Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.75
      1  1.75   thorpej /*	$NetBSD: uvm_swap.c,v 1.75 2003/02/01 06:23:55 thorpej Exp $	*/
      2   1.1       mrg 
      3   1.1       mrg /*
      4   1.1       mrg  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5   1.1       mrg  * All rights reserved.
      6   1.1       mrg  *
      7   1.1       mrg  * Redistribution and use in source and binary forms, with or without
      8   1.1       mrg  * modification, are permitted provided that the following conditions
      9   1.1       mrg  * are met:
     10   1.1       mrg  * 1. Redistributions of source code must retain the above copyright
     11   1.1       mrg  *    notice, this list of conditions and the following disclaimer.
     12   1.1       mrg  * 2. Redistributions in binary form must reproduce the above copyright
     13   1.1       mrg  *    notice, this list of conditions and the following disclaimer in the
     14   1.1       mrg  *    documentation and/or other materials provided with the distribution.
     15   1.1       mrg  * 3. The name of the author may not be used to endorse or promote products
     16   1.1       mrg  *    derived from this software without specific prior written permission.
     17   1.1       mrg  *
     18   1.1       mrg  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19   1.1       mrg  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20   1.1       mrg  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21   1.1       mrg  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22   1.1       mrg  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23   1.1       mrg  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24   1.1       mrg  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25   1.1       mrg  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26   1.1       mrg  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27   1.1       mrg  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28   1.1       mrg  * SUCH DAMAGE.
     29   1.3       mrg  *
     30   1.3       mrg  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31   1.3       mrg  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32   1.1       mrg  */
     33  1.57     lukem 
     34  1.57     lukem #include <sys/cdefs.h>
     35  1.75   thorpej __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.75 2003/02/01 06:23:55 thorpej Exp $");
     36   1.5       mrg 
     37   1.6   thorpej #include "fs_nfs.h"
     38   1.5       mrg #include "opt_uvmhist.h"
     39  1.16       mrg #include "opt_compat_netbsd.h"
     40  1.41       chs #include "opt_ddb.h"
     41   1.1       mrg 
     42   1.1       mrg #include <sys/param.h>
     43   1.1       mrg #include <sys/systm.h>
     44   1.1       mrg #include <sys/buf.h>
     45  1.36       mrg #include <sys/conf.h>
     46   1.1       mrg #include <sys/proc.h>
     47   1.1       mrg #include <sys/namei.h>
     48   1.1       mrg #include <sys/disklabel.h>
     49   1.1       mrg #include <sys/errno.h>
     50   1.1       mrg #include <sys/kernel.h>
     51   1.1       mrg #include <sys/malloc.h>
     52   1.1       mrg #include <sys/vnode.h>
     53   1.1       mrg #include <sys/file.h>
     54   1.1       mrg #include <sys/extent.h>
     55   1.1       mrg #include <sys/mount.h>
     56  1.12        pk #include <sys/pool.h>
     57  1.74   thorpej #include <sys/sa.h>
     58   1.1       mrg #include <sys/syscallargs.h>
     59  1.17       mrg #include <sys/swap.h>
     60   1.1       mrg 
     61   1.1       mrg #include <uvm/uvm.h>
     62   1.1       mrg 
     63   1.1       mrg #include <miscfs/specfs/specdev.h>
     64   1.1       mrg 
     65   1.1       mrg /*
     66   1.1       mrg  * uvm_swap.c: manage configuration and i/o to swap space.
     67   1.1       mrg  */
     68   1.1       mrg 
     69   1.1       mrg /*
     70   1.1       mrg  * swap space is managed in the following way:
     71  1.51       chs  *
     72   1.1       mrg  * each swap partition or file is described by a "swapdev" structure.
     73   1.1       mrg  * each "swapdev" structure contains a "swapent" structure which contains
     74   1.1       mrg  * information that is passed up to the user (via system calls).
     75   1.1       mrg  *
     76   1.1       mrg  * each swap partition is assigned a "priority" (int) which controls
     77   1.1       mrg  * swap parition usage.
     78   1.1       mrg  *
     79   1.1       mrg  * the system maintains a global data structure describing all swap
     80   1.1       mrg  * partitions/files.   there is a sorted LIST of "swappri" structures
     81   1.1       mrg  * which describe "swapdev"'s at that priority.   this LIST is headed
     82  1.51       chs  * by the "swap_priority" global var.    each "swappri" contains a
     83   1.1       mrg  * CIRCLEQ of "swapdev" structures at that priority.
