Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.52
      1  1.52      chs /*	$NetBSD: uvm_swap.c,v 1.52 2001/05/26 16:32:47 chs Exp $	*/
      2   1.1      mrg 
      3   1.1      mrg /*
      4   1.1      mrg  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5   1.1      mrg  * All rights reserved.
      6   1.1      mrg  *
      7   1.1      mrg  * Redistribution and use in source and binary forms, with or without
      8   1.1      mrg  * modification, are permitted provided that the following conditions
      9   1.1      mrg  * are met:
     10   1.1      mrg  * 1. Redistributions of source code must retain the above copyright
     11   1.1      mrg  *    notice, this list of conditions and the following disclaimer.
     12   1.1      mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1      mrg  *    notice, this list of conditions and the following disclaimer in the
     14   1.1      mrg  *    documentation and/or other materials provided with the distribution.
     15   1.1      mrg  * 3. The name of the author may not be used to endorse or promote products
     16   1.1      mrg  *    derived from this software without specific prior written permission.
     17   1.1      mrg  *
     18   1.1      mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19   1.1      mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20   1.1      mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21   1.1      mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22   1.1      mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23   1.1      mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24   1.1      mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25   1.1      mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26   1.1      mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27   1.1      mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28   1.1      mrg  * SUCH DAMAGE.
     29   1.3      mrg  *
     30   1.3      mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31   1.3      mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32   1.1      mrg  */
     33   1.5      mrg 
     34   1.6  thorpej #include "fs_nfs.h"
     35   1.5      mrg #include "opt_uvmhist.h"
     36  1.16      mrg #include "opt_compat_netbsd.h"
     37  1.41      chs #include "opt_ddb.h"
     38   1.1      mrg 
     39   1.1      mrg #include <sys/param.h>
     40   1.1      mrg #include <sys/systm.h>
     41   1.1      mrg #include <sys/buf.h>
     42  1.36      mrg #include <sys/conf.h>
     43   1.1      mrg #include <sys/proc.h>
     44   1.1      mrg #include <sys/namei.h>
     45   1.1      mrg #include <sys/disklabel.h>
     46   1.1      mrg #include <sys/errno.h>
     47   1.1      mrg #include <sys/kernel.h>
     48   1.1      mrg #include <sys/malloc.h>
     49   1.1      mrg #include <sys/vnode.h>
     50   1.1      mrg #include <sys/file.h>
     51   1.1      mrg #include <sys/extent.h>
     52   1.1      mrg #include <sys/mount.h>
     53  1.12       pk #include <sys/pool.h>
     54   1.1      mrg #include <sys/syscallargs.h>
     55  1.17      mrg #include <sys/swap.h>
     56   1.1      mrg 
     57   1.1      mrg #include <uvm/uvm.h>
     58   1.1      mrg 
     59   1.1      mrg #include <miscfs/specfs/specdev.h>
     60   1.1      mrg 
     61   1.1      mrg /*
     62   1.1      mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     63   1.1      mrg  */
     64   1.1      mrg 
     65   1.1      mrg /*
     66   1.1      mrg  * swap space is managed in the following way:
     67  1.51      chs  *
     68   1.1      mrg  * each swap partition or file is described by a "swapdev" structure.
     69   1.1      mrg  * each "swapdev" structure contains a "swapent" structure which contains
     70   1.1      mrg  * information that is passed up to the user (via system calls).
     71   1.1      mrg  *
     72   1.1      mrg  * each swap partition is assigned a "priority" (int) which controls
     73   1.1      mrg  * swap parition usage.
     74   1.1      mrg  *
     75   1.1      mrg  * the system maintains a global data structure describing all swap
     76   1.1      mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     77   1.1      mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     78  1.51      chs  * by the "swap_priority" global var.    each "swappri" contains a
     79   1.1      mrg  * CIRCLEQ of "swapdev" structures at that priority.
     80   1.1      mrg  *
     81   1.1      mrg  * locking:
     82   1.1      mrg  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     83   1.1      mrg  *    system call and prevents the swap priority list from changing
     84   1.1      mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     85  1.26      chs  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     86   1.1      mrg  *    structures including the priority list, the swapdev structures,
     87   1.1      mrg  *    and the swapmap extent.
     88   1.1      mrg  *
     89   1.1      mrg  * each swap device has the following info:
     90   1.1      mrg  *  - swap device in use (could be disabled, preventing future use)
     91   1.1      mrg  *  - swap enabled (allows new allocations on swap)
     92   1.1      mrg  *  - map info in /dev/drum
     93   1.1      mrg  *  - vnode pointer
     94   1.1      mrg  * for swap files only:
     95   1.1      mrg  *  - block size
     96   1.1      mrg  *  - max byte count in buffer
     97   1.1      mrg  *  - buffer
     98   1.1      mrg  *  - credentials to use when doing i/o to file
     99   1.1      mrg  *
    100   1.1      mrg  * userland controls and configures swap with the swapctl(2) system call.
    101   1.1      mrg  * the sys_swapctl performs the following operations:
    102   1.1      mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    103  1.51      chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    104   1.1      mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    105   1.1      mrg  *	the current swap config into the array.
    106   1.1      mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    107   1.1      mrg  *	priority in "misc", start swapping on it.
    108   1.1      mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    109   1.1      mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    110   1.1      mrg  *	"misc")
    111   1.1      mrg  */
    112   1.1      mrg 
    113   1.1      mrg /*
    114   1.1      mrg  * swapdev: describes a single swap partition/file
    115   1.1      mrg  *
    116   1.1      mrg  * note the following should be true:
    117   1.1      mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    118   1.1      mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    119   1.1      mrg  */
    120   1.1      mrg struct swapdev {
    121  1.16      mrg 	struct oswapent swd_ose;
    122  1.16      mrg #define	swd_dev		swd_ose.ose_dev		/* device id */
    123  1.16      mrg #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    124  1.16      mrg #define	swd_priority	swd_ose.ose_priority	/* our priority */
    125  1.16      mrg 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    126  1.16      mrg 	char			*swd_path;	/* saved pathname of device */
    127  1.16      mrg 	int			swd_pathlen;	/* length of pathname */
    128  1.16      mrg 	int			swd_npages;	/* #pages we can use */
    129  1.16      mrg 	int			swd_npginuse;	/* #pages in use */
    130  1.32      chs 	int			swd_npgbad;	/* #pages bad */
    131  1.16      mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    132  1.16      mrg 	int			swd_drumsize;	/* #pages in drum */
    133  1.16      mrg 	struct extent		*swd_ex;	/* extent for this swapdev */
    134  1.42    enami 	char			swd_exname[12];	/* name of extent above */
    135  1.16      mrg 	struct vnode		*swd_vp;	/* backing vnode */
    136  1.16      mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    137   1.1      mrg 
    138  1.16      mrg 	int			swd_bsize;	/* blocksize (bytes) */
    139  1.16      mrg 	int			swd_maxactive;	/* max active i/o reqs */
    140  1.33  thorpej 	struct buf_queue	swd_tab;	/* buffer list */
    141  1.33  thorpej 	int			swd_active;	/* number of active buffers */
    142  1.16      mrg 	struct ucred		*swd_cred;	/* cred for file access */
    143   1.1      mrg };
    144   1.1      mrg 
    145   1.1      mrg /*
    146   1.1      mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    147   1.1      mrg  */
    148   1.1      mrg struct swappri {
    149   1.1      mrg 	int			spi_priority;     /* priority */
    150   1.1      mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    151   1.1      mrg 	/* circleq of swapdevs at this priority */
    152   1.1      mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    153   1.1      mrg };
    154   1.1      mrg 
    155   1.1      mrg /*
    156   1.1      mrg  * The following two structures are used to keep track of data transfers
    157   1.1      mrg  * on swap devices associated with regular files.
    158   1.1      mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    159   1.1      mrg  * structure names here to ease porting..
    160   1.1      mrg  */
    161   1.1      mrg struct vndxfer {
    162   1.1      mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    163   1.1      mrg 	struct swapdev	*vx_sdp;
    164   1.1      mrg 	int		vx_error;
    165   1.1      mrg 	int		vx_pending;	/* # of pending aux buffers */
    166   1.1      mrg 	int		vx_flags;
    167   1.1      mrg #define VX_BUSY		1
    168   1.1      mrg #define VX_DEAD		2
    169   1.1      mrg };
    170   1.1      mrg 
    171   1.1      mrg struct vndbuf {
    172   1.1      mrg 	struct buf	vb_buf;
    173   1.1      mrg 	struct vndxfer	*vb_xfer;
    174   1.1      mrg };
    175   1.1      mrg 
    176  1.12       pk 
    177   1.1      mrg /*
    178  1.12       pk  * We keep a of pool vndbuf's and vndxfer structures.
    179   1.1      mrg  */
    180  1.49  thorpej static struct pool vndxfer_pool;
    181  1.49  thorpej static struct pool vndbuf_pool;
    182   1.1      mrg 
    183  1.12       pk #define	getvndxfer(vnx)	do {						\
    184  1.12       pk 	int s = splbio();						\
    185  1.49  thorpej 	vnx = pool_get(&vndxfer_pool, PR_MALLOCOK|PR_WAITOK);		\
    186  1.12       pk 	splx(s);							\
    187  1.12       pk } while (0)
    188  1.12       pk 
    189  1.12       pk #define putvndxfer(vnx) {						\
    190  1.49  thorpej 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    191  1.12       pk }
    192  1.12       pk 
    193  1.12       pk #define	getvndbuf(vbp)	do {						\
    194  1.12       pk 	int s = splbio();						\
    195  1.49  thorpej 	vbp = pool_get(&vndbuf_pool, PR_MALLOCOK|PR_WAITOK);		\
    196  1.12       pk 	splx(s);							\
    197  1.12       pk } while (0)
    198   1.1      mrg 
    199  1.12       pk #define putvndbuf(vbp) {						\
    200  1.49  thorpej 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    201  1.12       pk }
    202   1.1      mrg 
    203  1.36      mrg /* /dev/drum */
    204  1.36      mrg bdev_decl(sw);
    205  1.36      mrg cdev_decl(sw);
    206   1.1      mrg 
    207   1.1      mrg /*
    208   1.1      mrg  * local variables
    209   1.1      mrg  */
    210   1.1      mrg static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    211   1.1      mrg 
    212   1.1      mrg /* list of all active swap devices [by priority] */
    213   1.1      mrg LIST_HEAD(swap_priority, swappri);
    214   1.1      mrg static struct swap_priority swap_priority;
    215   1.1      mrg 
    216   1.1      mrg /* locks */
    217  1.52      chs struct lock swap_syscall_lock;
    218   1.1      mrg 
    219   1.1      mrg /*
    220   1.1      mrg  * prototypes
    221   1.1      mrg  */
    222   1.1      mrg static struct swapdev	*swapdrum_getsdp __P((int));
    223   1.1      mrg 
    224   1.1      mrg static struct swapdev	*swaplist_find __P((struct vnode *, int));
    225  1.51      chs static void		 swaplist_insert __P((struct swapdev *,
    226   1.1      mrg 					     struct swappri *, int));
    227   1.1      mrg static void		 swaplist_trim __P((void));
    228   1.1      mrg 
    229   1.1      mrg static int swap_on __P((struct proc *, struct swapdev *));
    230   1.1      mrg static int swap_off __P((struct proc *, struct swapdev *));
    231   1.1      mrg 
    232   1.1      mrg static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    233   1.1      mrg static void sw_reg_iodone __P((struct buf *));
    234   1.1      mrg static void sw_reg_start __P((struct swapdev *));
    235   1.1      mrg 
    236   1.1      mrg static int uvm_swap_io __P((struct vm_page **, int, int, int));
    237   1.1      mrg 
    238   1.1      mrg /*
    239   1.1      mrg  * uvm_swap_init: init the swap system data structures and locks
    240   1.1      mrg  *
    241  1.51      chs  * => called at boot time from init_main.c after the filesystems
    242   1.1      mrg  *	are brought up (which happens after uvm_init())
    243   1.1      mrg  */
    244   1.1      mrg void
    245   1.1      mrg uvm_swap_init()
    246   1.1      mrg {
    247   1.1      mrg 	UVMHIST_FUNC("uvm_swap_init");
    248   1.1      mrg 
    249   1.1      mrg 	UVMHIST_CALLED(pdhist);
    250   1.1      mrg 	/*
    251   1.1      mrg 	 * first, init the swap list, its counter, and its lock.
