.1 mrg CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
157 1.1 mrg /* circleq of swapdevs at this priority */
158 1.1 mrg LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
159 1.1 mrg };
160 1.1 mrg
161 1.1 mrg /*
162 1.1 mrg * swapbuf, swapbuffer plus async i/o info
163 1.1 mrg */
164 1.1 mrg struct swapbuf {
165 1.1 mrg struct buf sw_buf; /* a buffer structure */
166 1.1 mrg struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
167 1.1 mrg SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
168 1.1 mrg };
169 1.1 mrg
170 1.1 mrg /*
171 1.1 mrg * The following two structures are used to keep track of data transfers
172 1.1 mrg * on swap devices associated with regular files.
173 1.1 mrg * NOTE: this code is more or less a copy of vnd.c; we use the same
174 1.1 mrg * structure names here to ease porting..
175 1.1 mrg */
176 1.1 mrg struct vndxfer {
177 1.1 mrg struct buf *vx_bp; /* Pointer to parent buffer */
178 1.1 mrg struct swapdev *vx_sdp;
179 1.1 mrg int vx_error;
180 1.1 mrg int vx_pending; /* # of pending aux buffers */
181 1.1 mrg int vx_flags;
182 1.1 mrg #define VX_BUSY 1
183 1.1 mrg #define VX_DEAD 2
184 1.1 mrg };
185 1.1 mrg
186 1.1 mrg struct vndbuf {
187 1.1 mrg struct buf vb_buf;
188 1.1 mrg struct vndxfer *vb_xfer;
189 1.1 mrg };
190 1.1 mrg
191 1.12 pk
192 1.1 mrg /*
193 1.12 pk * We keep a of pool vndbuf's and vndxfer structures.
194 1.1 mrg */
195 1.12 pk struct pool *vndxfer_pool;
196 1.12 pk struct pool *vndbuf_pool;
197 1.1 mrg
198 1.12 pk #define getvndxfer(vnx) do { \
199 1.12 pk int s = splbio(); \
200 1.32 chs vnx = pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
201 1.12 pk splx(s); \
202 1.12 pk } while (0)
203 1.12 pk
204 1.12 pk #define putvndxfer(vnx) { \
205 1.12 pk pool_put(vndxfer_pool, (void *)(vnx)); \
206 1.12 pk }
207 1.12 pk
208 1.12 pk #define getvndbuf(vbp) do { \
209 1.12 pk int s = splbio(); \
210 1.32 chs vbp = pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
211 1.12 pk splx(s); \
212 1.12 pk } while (0)
213 1.1 mrg
214 1.12 pk #define putvndbuf(vbp) { \
215 1.12 pk pool_put(vndbuf_pool, (void *)(vbp)); \
216 1.12 pk }
217 1.1 mrg
218 1.36 mrg /* /dev/drum */
219 1.36 mrg bdev_decl(sw);
220 1.36 mrg cdev_decl(sw);
221 1.1 mrg
222 1.1 mrg /*
223 1.1 mrg * local variables
224 1.1 mrg */
225 1.1 mrg static struct extent *swapmap; /* controls the mapping of /dev/drum */
226 1.1 mrg SIMPLEQ_HEAD(swapbufhead, swapbuf);
227 1.12 pk struct pool *swapbuf_pool;
228 1.1 mrg
229 1.1 mrg /* list of all active swap devices [by priority] */
230 1.1 mrg LIST_HEAD(swap_priority, swappri);
231 1.1 mrg static struct swap_priority swap_priority;
232 1.1 mrg
233 1.1 mrg /* locks */
234 1.1 mrg lock_data_t swap_syscall_lock;
235 1.1 mrg
236 1.1 mrg /*
237 1.1 mrg * prototypes
238 1.1 mrg */
239 1.1 mrg static void swapdrum_add __P((struct swapdev *, int));
240 1.1 mrg static struct swapdev *swapdrum_getsdp __P((int));
241 1.1 mrg
242 1.1 mrg static struct swapdev *swaplist_find __P((struct vnode *, int));
243 1.1 mrg static void swaplist_insert __P((struct swapdev *,
244 1.1 mrg struct swappri *, int));
245 1.1 mrg static void swaplist_trim __P((void));
246 1.1 mrg
247 1.1 mrg static int swap_on __P((struct proc *, struct swapdev *));
248 1.1 mrg static int swap_off __P((struct proc *, struct swapdev *));
249 1.1 mrg
250 1.1 mrg static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
251 1.1 mrg static void sw_reg_iodone __P((struct buf *));
252 1.1 mrg static void sw_reg_start __P((struct swapdev *));
253 1.1 mrg
254 1.1 mrg static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
255 1.1 mrg static void uvm_swap_bufdone __P((struct buf *));
256 1.1 mrg static int uvm_swap_io __P((struct vm_page **, int, int, int));
257 1.1 mrg
258 1.1 mrg /*
259 1.1 mrg * uvm_swap_init: init the swap system data structures and locks
260 1.1 mrg *
261 1.1 mrg * => called at boot time from init_main.c after the filesystems
262 1.1 mrg * are brought up (which happens after uvm_init())
263 1.1 mrg */
264 1.1 mrg void
265 1.1 mrg uvm_swap_init()
266 1.1 mrg {
267 1.1 mrg UVMHIST_FUNC("uvm_swap_init");
268 1.1 mrg
269 1.1 mrg UVMHIST_CALLED(pdhist);
270 1.1 mrg /*
271 1.1 mrg * first, init the swap list, its counter, and its lock.
272 1.1 mrg * then get a handle on the vnode for /dev/drum by using
273 1.1 mrg * the its dev_t number ("swapdev", from MD conf.c).
274 1.1 mrg */
275 1.1 mrg
276 1.1 mrg LIST_INIT(&swap_priority);
277 1.1 mrg uvmexp.nswapdev = 0;
278 1.1 mrg lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
279 1.26 chs simple_lock_init(&uvm.swap_data_lock);
280 1.12 pk
281 1.1 mrg if (bdevvp(swapdev, &swapdev_vp))
282 1.1 mrg panic("uvm_swap_init: can't get vnode for swap device");
283 1.1 mrg
284 1.1 mrg /*
285 1.1 mrg * create swap block resource map to map /dev/drum. the range
286 1.1 mrg * from 1 to INT_MAX allows 2 gigablocks of swap space. note
287 1.1 mrg * that block 0 is reserved (used to indicate an allocation
288 1.1 mrg * failure, or no allocation).
289 1.1 mrg */
290 1.1 mrg swapmap = extent_create("swapmap", 1, INT_MAX,
291 1.1 mrg M_VMSWAP, 0, 0, EX_NOWAIT);
292 1.1 mrg if (swapmap == 0)
293 1.1 mrg panic("uvm_swap_init: extent_create failed");
294 1.1 mrg
295 1.1 mrg /*
296 1.1 mrg * allocate our private pool of "swapbuf" structures (includes
297 1.1 mrg * a "buf" structure). ["nswbuf" comes from param.c and can
298 1.1 mrg * be adjusted by MD code before we get here].
299 1.1 mrg */
300 1.1 mrg
301 1.12 pk swapbuf_pool =
302 1.12 pk pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
303 1.12 pk NULL, NULL, 0);
304 1.12 pk if (swapbuf_pool == NULL)
305 1.12 pk panic("swapinit: pool_create failed");
306 1.12 pk /* XXX - set a maximum on swapbuf_pool? */
307 1.12 pk
308 1.12 pk vndxfer_pool =
309 1.12 pk pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
310 1.12 pk NULL, NULL, 0);
311 1.12 pk if (vndxfer_pool == NULL)
312 1.12 pk panic("swapinit: pool_create failed");
313 1.12 pk
314 1.12 pk vndbuf_pool =
315 1.12 pk pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
316 1.12 pk NULL, NULL, 0);
317 1.12 pk if (vndbuf_pool == NULL)
318 1.12 pk panic("swapinit: pool_create failed");
319 1.1 mrg /*
320 1.1 mrg * done!
321 1.1 mrg */
322 1.1 mrg UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
323 1.1 mrg }
324 1.1 mrg
325 1.1 mrg /*
326 1.1 mrg * swaplist functions: functions that operate on the list of swap
327 1.1 mrg * devices on the system.
328 1.1 mrg */
329 1.1 mrg
330 1.1 mrg /*
331 1.1 mrg * swaplist_insert: insert swap device "sdp" into the global list
332 1.1 mrg *
333 1.26 chs * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
334 1.1 mrg * => caller must provide a newly malloc'd swappri structure (we will
335 1.1 mrg * FREE it if we don't need it... this it to prevent malloc blocking
336 1.1 mrg * here while adding swap)
337 1.1 mrg */
338 1.1 mrg static void
339 1.1 mrg swaplist_insert(sdp, newspp, priority)
340 1.1 mrg struct swapdev *sdp;
341 1.1 mrg struct swappri *newspp;
342 1.1 mrg int priority;
343 1.1 mrg {
344 1.1 mrg struct swappri *spp, *pspp;
345 1.1 mrg UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
346 1.1 mrg
347 1.1 mrg /*
348 1.1 mrg * find entry at or after which to insert the new device.
349 1.1 mrg */
350 1.32 chs for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
351 1.32 chs spp = LIST_NEXT(spp, spi_swappri)) {
352 1.1 mrg if (priority <= spp->spi_priority)
353 1.1 mrg break;
354 1.1 mrg pspp = spp;
355 1.1 mrg }
356 1.1 mrg
357 1.1 mrg /*
358 1.1 mrg * new priority?
359 1.1 mrg */
360 1.1 mrg if (spp == NULL || spp->spi_priority != priority) {
361 1.1 mrg spp = newspp; /* use newspp! */
362 1.32 chs UVMHIST_LOG(pdhist, "created new swappri = %d",
363 1.32 chs priority, 0, 0, 0);
364 1.1 mrg
365 1.1 mrg spp->spi_priority = priority;
366 1.1 mrg CIRCLEQ_INIT(&spp->spi_swapdev);
367 1.1 mrg
368 1.1 mrg if (pspp)
369 1.1 mrg LIST_INSERT_AFTER(pspp, spp, spi_swappri);
370 1.1 mrg else
371 1.1 mrg LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
372 1.1 mrg } else {
373 1.1 mrg /* we don't need a new priority structure, free it */
374 1.1 mrg FREE(newspp, M_VMSWAP);
375 1.1 mrg }
376 1.1 mrg
377 1.1 mrg /*
378 1.1 mrg * priority found (or created). now insert on the priority's
379 1.1 mrg * circleq list and bump the total number of swapdevs.