     84   1.1       mrg  *
     85   1.1       mrg  * locking:
     86   1.1       mrg  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     87   1.1       mrg  *    system call and prevents the swap priority list from changing
     88   1.1       mrg  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     89  1.26       chs  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     90   1.1       mrg  *    structures including the priority list, the swapdev structures,
     91   1.1       mrg  *    and the swapmap extent.
     92   1.1       mrg  *
     93   1.1       mrg  * each swap device has the following info:
     94   1.1       mrg  *  - swap device in use (could be disabled, preventing future use)
     95   1.1       mrg  *  - swap enabled (allows new allocations on swap)
     96   1.1       mrg  *  - map info in /dev/drum
     97   1.1       mrg  *  - vnode pointer
     98   1.1       mrg  * for swap files only:
     99   1.1       mrg  *  - block size
    100   1.1       mrg  *  - max byte count in buffer
    101   1.1       mrg  *  - buffer
    102   1.1       mrg  *
    103   1.1       mrg  * userland controls and configures swap with the swapctl(2) system call.
    104   1.1       mrg  * the sys_swapctl performs the following operations:
    105   1.1       mrg  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    106  1.51       chs  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    107   1.1       mrg  *	(passed in via "arg") of a size passed in via "misc" ... we load
    108  1.63      manu  *	the current swap config into the array. The actual work is done
    109  1.63      manu  *	in the uvm_swap_stats(9) function.
    110   1.1       mrg  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    111   1.1       mrg  *	priority in "misc", start swapping on it.
    112   1.1       mrg  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    113   1.1       mrg  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    114   1.1       mrg  *	"misc")
    115   1.1       mrg  */
    116   1.1       mrg 
    117   1.1       mrg /*
    118   1.1       mrg  * swapdev: describes a single swap partition/file
    119   1.1       mrg  *
    120   1.1       mrg  * note the following should be true:
    121   1.1       mrg  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    122   1.1       mrg  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    123   1.1       mrg  */
    124   1.1       mrg struct swapdev {
    125  1.16       mrg 	struct oswapent swd_ose;
    126  1.16       mrg #define	swd_dev		swd_ose.ose_dev		/* device id */
    127  1.16       mrg #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    128  1.16       mrg #define	swd_priority	swd_ose.ose_priority	/* our priority */
    129  1.16       mrg 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    130  1.16       mrg 	char			*swd_path;	/* saved pathname of device */
    131  1.16       mrg 	int			swd_pathlen;	/* length of pathname */
    132  1.16       mrg 	int			swd_npages;	/* #pages we can use */
    133  1.16       mrg 	int			swd_npginuse;	/* #pages in use */
    134  1.32       chs 	int			swd_npgbad;	/* #pages bad */
    135  1.16       mrg 	int			swd_drumoffset;	/* page0 offset in drum */
    136  1.16       mrg 	int			swd_drumsize;	/* #pages in drum */
    137  1.16       mrg 	struct extent		*swd_ex;	/* extent for this swapdev */
    138  1.42     enami 	char			swd_exname[12];	/* name of extent above */
    139  1.16       mrg 	struct vnode		*swd_vp;	/* backing vnode */
    140  1.16       mrg 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141   1.1       mrg 
    142  1.16       mrg 	int			swd_bsize;	/* blocksize (bytes) */
    143  1.16       mrg 	int			swd_maxactive;	/* max active i/o reqs */
    144  1.65   hannken 	struct bufq_state	swd_tab;	/* buffer list */
    145  1.33   thorpej 	int			swd_active;	/* number of active buffers */
    146   1.1       mrg };
    147   1.1       mrg 
    148   1.1       mrg /*
    149   1.1       mrg  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150   1.1       mrg  */
    151   1.1       mrg struct swappri {
    152   1.1       mrg 	int			spi_priority;     /* priority */
    153   1.1       mrg 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154   1.1       mrg 	/* circleq of swapdevs at this priority */
    155   1.1       mrg 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156   1.1       mrg };
    157   1.1       mrg 
    158   1.1       mrg /*
    159   1.1       mrg  * The following two structures are used to keep track of data transfers
    160   1.1       mrg  * on swap devices associated with regular files.
    161   1.1       mrg  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162   1.1       mrg  * structure names here to ease porting..