    252   1.1      mrg 	 * then get a handle on the vnode for /dev/drum by using
    253   1.1      mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    254   1.1      mrg 	 */
    255   1.1      mrg 
    256   1.1      mrg 	LIST_INIT(&swap_priority);
    257   1.1      mrg 	uvmexp.nswapdev = 0;
    258   1.1      mrg 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    259  1.26      chs 	simple_lock_init(&uvm.swap_data_lock);
    260  1.12       pk 
    261   1.1      mrg 	if (bdevvp(swapdev, &swapdev_vp))
    262   1.1      mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    263   1.1      mrg 
    264   1.1      mrg 	/*
    265   1.1      mrg 	 * create swap block resource map to map /dev/drum.   the range
    266   1.1      mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    267  1.51      chs 	 * that block 0 is reserved (used to indicate an allocation
    268   1.1      mrg 	 * failure, or no allocation).
    269   1.1      mrg 	 */
    270   1.1      mrg 	swapmap = extent_create("swapmap", 1, INT_MAX,
    271   1.1      mrg 				M_VMSWAP, 0, 0, EX_NOWAIT);
    272   1.1      mrg 	if (swapmap == 0)
    273   1.1      mrg 		panic("uvm_swap_init: extent_create failed");
    274   1.1      mrg 
    275   1.1      mrg 	/*
    276  1.41      chs 	 * allocate pools for structures used for swapping to files.
    277   1.1      mrg 	 */
    278   1.1      mrg 
    279  1.49  thorpej 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    280  1.49  thorpej 	    "swp vnx", 0, NULL, NULL, 0);
    281  1.49  thorpej 
    282  1.49  thorpej 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    283  1.49  thorpej 	    "swp vnd", 0, NULL, NULL, 0);
    284  1.49  thorpej 
    285   1.1      mrg 	/*
    286   1.1      mrg 	 * done!
    287   1.1      mrg 	 */
    288   1.1      mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    289   1.1      mrg }
    290   1.1      mrg 
    291   1.1      mrg /*
    292   1.1      mrg  * swaplist functions: functions that operate on the list of swap
    293   1.1      mrg  * devices on the system.
    294   1.1      mrg  */
    295   1.1      mrg 
    296   1.1      mrg /*
    297   1.1      mrg  * swaplist_insert: insert swap device "sdp" into the global list
    298   1.1      mrg  *
    299  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    300   1.1      mrg  * => caller must provide a newly malloc'd swappri structure (we will
    301   1.1      mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    302   1.1      mrg  *	here while adding swap)
    303   1.1      mrg  */
    304   1.1      mrg static void
    305   1.1      mrg swaplist_insert(sdp, newspp, priority)
    306   1.1      mrg 	struct swapdev *sdp;
    307   1.1      mrg 	struct swappri *newspp;
    308   1.1      mrg 	int priority;
    309   1.1      mrg {
    310   1.1      mrg 	struct swappri *spp, *pspp;
    311   1.1      mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    312   1.1      mrg 
    313   1.1      mrg 	/*
    314   1.1      mrg 	 * find entry at or after which to insert the new device.
    315   1.1      mrg 	 */
    316  1.32      chs 	for (pspp = NULL, spp = LIST_FIRST(&swap_priority); spp != NULL;
    317  1.32      chs 	     spp = LIST_NEXT(spp, spi_swappri)) {
    318   1.1      mrg 		if (priority <= spp->spi_priority)
    319   1.1      mrg 			break;
    320   1.1      mrg 		pspp = spp;
    321   1.1      mrg 	}
    322   1.1      mrg 
    323   1.1      mrg 	/*
    324   1.1      mrg 	 * new priority?
    325   1.1      mrg 	 */
    326   1.1      mrg 	if (spp == NULL || spp->spi_priority != priority) {
    327   1.1      mrg 		spp = newspp;  /* use newspp! */
    328  1.32      chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    329  1.32      chs 			    priority, 0, 0, 0);
    330   1.1      mrg 
    331   1.1      mrg 		spp->spi_priority = priority;
    332   1.1      mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    333   1.1      mrg 
    334   1.1      mrg 		if (pspp)
    335   1.1      mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    336   1.1      mrg 		else
    337   1.1      mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    338   1.1      mrg 	} else {
    339   1.1      mrg 	  	/* we don't need a new priority structure, free it */
    340   1.1      mrg 		FREE(newspp, M_VMSWAP);
    341   1.1      mrg 	}
    342   1.1      mrg 
    343   1.1      mrg 	/*
    344   1.1      mrg 	 * priority found (or created).   now insert on the priority's
    345   1.1      mrg 	 * circleq list and bump the total number of swapdevs.
    346   1.1      mrg 	 */
    347   1.1      mrg 	sdp->swd_priority = priority;
    348   1.1      mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    349   1.1      mrg 	uvmexp.nswapdev++;
    350   1.1      mrg }
    351   1.1      mrg 
    352   1.1      mrg /*
    353   1.1      mrg  * swaplist_find: find and optionally remove a swap device from the
    354   1.1      mrg  *	global list.
    355   1.1      mrg  *
    356  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    357   1.1      mrg  * => we return the swapdev we found (and removed)
    358   1.1      mrg  */
    359   1.1      mrg static struct swapdev *
    360   1.1      mrg swaplist_find(vp, remove)
    361   1.1      mrg 	struct vnode *vp;
    362   1.1      mrg 	boolean_t remove;
    363   1.1      mrg {
    364   1.1      mrg 	struct swapdev *sdp;
    365   1.1      mrg 	struct swappri *spp;
    366   1.1      mrg 
    367   1.1      mrg 	/*
    368   1.1      mrg 	 * search the lists for the requested vp
    369   1.1      mrg 	 */
    370  1.32      chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    371  1.32      chs 	     spp = LIST_NEXT(spp, spi_swappri)) {
    372  1.32      chs 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    373   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
    374  1.32      chs 		     sdp = CIRCLEQ_NEXT(sdp, swd_next))
    375   1.1      mrg 			if (sdp->swd_vp == vp) {
    376   1.1      mrg 				if (remove) {
    377   1.1      mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    378   1.1      mrg 					    sdp, swd_next);
    379   1.1      mrg 					uvmexp.nswapdev--;
    380   1.1      mrg 				}
    381   1.1      mrg 				return(sdp);
    382   1.1      mrg 			}
    383   1.1      mrg 	}
    384   1.1      mrg 	return (NULL);
    385   1.1      mrg }
    386   1.1      mrg 
    387   1.1      mrg 
    388   1.1      mrg /*
    389   1.1      mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    390   1.1      mrg  *	them.
    391   1.1      mrg  *
    392  1.26      chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    393   1.1      mrg  */
    394   1.1      mrg static void
    395   1.1      mrg swaplist_trim()
    396   1.1      mrg {
    397   1.1      mrg 	struct swappri *spp, *nextspp;
    398   1.1      mrg 
    399  1.32      chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    400  1.32      chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    401  1.32      chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    402  1.32      chs 		    (void *)&spp->spi_swapdev)
    403   1.1      mrg 			continue;
    404   1.1      mrg 		LIST_REMOVE(spp, spi_swappri);
    405  1.32      chs 		free(spp, M_VMSWAP);
    406   1.1      mrg 	}
    407   1.1      mrg }
    408   1.1      mrg 
    409   1.1      mrg /*
    410   1.1      mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    411   1.1      mrg  *	to the "swapdev" that maps that section of the drum.
    412   1.1      mrg  *
    413   1.1      mrg  * => each swapdev takes one big contig chunk of the drum
    414  1.26      chs  * => caller must hold uvm.swap_data_lock
    415   1.1      mrg  */
    416   1.1      mrg static struct swapdev *
    417   1.1      mrg swapdrum_getsdp(pgno)
    418   1.1      mrg 	int pgno;
    419   1.1      mrg {
    420   1.1      mrg 	struct swapdev *sdp;
    421   1.1      mrg 	struct swappri *spp;
    422  1.51      chs 
    423  1.32      chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    424  1.32      chs 	     spp = LIST_NEXT(spp, spi_swappri))
    425  1.32      chs 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    426   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
    427  1.48     fvdl 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    428  1.48     fvdl 			if (sdp->swd_flags & SWF_FAKE)
    429  1.48     fvdl 				continue;
    430   1.1      mrg 			if (pgno >= sdp->swd_drumoffset &&
    431   1.1      mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    432   1.1      mrg 				return sdp;
    433   1.1      mrg 			}
    434  1.48     fvdl 		}
    435   1.1      mrg 	return NULL;
    436   1.1      mrg }
    437   1.1      mrg 
    438   1.1      mrg 
    439   1.1      mrg /*
    440   1.1      mrg  * sys_swapctl: main entry point for swapctl(2) system call
    441   1.1      mrg  * 	[with two helper functions: swap_on and swap_off]
    442   1.1      mrg  */
    443   1.1      mrg int
    444   1.1      mrg sys_swapctl(p, v, retval)
    445   1.1      mrg 	struct proc *p;
    446   1.1      mrg 	void *v;
    447   1.1      mrg 	register_t *retval;
    448   1.1      mrg {
    449   1.1      mrg 	struct sys_swapctl_args /* {
    450   1.1      mrg 		syscallarg(int) cmd;
    451   1.1      mrg 		syscallarg(void *) arg;
    452   1.1      mrg 		syscallarg(int) misc;
    453   1.1      mrg 	} */ *uap = (struct sys_swapctl_args *)v;
    454   1.1      mrg 	struct vnode *vp;
    455   1.1      mrg 	struct nameidata nd;
    456   1.1      mrg 	struct swappri *spp;
    457   1.1      mrg 	struct swapdev *sdp;
    458   1.1      mrg 	struct swapent *sep;
    459  1.16      mrg 	char	userpath[PATH_MAX + 1];
    460  1.18    enami 	size_t	len;
    461  1.18    enami 	int	count, error, misc;
    462   1.1      mrg 	int	priority;
    463   1.1      mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    464   1.1      mrg 
    465   1.1      mrg 	misc = SCARG(uap, misc);
    466   1.1      mrg 
    467   1.1      mrg 	/*
    468   1.1      mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    469   1.1      mrg 	 */
    470  1.32      chs 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    471  1.24      mrg 
    472   1.1      mrg 	/*
    473   1.1      mrg 	 * we handle the non-priv NSWAP and STATS request first.