380 1.1 mrg */
381 1.1 mrg sdp->swd_priority = priority;
382 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
383 1.1 mrg uvmexp.nswapdev++;
384 1.1 mrg }
385 1.1 mrg
386 1.1 mrg /*
387 1.1 mrg * swaplist_find: find and optionally remove a swap device from the
388 1.1 mrg * global list.
389 1.1 mrg *
390 1.26 chs * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
391 1.1 mrg * => we return the swapdev we found (and removed)
392 1.1 mrg */
393 1.1 mrg static struct swapdev *
394 1.1 mrg swaplist_find(vp, remove)
395 1.1 mrg struct vnode *vp;
396 1.1 mrg boolean_t remove;
397 1.1 mrg {
398 1.1 mrg struct swapdev *sdp;
399 1.1 mrg struct swappri *spp;
400 1.1 mrg
401 1.1 mrg /*
402 1.1 mrg * search the lists for the requested vp
403 1.1 mrg */
404 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL;
405 1.32 chs spp = LIST_NEXT(spp, spi_swappri)) {
406 1.32 chs for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
407 1.1 mrg sdp != (void *)&spp->spi_swapdev;
408 1.32 chs sdp = CIRCLEQ_NEXT(sdp, swd_next))
409 1.1 mrg if (sdp->swd_vp == vp) {
410 1.1 mrg if (remove) {
411 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev,
412 1.1 mrg sdp, swd_next);
413 1.1 mrg uvmexp.nswapdev--;
414 1.1 mrg }
415 1.1 mrg return(sdp);
416 1.1 mrg }
417 1.1 mrg }
418 1.1 mrg return (NULL);
419 1.1 mrg }
420 1.1 mrg
421 1.1 mrg
422 1.1 mrg /*
423 1.1 mrg * swaplist_trim: scan priority list for empty priority entries and kill
424 1.1 mrg * them.
425 1.1 mrg *
426 1.26 chs * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
427 1.1 mrg */
428 1.1 mrg static void
429 1.1 mrg swaplist_trim()
430 1.1 mrg {
431 1.1 mrg struct swappri *spp, *nextspp;
432 1.1 mrg
433 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
434 1.32 chs nextspp = LIST_NEXT(spp, spi_swappri);
435 1.32 chs if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
436 1.32 chs (void *)&spp->spi_swapdev)
437 1.1 mrg continue;
438 1.1 mrg LIST_REMOVE(spp, spi_swappri);
439 1.32 chs free(spp, M_VMSWAP);
440 1.1 mrg }
441 1.1 mrg }
442 1.1 mrg
443 1.1 mrg /*
444 1.1 mrg * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
445 1.1 mrg *
446 1.1 mrg * => caller must hold swap_syscall_lock
447 1.26 chs * => uvm.swap_data_lock should be unlocked (we may sleep)
448 1.1 mrg */
449 1.1 mrg static void
450 1.1 mrg swapdrum_add(sdp, npages)
451 1.1 mrg struct swapdev *sdp;
452 1.1 mrg int npages;
453 1.1 mrg {
454 1.1 mrg u_long result;
455 1.1 mrg
456 1.1 mrg if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
457 1.1 mrg EX_WAITOK, &result))
458 1.1 mrg panic("swapdrum_add");
459 1.1 mrg
460 1.1 mrg sdp->swd_drumoffset = result;
461 1.1 mrg sdp->swd_drumsize = npages;
462 1.1 mrg }
463 1.1 mrg
464 1.1 mrg /*
465 1.1 mrg * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
466 1.1 mrg * to the "swapdev" that maps that section of the drum.
467 1.1 mrg *
468 1.1 mrg * => each swapdev takes one big contig chunk of the drum
469 1.26 chs * => caller must hold uvm.swap_data_lock
470 1.1 mrg */
471 1.1 mrg static struct swapdev *
472 1.1 mrg swapdrum_getsdp(pgno)
473 1.1 mrg int pgno;
474 1.1 mrg {
475 1.1 mrg struct swapdev *sdp;
476 1.1 mrg struct swappri *spp;
477 1.1 mrg
478 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL;
479 1.32 chs spp = LIST_NEXT(spp, spi_swappri))
480 1.32 chs for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
481 1.1 mrg sdp != (void *)&spp->spi_swapdev;
482 1.32 chs sdp = CIRCLEQ_NEXT(sdp, swd_next))
483 1.1 mrg if (pgno >= sdp->swd_drumoffset &&
484 1.1 mrg pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
485 1.1 mrg return sdp;
486 1.1 mrg }
487 1.1 mrg return NULL;
488 1.1 mrg }
489 1.1 mrg
490 1.1 mrg
491 1.1 mrg /*
492 1.1 mrg * sys_swapctl: main entry point for swapctl(2) system call
493 1.1 mrg * [with two helper functions: swap_on and swap_off]
494 1.1 mrg */
495 1.1 mrg int
496 1.1 mrg sys_swapctl(p, v, retval)
497 1.1 mrg struct proc *p;
498 1.1 mrg void *v;
499 1.1 mrg register_t *retval;
500 1.1 mrg {
501 1.1 mrg struct sys_swapctl_args /* {
502 1.1 mrg syscallarg(int) cmd;
503 1.1 mrg syscallarg(void *) arg;
504 1.1 mrg syscallarg(int) misc;
505 1.1 mrg } */ *uap = (struct sys_swapctl_args *)v;
506 1.1 mrg struct vnode *vp;
507 1.1 mrg struct nameidata nd;
508 1.1 mrg struct swappri *spp;
509 1.1 mrg struct swapdev *sdp;
510 1.1 mrg struct swapent *sep;
511 1.16 mrg char userpath[PATH_MAX + 1];
512 1.18 enami size_t len;
513 1.18 enami int count, error, misc;
514 1.1 mrg int priority;
515 1.1 mrg UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
516 1.1 mrg
517 1.1 mrg misc = SCARG(uap, misc);
518 1.1 mrg
519 1.1 mrg /*
520 1.1 mrg * ensure serialized syscall access by grabbing the swap_syscall_lock
521 1.1 mrg */
522 1.32 chs lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
523 1.24 mrg
524 1.1 mrg /*
525 1.1 mrg * we handle the non-priv NSWAP and STATS request first.
526 1.1 mrg *
527 1.1 mrg * SWAP_NSWAP: return number of config'd swap devices
528 1.1 mrg * [can also be obtained with uvmexp sysctl]
529 1.1 mrg */
530 1.1 mrg if (SCARG(uap, cmd) == SWAP_NSWAP) {
531 1.8 mrg UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
532 1.8 mrg 0, 0, 0);
533 1.1 mrg *retval = uvmexp.nswapdev;
534 1.16 mrg error = 0;
535 1.16 mrg goto out;
536 1.1 mrg }
537 1.1 mrg
538 1.1 mrg /*
539 1.1 mrg * SWAP_STATS: get stats on current # of configured swap devs
540 1.1 mrg *
541 1.1 mrg * note that the swap_priority list can't change as long
542 1.1 mrg * as we are holding the swap_syscall_lock. we don't want
543 1.26 chs * to grab the uvm.swap_data_lock because we may fault&sleep during
544 1.1 mrg * copyout() and we don't want to be holding that lock then!
545 1.1 mrg */
546 1.16 mrg if (SCARG(uap, cmd) == SWAP_STATS
547 1.16 mrg #if defined(COMPAT_13)
548 1.16 mrg || SCARG(uap, cmd) == SWAP_OSTATS
549 1.16 mrg #endif
550 1.16 mrg ) {
551 1.1 mrg sep = (struct swapent *)SCARG(uap, arg);
552 1.1 mrg count = 0;
553 1.1 mrg
554 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL;
555 1.32 chs spp = LIST_NEXT(spp, spi_swappri)) {
556 1.32 chs for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
557 1.1 mrg sdp != (void *)&spp->spi_swapdev && misc-- > 0;
558 1.32 chs sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
559 1.16 mrg /*
560 1.16 mrg * backwards compatibility for system call.
561 1.16 mrg * note that we use 'struct oswapent' as an
562 1.16 mrg * overlay into both 'struct swapdev' and
563 1.16 mrg * the userland 'struct swapent', as we
564 1.16 mrg * want to retain backwards compatibility
565 1.16 mrg * with NetBSD 1.3.
566 1.16 mrg */
567 1.16 mrg sdp->swd_ose.ose_inuse =
568 1.20 chs btodb(sdp->swd_npginuse << PAGE_SHIFT);
569 1.32 chs error = copyout(&sdp->swd_ose, sep,
570 1.32 chs sizeof(struct oswapent));
571 1.16 mrg
572 1.16 mrg /* now copy out the path if necessary */
573 1.16 mrg #if defined(COMPAT_13)
574 1.16 mrg if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
575 1.16 mrg #else
576 1.16 mrg if (error == 0)
577 1.16 mrg #endif
578 1.32 chs error = copyout(sdp->swd_path,
579 1.32 chs &sep->se_path, sdp->swd_pathlen);
580 1.16 mrg
581 1.16 mrg if (error)
582 1.16 mrg goto out;
583 1.1 mrg count++;
584 1.16 mrg #if defined(COMPAT_13)
585 1.16 mrg if (SCARG(uap, cmd) == SWAP_OSTATS)
586 1.16 mrg ((struct oswapent *)sep)++;
587 1.16 mrg else
588 1.16 mrg #endif
589 1.16 mrg sep++;
590 1.1 mrg }
591 1.1 mrg }
592 1.1 mrg
593 1.16 mrg UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
594 1.1 mrg
595 1.1 mrg *retval = count;
596 1.16 mrg error = 0;
597 1.16 mrg goto out;
598 1.1 mrg }
599 1.1 mrg
600 1.1 mrg /*
601 1.1 mrg * all other requests require superuser privs. verify.
602 1.1 mrg */
603 1.16 mrg if ((error = suser(p->p_ucred, &p->p_acflag)))
604 1.16 mrg goto out;
605 1.1 mrg
606 1.1 mrg /*
607 1.1 mrg * at this point we expect a path name in arg. we will
608 1.1 mrg * use namei() to gain a vnode reference (vref), and lock
609 1.1 mrg * the vnode (VOP_LOCK).