    163   1.1       mrg  */
    164   1.1       mrg struct vndxfer {
    165   1.1       mrg 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166   1.1       mrg 	struct swapdev	*vx_sdp;
    167   1.1       mrg 	int		vx_error;
    168   1.1       mrg 	int		vx_pending;	/* # of pending aux buffers */
    169   1.1       mrg 	int		vx_flags;
    170   1.1       mrg #define VX_BUSY		1
    171   1.1       mrg #define VX_DEAD		2
    172   1.1       mrg };
    173   1.1       mrg 
    174   1.1       mrg struct vndbuf {
    175   1.1       mrg 	struct buf	vb_buf;
    176   1.1       mrg 	struct vndxfer	*vb_xfer;
    177   1.1       mrg };
    178   1.1       mrg 
    179  1.12        pk 
    180   1.1       mrg /*
    181  1.12        pk  * We keep a of pool vndbuf's and vndxfer structures.
    182   1.1       mrg  */
    183  1.49   thorpej static struct pool vndxfer_pool;
    184  1.49   thorpej static struct pool vndbuf_pool;
    185   1.1       mrg 
    186  1.12        pk #define	getvndxfer(vnx)	do {						\
    187  1.12        pk 	int s = splbio();						\
    188  1.60   thorpej 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    189  1.12        pk 	splx(s);							\
    190  1.73     perry } while (/*CONSTCOND*/ 0)
    191  1.12        pk 
    192  1.12        pk #define putvndxfer(vnx) {						\
    193  1.49   thorpej 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    194  1.12        pk }
    195  1.12        pk 
    196  1.12        pk #define	getvndbuf(vbp)	do {						\
    197  1.12        pk 	int s = splbio();						\
    198  1.60   thorpej 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    199  1.12        pk 	splx(s);							\
    200  1.73     perry } while (/*CONSTCOND*/ 0)
    201   1.1       mrg 
    202  1.12        pk #define putvndbuf(vbp) {						\
    203  1.49   thorpej 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    204  1.12        pk }
    205   1.1       mrg 
    206   1.1       mrg /*
    207   1.1       mrg  * local variables
    208   1.1       mrg  */
    209   1.1       mrg static struct extent *swapmap;		/* controls the mapping of /dev/drum */
    210  1.75   thorpej 
    211  1.75   thorpej MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    212   1.1       mrg 
    213   1.1       mrg /* list of all active swap devices [by priority] */
    214   1.1       mrg LIST_HEAD(swap_priority, swappri);
    215   1.1       mrg static struct swap_priority swap_priority;
    216   1.1       mrg 
    217   1.1       mrg /* locks */
    218  1.52       chs struct lock swap_syscall_lock;
    219   1.1       mrg 
    220   1.1       mrg /*
    221   1.1       mrg  * prototypes
    222   1.1       mrg  */
    223   1.1       mrg static struct swapdev	*swapdrum_getsdp __P((int));
    224   1.1       mrg 
    225   1.1       mrg static struct swapdev	*swaplist_find __P((struct vnode *, int));
    226  1.51       chs static void		 swaplist_insert __P((struct swapdev *,
    227   1.1       mrg 					     struct swappri *, int));
    228   1.1       mrg static void		 swaplist_trim __P((void));
    229   1.1       mrg 
    230   1.1       mrg static int swap_on __P((struct proc *, struct swapdev *));
    231   1.1       mrg static int swap_off __P((struct proc *, struct swapdev *));
    232   1.1       mrg 
    233   1.1       mrg static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
    234   1.1       mrg static void sw_reg_iodone __P((struct buf *));
    235   1.1       mrg static void sw_reg_start __P((struct swapdev *));
    236   1.1       mrg 
    237   1.1       mrg static int uvm_swap_io __P((struct vm_page **, int, int, int));
    238   1.1       mrg 
    239  1.69   gehenna dev_type_read(swread);
    240  1.69   gehenna dev_type_write(swwrite);
    241  1.69   gehenna dev_type_strategy(swstrategy);
    242  1.69   gehenna 
    243  1.69   gehenna const struct bdevsw swap_bdevsw = {
    244  1.69   gehenna 	noopen, noclose, swstrategy, noioctl, nodump, nosize,
    245  1.69   gehenna };
    246  1.69   gehenna 
    247  1.69   gehenna const struct cdevsw swap_cdevsw = {
    248  1.69   gehenna 	nullopen, nullclose, swread, swwrite, noioctl,
    249  1.71  jdolecek 	nostop, notty, nopoll, nommap, nokqfilter
    250  1.69   gehenna };
    251  1.69   gehenna 
    252   1.1       mrg /*
    253   1.1       mrg  * uvm_swap_init: init the swap system data structures and locks
    254   1.1       mrg  *
    255  1.51       chs  * => called at boot time from init_main.c after the filesystems
    256   1.1       mrg  *	are brought up (which happens after uvm_init())
    257   1.1       mrg  */
    258   1.1       mrg void
    259   1.1       mrg uvm_swap_init()
    260   1.1       mrg {
    261   1.1       mrg 	UVMHIST_FUNC("uvm_swap_init");
    262   1.1       mrg 
    263   1.1       mrg 	UVMHIST_CALLED(pdhist);
    264   1.1       mrg 	/*
    265   1.1       mrg 	 * first, init the swap list, its counter, and its lock.