    474   1.1      mrg 	 *
    475  1.51      chs 	 * SWAP_NSWAP: return number of config'd swap devices
    476   1.1      mrg 	 * [can also be obtained with uvmexp sysctl]
    477   1.1      mrg 	 */
    478   1.1      mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    479   1.8      mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    480   1.8      mrg 		    0, 0, 0);
    481   1.1      mrg 		*retval = uvmexp.nswapdev;
    482  1.16      mrg 		error = 0;
    483  1.16      mrg 		goto out;
    484   1.1      mrg 	}
    485   1.1      mrg 
    486   1.1      mrg 	/*
    487   1.1      mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    488   1.1      mrg 	 *
    489  1.51      chs 	 * note that the swap_priority list can't change as long
    490   1.1      mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    491  1.51      chs 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    492   1.1      mrg 	 * copyout() and we don't want to be holding that lock then!
    493   1.1      mrg 	 */
    494  1.16      mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    495  1.16      mrg #if defined(COMPAT_13)
    496  1.16      mrg 	    || SCARG(uap, cmd) == SWAP_OSTATS
    497  1.16      mrg #endif
    498  1.16      mrg 	    ) {
    499   1.1      mrg 		sep = (struct swapent *)SCARG(uap, arg);
    500   1.1      mrg 		count = 0;
    501   1.1      mrg 
    502  1.32      chs 		for (spp = LIST_FIRST(&swap_priority); spp != NULL;
    503  1.32      chs 		    spp = LIST_NEXT(spp, spi_swappri)) {
    504  1.32      chs 			for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    505   1.1      mrg 			     sdp != (void *)&spp->spi_swapdev && misc-- > 0;
    506  1.32      chs 			     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    507  1.16      mrg 			  	/*
    508  1.16      mrg 				 * backwards compatibility for system call.
    509  1.16      mrg 				 * note that we use 'struct oswapent' as an
    510  1.16      mrg 				 * overlay into both 'struct swapdev' and
    511  1.16      mrg 				 * the userland 'struct swapent', as we
    512  1.16      mrg 				 * want to retain backwards compatibility
    513  1.16      mrg 				 * with NetBSD 1.3.
    514  1.16      mrg 				 */
    515  1.51      chs 				sdp->swd_ose.ose_inuse =
    516  1.44    enami 				    btodb((u_int64_t)sdp->swd_npginuse <<
    517  1.44    enami 				    PAGE_SHIFT);
    518  1.32      chs 				error = copyout(&sdp->swd_ose, sep,
    519  1.32      chs 						sizeof(struct oswapent));
    520  1.16      mrg 
    521  1.16      mrg 				/* now copy out the path if necessary */
    522  1.16      mrg #if defined(COMPAT_13)
    523  1.16      mrg 				if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
    524  1.16      mrg #else
    525  1.16      mrg 				if (error == 0)
    526  1.16      mrg #endif
    527  1.32      chs 					error = copyout(sdp->swd_path,
    528  1.32      chs 					    &sep->se_path, sdp->swd_pathlen);
    529  1.16      mrg 
    530  1.16      mrg 				if (error)
    531  1.16      mrg 					goto out;
    532   1.1      mrg 				count++;
    533  1.16      mrg #if defined(COMPAT_13)
    534  1.16      mrg 				if (SCARG(uap, cmd) == SWAP_OSTATS)
    535  1.50     ross 					sep = (struct swapent *)
    536  1.50     ross 					    ((struct oswapent *)sep + 1);
    537  1.16      mrg 				else
    538  1.16      mrg #endif
    539  1.16      mrg 					sep++;
    540   1.1      mrg 			}
    541   1.1      mrg 		}
    542   1.1      mrg 
    543  1.16      mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    544   1.1      mrg 
    545   1.1      mrg 		*retval = count;
    546  1.16      mrg 		error = 0;
    547  1.16      mrg 		goto out;
    548  1.51      chs 	}
    549   1.1      mrg 
    550   1.1      mrg 	/*
    551   1.1      mrg 	 * all other requests require superuser privs.   verify.
    552   1.1      mrg 	 */
    553  1.16      mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    554  1.16      mrg 		goto out;
    555   1.1      mrg 
    556  1.40      mrg 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    557  1.40      mrg 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    558  1.40      mrg 
    559  1.40      mrg 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    560  1.40      mrg 		goto out;
    561  1.40      mrg 	}
    562  1.40      mrg 
    563   1.1      mrg 	/*
    564   1.1      mrg 	 * at this point we expect a path name in arg.   we will
    565   1.1      mrg 	 * use namei() to gain a vnode reference (vref), and lock
    566   1.1      mrg 	 * the vnode (VOP_LOCK).
    567   1.1      mrg 	 *
    568   1.1      mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    569  1.16      mrg 	 * miniroot)
    570   1.1      mrg 	 */
    571   1.1      mrg 	if (SCARG(uap, arg) == NULL) {
    572   1.1      mrg 		vp = rootvp;		/* miniroot */
    573   1.7     fvdl 		if (vget(vp, LK_EXCLUSIVE)) {
    574  1.16      mrg 			error = EBUSY;
    575  1.16      mrg 			goto out;
    576   1.1      mrg 		}
    577  1.16      mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    578  1.16      mrg 		    copystr("miniroot", userpath, sizeof userpath, &len))
    579  1.16      mrg 			panic("swapctl: miniroot copy failed");
    580   1.1      mrg 	} else {
    581  1.16      mrg 		int	space;
    582  1.16      mrg 		char	*where;
    583  1.16      mrg 
    584  1.16      mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    585  1.16      mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    586  1.16      mrg 			    sizeof userpath, &len)))
    587  1.16      mrg 				goto out;
    588  1.16      mrg 			space = UIO_SYSSPACE;
    589  1.16      mrg 			where = userpath;
    590  1.16      mrg 		} else {
    591  1.16      mrg 			space = UIO_USERSPACE;
    592  1.16      mrg 			where = (char *)SCARG(uap, arg);
    593   1.1      mrg 		}
    594  1.16      mrg 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    595  1.16      mrg 		if ((error = namei(&nd)))
    596  1.16      mrg 			goto out;
    597   1.1      mrg 		vp = nd.ni_vp;
    598   1.1      mrg 	}
    599   1.1      mrg 	/* note: "vp" is referenced and locked */
    600   1.1      mrg 
    601   1.1      mrg 	error = 0;		/* assume no error */
    602   1.1      mrg 	switch(SCARG(uap, cmd)) {
    603  1.40      mrg 
    604  1.24      mrg 	case SWAP_DUMPDEV:
    605  1.24      mrg 		if (vp->v_type != VBLK) {
    606  1.24      mrg 			error = ENOTBLK;
    607  1.45       pk 			break;
    608  1.24      mrg 		}
    609  1.24      mrg 		dumpdev = vp->v_rdev;
    610  1.24      mrg 		break;
    611  1.24      mrg 
    612   1.1      mrg 	case SWAP_CTL:
    613   1.1      mrg 		/*
    614   1.1      mrg 		 * get new priority, remove old entry (if any) and then
    615   1.1      mrg 		 * reinsert it in the correct place.  finally, prune out
    616   1.1      mrg 		 * any empty priority structures.
    617   1.1      mrg 		 */
    618   1.1      mrg 		priority = SCARG(uap, misc);
    619  1.32      chs 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    620  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    621   1.1      mrg 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    622   1.1      mrg 			error = ENOENT;
    623   1.1      mrg 		} else {
    624   1.1      mrg 			swaplist_insert(sdp, spp, priority);
    625   1.1      mrg 			swaplist_trim();
    626   1.1      mrg 		}
    627  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    628   1.1      mrg 		if (error)
    629   1.1      mrg 			free(spp, M_VMSWAP);
    630   1.1      mrg 		break;
    631   1.1      mrg 
    632   1.1      mrg 	case SWAP_ON:
    633  1.32      chs 
    634   1.1      mrg 		/*
    635   1.1      mrg 		 * check for duplicates.   if none found, then insert a
    636   1.1      mrg 		 * dummy entry on the list to prevent someone else from
    637   1.1      mrg 		 * trying to enable this device while we are working on
    638   1.1      mrg 		 * it.
    639   1.1      mrg 		 */
    640  1.32      chs 
    641   1.1      mrg 		priority = SCARG(uap, misc);
    642  1.48     fvdl 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    643  1.48     fvdl 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    644  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    645  1.48     fvdl 		if (swaplist_find(vp, 0) != NULL) {
    646   1.1      mrg 			error = EBUSY;
    647  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    648  1.48     fvdl 			free(sdp, M_VMSWAP);
    649  1.48     fvdl 			free(spp, M_VMSWAP);
    650  1.16      mrg 			break;
    651   1.1      mrg 		}
    652  1.14    perry 		memset(sdp, 0, sizeof(*sdp));
    653   1.1      mrg 		sdp->swd_flags = SWF_FAKE;	/* placeholder only */
    654   1.1      mrg 		sdp->swd_vp = vp;
    655   1.1      mrg 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    656  1.33  thorpej 		BUFQ_INIT(&sdp->swd_tab);
    657  1.32      chs 
    658   1.1      mrg 		/*
    659   1.1      mrg 		 * XXX Is NFS elaboration necessary?