610 1.1 mrg *
611 1.1 mrg * XXX: a NULL arg means use the root vnode pointer (e.g. for
612 1.16 mrg * miniroot)
613 1.1 mrg */
614 1.1 mrg if (SCARG(uap, arg) == NULL) {
615 1.1 mrg vp = rootvp; /* miniroot */
616 1.7 fvdl if (vget(vp, LK_EXCLUSIVE)) {
617 1.16 mrg error = EBUSY;
618 1.16 mrg goto out;
619 1.1 mrg }
620 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON &&
621 1.16 mrg copystr("miniroot", userpath, sizeof userpath, &len))
622 1.16 mrg panic("swapctl: miniroot copy failed");
623 1.1 mrg } else {
624 1.16 mrg int space;
625 1.16 mrg char *where;
626 1.16 mrg
627 1.16 mrg if (SCARG(uap, cmd) == SWAP_ON) {
628 1.16 mrg if ((error = copyinstr(SCARG(uap, arg), userpath,
629 1.16 mrg sizeof userpath, &len)))
630 1.16 mrg goto out;
631 1.16 mrg space = UIO_SYSSPACE;
632 1.16 mrg where = userpath;
633 1.16 mrg } else {
634 1.16 mrg space = UIO_USERSPACE;
635 1.16 mrg where = (char *)SCARG(uap, arg);
636 1.1 mrg }
637 1.16 mrg NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
638 1.16 mrg if ((error = namei(&nd)))
639 1.16 mrg goto out;
640 1.1 mrg vp = nd.ni_vp;
641 1.1 mrg }
642 1.1 mrg /* note: "vp" is referenced and locked */
643 1.1 mrg
644 1.1 mrg error = 0; /* assume no error */
645 1.1 mrg switch(SCARG(uap, cmd)) {
646 1.24 mrg case SWAP_DUMPDEV:
647 1.24 mrg if (vp->v_type != VBLK) {
648 1.24 mrg error = ENOTBLK;
649 1.24 mrg goto out;
650 1.24 mrg }
651 1.24 mrg dumpdev = vp->v_rdev;
652 1.24 mrg
653 1.24 mrg break;
654 1.24 mrg
655 1.1 mrg case SWAP_CTL:
656 1.1 mrg /*
657 1.1 mrg * get new priority, remove old entry (if any) and then
658 1.1 mrg * reinsert it in the correct place. finally, prune out
659 1.1 mrg * any empty priority structures.
660 1.1 mrg */
661 1.1 mrg priority = SCARG(uap, misc);
662 1.32 chs spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
663 1.26 chs simple_lock(&uvm.swap_data_lock);
664 1.1 mrg if ((sdp = swaplist_find(vp, 1)) == NULL) {
665 1.1 mrg error = ENOENT;
666 1.1 mrg } else {
667 1.1 mrg swaplist_insert(sdp, spp, priority);
668 1.1 mrg swaplist_trim();
669 1.1 mrg }
670 1.26 chs simple_unlock(&uvm.swap_data_lock);
671 1.1 mrg if (error)
672 1.1 mrg free(spp, M_VMSWAP);
673 1.1 mrg break;
674 1.1 mrg
675 1.1 mrg case SWAP_ON:
676 1.32 chs
677 1.1 mrg /*
678 1.1 mrg * check for duplicates. if none found, then insert a
679 1.1 mrg * dummy entry on the list to prevent someone else from
680 1.1 mrg * trying to enable this device while we are working on
681 1.1 mrg * it.
682 1.1 mrg */
683 1.32 chs
684 1.1 mrg priority = SCARG(uap, misc);
685 1.26 chs simple_lock(&uvm.swap_data_lock);
686 1.1 mrg if ((sdp = swaplist_find(vp, 0)) != NULL) {
687 1.1 mrg error = EBUSY;
688 1.26 chs simple_unlock(&uvm.swap_data_lock);
689 1.16 mrg break;
690 1.1 mrg }
691 1.32 chs sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
692 1.32 chs spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
693 1.14 perry memset(sdp, 0, sizeof(*sdp));
694 1.1 mrg sdp->swd_flags = SWF_FAKE; /* placeholder only */
695 1.1 mrg sdp->swd_vp = vp;
696 1.1 mrg sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
697 1.33 thorpej BUFQ_INIT(&sdp->swd_tab);
698 1.32 chs
699 1.1 mrg /*
700 1.1 mrg * XXX Is NFS elaboration necessary?
701 1.1 mrg */
702 1.32 chs if (vp->v_type == VREG) {
703 1.1 mrg sdp->swd_cred = crdup(p->p_ucred);
704 1.32 chs }
705 1.32 chs
706 1.1 mrg swaplist_insert(sdp, spp, priority);
707 1.26 chs simple_unlock(&uvm.swap_data_lock);
708 1.1 mrg
709 1.16 mrg sdp->swd_pathlen = len;
710 1.16 mrg sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
711 1.19 pk if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
712 1.19 pk panic("swapctl: copystr");
713 1.32 chs
714 1.1 mrg /*
715 1.1 mrg * we've now got a FAKE placeholder in the swap list.
716 1.1 mrg * now attempt to enable swap on it. if we fail, undo
717 1.1 mrg * what we've done and kill the fake entry we just inserted.
718 1.1 mrg * if swap_on is a success, it will clear the SWF_FAKE flag
719 1.1 mrg */
720 1.32 chs
721 1.1 mrg if ((error = swap_on(p, sdp)) != 0) {
722 1.26 chs simple_lock(&uvm.swap_data_lock);
723 1.8 mrg (void) swaplist_find(vp, 1); /* kill fake entry */
724 1.1 mrg swaplist_trim();
725 1.26 chs simple_unlock(&uvm.swap_data_lock);
726 1.32 chs if (vp->v_type == VREG) {
727 1.1 mrg crfree(sdp->swd_cred);
728 1.32 chs }
729 1.19 pk free(sdp->swd_path, M_VMSWAP);
730 1.32 chs free(sdp, M_VMSWAP);
731 1.1 mrg break;
732 1.1 mrg }
733 1.1 mrg break;
734 1.1 mrg
735 1.1 mrg case SWAP_OFF:
736 1.26 chs simple_lock(&uvm.swap_data_lock);
737 1.1 mrg if ((sdp = swaplist_find(vp, 0)) == NULL) {
738 1.26 chs simple_unlock(&uvm.swap_data_lock);
739 1.1 mrg error = ENXIO;
740 1.1 mrg break;
741 1.1 mrg }
742 1.32 chs
743 1.1 mrg /*
744 1.1 mrg * If a device isn't in use or enabled, we
745 1.1 mrg * can't stop swapping from it (again).
746 1.1 mrg */
747 1.1 mrg if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
748 1.26 chs simple_unlock(&uvm.swap_data_lock);
749 1.1 mrg error = EBUSY;
750 1.16 mrg break;
751 1.1 mrg }
752 1.1 mrg
753 1.1 mrg /*
754 1.32 chs * do the real work.
755 1.1 mrg */
756 1.32 chs if ((error = swap_off(p, sdp)) != 0)
757 1.32 chs goto out;
758 1.32 chs
759 1.1 mrg break;
760 1.1 mrg
761 1.1 mrg default:
762 1.1 mrg error = EINVAL;
763 1.1 mrg }
764 1.1 mrg
765 1.1 mrg /*
766 1.37.4.1 tv * done! release the ref gained by namei() and unlock.
767 1.1 mrg */
768 1.1 mrg vput(vp);
769 1.37.4.1 tv
770 1.16 mrg out:
771 1.32 chs lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
772 1.1 mrg
773 1.1 mrg UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
774 1.1 mrg return (error);
775 1.1 mrg }
776 1.1 mrg
777 1.1 mrg /*
778 1.1 mrg * swap_on: attempt to enable a swapdev for swapping. note that the
779 1.1 mrg * swapdev is already on the global list, but disabled (marked
780 1.1 mrg * SWF_FAKE).
781 1.1 mrg *
782 1.1 mrg * => we avoid the start of the disk (to protect disk labels)
783 1.1 mrg * => we also avoid the miniroot, if we are swapping to root.
784 1.26 chs * => caller should leave uvm.swap_data_lock unlocked, we may lock it
785 1.1 mrg * if needed.
786 1.1 mrg */
787 1.1 mrg static int
788 1.1 mrg swap_on(p, sdp)
789 1.1 mrg struct proc *p;
790 1.1 mrg struct swapdev *sdp;
791 1.1 mrg {
792 1.1 mrg static int count = 0; /* static */
793 1.1 mrg struct vnode *vp;
794 1.1 mrg int error, npages, nblocks, size;
795 1.1 mrg long addr;
796 1.1 mrg struct vattr va;
797 1.1 mrg #ifdef NFS
798 1.1 mrg extern int (**nfsv2_vnodeop_p) __P((void *));
799 1.1 mrg #endif /* NFS */
800 1.1 mrg dev_t dev;
801 1.1 mrg char *name;
802 1.1 mrg UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
803 1.1 mrg
804 1.1 mrg /*
805 1.1 mrg * we want to enable swapping on sdp. the swd_vp contains
806 1.1 mrg * the vnode we want (locked and ref'd), and the swd_dev
807 1.1 mrg * contains the dev_t of the file, if it a block device.
808 1.1 mrg */
809 1.1 mrg
810 1.1 mrg vp = sdp->swd_vp;
811 1.1 mrg dev = sdp->swd_dev;
812 1.1 mrg
813 1.1 mrg /*
814 1.1 mrg * open the swap file (mostly useful for block device files to
815 1.1 mrg * let device driver know what is up).
816 1.1 mrg *
817 1.1 mrg * we skip the open/close for root on swap because the root
818 1.1 mrg * has already been opened when root was mounted (mountroot).
819 1.1 mrg */
820 1.1 mrg if (vp != rootvp) {
821 1.1 mrg if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
822 1.1 mrg return (error);
823 1.1 mrg }
824 1.1 mrg
825 1.1 mrg /* XXX this only works for block devices */
826 1.1 mrg UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
827 1.1 mrg
828 1.1 mrg /*
829 1.1 mrg * we now need to determine the size of the swap area. for
830 1.1 mrg * block specials we can call the d_psize function.
831 1.1 mrg * for normal files, we must stat [get attrs].
832 1.1 mrg *
833 1.1 mrg * we put the result in nblks.
834 1.1 mrg * for normal files, we also want the filesystem block size
835 1.1 mrg * (which we get with statfs).
836 1.1 mrg */
837 1.1 mrg switch (vp->v_type) {
838 1.1 mrg case VBLK:
839 1.1 mrg if (bdevsw[major(dev)].d_psize == 0 ||
840 1.1 mrg (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
841 1.1 mrg error = ENXIO;
842 1.1 mrg goto bad;
843 1.1 mrg }
844 1.1 mrg break;
845 1.1 mrg
846 1.1 mrg case VREG:
847 1.1 mrg if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
848 1.1 mrg goto bad;
849 1.1 mrg nblocks = (int)btodb(va.va_size);
850 1.1 mrg if ((error =
851 1.1 mrg VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
852 1.1 mrg goto bad;
853 1.1 mrg
854 1.1 mrg sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
855 1.1 mrg /*
856 1.1 mrg * limit the max # of outstanding I/O requests we issue
857 1.1 mrg * at any one time. take it easy on NFS servers.
858 1.1 mrg */
859 1.1 mrg #ifdef NFS
860 1.1 mrg if (vp->v_op == nfsv2_vnodeop_p)
861 1.1 mrg sdp->swd_maxactive = 2; /* XXX */
862 1.1 mrg else
863 1.1 mrg #endif /* NFS */
864 1.1 mrg sdp->swd_maxactive = 8; /* XXX */
865 1.1 mrg break;
866 1.1 mrg
867 1.1 mrg default:
868 1.1 mrg error = ENXIO;
869 1.1 mrg goto bad;
870 1.1 mrg }
871 1.1 mrg
872 1.1 mrg /*
873 1.1 mrg * save nblocks in a safe place and convert to pages.
874 1.1 mrg */
875 1.1 mrg
876 1.16 mrg sdp->swd_ose.ose_nblks = nblocks;
877 1.20 chs npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
878 1.1 mrg
879 1.1 mrg /*
880 1.1 mrg * for block special files, we want to make sure that leave
881 1.1 mrg * the disklabel and bootblocks alone, so we arrange to skip
882 1.32 chs * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
883 1.1 mrg * note that because of this the "size" can be less than the
884 1.1 mrg * actual number of blocks on the device.
885 1.1 mrg */
886 1.1 mrg if (vp->v_type == VBLK) {
887 1.1 mrg /* we use pages 1 to (size - 1) [inclusive] */
888 1.1 mrg size = npages - 1;
889 1.1 mrg addr = 1;
890 1.1 mrg } else {
891 1.1 mrg /* we use pages 0 to (size - 1) [inclusive] */
892 1.1 mrg size = npages;
893 1.1 mrg addr = 0;
894 1.1 mrg }
895 1.1 mrg
896 1.1 mrg /*
897 1.1 mrg * make sure we have enough blocks for a reasonable sized swap
898 1.1 mrg * area. we want at least one page.
899 1.1 mrg */
900 1.1 mrg
901 1.1 mrg if (size < 1) {
902 1.1 mrg UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
903 1.1 mrg error = EINVAL;
904 1.1 mrg goto bad;
905 1.1 mrg }
906 1.1 mrg
907 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
908 1.1 mrg
909 1.1 mrg /*
910 1.1 mrg * now we need to allocate an extent to manage this swap device
911 1.1 mrg */
912 1.1 mrg name = malloc(12, M_VMSWAP, M_WAITOK);
913 1.1 mrg sprintf(name, "swap0x%04x", count++);
914 1.1 mrg
915 1.1 mrg /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
916 1.1 mrg sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
917 1.12 pk 0, 0, EX_WAITOK);
918 1.1 mrg /* allocate the `saved' region from the extent so it won't be used */
919 1.1 mrg if (addr) {
920 1.1 mrg if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
921 1.1 mrg panic("disklabel region");
922 1.1 mrg }
923 1.1 mrg
924 1.1 mrg /*
925 1.1 mrg * if the vnode we are swapping to is the root vnode
926 1.1 mrg * (i.e. we are swapping to the miniroot) then we want
927 1.1 mrg * to make sure we don't overwrite it. do a statfs to
928 1.1 mrg * find its size and skip over it.
929 1.1 mrg */
930 1.1 mrg if (vp == rootvp) {
931 1.1 mrg struct mount *mp;
932 1.1 mrg struct statfs *sp;
933 1.1 mrg int rootblocks, rootpages;
934 1.1 mrg
935 1.1 mrg mp = rootvnode->v_mount;
936 1.1 mrg sp = &mp->mnt_stat;
937 1.1 mrg rootblocks = sp->f_blocks * btodb(sp->f_bsize);
938 1.20 chs rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
939 1.32 chs if (rootpages > size)
940 1.1 mrg panic("swap_on: miniroot larger than swap?");
941 1.1 mrg
942 1.1 mrg if (extent_alloc_region(sdp->swd_ex, addr,
943 1.1 mrg rootpages, EX_WAITOK))
944 1.1 mrg panic("swap_on: unable to preserve miniroot");
945 1.1 mrg
946 1.32 chs size -= rootpages;
947 1.1 mrg printf("Preserved %d pages of miniroot ", rootpages);
948 1.32 chs printf("leaving %d pages of swap\n", size);
949 1.1 mrg }
950 1.1 mrg
951 1.37.4.2 he /*
952 1.37.4.2 he * try to add anons to reflect the new swap space.
953 1.37.4.2 he */
954 1.37.4.2 he
955 1.37.4.2 he error = uvm_anon_add(size);
956 1.37.4.2 he if (error) {
957 1.37.4.2 he goto bad;
958 1.37.4.2 he }
959 1.37.4.2 he
960 1.37.4.1 tv /*
961 1.37.4.1 tv * add a ref to vp to reflect usage as a swap device.
962 1.37.4.1 tv */
963 1.37.4.1 tv vref(vp);
964 1.37.4.1 tv
965 1.1 mrg /*
966 1.1 mrg * now add the new swapdev to the drum and enable.
967 1.1 mrg */
968 1.26 chs simple_lock(&uvm.swap_data_lock);
969 1.1 mrg swapdrum_add(sdp, npages);
970 1.32 chs sdp->swd_npages = size;
971 1.1 mrg sdp->swd_flags &= ~SWF_FAKE; /* going live */
972 1.1 mrg sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
973 1.32 chs uvmexp.swpages += size;
974 1.26 chs simple_unlock(&uvm.swap_data_lock);
975 1.1 mrg return (0);
976 1.1 mrg
977 1.1 mrg /*
978 1.37.4.2 he * failure: clean up and return error.
979 1.1 mrg */
980 1.37.4.2 he
981 1.37.4.2 he bad:
982 1.37.4.2 he if (sdp->swd_ex) {
983 1.37.4.2 he extent_destroy(sdp->swd_ex);
984 1.37.4.2 he }
985 1.37.4.2 he if (vp != rootvp) {
986 1.1 mrg (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
987 1.37.4.2 he }
988 1.1 mrg return (error);
989 1.1 mrg }
990 1.1 mrg
991 1.1 mrg /*
992 1.1 mrg * swap_off: stop swapping on swapdev
993 1.1 mrg *
994 1.32 chs * => swap data should be locked, we will unlock.
995 1.1 mrg */
996 1.1 mrg static int
997 1.1 mrg swap_off(p, sdp)
998 1.1 mrg struct proc *p;
999 1.1 mrg struct swapdev *sdp;
1000 1.1 mrg {
1001 1.32 chs void *name;
1002 1.1 mrg UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1003 1.32 chs UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
1004 1.1 mrg
1005 1.32 chs /* disable the swap area being removed */
1006 1.1 mrg sdp->swd_flags &= ~SWF_ENABLE;
1007 1.32 chs simple_unlock(&uvm.swap_data_lock);
1008 1.32 chs
1009 1.32 chs /*
1010 1.32 chs * the idea is to find all the pages that are paged out to this
1011 1.32 chs * device, and page them all in. in uvm, swap-backed pageable
1012 1.32 chs * memory can take two forms: aobjs and anons. call the
1013 1.32 chs * swapoff hook for each subsystem to bring in pages.
1014 1.32 chs */
1015 1.1 mrg
1016 1.32 chs if (uao_swap_off(sdp->swd_drumoffset,
1017 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize) ||
1018 1.32 chs anon_swap_off(sdp->swd_drumoffset,
1019 1.32 chs sdp->swd_drumoffset + sdp->swd_drumsize)) {
1020 1.32 chs
1021 1.32 chs simple_lock(&uvm.swap_data_lock);
1022 1.32 chs sdp->swd_flags |= SWF_ENABLE;
1023 1.32 chs simple_unlock(&uvm.swap_data_lock);
1024 1.32 chs return ENOMEM;
1025 1.32 chs }
1026 1.32 chs
1027 1.32 chs #ifdef DIAGNOSTIC
1028 1.32 chs if (sdp->swd_npginuse != sdp->swd_npgbad) {
1029 1.32 chs panic("swap_off: sdp %p - %d pages still in use (%d bad)\n",
1030 1.32 chs sdp, sdp->swd_npginuse, sdp->swd_npgbad);
1031 1.32 chs }
1032 1.32 chs #endif
1033 1.1 mrg
1034 1.1 mrg /*
1035 1.37.4.1 tv * done with the vnode and saved creds.
1036 1.37.4.1 tv * drop our ref on the vnode before calling VOP_CLOSE()
1037 1.37.4.1 tv * so that spec_close() can tell if this is the last close.
1038 1.1 mrg */
1039 1.32 chs if (sdp->swd_vp->v_type == VREG) {
1040 1.32 chs crfree(sdp->swd_cred);
1041 1.32 chs }
1042 1.37.4.1 tv vrele(sdp->swd_vp);
1043 1.32 chs if (sdp->swd_vp != rootvp) {
1044 1.32 chs (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1045 1.32 chs }
1046 1.32 chs
1047 1.32 chs /* remove anons from the system */
1048 1.32 chs uvm_anon_remove(sdp->swd_npages);
1049 1.32 chs
1050 1.32 chs simple_lock(&uvm.swap_data_lock);
1051 1.32 chs uvmexp.swpages -= sdp->swd_npages;
1052 1.1 mrg
1053 1.32 chs if (swaplist_find(sdp->swd_vp, 1) == NULL)
1054 1.32 chs panic("swap_off: swapdev not in list\n");
1055 1.32 chs swaplist_trim();
1056 1.1 mrg
1057 1.32 chs /*
1058 1.32 chs * free all resources!