    660   1.1      mrg 		 */
    661  1.32      chs 		if (vp->v_type == VREG) {
    662   1.1      mrg 			sdp->swd_cred = crdup(p->p_ucred);
    663  1.32      chs 		}
    664  1.32      chs 
    665   1.1      mrg 		swaplist_insert(sdp, spp, priority);
    666  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
    667   1.1      mrg 
    668  1.16      mrg 		sdp->swd_pathlen = len;
    669  1.16      mrg 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    670  1.19       pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    671  1.19       pk 			panic("swapctl: copystr");
    672  1.32      chs 
    673   1.1      mrg 		/*
    674   1.1      mrg 		 * we've now got a FAKE placeholder in the swap list.
    675   1.1      mrg 		 * now attempt to enable swap on it.  if we fail, undo
    676   1.1      mrg 		 * what we've done and kill the fake entry we just inserted.
    677   1.1      mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    678   1.1      mrg 		 */
    679  1.32      chs 
    680   1.1      mrg 		if ((error = swap_on(p, sdp)) != 0) {
    681  1.26      chs 			simple_lock(&uvm.swap_data_lock);
    682   1.8      mrg 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    683   1.1      mrg 			swaplist_trim();
    684  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    685  1.32      chs 			if (vp->v_type == VREG) {
    686   1.1      mrg 				crfree(sdp->swd_cred);
    687  1.32      chs 			}
    688  1.19       pk 			free(sdp->swd_path, M_VMSWAP);
    689  1.32      chs 			free(sdp, M_VMSWAP);
    690   1.1      mrg 			break;
    691   1.1      mrg 		}
    692   1.1      mrg 		break;
    693   1.1      mrg 
    694   1.1      mrg 	case SWAP_OFF:
    695  1.26      chs 		simple_lock(&uvm.swap_data_lock);
    696   1.1      mrg 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    697  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    698   1.1      mrg 			error = ENXIO;
    699   1.1      mrg 			break;
    700   1.1      mrg 		}
    701  1.32      chs 
    702   1.1      mrg 		/*
    703   1.1      mrg 		 * If a device isn't in use or enabled, we
    704   1.1      mrg 		 * can't stop swapping from it (again).
    705   1.1      mrg 		 */
    706   1.1      mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    707  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
    708   1.1      mrg 			error = EBUSY;
    709  1.16      mrg 			break;
    710   1.1      mrg 		}
    711   1.1      mrg 
    712   1.1      mrg 		/*
    713  1.32      chs 		 * do the real work.
    714   1.1      mrg 		 */
    715  1.45       pk 		error = swap_off(p, sdp);
    716   1.1      mrg 		break;
    717   1.1      mrg 
    718   1.1      mrg 	default:
    719   1.1      mrg 		error = EINVAL;
    720   1.1      mrg 	}
    721   1.1      mrg 
    722   1.1      mrg 	/*
    723  1.39      chs 	 * done!  release the ref gained by namei() and unlock.
    724   1.1      mrg 	 */
    725   1.1      mrg 	vput(vp);
    726  1.39      chs 
    727  1.16      mrg out:
    728  1.32      chs 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    729   1.1      mrg 
    730   1.1      mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    731   1.1      mrg 	return (error);
    732   1.1      mrg }
    733   1.1      mrg 
    734   1.1      mrg /*
    735   1.1      mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    736   1.1      mrg  *	swapdev is already on the global list, but disabled (marked
    737   1.1      mrg  *	SWF_FAKE).
    738   1.1      mrg  *
    739   1.1      mrg  * => we avoid the start of the disk (to protect disk labels)
    740   1.1      mrg  * => we also avoid the miniroot, if we are swapping to root.
    741  1.26      chs  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    742   1.1      mrg  *	if needed.
    743   1.1      mrg  */
    744   1.1      mrg static int
    745   1.1      mrg swap_on(p, sdp)
    746   1.1      mrg 	struct proc *p;
    747   1.1      mrg 	struct swapdev *sdp;
    748   1.1      mrg {
    749   1.1      mrg 	static int count = 0;	/* static */
    750   1.1      mrg 	struct vnode *vp;
    751   1.1      mrg 	int error, npages, nblocks, size;
    752   1.1      mrg 	long addr;
    753  1.48     fvdl 	u_long result;
    754   1.1      mrg 	struct vattr va;
    755   1.1      mrg #ifdef NFS
    756   1.1      mrg 	extern int (**nfsv2_vnodeop_p) __P((void *));
    757   1.1      mrg #endif /* NFS */
    758   1.1      mrg 	dev_t dev;
    759   1.1      mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    760   1.1      mrg 
    761   1.1      mrg 	/*
    762   1.1      mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    763   1.1      mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    764   1.1      mrg 	 * contains the dev_t of the file, if it a block device.
    765   1.1      mrg 	 */
    766   1.1      mrg 
    767   1.1      mrg 	vp = sdp->swd_vp;
    768   1.1      mrg 	dev = sdp->swd_dev;
    769   1.1      mrg 
    770   1.1      mrg 	/*
    771   1.1      mrg 	 * open the swap file (mostly useful for block device files to
    772   1.1      mrg 	 * let device driver know what is up).
    773   1.1      mrg 	 *
    774   1.1      mrg 	 * we skip the open/close for root on swap because the root
    775   1.1      mrg 	 * has already been opened when root was mounted (mountroot).
    776   1.1      mrg 	 */
    777   1.1      mrg 	if (vp != rootvp) {
    778   1.1      mrg 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    779   1.1      mrg 			return (error);
    780   1.1      mrg 	}
    781   1.1      mrg 
    782   1.1      mrg 	/* XXX this only works for block devices */
    783   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    784   1.1      mrg 
    785   1.1      mrg 	/*
    786   1.1      mrg 	 * we now need to determine the size of the swap area.   for
    787   1.1      mrg 	 * block specials we can call the d_psize function.
    788   1.1      mrg 	 * for normal files, we must stat [get attrs].
    789   1.1      mrg 	 *
    790   1.1      mrg 	 * we put the result in nblks.
    791   1.1      mrg 	 * for normal files, we also want the filesystem block size
    792   1.1      mrg 	 * (which we get with statfs).
    793   1.1      mrg 	 */
    794   1.1      mrg 	switch (vp->v_type) {
    795   1.1      mrg 	case VBLK:
    796   1.1      mrg 		if (bdevsw[major(dev)].d_psize == 0 ||
    797   1.1      mrg 		    (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
    798   1.1      mrg 			error = ENXIO;
    799   1.1      mrg 			goto bad;
    800   1.1      mrg 		}
    801   1.1      mrg 		break;
    802   1.1      mrg 
    803   1.1      mrg 	case VREG:
    804   1.1      mrg 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    805   1.1      mrg 			goto bad;
    806   1.1      mrg 		nblocks = (int)btodb(va.va_size);
    807   1.1      mrg 		if ((error =
    808   1.1      mrg 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    809   1.1      mrg 			goto bad;
    810   1.1      mrg 
    811   1.1      mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    812   1.1      mrg 		/*
    813   1.1      mrg 		 * limit the max # of outstanding I/O requests we issue
    814   1.1      mrg 		 * at any one time.   take it easy on NFS servers.
    815   1.1      mrg 		 */
    816   1.1      mrg #ifdef NFS
    817   1.1      mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    818   1.1      mrg 			sdp->swd_maxactive = 2; /* XXX */
    819   1.1      mrg 		else
    820   1.1      mrg #endif /* NFS */
    821   1.1      mrg 			sdp->swd_maxactive = 8; /* XXX */
    822   1.1      mrg 		break;
    823   1.1      mrg 
    824   1.1      mrg 	default:
    825   1.1      mrg 		error = ENXIO;
    826   1.1      mrg 		goto bad;
    827   1.1      mrg 	}
    828   1.1      mrg 
    829   1.1      mrg 	/*
    830   1.1      mrg 	 * save nblocks in a safe place and convert to pages.
    831   1.1      mrg 	 */
    832   1.1      mrg 
    833  1.16      mrg 	sdp->swd_ose.ose_nblks = nblocks;
    834  1.20      chs 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    835   1.1      mrg 
    836   1.1      mrg 	/*
    837   1.1      mrg 	 * for block special files, we want to make sure that leave
    838   1.1      mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    839  1.32      chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    840   1.1      mrg 	 * note that because of this the "size" can be less than the
    841   1.1      mrg 	 * actual number of blocks on the device.
    842   1.1      mrg 	 */
    843   1.1      mrg 	if (vp->v_type == VBLK) {
    844   1.1      mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    845   1.1      mrg 		size = npages - 1;
    846   1.1      mrg 		addr = 1;
    847   1.1      mrg 	} else {
    848   1.1      mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    849   1.1      mrg 		size = npages;
    850   1.1      mrg 		addr = 0;
    851   1.1      mrg 	}
    852   1.1      mrg 
    853   1.1      mrg 	/*
    854   1.1      mrg 	 * make sure we have enough blocks for a reasonable sized swap
    855   1.1      mrg 	 * area.   we want at least one page.
    856   1.1      mrg 	 */
    857   1.1      mrg 
    858   1.1      mrg 	if (size < 1) {
    859   1.1      mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    860   1.1      mrg 		error = EINVAL;
    861   1.1      mrg 		goto bad;
    862   1.1      mrg 	}
    863   1.1      mrg 
    864   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    865   1.1      mrg 
    866   1.1      mrg 	/*
    867   1.1      mrg 	 * now we need to allocate an extent to manage this swap device
    868   1.1      mrg 	 */
    869  1.42    enami 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    870  1.42    enami 	    count++);
    871   1.1      mrg 
    872   1.1      mrg 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    873  1.42    enami 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    874  1.12       pk 				    0, 0, EX_WAITOK);
    875   1.1      mrg 	/* allocate the `saved' region from the extent so it won't be used */
    876   1.1      mrg 	if (addr) {
    877   1.1      mrg 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    878   1.1      mrg 			panic("disklabel region");
    879   1.1      mrg 	}
    880   1.1      mrg 
    881   1.1      mrg 	/*
    882  1.51      chs 	 * if the vnode we are swapping to is the root vnode
    883   1.1      mrg 	 * (i.e. we are swapping to the miniroot) then we want
    884  1.51      chs 	 * to make sure we don't overwrite it.   do a statfs to
    885   1.1      mrg 	 * find its size and skip over it.