1059 1.32 chs */
1060 1.32 chs extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1061 1.32 chs EX_WAITOK);
1062 1.32 chs name = (void *)sdp->swd_ex->ex_name;
1063 1.1 mrg extent_destroy(sdp->swd_ex);
1064 1.1 mrg free(name, M_VMSWAP);
1065 1.32 chs free(sdp, M_VMSWAP);
1066 1.32 chs simple_unlock(&uvm.swap_data_lock);
1067 1.1 mrg return (0);
1068 1.1 mrg }
1069 1.1 mrg
1070 1.1 mrg /*
1071 1.1 mrg * /dev/drum interface and i/o functions
1072 1.1 mrg */
1073 1.1 mrg
1074 1.1 mrg /*
1075 1.1 mrg * swread: the read function for the drum (just a call to physio)
1076 1.1 mrg */
1077 1.1 mrg /*ARGSUSED*/
1078 1.1 mrg int
1079 1.1 mrg swread(dev, uio, ioflag)
1080 1.1 mrg dev_t dev;
1081 1.1 mrg struct uio *uio;
1082 1.1 mrg int ioflag;
1083 1.1 mrg {
1084 1.1 mrg UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1085 1.1 mrg
1086 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1087 1.1 mrg return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1088 1.1 mrg }
1089 1.1 mrg
1090 1.1 mrg /*
1091 1.1 mrg * swwrite: the write function for the drum (just a call to physio)
1092 1.1 mrg */
1093 1.1 mrg /*ARGSUSED*/
1094 1.1 mrg int
1095 1.1 mrg swwrite(dev, uio, ioflag)
1096 1.1 mrg dev_t dev;
1097 1.1 mrg struct uio *uio;
1098 1.1 mrg int ioflag;
1099 1.1 mrg {
1100 1.1 mrg UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1101 1.1 mrg
1102 1.1 mrg UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1103 1.1 mrg return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1104 1.1 mrg }
1105 1.1 mrg
1106 1.1 mrg /*
1107 1.1 mrg * swstrategy: perform I/O on the drum
1108 1.1 mrg *
1109 1.1 mrg * => we must map the i/o request from the drum to the correct swapdev.
1110 1.1 mrg */
1111 1.1 mrg void
1112 1.1 mrg swstrategy(bp)
1113 1.1 mrg struct buf *bp;
1114 1.1 mrg {
1115 1.1 mrg struct swapdev *sdp;
1116 1.1 mrg struct vnode *vp;
1117 1.25 chs int s, pageno, bn;
1118 1.1 mrg UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1119 1.1 mrg
1120 1.1 mrg /*
1121 1.1 mrg * convert block number to swapdev. note that swapdev can't
1122 1.1 mrg * be yanked out from under us because we are holding resources
1123 1.1 mrg * in it (i.e. the blocks we are doing I/O on).
1124 1.1 mrg */
1125 1.20 chs pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1126 1.26 chs simple_lock(&uvm.swap_data_lock);
1127 1.1 mrg sdp = swapdrum_getsdp(pageno);
1128 1.26 chs simple_unlock(&uvm.swap_data_lock);
1129 1.1 mrg if (sdp == NULL) {
1130 1.1 mrg bp->b_error = EINVAL;
1131 1.1 mrg bp->b_flags |= B_ERROR;
1132 1.1 mrg biodone(bp);
1133 1.1 mrg UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1134 1.1 mrg return;
1135 1.1 mrg }
1136 1.1 mrg
1137 1.1 mrg /*
1138 1.1 mrg * convert drum page number to block number on this swapdev.
1139 1.1 mrg */
1140 1.1 mrg
1141 1.32 chs pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1142 1.20 chs bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1143 1.1 mrg
1144 1.1 mrg UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1145 1.1 mrg ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1146 1.1 mrg sdp->swd_drumoffset, bn, bp->b_bcount);
1147 1.1 mrg
1148 1.1 mrg /*
1149 1.1 mrg * for block devices we finish up here.
1150 1.32 chs * for regular files we have to do more work which we delegate
1151 1.1 mrg * to sw_reg_strategy().
1152 1.1 mrg */
1153 1.1 mrg
1154 1.1 mrg switch (sdp->swd_vp->v_type) {
1155 1.1 mrg default:
1156 1.1 mrg panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1157 1.32 chs
1158 1.1 mrg case VBLK:
1159 1.1 mrg
1160 1.1 mrg /*
1161 1.1 mrg * must convert "bp" from an I/O on /dev/drum to an I/O
1162 1.1 mrg * on the swapdev (sdp).
1163 1.1 mrg */
1164 1.25 chs s = splbio();
1165 1.1 mrg bp->b_blkno = bn; /* swapdev block number */
1166 1.1 mrg vp = sdp->swd_vp; /* swapdev vnode pointer */
1167 1.1 mrg bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1168 1.1 mrg VHOLD(vp); /* "hold" swapdev vp for i/o */
1169 1.1 mrg
1170 1.1 mrg /*
1171 1.1 mrg * if we are doing a write, we have to redirect the i/o on
1172 1.1 mrg * drum's v_numoutput counter to the swapdevs.
1173 1.1 mrg */
1174 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1175 1.1 mrg vwakeup(bp); /* kills one 'v_numoutput' on drum */
1176 1.1 mrg vp->v_numoutput++; /* put it on swapdev */
1177 1.1 mrg }
1178 1.1 mrg
1179 1.1 mrg /*
1180 1.1 mrg * dissassocate buffer with /dev/drum vnode
1181 1.1 mrg * [could be null if buf was from physio]
1182 1.1 mrg */
1183 1.1 mrg if (bp->b_vp != NULLVP)
1184 1.1 mrg brelvp(bp);
1185 1.1 mrg
1186 1.1 mrg /*
1187 1.1 mrg * finally plug in swapdev vnode and start I/O
1188 1.1 mrg */
1189 1.1 mrg bp->b_vp = vp;
1190 1.25 chs splx(s);
1191 1.1 mrg VOP_STRATEGY(bp);
1192 1.1 mrg return;
1193 1.32 chs
1194 1.1 mrg case VREG:
1195 1.1 mrg /*
1196 1.32 chs * delegate to sw_reg_strategy function.
1197 1.1 mrg */
1198 1.1 mrg sw_reg_strategy(sdp, bp, bn);
1199 1.1 mrg return;
1200 1.1 mrg }
1201 1.1 mrg /* NOTREACHED */
1202 1.1 mrg }
1203 1.1 mrg
1204 1.1 mrg /*
1205 1.1 mrg * sw_reg_strategy: handle swap i/o to regular files
1206 1.1 mrg */
1207 1.1 mrg static void
1208 1.1 mrg sw_reg_strategy(sdp, bp, bn)
1209 1.1 mrg struct swapdev *sdp;
1210 1.1 mrg struct buf *bp;
1211 1.1 mrg int bn;
1212 1.1 mrg {
1213 1.1 mrg struct vnode *vp;
1214 1.1 mrg struct vndxfer *vnx;
1215 1.9 mrg daddr_t nbn, byteoff;
1216 1.1 mrg caddr_t addr;
1217 1.9 mrg int s, off, nra, error, sz, resid;
1218 1.1 mrg UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1219 1.1 mrg
1220 1.1 mrg /*
1221 1.1 mrg * allocate a vndxfer head for this transfer and point it to
1222 1.1 mrg * our buffer.
1223 1.1 mrg */
1224 1.12 pk getvndxfer(vnx);
1225 1.1 mrg vnx->vx_flags = VX_BUSY;
1226 1.1 mrg vnx->vx_error = 0;
1227 1.1 mrg vnx->vx_pending = 0;
1228 1.1 mrg vnx->vx_bp = bp;
1229 1.1 mrg vnx->vx_sdp = sdp;
1230 1.1 mrg
1231 1.1 mrg /*
1232 1.1 mrg * setup for main loop where we read filesystem blocks into
1233 1.1 mrg * our buffer.
1234 1.1 mrg */
1235 1.1 mrg error = 0;
1236 1.1 mrg bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1237 1.1 mrg addr = bp->b_data; /* current position in buffer */
1238 1.9 mrg byteoff = dbtob(bn);
1239 1.1 mrg
1240 1.1 mrg for (resid = bp->b_resid; resid; resid -= sz) {
1241 1.1 mrg struct vndbuf *nbp;
1242 1.1 mrg
1243 1.1 mrg /*
1244 1.1 mrg * translate byteoffset into block number. return values:
1245 1.1 mrg * vp = vnode of underlying device
1246 1.1 mrg * nbn = new block number (on underlying vnode dev)
1247 1.1 mrg * nra = num blocks we can read-ahead (excludes requested
1248 1.1 mrg * block)
1249 1.1 mrg */
1250 1.1 mrg nra = 0;
1251 1.1 mrg error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1252 1.1 mrg &vp, &nbn, &nra);
1253 1.1 mrg
1254 1.32 chs if (error == 0 && nbn == (daddr_t)-1) {
1255 1.23 marc /*
1256 1.23 marc * this used to just set error, but that doesn't
1257 1.23 marc * do the right thing. Instead, it causes random
1258 1.23 marc * memory errors. The panic() should remain until
1259 1.23 marc * this condition doesn't destabilize the system.
1260 1.23 marc */
1261 1.23 marc #if 1
1262 1.23 marc panic("sw_reg_strategy: swap to sparse file");
1263 1.23 marc #else
1264 1.1 mrg error = EIO; /* failure */
1265 1.23 marc #endif
1266 1.23 marc }
1267 1.1 mrg
1268 1.1 mrg /*
1269 1.1 mrg * punt if there was an error or a hole in the file.
1270 1.1 mrg * we must wait for any i/o ops we have already started
1271 1.1 mrg * to finish before returning.
1272 1.1 mrg *
1273 1.1 mrg * XXX we could deal with holes here but it would be
1274 1.1 mrg * a hassle (in the write case).
1275 1.1 mrg */
1276 1.1 mrg if (error) {
1277 1.1 mrg s = splbio();
1278 1.1 mrg vnx->vx_error = error; /* pass error up */
1279 1.1 mrg goto out;
1280 1.1 mrg }
1281 1.1 mrg
1282 1.1 mrg /*
1283 1.1 mrg * compute the size ("sz") of this transfer (in bytes).
1284 1.1 mrg * XXXCDC: ignores read-ahead for non-zero offset
1285 1.1 mrg */
1286 1.1 mrg if ((off = (byteoff % sdp->swd_bsize)) != 0)
1287 1.1 mrg sz = sdp->swd_bsize - off;
1288 1.1 mrg else
1289 1.1 mrg sz = (1 + nra) * sdp->swd_bsize;
1290 1.1 mrg
1291 1.1 mrg if (resid < sz)
1292 1.1 mrg sz = resid;
1293 1.1 mrg
1294 1.9 mrg UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1295 1.9 mrg sdp->swd_vp, vp, byteoff, nbn);
1296 1.1 mrg
1297 1.1 mrg /*
1298 1.1 mrg * now get a buf structure. note that the vb_buf is
1299 1.1 mrg * at the front of the nbp structure so that you can
1300 1.1 mrg * cast pointers between the two structure easily.
1301 1.1 mrg */
1302 1.12 pk getvndbuf(nbp);
1303 1.1 mrg nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1304 1.1 mrg nbp->vb_buf.b_bcount = sz;
1305 1.12 pk nbp->vb_buf.b_bufsize = sz;
1306 1.1 mrg nbp->vb_buf.b_error = 0;
1307 1.1 mrg nbp->vb_buf.b_data = addr;
1308 1.1 mrg nbp->vb_buf.b_blkno = nbn + btodb(off);
1309 1.34 thorpej nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1310 1.1 mrg nbp->vb_buf.b_proc = bp->b_proc;
1311 1.1 mrg nbp->vb_buf.b_iodone = sw_reg_iodone;
1312 1.1 mrg nbp->vb_buf.b_vp = NULLVP;
1313 1.12 pk nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1314 1.1 mrg nbp->vb_buf.b_rcred = sdp->swd_cred;
1315 1.1 mrg nbp->vb_buf.b_wcred = sdp->swd_cred;
1316 1.30 fvdl LIST_INIT(&nbp->vb_buf.b_dep);
1317 1.1 mrg
1318 1.1 mrg /*
1319 1.12 pk * set b_dirtyoff/end and b_validoff/end. this is
1320 1.1 mrg * required by the NFS client code (otherwise it will
1321 1.1 mrg * just discard our I/O request).
1322 1.1 mrg */
1323 1.1 mrg if (bp->b_dirtyend == 0) {
1324 1.1 mrg nbp->vb_buf.b_dirtyoff = 0;
1325 1.1 mrg nbp->vb_buf.b_dirtyend = sz;
1326 1.1 mrg } else {
1327 1.1 mrg nbp->vb_buf.b_dirtyoff =
1328 1.1 mrg max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1329 1.1 mrg nbp->vb_buf.b_dirtyend =
1330 1.1 mrg min(sz,
1331 1.1 mrg max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1332 1.1 mrg }
1333 1.1 mrg if (bp->b_validend == 0) {
1334 1.1 mrg nbp->vb_buf.b_validoff = 0;
1335 1.1 mrg nbp->vb_buf.b_validend = sz;
1336 1.1 mrg } else {
1337 1.1 mrg nbp->vb_buf.b_validoff =
1338 1.1 mrg max(0, bp->b_validoff - (bp->b_bcount-resid));
1339 1.1 mrg nbp->vb_buf.b_validend =
1340 1.1 mrg min(sz,
1341 1.1 mrg max(0, bp->b_validend - (bp->b_bcount-resid)));
1342 1.1 mrg }
1343 1.1 mrg
1344 1.1 mrg nbp->vb_xfer = vnx; /* patch it back in to vnx */
1345 1.1 mrg
1346 1.1 mrg /*
1347 1.1 mrg * Just sort by block number
1348 1.1 mrg */
1349 1.1 mrg s = splbio();
1350 1.1 mrg if (vnx->vx_error != 0) {
1351 1.1 mrg putvndbuf(nbp);
1352 1.1 mrg goto out;
1353 1.1 mrg }
1354 1.1 mrg vnx->vx_pending++;
1355 1.1 mrg
1356 1.1 mrg /* assoc new buffer with underlying vnode */
1357 1.1 mrg bgetvp(vp, &nbp->vb_buf);
1358 1.1 mrg
1359 1.1 mrg /* sort it in and start I/O if we are not over our limit */
1360 1.33 thorpej disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
1361 1.1 mrg sw_reg_start(sdp);
1362 1.1 mrg splx(s);
1363 1.1 mrg
1364 1.1 mrg /*
1365 1.1 mrg * advance to the next I/O
1366 1.1 mrg */
1367 1.9 mrg byteoff += sz;
1368 1.1 mrg addr += sz;
1369 1.1 mrg }
1370 1.1 mrg
1371 1.1 mrg s = splbio();
1372 1.1 mrg
1373 1.1 mrg out: /* Arrive here at splbio */
1374 1.1 mrg vnx->vx_flags &= ~VX_BUSY;
1375 1.1 mrg if (vnx->vx_pending == 0) {
1376 1.1 mrg if (vnx->vx_error != 0) {
1377 1.1 mrg bp->b_error = vnx->vx_error;
1378 1.1 mrg bp->b_flags |= B_ERROR;
1379 1.1 mrg }
1380 1.1 mrg putvndxfer(vnx);
1381 1.1 mrg biodone(bp);
1382 1.1 mrg }
1383 1.1 mrg splx(s);
1384 1.1 mrg }
1385 1.1 mrg
1386 1.1 mrg /*
1387 1.1 mrg * sw_reg_start: start an I/O request on the requested swapdev
1388 1.1 mrg *
1389 1.1 mrg * => reqs are sorted by disksort (above)
1390 1.1 mrg */
1391 1.1 mrg static void
1392 1.1 mrg sw_reg_start(sdp)
1393 1.1 mrg struct swapdev *sdp;
1394 1.1 mrg {
1395 1.1 mrg struct buf *bp;
1396 1.1 mrg UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1397 1.1 mrg
1398 1.8 mrg /* recursion control */
1399 1.1 mrg if ((sdp->swd_flags & SWF_BUSY) != 0)
1400 1.1 mrg return;
1401 1.1 mrg
1402 1.1 mrg sdp->swd_flags |= SWF_BUSY;
1403 1.1 mrg
1404 1.33 thorpej while (sdp->swd_active < sdp->swd_maxactive) {
1405 1.33 thorpej bp = BUFQ_FIRST(&sdp->swd_tab);
1406 1.1 mrg if (bp == NULL)
1407 1.1 mrg break;
1408 1.33 thorpej BUFQ_REMOVE(&sdp->swd_tab, bp);
1409 1.33 thorpej sdp->swd_active++;
1410 1.1 mrg
1411 1.1 mrg UVMHIST_LOG(pdhist,
1412 1.1 mrg "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1413 1.1 mrg bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1414 1.1 mrg if ((bp->b_flags & B_READ) == 0)
1415 1.1 mrg bp->b_vp->v_numoutput++;
1416 1.1 mrg VOP_STRATEGY(bp);
1417 1.1 mrg }
1418 1.1 mrg sdp->swd_flags &= ~SWF_BUSY;
1419 1.1 mrg }
1420 1.1 mrg
1421 1.1 mrg /*
1422 1.1 mrg * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1423 1.1 mrg *
1424 1.1 mrg * => note that we can recover the vndbuf struct by casting the buf ptr
1425 1.1 mrg */
1426 1.1 mrg static void
1427 1.1 mrg sw_reg_iodone(bp)
1428 1.1 mrg struct buf *bp;
1429 1.1 mrg {
1430 1.1 mrg struct vndbuf *vbp = (struct vndbuf *) bp;
1431 1.1 mrg struct vndxfer *vnx = vbp->vb_xfer;
1432 1.1 mrg struct buf *pbp = vnx->vx_bp; /* parent buffer */
1433 1.1 mrg struct swapdev *sdp = vnx->vx_sdp;
1434 1.1 mrg int s, resid;
1435 1.1 mrg UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1436 1.1 mrg
1437 1.1 mrg UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1438 1.1 mrg vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1439 1.1 mrg UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1440 1.1 mrg vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1441 1.1 mrg
1442 1.1 mrg /*
1443 1.1 mrg * protect vbp at splbio and update.
1444 1.1 mrg */
1445 1.1 mrg
1446 1.1 mrg s = splbio();
1447 1.1 mrg resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1448 1.1 mrg pbp->b_resid -= resid;
1449 1.1 mrg vnx->vx_pending--;
1450 1.1 mrg
1451 1.1 mrg if (vbp->vb_buf.b_error) {
1452 1.1 mrg UVMHIST_LOG(pdhist, " got error=%d !",
1453 1.1 mrg vbp->vb_buf.b_error, 0, 0, 0);
1454 1.1 mrg
1455 1.1 mrg /* pass error upward */
1456 1.1 mrg vnx->vx_error = vbp->vb_buf.b_error;
1457 1.35 chs }
1458 1.35 chs
1459 1.35 chs /*
1460 1.35 chs * disassociate this buffer from the vnode (if any).
1461 1.35 chs */
1462 1.35 chs if (vbp->vb_buf.b_vp != NULLVP) {
1463 1.35 chs brelvp(&vbp->vb_buf);
1464 1.1 mrg }
1465 1.1 mrg
1466 1.1 mrg /*
1467 1.1 mrg * kill vbp structure
1468 1.1 mrg */
1469 1.1 mrg putvndbuf(vbp);
1470 1.1 mrg
1471 1.1 mrg /*
1472 1.1 mrg * wrap up this transaction if it has run to completion or, in
1473 1.1 mrg * case of an error, when all auxiliary buffers have returned.
1474 1.1 mrg */
1475 1.1 mrg if (vnx->vx_error != 0) {
1476 1.1 mrg /* pass error upward */
1477 1.1 mrg pbp->b_flags |= B_ERROR;
1478 1.1 mrg pbp->b_error = vnx->vx_error;
1479 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1480 1.1 mrg putvndxfer(vnx);
1481 1.1 mrg biodone(pbp);
1482 1.1 mrg }
1483 1.11 pk } else if (pbp->b_resid == 0) {
1484 1.1 mrg #ifdef DIAGNOSTIC
1485 1.1 mrg if (vnx->vx_pending != 0)
1486 1.8 mrg panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1487 1.1 mrg #endif
1488 1.1 mrg
1489 1.1 mrg if ((vnx->vx_flags & VX_BUSY) == 0) {
1490 1.8 mrg UVMHIST_LOG(pdhist, " iodone error=%d !",
1491 1.8 mrg pbp, vnx->vx_error, 0, 0);
1492 1.8 mrg putvndxfer(vnx);
1493 1.1 mrg biodone(pbp);
1494 1.1 mrg }
1495 1.1 mrg }
1496 1.1 mrg
1497 1.1 mrg /*
1498 1.1 mrg * done! start next swapdev I/O if one is pending
1499 1.1 mrg */
1500 1.33 thorpej sdp->swd_active--;
1501 1.1 mrg sw_reg_start(sdp);
1502 1.1 mrg splx(s);
1503 1.1 mrg }
1504 1.1 mrg
1505 1.1 mrg
1506 1.1 mrg /*
1507 1.1 mrg * uvm_swap_alloc: allocate space on swap
1508 1.1 mrg *
1509 1.1 mrg * => allocation is done "round robin" down the priority list, as we
1510 1.1 mrg * allocate in a priority we "rotate" the circle queue.
1511 1.1 mrg * => space can be freed with uvm_swap_free
1512 1.1 mrg * => we return the page slot number in /dev/drum (0 == invalid slot)
1513 1.26 chs * => we lock uvm.swap_data_lock
1514 1.1 mrg * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1515 1.1 mrg */
1516 1.1 mrg int
1517 1.1 mrg uvm_swap_alloc(nslots, lessok)
1518 1.1 mrg int *nslots; /* IN/OUT */
1519 1.1 mrg boolean_t lessok;
1520 1.1 mrg {
1521 1.1 mrg struct swapdev *sdp;
1522 1.1 mrg struct swappri *spp;
1523 1.1 mrg u_long result;
1524 1.1 mrg UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1525 1.1 mrg
1526 1.1 mrg /*
1527 1.1 mrg * no swap devices configured yet? definite failure.