    886   1.1      mrg 	 */
    887   1.1      mrg 	if (vp == rootvp) {
    888   1.1      mrg 		struct mount *mp;
    889   1.1      mrg 		struct statfs *sp;
    890   1.1      mrg 		int rootblocks, rootpages;
    891   1.1      mrg 
    892   1.1      mrg 		mp = rootvnode->v_mount;
    893   1.1      mrg 		sp = &mp->mnt_stat;
    894   1.1      mrg 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    895  1.20      chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    896  1.32      chs 		if (rootpages > size)
    897   1.1      mrg 			panic("swap_on: miniroot larger than swap?");
    898   1.1      mrg 
    899  1.51      chs 		if (extent_alloc_region(sdp->swd_ex, addr,
    900   1.1      mrg 					rootpages, EX_WAITOK))
    901   1.1      mrg 			panic("swap_on: unable to preserve miniroot");
    902   1.1      mrg 
    903  1.32      chs 		size -= rootpages;
    904   1.1      mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    905  1.32      chs 		printf("leaving %d pages of swap\n", size);
    906   1.1      mrg 	}
    907   1.1      mrg 
    908  1.43      chs   	/*
    909  1.43      chs 	 * try to add anons to reflect the new swap space.
    910  1.43      chs 	 */
    911  1.43      chs 
    912  1.43      chs 	error = uvm_anon_add(size);
    913  1.43      chs 	if (error) {
    914  1.43      chs 		goto bad;
    915  1.43      chs 	}
    916  1.43      chs 
    917  1.39      chs 	/*
    918  1.39      chs 	 * add a ref to vp to reflect usage as a swap device.
    919  1.39      chs 	 */
    920  1.39      chs 	vref(vp);
    921  1.39      chs 
    922   1.1      mrg 	/*
    923   1.1      mrg 	 * now add the new swapdev to the drum and enable.
    924   1.1      mrg 	 */
    925  1.48     fvdl 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    926  1.48     fvdl 	    EX_WAITOK, &result))
    927  1.48     fvdl 		panic("swapdrum_add");
    928  1.48     fvdl 
    929  1.48     fvdl 	sdp->swd_drumoffset = (int)result;
    930  1.48     fvdl 	sdp->swd_drumsize = npages;
    931  1.48     fvdl 	sdp->swd_npages = size;
    932  1.26      chs 	simple_lock(&uvm.swap_data_lock);
    933   1.1      mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    934   1.1      mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    935  1.32      chs 	uvmexp.swpages += size;
    936  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
    937   1.1      mrg 	return (0);
    938   1.1      mrg 
    939   1.1      mrg 	/*
    940  1.43      chs 	 * failure: clean up and return error.
    941   1.1      mrg 	 */
    942  1.43      chs 
    943  1.43      chs bad:
    944  1.43      chs 	if (sdp->swd_ex) {
    945  1.43      chs 		extent_destroy(sdp->swd_ex);
    946  1.43      chs 	}
    947  1.43      chs 	if (vp != rootvp) {
    948   1.1      mrg 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    949  1.43      chs 	}
    950   1.1      mrg 	return (error);
    951   1.1      mrg }
    952   1.1      mrg 
    953   1.1      mrg /*
    954   1.1      mrg  * swap_off: stop swapping on swapdev
    955   1.1      mrg  *
    956  1.32      chs  * => swap data should be locked, we will unlock.
    957   1.1      mrg  */
    958   1.1      mrg static int
    959   1.1      mrg swap_off(p, sdp)
    960   1.1      mrg 	struct proc *p;
    961   1.1      mrg 	struct swapdev *sdp;
    962   1.1      mrg {
    963   1.1      mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    964  1.32      chs 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
    965   1.1      mrg 
    966  1.32      chs 	/* disable the swap area being removed */
    967   1.1      mrg 	sdp->swd_flags &= ~SWF_ENABLE;
    968  1.32      chs 	simple_unlock(&uvm.swap_data_lock);
    969  1.32      chs 
    970  1.32      chs 	/*
    971  1.32      chs 	 * the idea is to find all the pages that are paged out to this
    972  1.32      chs 	 * device, and page them all in.  in uvm, swap-backed pageable
    973  1.32      chs 	 * memory can take two forms: aobjs and anons.  call the
    974  1.32      chs 	 * swapoff hook for each subsystem to bring in pages.
    975  1.32      chs 	 */
    976   1.1      mrg 
    977  1.32      chs 	if (uao_swap_off(sdp->swd_drumoffset,
    978  1.32      chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    979  1.32      chs 	    anon_swap_off(sdp->swd_drumoffset,
    980  1.32      chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    981  1.51      chs 
    982  1.32      chs 		simple_lock(&uvm.swap_data_lock);
    983  1.32      chs 		sdp->swd_flags |= SWF_ENABLE;
    984  1.32      chs 		simple_unlock(&uvm.swap_data_lock);
    985  1.32      chs 		return ENOMEM;
    986  1.32      chs 	}
    987  1.46      chs 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
    988   1.1      mrg 
    989   1.1      mrg 	/*
    990  1.39      chs 	 * done with the vnode and saved creds.
    991  1.39      chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
    992  1.39      chs 	 * so that spec_close() can tell if this is the last close.
    993   1.1      mrg 	 */
    994  1.32      chs 	if (sdp->swd_vp->v_type == VREG) {
    995  1.32      chs 		crfree(sdp->swd_cred);
    996  1.32      chs 	}
    997  1.39      chs 	vrele(sdp->swd_vp);
    998  1.32      chs 	if (sdp->swd_vp != rootvp) {
    999  1.32      chs 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1000  1.32      chs 	}
   1001  1.32      chs 
   1002  1.32      chs 	/* remove anons from the system */
   1003  1.32      chs 	uvm_anon_remove(sdp->swd_npages);
   1004  1.32      chs 
   1005  1.32      chs 	simple_lock(&uvm.swap_data_lock);
   1006  1.32      chs 	uvmexp.swpages -= sdp->swd_npages;
   1007   1.1      mrg 
   1008  1.32      chs 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1009  1.32      chs 		panic("swap_off: swapdev not in list\n");
   1010  1.32      chs 	swaplist_trim();
   1011  1.48     fvdl 	simple_unlock(&uvm.swap_data_lock);
   1012   1.1      mrg 
   1013  1.32      chs 	/*
   1014  1.32      chs 	 * free all resources!
   1015  1.32      chs 	 */
   1016  1.32      chs 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1017  1.32      chs 		    EX_WAITOK);
   1018   1.1      mrg 	extent_destroy(sdp->swd_ex);
   1019  1.32      chs 	free(sdp, M_VMSWAP);
   1020   1.1      mrg 	return (0);
   1021   1.1      mrg }
   1022   1.1      mrg 
   1023   1.1      mrg /*
   1024   1.1      mrg  * /dev/drum interface and i/o functions
   1025   1.1      mrg  */
   1026   1.1      mrg 
   1027   1.1      mrg /*
   1028   1.1      mrg  * swread: the read function for the drum (just a call to physio)
   1029   1.1      mrg  */
   1030   1.1      mrg /*ARGSUSED*/
   1031   1.1      mrg int
   1032   1.1      mrg swread(dev, uio, ioflag)
   1033   1.1      mrg 	dev_t dev;
   1034   1.1      mrg 	struct uio *uio;
   1035   1.1      mrg 	int ioflag;
   1036   1.1      mrg {
   1037   1.1      mrg 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1038   1.1      mrg 
   1039   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1040   1.1      mrg 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1041   1.1      mrg }
   1042   1.1      mrg 
   1043   1.1      mrg /*
   1044   1.1      mrg  * swwrite: the write function for the drum (just a call to physio)
   1045   1.1      mrg  */
   1046   1.1      mrg /*ARGSUSED*/
   1047   1.1      mrg int
   1048   1.1      mrg swwrite(dev, uio, ioflag)
   1049   1.1      mrg 	dev_t dev;
   1050   1.1      mrg 	struct uio *uio;
   1051   1.1      mrg 	int ioflag;
   1052   1.1      mrg {
   1053   1.1      mrg 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1054   1.1      mrg 
   1055   1.1      mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1056   1.1      mrg 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1057   1.1      mrg }
   1058   1.1      mrg 
   1059   1.1      mrg /*
   1060   1.1      mrg  * swstrategy: perform I/O on the drum
   1061   1.1      mrg  *
   1062   1.1      mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1063   1.1      mrg  */
   1064   1.1      mrg void
   1065   1.1      mrg swstrategy(bp)
   1066   1.1      mrg 	struct buf *bp;
   1067   1.1      mrg {
   1068   1.1      mrg 	struct swapdev *sdp;
   1069   1.1      mrg 	struct vnode *vp;
   1070  1.25      chs 	int s, pageno, bn;
   1071   1.1      mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1072   1.1      mrg 
   1073   1.1      mrg 	/*
   1074   1.1      mrg 	 * convert block number to swapdev.   note that swapdev can't
   1075   1.1      mrg 	 * be yanked out from under us because we are holding resources
   1076   1.1      mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1077   1.1      mrg 	 */
   1078  1.41      chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1079  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1080   1.1      mrg 	sdp = swapdrum_getsdp(pageno);
   1081  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1082   1.1      mrg 	if (sdp == NULL) {
   1083   1.1      mrg 		bp->b_error = EINVAL;
   1084   1.1      mrg 		bp->b_flags |= B_ERROR;
   1085   1.1      mrg 		biodone(bp);
   1086   1.1      mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1087   1.1      mrg 		return;
   1088   1.1      mrg 	}
   1089   1.1      mrg 
   1090   1.1      mrg 	/*
   1091   1.1      mrg 	 * convert drum page number to block number on this swapdev.
   1092   1.1      mrg 	 */
   1093   1.1      mrg 
   1094  1.32      chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1095  1.44    enami 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1096   1.1      mrg 
   1097  1.41      chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1098   1.1      mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1099   1.1      mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1100   1.1      mrg 
   1101   1.1      mrg 	/*
   1102   1.1      mrg 	 * for block devices we finish up here.
   1103  1.32      chs 	 * for regular files we have to do more work which we delegate
   1104   1.1      mrg 	 * to sw_reg_strategy().
   1105   1.1      mrg 	 */
   1106   1.1      mrg 
   1107   1.1      mrg 	switch (sdp->swd_vp->v_type) {
   1108   1.1      mrg 	default:
   1109   1.1      mrg 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1110  1.32      chs 
   1111   1.1      mrg 	case VBLK:
   1112   1.1      mrg 
   1113   1.1      mrg 		/*
   1114   1.1      mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1115   1.1      mrg 		 * on the swapdev (sdp).
   1116   1.1      mrg 		 */
   1117  1.25      chs 		s = splbio();
   1118   1.1      mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1119   1.1      mrg 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1120   1.1      mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1121   1.1      mrg 		VHOLD(vp);			/* "hold" swapdev vp for i/o */
   1122   1.1      mrg 
   1123   1.1      mrg 		/*
   1124   1.1      mrg 		 * if we are doing a write, we have to redirect the i/o on
   1125   1.1      mrg 		 * drum's v_numoutput counter to the swapdevs.