1528 1.1 mrg */
1529 1.1 mrg if (uvmexp.nswapdev < 1)
1530 1.1 mrg return 0;
1531 1.1 mrg
1532 1.1 mrg /*
1533 1.1 mrg * lock data lock, convert slots into blocks, and enter loop
1534 1.1 mrg */
1535 1.26 chs simple_lock(&uvm.swap_data_lock);
1536 1.1 mrg
1537 1.1 mrg ReTry: /* XXXMRG */
1538 1.32 chs for (spp = LIST_FIRST(&swap_priority); spp != NULL;
1539 1.32 chs spp = LIST_NEXT(spp, spi_swappri)) {
1540 1.32 chs for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
1541 1.1 mrg sdp != (void *)&spp->spi_swapdev;
1542 1.32 chs sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
1543 1.1 mrg /* if it's not enabled, then we can't swap from it */
1544 1.1 mrg if ((sdp->swd_flags & SWF_ENABLE) == 0)
1545 1.1 mrg continue;
1546 1.1 mrg if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1547 1.1 mrg continue;
1548 1.1 mrg if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1549 1.1 mrg EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1550 1.1 mrg &result) != 0) {
1551 1.1 mrg continue;
1552 1.1 mrg }
1553 1.1 mrg
1554 1.1 mrg /*
1555 1.1 mrg * successful allocation! now rotate the circleq.
1556 1.1 mrg */
1557 1.1 mrg CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1558 1.1 mrg CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1559 1.1 mrg sdp->swd_npginuse += *nslots;
1560 1.1 mrg uvmexp.swpginuse += *nslots;
1561 1.26 chs simple_unlock(&uvm.swap_data_lock);
1562 1.1 mrg /* done! return drum slot number */
1563 1.1 mrg UVMHIST_LOG(pdhist,
1564 1.1 mrg "success! returning %d slots starting at %d",
1565 1.1 mrg *nslots, result + sdp->swd_drumoffset, 0, 0);
1566 1.1 mrg return(result + sdp->swd_drumoffset);
1567 1.1 mrg }
1568 1.1 mrg }
1569 1.1 mrg
1570 1.1 mrg /* XXXMRG: BEGIN HACK */
1571 1.1 mrg if (*nslots > 1 && lessok) {
1572 1.1 mrg *nslots = 1;
1573 1.1 mrg goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1574 1.1 mrg }
1575 1.1 mrg /* XXXMRG: END HACK */
1576 1.1 mrg
1577 1.26 chs simple_unlock(&uvm.swap_data_lock);
1578 1.1 mrg return 0; /* failed */
1579 1.1 mrg }
1580 1.1 mrg
1581 1.1 mrg /*
1582 1.32 chs * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1583 1.32 chs *
1584 1.32 chs * => we lock uvm.swap_data_lock
1585 1.32 chs */
1586 1.32 chs void
1587 1.32 chs uvm_swap_markbad(startslot, nslots)
1588 1.32 chs int startslot;
1589 1.32 chs int nslots;
1590 1.32 chs {
1591 1.32 chs struct swapdev *sdp;
1592 1.32 chs UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1593 1.32 chs
1594 1.32 chs simple_lock(&uvm.swap_data_lock);
1595 1.32 chs sdp = swapdrum_getsdp(startslot);
1596 1.32 chs
1597 1.32 chs /*
1598 1.32 chs * we just keep track of how many pages have been marked bad
1599 1.32 chs * in this device, to make everything add up in swap_off().
1600 1.32 chs * we assume here that the range of slots will all be within
1601 1.32 chs * one swap device.
1602 1.32 chs */
1603 1.32 chs sdp->swd_npgbad += nslots;
1604 1.32 chs
1605 1.32 chs simple_unlock(&uvm.swap_data_lock);
1606 1.32 chs }
1607 1.32 chs
1608 1.32 chs /*
1609 1.1 mrg * uvm_swap_free: free swap slots
1610 1.1 mrg *
1611 1.1 mrg * => this can be all or part of an allocation made by uvm_swap_alloc
1612 1.26 chs * => we lock uvm.swap_data_lock
1613 1.1 mrg */
1614 1.1 mrg void
1615 1.1 mrg uvm_swap_free(startslot, nslots)
1616 1.1 mrg int startslot;
1617 1.1 mrg int nslots;
1618 1.1 mrg {
1619 1.1 mrg struct swapdev *sdp;
1620 1.1 mrg UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1621 1.1 mrg
1622 1.1 mrg UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1623 1.1 mrg startslot, 0, 0);
1624 1.32 chs
1625 1.32 chs /*
1626 1.32 chs * ignore attempts to free the "bad" slot.
1627 1.32 chs */
1628 1.32 chs if (startslot == SWSLOT_BAD) {
1629 1.32 chs return;
1630 1.32 chs }
1631 1.32 chs
1632 1.1 mrg /*
1633 1.1 mrg * convert drum slot offset back to sdp, free the blocks
1634 1.1 mrg * in the extent, and return. must hold pri lock to do
1635 1.1 mrg * lookup and access the extent.
1636 1.1 mrg */
1637 1.26 chs simple_lock(&uvm.swap_data_lock);
1638 1.1 mrg sdp = swapdrum_getsdp(startslot);
1639 1.1 mrg
1640 1.1 mrg #ifdef DIAGNOSTIC
1641 1.1 mrg if (uvmexp.nswapdev < 1)
1642 1.1 mrg panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1643 1.1 mrg if (sdp == NULL) {
1644 1.1 mrg printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1645 1.1 mrg nslots);
1646 1.1 mrg panic("uvm_swap_free: unmapped address\n");
1647 1.1 mrg }
1648 1.1 mrg #endif
1649 1.12 pk if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1650 1.32 chs EX_MALLOCOK|EX_NOWAIT) != 0) {
1651 1.32 chs printf("warning: resource shortage: %d pages of swap lost\n",
1652 1.12 pk nslots);
1653 1.32 chs }
1654 1.12 pk
1655 1.1 mrg sdp->swd_npginuse -= nslots;
1656 1.1 mrg uvmexp.swpginuse -= nslots;
1657 1.1 mrg #ifdef DIAGNOSTIC
1658 1.1 mrg if (sdp->swd_npginuse < 0)
1659 1.1 mrg panic("uvm_swap_free: inuse < 0");
1660 1.1 mrg #endif
1661 1.26 chs simple_unlock(&uvm.swap_data_lock);
1662 1.1 mrg }
1663 1.1 mrg
1664 1.1 mrg /*
1665 1.1 mrg * uvm_swap_put: put any number of pages into a contig place on swap
1666 1.1 mrg *
1667 1.1 mrg * => can be sync or async
1668 1.1 mrg * => XXXMRG: consider making it an inline or macro
1669 1.1 mrg */
1670 1.1 mrg int
1671 1.1 mrg uvm_swap_put(swslot, ppsp, npages, flags)
1672 1.1 mrg int swslot;
1673 1.1 mrg struct vm_page **ppsp;
1674 1.1 mrg int npages;
1675 1.1 mrg int flags;
1676 1.1 mrg {
1677 1.1 mrg int result;
1678 1.1 mrg
1679 1.1 mrg result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1680 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1681 1.1 mrg
1682 1.1 mrg return (result);
1683 1.1 mrg }
1684 1.1 mrg
1685 1.1 mrg /*
1686 1.1 mrg * uvm_swap_get: get a single page from swap
1687 1.1 mrg *
1688 1.1 mrg * => usually a sync op (from fault)
1689 1.1 mrg * => XXXMRG: consider making it an inline or macro
1690 1.1 mrg */
1691 1.1 mrg int
1692 1.1 mrg uvm_swap_get(page, swslot, flags)
1693 1.1 mrg struct vm_page *page;
1694 1.1 mrg int swslot, flags;
1695 1.1 mrg {
1696 1.1 mrg int result;
1697 1.1 mrg
1698 1.1 mrg uvmexp.nswget++;
1699 1.1 mrg #ifdef DIAGNOSTIC
1700 1.1 mrg if ((flags & PGO_SYNCIO) == 0)
1701 1.1 mrg printf("uvm_swap_get: ASYNC get requested?\n");
1702 1.1 mrg #endif
1703 1.1 mrg
1704 1.32 chs if (swslot == SWSLOT_BAD) {
1705 1.32 chs return VM_PAGER_ERROR;
1706 1.32 chs }
1707 1.32 chs
1708 1.26 chs /*
1709 1.26 chs * this page is (about to be) no longer only in swap.
1710 1.26 chs */
1711 1.26 chs simple_lock(&uvm.swap_data_lock);
1712 1.26 chs uvmexp.swpgonly--;
1713 1.26 chs simple_unlock(&uvm.swap_data_lock);
1714 1.26 chs
1715 1.1 mrg result = uvm_swap_io(&page, swslot, 1, B_READ |
1716 1.1 mrg ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1717 1.26 chs
1718 1.26 chs if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1719 1.26 chs /*
1720 1.26 chs * oops, the read failed so it really is still only in swap.
1721 1.26 chs */
1722 1.26 chs simple_lock(&uvm.swap_data_lock);
1723 1.26 chs uvmexp.swpgonly++;
1724 1.26 chs simple_unlock(&uvm.swap_data_lock);
1725 1.26 chs }
1726 1.1 mrg
1727 1.1 mrg return (result);
1728 1.1 mrg }
1729 1.1 mrg
1730 1.1 mrg /*
1731 1.1 mrg * uvm_swap_io: do an i/o operation to swap
1732 1.1 mrg */
1733 1.1 mrg
1734 1.1 mrg static int
1735 1.1 mrg uvm_swap_io(pps, startslot, npages, flags)
1736 1.1 mrg struct vm_page **pps;
1737 1.1 mrg int startslot, npages, flags;
1738 1.1 mrg {
1739 1.1 mrg daddr_t startblk;
1740 1.1 mrg struct swapbuf *sbp;
1741 1.1 mrg struct buf *bp;
1742 1.15 eeh vaddr_t kva;
1743 1.37 thorpej int result, s, mapinflags, pflag;
1744 1.1 mrg UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1745 1.1 mrg
1746 1.1 mrg UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1747 1.1 mrg startslot, npages, flags, 0);
1748 1.32 chs
1749 1.1 mrg /*
1750 1.1 mrg * convert starting drum slot to block number
1751 1.1 mrg */
1752 1.20 chs startblk = btodb(startslot << PAGE_SHIFT);
1753 1.1 mrg
1754 1.1 mrg /*
1755 1.1 mrg * first, map the pages into the kernel (XXX: currently required
1756 1.1 mrg * by buffer system). note that we don't let pagermapin alloc
1757 1.1 mrg * an aiodesc structure because we don't want to chance a malloc.
1758 1.1 mrg * we've got our own pool of aiodesc structures (in swapbuf).
1759 1.1 mrg */
1760 1.37 thorpej mapinflags = (flags & B_READ) ? UVMPAGER_MAPIN_READ :
1761 1.37 thorpej UVMPAGER_MAPIN_WRITE;
1762 1.37 thorpej if ((flags & B_ASYNC) == 0)
1763 1.37 thorpej mapinflags |= UVMPAGER_MAPIN_WAITOK;
1764 1.37 thorpej kva = uvm_pagermapin(pps, npages, NULL, mapinflags);
1765 1.37 thorpej if (kva == 0)
1766 1.1 mrg return (VM_PAGER_AGAIN);
1767 1.1 mrg
1768 1.1 mrg /*
1769 1.1 mrg * now allocate a swap buffer off of freesbufs
1770 1.1 mrg * [make sure we don't put the pagedaemon to sleep...]
1771 1.1 mrg */
1772 1.1 mrg s = splbio();
1773 1.12 pk pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1774 1.12 pk ? 0
1775 1.12 pk : PR_WAITOK;
1776 1.12 pk sbp = pool_get(swapbuf_pool, pflag);
1777 1.1 mrg splx(s); /* drop splbio */
1778 1.1 mrg
1779 1.1 mrg /*
1780 1.1 mrg * if we failed to get a swapbuf, return "try again"
1781 1.1 mrg */
1782 1.1 mrg if (sbp == NULL)
1783 1.1 mrg return (VM_PAGER_AGAIN);
1784 1.1 mrg
1785 1.1 mrg /*
1786 1.1 mrg * fill in the bp/sbp. we currently route our i/o through
1787 1.1 mrg * /dev/drum's vnode [swapdev_vp].
1788 1.1 mrg */
1789 1.1 mrg bp = &sbp->sw_buf;
1790 1.21 mycroft bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1791 1.1 mrg bp->b_proc = &proc0; /* XXX */
1792 1.12 pk bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1793 1.12 pk bp->b_vnbufs.le_next = NOLIST;
1794 1.1 mrg bp->b_data = (caddr_t)kva;
1795 1.1 mrg bp->b_blkno = startblk;
1796 1.25 chs s = splbio();
1797 1.1 mrg VHOLD(swapdev_vp);
1798 1.1 mrg bp->b_vp = swapdev_vp;
1799 1.25 chs splx(s);
1800 1.1 mrg /* XXXCDC: isn't swapdev_vp always a VCHR? */
1801 1.1 mrg /* XXXMRG: probably -- this is obviously something inherited... */
1802 1.1 mrg if (swapdev_vp->v_type == VBLK)
1803 1.1 mrg bp->b_dev = swapdev_vp->v_rdev;
1804 1.20 chs bp->b_bcount = npages << PAGE_SHIFT;
1805 1.30 fvdl LIST_INIT(&bp->b_dep);
1806 1.1 mrg
1807 1.1 mrg /*
1808 1.1 mrg * for pageouts we must set "dirtyoff" [NFS client code needs it].
1809 1.1 mrg * and we bump v_numoutput (counter of number of active outputs).
1810 1.1 mrg */
1811 1.1 mrg if ((bp->b_flags & B_READ) == 0) {
1812 1.1 mrg bp->b_dirtyoff = 0;
1813 1.20 chs bp->b_dirtyend = npages << PAGE_SHIFT;
1814 1.1 mrg s = splbio();
1815 1.1 mrg swapdev_vp->v_numoutput++;
1816 1.1 mrg splx(s);
1817 1.1 mrg }
1818 1.1 mrg
1819 1.1 mrg /*
1820 1.1 mrg * for async ops we must set up the aiodesc and setup the callback
1821 1.1 mrg * XXX: we expect no async-reads, but we don't prevent it here.
1822 1.1 mrg */
1823 1.1 mrg if (flags & B_ASYNC) {
1824 1.1 mrg sbp->sw_aio.aiodone = uvm_swap_aiodone;
1825 1.1 mrg sbp->sw_aio.kva = kva;
1826 1.1 mrg sbp->sw_aio.npages = npages;
1827 1.1 mrg sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1828 1.1 mrg bp->b_flags |= B_CALL; /* set callback */
1829 1.1 mrg bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1830 1.1 mrg UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1831 1.1 mrg }
1832 1.1 mrg UVMHIST_LOG(pdhist,
1833 1.1 mrg "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1834 1.1 mrg bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1835 1.1 mrg
1836 1.1 mrg /*
1837 1.1 mrg * now we start the I/O, and if async, return.
1838 1.1 mrg */
1839 1.1 mrg VOP_STRATEGY(bp);
1840 1.1 mrg if (flags & B_ASYNC)
1841 1.1 mrg return (VM_PAGER_PEND);
1842 1.1 mrg
1843 1.1 mrg /*
1844 1.1 mrg * must be sync i/o. wait for it to finish
1845 1.1 mrg */
1846 1.1 mrg bp->b_error = biowait(bp);
1847 1.1 mrg result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1848 1.1 mrg
1849 1.1 mrg /*
1850 1.1 mrg * kill the pager mapping
1851 1.1 mrg */
1852 1.1 mrg uvm_pagermapout(kva, npages);
1853 1.1 mrg
1854 1.1 mrg /*
1855 1.1 mrg * now dispose of the swap buffer
1856 1.1 mrg */
1857 1.1 mrg s = splbio();
1858 1.1 mrg if (bp->b_vp)
1859 1.1 mrg brelvp(bp);
1860 1.12 pk
1861 1.12 pk pool_put(swapbuf_pool, sbp);
1862 1.1 mrg splx(s);
1863 1.1 mrg
1864 1.1 mrg /*
1865 1.1 mrg * finally return.
1866 1.1 mrg */
1867 1.1 mrg UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1868 1.1 mrg return (result);
1869 1.1 mrg }
1870 1.1 mrg
1871 1.1 mrg /*
1872 1.1 mrg * uvm_swap_bufdone: called from the buffer system when the i/o is done
1873 1.1 mrg */
1874 1.1 mrg static void
1875 1.1 mrg uvm_swap_bufdone(bp)
1876 1.1 mrg struct buf *bp;
1877 1.1 mrg {
1878 1.1 mrg struct swapbuf *sbp = (struct swapbuf *) bp;
1879 1.1 mrg int s = splbio();
1880 1.1 mrg UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1881 1.1 mrg
1882 1.1 mrg UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1883 1.1 mrg #ifdef DIAGNOSTIC
1884 1.1 mrg /*
1885 1.1 mrg * sanity check: swapbufs are private, so they shouldn't be wanted
1886 1.1 mrg */
1887 1.1 mrg if (bp->b_flags & B_WANTED)
1888 1.1 mrg panic("uvm_swap_bufdone: private buf wanted");
1889 1.1 mrg #endif
1890 1.1 mrg
1891 1.1 mrg /*
1892 1.25 chs * drop the buffer's reference to the vnode.
1893 1.1 mrg */
1894 1.1 mrg if (bp->b_vp)
1895 1.1 mrg brelvp(bp);
1896 1.1 mrg
1897 1.1 mrg /*
1898 1.1 mrg * now put the aio on the uvm.aio_done list and wake the
1899 1.1 mrg * pagedaemon (which will finish up our job in its context).
1900 1.1 mrg */
1901 1.1 mrg simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1902 1.1 mrg TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1903 1.1 mrg simple_unlock(&uvm.pagedaemon_lock);
1904 1.1 mrg
1905 1.28 thorpej wakeup(&uvm.pagedaemon);
1906 1.1 mrg splx(s);
1907 1.1 mrg }
1908 1.1 mrg
1909 1.1 mrg /*
1910 1.1 mrg * uvm_swap_aiodone: aiodone function for anonymous memory
1911 1.1 mrg *
1912 1.1 mrg * => this is called in the context of the pagedaemon (but with the
1913 1.1 mrg * page queues unlocked!)
1914 1.1 mrg * => our "aio" structure must be part of a "swapbuf"
1915 1.1 mrg */
1916 1.1 mrg static void
1917 1.1 mrg uvm_swap_aiodone(aio)
1918 1.1 mrg struct uvm_aiodesc *aio;
1919 1.1 mrg {
1920 1.1 mrg struct swapbuf *sbp = aio->pd_ptr;
1921 1.20 chs struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1922 1.1 mrg int lcv, s;
1923 1.15 eeh vaddr_t addr;
1924 1.1 mrg UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1925 1.8 mrg
1926 1.1 mrg UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1927 1.1 mrg #ifdef DIAGNOSTIC
1928 1.1 mrg /*
1929 1.1 mrg * sanity check
1930 1.1 mrg */
1931 1.20 chs if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1932 1.1 mrg panic("uvm_swap_aiodone: aio too big!");
1933 1.1 mrg #endif
1934 1.1 mrg
1935 1.1 mrg /*
1936 1.1 mrg * first, we have to recover the page pointers (pps) by poking in the
1937 1.1 mrg * kernel pmap (XXX: should be saved in the buf structure).
1938 1.1 mrg */
1939 1.1 mrg for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1940 1.1 mrg addr += PAGE_SIZE, lcv++) {
1941 1.1 mrg pps[lcv] = uvm_pageratop(addr);
1942 1.1 mrg }
1943 1.1 mrg
1944 1.1 mrg /*
1945 1.1 mrg * now we can dispose of the kernel mappings of the buffer
1946 1.1 mrg */
1947 1.1 mrg uvm_pagermapout(aio->kva, aio->npages);
1948 1.1 mrg
1949 1.1 mrg /*
1950 1.1 mrg * now we can dispose of the pages by using the dropcluster function
1951 1.1 mrg * [note that we have no "page of interest" so we pass in null]
1952 1.1 mrg */
1953 1.1 mrg uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1954 1.32 chs PGO_PDFREECLUST);
1955 1.1 mrg
1956 1.1 mrg /*
1957 1.1 mrg * finally, we can dispose of the swapbuf
1958 1.1 mrg */
1959 1.1 mrg s = splbio();
1960 1.12 pk pool_put(swapbuf_pool, sbp);
1961 1.1 mrg splx(s);
1962 1.1 mrg }
1963