   1126   1.1      mrg 		 */
   1127   1.1      mrg 		if ((bp->b_flags & B_READ) == 0) {
   1128   1.1      mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1129   1.1      mrg 			vp->v_numoutput++;	/* put it on swapdev */
   1130   1.1      mrg 		}
   1131   1.1      mrg 
   1132  1.41      chs 		/*
   1133  1.51      chs 		 * dissassocate buffer with /dev/drum vnode
   1134   1.1      mrg 		 * [could be null if buf was from physio]
   1135   1.1      mrg 		 */
   1136  1.41      chs 		if (bp->b_vp != NULL)
   1137   1.1      mrg 			brelvp(bp);
   1138   1.1      mrg 
   1139  1.41      chs 		/*
   1140   1.1      mrg 		 * finally plug in swapdev vnode and start I/O
   1141   1.1      mrg 		 */
   1142   1.1      mrg 		bp->b_vp = vp;
   1143  1.25      chs 		splx(s);
   1144   1.1      mrg 		VOP_STRATEGY(bp);
   1145   1.1      mrg 		return;
   1146  1.32      chs 
   1147   1.1      mrg 	case VREG:
   1148   1.1      mrg 		/*
   1149  1.32      chs 		 * delegate to sw_reg_strategy function.
   1150   1.1      mrg 		 */
   1151   1.1      mrg 		sw_reg_strategy(sdp, bp, bn);
   1152   1.1      mrg 		return;
   1153   1.1      mrg 	}
   1154   1.1      mrg 	/* NOTREACHED */
   1155   1.1      mrg }
   1156   1.1      mrg 
   1157   1.1      mrg /*
   1158   1.1      mrg  * sw_reg_strategy: handle swap i/o to regular files
   1159   1.1      mrg  */
   1160   1.1      mrg static void
   1161   1.1      mrg sw_reg_strategy(sdp, bp, bn)
   1162   1.1      mrg 	struct swapdev	*sdp;
   1163   1.1      mrg 	struct buf	*bp;
   1164   1.1      mrg 	int		bn;
   1165   1.1      mrg {
   1166   1.1      mrg 	struct vnode	*vp;
   1167   1.1      mrg 	struct vndxfer	*vnx;
   1168  1.44    enami 	daddr_t		nbn;
   1169   1.1      mrg 	caddr_t		addr;
   1170  1.44    enami 	off_t		byteoff;
   1171   1.9      mrg 	int		s, off, nra, error, sz, resid;
   1172   1.1      mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1173   1.1      mrg 
   1174   1.1      mrg 	/*
   1175   1.1      mrg 	 * allocate a vndxfer head for this transfer and point it to
   1176   1.1      mrg 	 * our buffer.
   1177   1.1      mrg 	 */
   1178  1.12       pk 	getvndxfer(vnx);
   1179   1.1      mrg 	vnx->vx_flags = VX_BUSY;
   1180   1.1      mrg 	vnx->vx_error = 0;
   1181   1.1      mrg 	vnx->vx_pending = 0;
   1182   1.1      mrg 	vnx->vx_bp = bp;
   1183   1.1      mrg 	vnx->vx_sdp = sdp;
   1184   1.1      mrg 
   1185   1.1      mrg 	/*
   1186   1.1      mrg 	 * setup for main loop where we read filesystem blocks into
   1187   1.1      mrg 	 * our buffer.
   1188   1.1      mrg 	 */
   1189   1.1      mrg 	error = 0;
   1190   1.1      mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1191   1.1      mrg 	addr = bp->b_data;		/* current position in buffer */
   1192  1.44    enami 	byteoff = dbtob((u_int64_t)bn);
   1193   1.1      mrg 
   1194   1.1      mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1195   1.1      mrg 		struct vndbuf	*nbp;
   1196   1.1      mrg 
   1197   1.1      mrg 		/*
   1198   1.1      mrg 		 * translate byteoffset into block number.  return values:
   1199   1.1      mrg 		 *   vp = vnode of underlying device
   1200   1.1      mrg 		 *  nbn = new block number (on underlying vnode dev)
   1201   1.1      mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1202   1.1      mrg 		 *	block)
   1203   1.1      mrg 		 */
   1204   1.1      mrg 		nra = 0;
   1205   1.1      mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1206   1.1      mrg 				 	&vp, &nbn, &nra);
   1207   1.1      mrg 
   1208  1.32      chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1209  1.51      chs 			/*
   1210  1.23     marc 			 * this used to just set error, but that doesn't
   1211  1.23     marc 			 * do the right thing.  Instead, it causes random
   1212  1.23     marc 			 * memory errors.  The panic() should remain until
   1213  1.23     marc 			 * this condition doesn't destabilize the system.
   1214  1.23     marc 			 */
   1215  1.23     marc #if 1
   1216  1.23     marc 			panic("sw_reg_strategy: swap to sparse file");
   1217  1.23     marc #else
   1218   1.1      mrg 			error = EIO;	/* failure */
   1219  1.23     marc #endif
   1220  1.23     marc 		}
   1221   1.1      mrg 
   1222   1.1      mrg 		/*
   1223   1.1      mrg 		 * punt if there was an error or a hole in the file.
   1224   1.1      mrg 		 * we must wait for any i/o ops we have already started
   1225   1.1      mrg 		 * to finish before returning.
   1226   1.1      mrg 		 *
   1227   1.1      mrg 		 * XXX we could deal with holes here but it would be
   1228   1.1      mrg 		 * a hassle (in the write case).
   1229   1.1      mrg 		 */
   1230   1.1      mrg 		if (error) {
   1231   1.1      mrg 			s = splbio();
   1232   1.1      mrg 			vnx->vx_error = error;	/* pass error up */
   1233   1.1      mrg 			goto out;
   1234   1.1      mrg 		}
   1235   1.1      mrg 
   1236   1.1      mrg 		/*
   1237   1.1      mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1238   1.1      mrg 		 */
   1239  1.41      chs 		off = byteoff % sdp->swd_bsize;
   1240  1.41      chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1241  1.41      chs 		if (sz > resid)
   1242   1.1      mrg 			sz = resid;
   1243   1.1      mrg 
   1244  1.41      chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1245  1.41      chs 			    "vp %p/%p offset 0x%x/0x%x",
   1246  1.41      chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1247   1.1      mrg 
   1248   1.1      mrg 		/*
   1249   1.1      mrg 		 * now get a buf structure.   note that the vb_buf is
   1250   1.1      mrg 		 * at the front of the nbp structure so that you can
   1251   1.1      mrg 		 * cast pointers between the two structure easily.
   1252   1.1      mrg 		 */
   1253  1.12       pk 		getvndbuf(nbp);
   1254   1.1      mrg 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1255   1.1      mrg 		nbp->vb_buf.b_bcount   = sz;
   1256  1.12       pk 		nbp->vb_buf.b_bufsize  = sz;
   1257   1.1      mrg 		nbp->vb_buf.b_error    = 0;
   1258   1.1      mrg 		nbp->vb_buf.b_data     = addr;
   1259  1.41      chs 		nbp->vb_buf.b_lblkno   = 0;
   1260   1.1      mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1261  1.34  thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1262   1.1      mrg 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1263  1.41      chs 		nbp->vb_buf.b_vp       = NULL;
   1264  1.30     fvdl 		LIST_INIT(&nbp->vb_buf.b_dep);
   1265   1.1      mrg 
   1266   1.1      mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1267   1.1      mrg 
   1268   1.1      mrg 		/*
   1269   1.1      mrg 		 * Just sort by block number
   1270   1.1      mrg 		 */
   1271   1.1      mrg 		s = splbio();
   1272   1.1      mrg 		if (vnx->vx_error != 0) {
   1273   1.1      mrg 			putvndbuf(nbp);
   1274   1.1      mrg 			goto out;
   1275   1.1      mrg 		}
   1276   1.1      mrg 		vnx->vx_pending++;
   1277   1.1      mrg 
   1278   1.1      mrg 		/* assoc new buffer with underlying vnode */
   1279  1.41      chs 		bgetvp(vp, &nbp->vb_buf);
   1280   1.1      mrg 
   1281   1.1      mrg 		/* sort it in and start I/O if we are not over our limit */
   1282  1.33  thorpej 		disksort_blkno(&sdp->swd_tab, &nbp->vb_buf);
   1283   1.1      mrg 		sw_reg_start(sdp);
   1284   1.1      mrg 		splx(s);
   1285   1.1      mrg 
   1286   1.1      mrg 		/*
   1287   1.1      mrg 		 * advance to the next I/O
   1288   1.1      mrg 		 */
   1289   1.9      mrg 		byteoff += sz;
   1290   1.1      mrg 		addr += sz;
   1291   1.1      mrg 	}
   1292   1.1      mrg 
   1293   1.1      mrg 	s = splbio();
   1294   1.1      mrg 
   1295   1.1      mrg out: /* Arrive here at splbio */
   1296   1.1      mrg 	vnx->vx_flags &= ~VX_BUSY;
   1297   1.1      mrg 	if (vnx->vx_pending == 0) {
   1298   1.1      mrg 		if (vnx->vx_error != 0) {
   1299   1.1      mrg 			bp->b_error = vnx->vx_error;
   1300   1.1      mrg 			bp->b_flags |= B_ERROR;
   1301   1.1      mrg 		}
   1302   1.1      mrg 		putvndxfer(vnx);
   1303   1.1      mrg 		biodone(bp);
   1304   1.1      mrg 	}
   1305   1.1      mrg 	splx(s);
   1306   1.1      mrg }
   1307   1.1      mrg 
   1308   1.1      mrg /*
   1309   1.1      mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1310   1.1      mrg  *
   1311   1.1      mrg  * => reqs are sorted by disksort (above)
   1312   1.1      mrg  */
   1313   1.1      mrg static void
   1314   1.1      mrg sw_reg_start(sdp)
   1315   1.1      mrg 	struct swapdev	*sdp;
   1316   1.1      mrg {
   1317   1.1      mrg 	struct buf	*bp;
   1318   1.1      mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1319   1.1      mrg 
   1320   1.8      mrg 	/* recursion control */
   1321   1.1      mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1322   1.1      mrg 		return;
   1323   1.1      mrg 
   1324   1.1      mrg 	sdp->swd_flags |= SWF_BUSY;
   1325   1.1      mrg 
   1326  1.33  thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1327  1.33  thorpej 		bp = BUFQ_FIRST(&sdp->swd_tab);
   1328   1.1      mrg 		if (bp == NULL)
   1329   1.1      mrg 			break;
   1330  1.33  thorpej 		BUFQ_REMOVE(&sdp->swd_tab, bp);
   1331  1.33  thorpej 		sdp->swd_active++;
   1332   1.1      mrg 
   1333   1.1      mrg 		UVMHIST_LOG(pdhist,
   1334   1.1      mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1335   1.1      mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1336   1.1      mrg 		if ((bp->b_flags & B_READ) == 0)
   1337   1.1      mrg 			bp->b_vp->v_numoutput++;
   1338  1.41      chs 
   1339   1.1      mrg 		VOP_STRATEGY(bp);
   1340   1.1      mrg 	}
   1341   1.1      mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1342   1.1      mrg }
   1343   1.1      mrg 
   1344   1.1      mrg /*
   1345   1.1      mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1346   1.1      mrg  *
   1347   1.1      mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1348   1.1      mrg  */
   1349   1.1      mrg static void
   1350   1.1      mrg sw_reg_iodone(bp)
   1351   1.1      mrg 	struct buf *bp;
   1352   1.1      mrg {
   1353   1.1      mrg 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1354   1.1      mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1355   1.1      mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1356   1.1      mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1357   1.1      mrg 	int		s, resid;
   1358   1.1      mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1359   1.1      mrg 
   1360   1.1      mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1361   1.1      mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1362   1.1      mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1363   1.1      mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1364   1.1      mrg 
   1365   1.1      mrg 	/*
   1366   1.1      mrg 	 * protect vbp at splbio and update.
   1367   1.1      mrg 	 */
   1368   1.1      mrg 
   1369   1.1      mrg 	s = splbio();
   1370   1.1      mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1371   1.1      mrg 	pbp->b_resid -= resid;
   1372   1.1      mrg 	vnx->vx_pending--;
   1373   1.1      mrg 
   1374   1.1      mrg 	if (vbp->vb_buf.b_error) {
   1375   1.1      mrg 		UVMHIST_LOG(pdhist, "  got error=%d !",
   1376   1.1      mrg 		    vbp->vb_buf.b_error, 0, 0, 0);
   1377   1.1      mrg 
   1378   1.1      mrg 		/* pass error upward */
   1379   1.1      mrg 		vnx->vx_error = vbp->vb_buf.b_error;
   1380  1.35      chs 	}
   1381  1.35      chs 
   1382  1.35      chs 	/*
   1383  1.41      chs 	 * disassociate this buffer from the vnode.
   1384  1.35      chs 	 */
   1385  1.41      chs 	brelvp(&vbp->vb_buf);
   1386   1.1      mrg 
   1387   1.1      mrg 	/*
   1388   1.1      mrg 	 * kill vbp structure
   1389   1.1      mrg 	 */
   1390   1.1      mrg 	putvndbuf(vbp);
   1391   1.1      mrg 
   1392   1.1      mrg 	/*
   1393   1.1      mrg 	 * wrap up this transaction if it has run to completion or, in
   1394   1.1      mrg 	 * case of an error, when all auxiliary buffers have returned.
   1395   1.1      mrg 	 */
   1396   1.1      mrg 	if (vnx->vx_error != 0) {
   1397   1.1      mrg 		/* pass error upward */
   1398   1.1      mrg 		pbp->b_flags |= B_ERROR;
   1399   1.1      mrg 		pbp->b_error = vnx->vx_error;
   1400   1.1      mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1401   1.1      mrg 			putvndxfer(vnx);
   1402   1.1      mrg 			biodone(pbp);
   1403   1.1      mrg 		}
   1404  1.11       pk 	} else if (pbp->b_resid == 0) {
   1405  1.46      chs 		KASSERT(vnx->vx_pending == 0);
   1406   1.1      mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1407   1.8      mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1408   1.8      mrg 			    pbp, vnx->vx_error, 0, 0);
   1409   1.8      mrg 			putvndxfer(vnx);
   1410   1.1      mrg 			biodone(pbp);
   1411   1.1      mrg 		}
   1412   1.1      mrg 	}
   1413   1.1      mrg 
   1414   1.1      mrg 	/*
   1415   1.1      mrg 	 * done!   start next swapdev I/O if one is pending
   1416   1.1      mrg 	 */
   1417  1.33  thorpej 	sdp->swd_active--;
   1418   1.1      mrg 	sw_reg_start(sdp);
   1419   1.1      mrg 	splx(s);
   1420   1.1      mrg }
   1421   1.1      mrg 
   1422   1.1      mrg 
   1423   1.1      mrg /*
   1424   1.1      mrg  * uvm_swap_alloc: allocate space on swap
   1425   1.1      mrg  *
   1426   1.1      mrg  * => allocation is done "round robin" down the priority list, as we
   1427   1.1      mrg  *	allocate in a priority we "rotate" the circle queue.
   1428   1.1      mrg  * => space can be freed with uvm_swap_free
   1429   1.1      mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1430  1.26      chs  * => we lock uvm.swap_data_lock
   1431   1.1      mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1432   1.1      mrg  */
   1433   1.1      mrg int
   1434   1.1      mrg uvm_swap_alloc(nslots, lessok)
   1435   1.1      mrg 	int *nslots;	/* IN/OUT */
   1436   1.1      mrg 	boolean_t lessok;
   1437   1.1      mrg {
   1438   1.1      mrg 	struct swapdev *sdp;
   1439   1.1      mrg 	struct swappri *spp;
   1440   1.1      mrg 	u_long	result;
   1441   1.1      mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1442   1.1      mrg 
   1443   1.1      mrg 	/*
   1444   1.1      mrg 	 * no swap devices configured yet?   definite failure.
   1445   1.1      mrg 	 */
   1446   1.1      mrg 	if (uvmexp.nswapdev < 1)
   1447   1.1      mrg 		return 0;
   1448  1.51      chs 
   1449   1.1      mrg 	/*
   1450   1.1      mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1451   1.1      mrg 	 */
   1452  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1453   1.1      mrg 
   1454   1.1      mrg ReTry:	/* XXXMRG */
   1455  1.32      chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL;
   1456  1.32      chs 	     spp = LIST_NEXT(spp, spi_swappri)) {
   1457  1.32      chs 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
   1458   1.1      mrg 		     sdp != (void *)&spp->spi_swapdev;
   1459  1.32      chs 		     sdp = CIRCLEQ_NEXT(sdp,swd_next)) {
   1460   1.1      mrg 			/* if it's not enabled, then we can't swap from it */
   1461   1.1      mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1462   1.1      mrg 				continue;
   1463   1.1      mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1464   1.1      mrg 				continue;
   1465   1.1      mrg 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1466   1.1      mrg 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1467   1.1      mrg 					 &result) != 0) {
   1468   1.1      mrg 				continue;
   1469   1.1      mrg 			}
   1470   1.1      mrg 
   1471   1.1      mrg 			/*
   1472   1.1      mrg 			 * successful allocation!  now rotate the circleq.
   1473   1.1      mrg 			 */
   1474   1.1      mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1475   1.1      mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1476   1.1      mrg 			sdp->swd_npginuse += *nslots;
   1477   1.1      mrg 			uvmexp.swpginuse += *nslots;
   1478  1.26      chs 			simple_unlock(&uvm.swap_data_lock);
   1479   1.1      mrg 			/* done!  return drum slot number */
   1480   1.1      mrg 			UVMHIST_LOG(pdhist,
   1481   1.1      mrg 			    "success!  returning %d slots starting at %d",
   1482   1.1      mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1483   1.1      mrg 			return(result + sdp->swd_drumoffset);
   1484   1.1      mrg 		}
   1485   1.1      mrg 	}
   1486   1.1      mrg 
   1487   1.1      mrg 	/* XXXMRG: BEGIN HACK */
   1488   1.1      mrg 	if (*nslots > 1 && lessok) {
   1489   1.1      mrg 		*nslots = 1;
   1490   1.1      mrg 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1491   1.1      mrg 	}
   1492   1.1      mrg 	/* XXXMRG: END HACK */
   1493   1.1      mrg 
   1494  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1495   1.1      mrg 	return 0;		/* failed */
   1496   1.1      mrg }
   1497   1.1      mrg 
   1498   1.1      mrg /*
   1499  1.32      chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1500  1.32      chs  *
   1501  1.32      chs  * => we lock uvm.swap_data_lock
   1502  1.32      chs  */
   1503  1.32      chs void
   1504  1.32      chs uvm_swap_markbad(startslot, nslots)
   1505  1.32      chs 	int startslot;
   1506  1.32      chs 	int nslots;
   1507  1.32      chs {
   1508  1.32      chs 	struct swapdev *sdp;
   1509  1.32      chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1510  1.32      chs 
   1511  1.32      chs 	simple_lock(&uvm.swap_data_lock);
   1512  1.32      chs 	sdp = swapdrum_getsdp(startslot);
   1513  1.32      chs 
   1514  1.32      chs 	/*
   1515  1.32      chs 	 * we just keep track of how many pages have been marked bad
   1516  1.32      chs 	 * in this device, to make everything add up in swap_off().
   1517  1.32      chs 	 * we assume here that the range of slots will all be within
   1518  1.32      chs 	 * one swap device.
   1519  1.32      chs 	 */
   1520  1.41      chs 
   1521  1.32      chs 	sdp->swd_npgbad += nslots;
   1522  1.41      chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1523  1.32      chs 	simple_unlock(&uvm.swap_data_lock);
   1524  1.32      chs }
   1525  1.32      chs 
   1526  1.32      chs /*
   1527   1.1      mrg  * uvm_swap_free: free swap slots
   1528   1.1      mrg  *
   1529   1.1      mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1530  1.26      chs  * => we lock uvm.swap_data_lock
   1531   1.1      mrg  */
   1532   1.1      mrg void
   1533   1.1      mrg uvm_swap_free(startslot, nslots)
   1534   1.1      mrg 	int startslot;
   1535   1.1      mrg 	int nslots;
   1536   1.1      mrg {
   1537   1.1      mrg 	struct swapdev *sdp;
   1538   1.1      mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1539   1.1      mrg 
   1540   1.1      mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1541   1.1      mrg 	    startslot, 0, 0);
   1542  1.32      chs 
   1543  1.32      chs 	/*
   1544  1.32      chs 	 * ignore attempts to free the "bad" slot.
   1545  1.32      chs 	 */
   1546  1.46      chs 
   1547  1.32      chs 	if (startslot == SWSLOT_BAD) {
   1548  1.32      chs 		return;
   1549  1.32      chs 	}
   1550  1.32      chs 
   1551   1.1      mrg 	/*
   1552  1.51      chs 	 * convert drum slot offset back to sdp, free the blocks
   1553  1.51      chs 	 * in the extent, and return.   must hold pri lock to do
   1554   1.1      mrg 	 * lookup and access the extent.
   1555   1.1      mrg 	 */
   1556  1.46      chs 
   1557  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1558   1.1      mrg 	sdp = swapdrum_getsdp(startslot);
   1559  1.46      chs 	KASSERT(uvmexp.nswapdev >= 1);
   1560  1.46      chs 	KASSERT(sdp != NULL);
   1561  1.46      chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1562  1.12       pk 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1563  1.32      chs 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1564  1.32      chs 		printf("warning: resource shortage: %d pages of swap lost\n",
   1565  1.12       pk 			nslots);
   1566  1.32      chs 	}
   1567   1.1      mrg 	sdp->swd_npginuse -= nslots;
   1568   1.1      mrg 	uvmexp.swpginuse -= nslots;
   1569  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1570   1.1      mrg }
   1571   1.1      mrg 
   1572   1.1      mrg /*
   1573   1.1      mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1574   1.1      mrg  *
   1575   1.1      mrg  * => can be sync or async
   1576   1.1      mrg  * => XXXMRG: consider making it an inline or macro
   1577   1.1      mrg  */
   1578   1.1      mrg int
   1579   1.1      mrg uvm_swap_put(swslot, ppsp, npages, flags)
   1580   1.1      mrg 	int swslot;
   1581   1.1      mrg 	struct vm_page **ppsp;
   1582   1.1      mrg 	int	npages;
   1583   1.1      mrg 	int	flags;
   1584   1.1      mrg {
   1585   1.1      mrg 	int	result;
   1586   1.1      mrg 
   1587   1.1      mrg 	result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1588   1.1      mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1589   1.1      mrg 
   1590   1.1      mrg 	return (result);
   1591   1.1      mrg }
   1592   1.1      mrg 
   1593   1.1      mrg /*
   1594   1.1      mrg  * uvm_swap_get: get a single page from swap
   1595   1.1      mrg  *
   1596   1.1      mrg  * => usually a sync op (from fault)
   1597   1.1      mrg  * => XXXMRG: consider making it an inline or macro
   1598   1.1      mrg  */
   1599   1.1      mrg int
   1600   1.1      mrg uvm_swap_get(page, swslot, flags)
   1601   1.1      mrg 	struct vm_page *page;
   1602   1.1      mrg 	int swslot, flags;
   1603   1.1      mrg {
   1604   1.1      mrg 	int	result;
   1605   1.1      mrg 
   1606   1.1      mrg 	uvmexp.nswget++;
   1607  1.46      chs 	KASSERT(flags & PGO_SYNCIO);
   1608  1.32      chs 	if (swslot == SWSLOT_BAD) {
   1609  1.47      chs 		return EIO;
   1610  1.32      chs 	}
   1611  1.32      chs 
   1612  1.26      chs 	/*
   1613  1.26      chs 	 * this page is (about to be) no longer only in swap.
   1614  1.26      chs 	 */
   1615  1.47      chs 
   1616  1.26      chs 	simple_lock(&uvm.swap_data_lock);
   1617  1.26      chs 	uvmexp.swpgonly--;
   1618  1.26      chs 	simple_unlock(&uvm.swap_data_lock);
   1619  1.26      chs 
   1620  1.51      chs 	result = uvm_swap_io(&page, swslot, 1, B_READ |
   1621   1.1      mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1622  1.26      chs 
   1623  1.47      chs 	if (result != 0) {
   1624  1.47      chs 
   1625  1.26      chs 		/*
   1626  1.26      chs 		 * oops, the read failed so it really is still only in swap.
   1627  1.26      chs 		 */
   1628  1.47      chs 
   1629  1.26      chs 		simple_lock(&uvm.swap_data_lock);
   1630  1.26      chs 		uvmexp.swpgonly++;
   1631  1.26      chs 		simple_unlock(&uvm.swap_data_lock);
   1632  1.26      chs 	}
   1633   1.1      mrg 
   1634   1.1      mrg 	return (result);
   1635   1.1      mrg }
   1636   1.1      mrg 
   1637   1.1      mrg /*
   1638   1.1      mrg  * uvm_swap_io: do an i/o operation to swap
   1639   1.1      mrg  */
   1640   1.1      mrg 
   1641   1.1      mrg static int
   1642   1.1      mrg uvm_swap_io(pps, startslot, npages, flags)
   1643   1.1      mrg 	struct vm_page **pps;
   1644   1.1      mrg 	int startslot, npages, flags;
   1645   1.1      mrg {
   1646   1.1      mrg 	daddr_t startblk;
   1647   1.1      mrg 	struct	buf *bp;
   1648  1.15      eeh 	vaddr_t kva;
   1649  1.47      chs 	int	error, s, mapinflags, pflag;
   1650  1.41      chs 	boolean_t write, async;
   1651   1.1      mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1652   1.1      mrg 
   1653   1.1      mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1654   1.1      mrg 	    startslot, npages, flags, 0);
   1655  1.32      chs 
   1656  1.41      chs 	write = (flags & B_READ) == 0;
   1657  1.41      chs 	async = (flags & B_ASYNC) != 0;
   1658  1.41      chs 
   1659   1.1      mrg 	/*
   1660   1.1      mrg 	 * convert starting drum slot to block number
   1661   1.1      mrg 	 */
   1662  1.44    enami 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1663   1.1      mrg 
   1664   1.1      mrg 	/*
   1665   1.1      mrg 	 * first, map the pages into the kernel (XXX: currently required
   1666  1.41      chs 	 * by buffer system).
   1667  1.41      chs 	 */
   1668  1.41      chs 
   1669  1.41      chs 	mapinflags = !write ? UVMPAGER_MAPIN_READ : UVMPAGER_MAPIN_WRITE;
   1670  1.41      chs 	if (!async)
   1671  1.37  thorpej 		mapinflags |= UVMPAGER_MAPIN_WAITOK;
   1672  1.41      chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1673  1.37  thorpej 	if (kva == 0)
   1674  1.47      chs 		return (EAGAIN);
   1675   1.1      mrg 
   1676  1.51      chs 	/*
   1677  1.41      chs 	 * now allocate a buf for the i/o.
   1678   1.1      mrg 	 * [make sure we don't put the pagedaemon to sleep...]
   1679   1.1      mrg 	 */
   1680   1.1      mrg 	s = splbio();
   1681  1.41      chs 	pflag = (async || curproc == uvm.pagedaemon_proc) ? 0 : PR_WAITOK;
   1682  1.41      chs 	bp = pool_get(&bufpool, pflag);
   1683  1.41      chs 	splx(s);
   1684   1.1      mrg 
   1685   1.1      mrg 	/*
   1686  1.41      chs 	 * if we failed to get a buf, return "try again"
   1687   1.1      mrg 	 */
   1688  1.41      chs 	if (bp == NULL)
   1689  1.47      chs 		return (EAGAIN);
   1690   1.1      mrg 
   1691   1.1      mrg 	/*
   1692   1.1      mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1693   1.1      mrg 	 * /dev/drum's vnode [swapdev_vp].
   1694   1.1      mrg 	 */
   1695  1.21  mycroft 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1696   1.1      mrg 	bp->b_proc = &proc0;	/* XXX */
   1697  1.12       pk 	bp->b_vnbufs.le_next = NOLIST;
   1698   1.1      mrg 	bp->b_data = (caddr_t)kva;
   1699   1.1      mrg 	bp->b_blkno = startblk;
   1700  1.25      chs 	s = splbio();
   1701   1.1      mrg 	VHOLD(swapdev_vp);
   1702   1.1      mrg 	bp->b_vp = swapdev_vp;
   1703  1.25      chs 	splx(s);
   1704   1.1      mrg 	/* XXXCDC: isn't swapdev_vp always a VCHR? */
   1705   1.1      mrg 	/* XXXMRG: probably -- this is obviously something inherited... */
   1706   1.1      mrg 	if (swapdev_vp->v_type == VBLK)
   1707   1.1      mrg 		bp->b_dev = swapdev_vp->v_rdev;
   1708  1.41      chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1709  1.30     fvdl 	LIST_INIT(&bp->b_dep);
   1710   1.1      mrg 
   1711  1.51      chs 	/*
   1712  1.41      chs 	 * bump v_numoutput (counter of number of active outputs).
   1713   1.1      mrg 	 */
   1714  1.41      chs 	if (write) {
   1715   1.1      mrg 		s = splbio();
   1716   1.1      mrg 		swapdev_vp->v_numoutput++;
   1717   1.1      mrg 		splx(s);
   1718   1.1      mrg 	}
   1719   1.1      mrg 
   1720   1.1      mrg 	/*
   1721  1.41      chs 	 * for async ops we must set up the iodone handler.
   1722   1.1      mrg 	 */
   1723  1.41      chs 	if (async) {
   1724  1.41      chs 		/* XXXUBC pagedaemon */
   1725  1.41      chs 		bp->b_flags |= B_CALL | (curproc == uvm.pagedaemon_proc ?
   1726  1.41      chs 					 B_PDAEMON : 0);
   1727  1.41      chs 		bp->b_iodone = uvm_aio_biodone;
   1728   1.1      mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1729   1.1      mrg 	}
   1730   1.1      mrg 	UVMHIST_LOG(pdhist,
   1731  1.41      chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1732   1.1      mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1733   1.1      mrg 
   1734   1.1      mrg 	/*
   1735   1.1      mrg 	 * now we start the I/O, and if async, return.
   1736   1.1      mrg 	 */
   1737   1.1      mrg 	VOP_STRATEGY(bp);
   1738  1.41      chs 	if (async)
   1739  1.47      chs 		return 0;
   1740   1.1      mrg 
   1741   1.1      mrg 	/*
   1742   1.1      mrg 	 * must be sync i/o.   wait for it to finish
   1743   1.1      mrg 	 */
   1744  1.47      chs 	error = biowait(bp);
   1745   1.1      mrg 
   1746   1.1      mrg 	/*
   1747   1.1      mrg 	 * kill the pager mapping
   1748   1.1      mrg 	 */
   1749   1.1      mrg 	uvm_pagermapout(kva, npages);
   1750   1.1      mrg 
   1751   1.1      mrg 	/*
   1752  1.41      chs 	 * now dispose of the buf
   1753   1.1      mrg 	 */
   1754   1.1      mrg 	s = splbio();
   1755   1.1      mrg 	if (bp->b_vp)
   1756   1.1      mrg 		brelvp(bp);
   1757  1.41      chs 	if (write)
   1758  1.41      chs 		vwakeup(bp);
   1759  1.41      chs 	pool_put(&bufpool, bp);
   1760   1.1      mrg 	splx(s);
   1761   1.1      mrg 
   1762   1.1      mrg 	/*
   1763   1.1      mrg 	 * finally return.
   1764   1.1      mrg 	 */
   1765  1.47      chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1766  1.47      chs 	return (error);
   1767   1.1      mrg }
   1768