    266   1.1       mrg 	 * then get a handle on the vnode for /dev/drum by using
    267   1.1       mrg 	 * the its dev_t number ("swapdev", from MD conf.c).
    268   1.1       mrg 	 */
    269   1.1       mrg 
    270   1.1       mrg 	LIST_INIT(&swap_priority);
    271   1.1       mrg 	uvmexp.nswapdev = 0;
    272   1.1       mrg 	lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
    273  1.26       chs 	simple_lock_init(&uvm.swap_data_lock);
    274  1.12        pk 
    275   1.1       mrg 	if (bdevvp(swapdev, &swapdev_vp))
    276   1.1       mrg 		panic("uvm_swap_init: can't get vnode for swap device");
    277   1.1       mrg 
    278   1.1       mrg 	/*
    279   1.1       mrg 	 * create swap block resource map to map /dev/drum.   the range
    280   1.1       mrg 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    281  1.51       chs 	 * that block 0 is reserved (used to indicate an allocation
    282   1.1       mrg 	 * failure, or no allocation).
    283   1.1       mrg 	 */
    284   1.1       mrg 	swapmap = extent_create("swapmap", 1, INT_MAX,
    285   1.1       mrg 				M_VMSWAP, 0, 0, EX_NOWAIT);
    286   1.1       mrg 	if (swapmap == 0)
    287   1.1       mrg 		panic("uvm_swap_init: extent_create failed");
    288   1.1       mrg 
    289   1.1       mrg 	/*
    290  1.41       chs 	 * allocate pools for structures used for swapping to files.
    291   1.1       mrg 	 */
    292   1.1       mrg 
    293  1.49   thorpej 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0,
    294  1.59   thorpej 	    "swp vnx", NULL);
    295  1.49   thorpej 
    296  1.49   thorpej 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0,
    297  1.59   thorpej 	    "swp vnd", NULL);
    298  1.49   thorpej 
    299   1.1       mrg 	/*
    300   1.1       mrg 	 * done!
    301   1.1       mrg 	 */
    302   1.1       mrg 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    303   1.1       mrg }
    304   1.1       mrg 
    305   1.1       mrg /*
    306   1.1       mrg  * swaplist functions: functions that operate on the list of swap
    307   1.1       mrg  * devices on the system.
    308   1.1       mrg  */
    309   1.1       mrg 
    310   1.1       mrg /*
    311   1.1       mrg  * swaplist_insert: insert swap device "sdp" into the global list
    312   1.1       mrg  *
    313  1.26       chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    314   1.1       mrg  * => caller must provide a newly malloc'd swappri structure (we will
    315   1.1       mrg  *	FREE it if we don't need it... this it to prevent malloc blocking
    316   1.1       mrg  *	here while adding swap)
    317   1.1       mrg  */
    318   1.1       mrg static void
    319   1.1       mrg swaplist_insert(sdp, newspp, priority)
    320   1.1       mrg 	struct swapdev *sdp;
    321   1.1       mrg 	struct swappri *newspp;
    322   1.1       mrg 	int priority;
    323   1.1       mrg {
    324   1.1       mrg 	struct swappri *spp, *pspp;
    325   1.1       mrg 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    326   1.1       mrg 
    327   1.1       mrg 	/*
    328   1.1       mrg 	 * find entry at or after which to insert the new device.
    329   1.1       mrg 	 */
    330  1.55       chs 	pspp = NULL;
    331  1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    332   1.1       mrg 		if (priority <= spp->spi_priority)
    333   1.1       mrg 			break;
    334   1.1       mrg 		pspp = spp;
    335   1.1       mrg 	}
    336   1.1       mrg 
    337   1.1       mrg 	/*
    338   1.1       mrg 	 * new priority?
    339   1.1       mrg 	 */
    340   1.1       mrg 	if (spp == NULL || spp->spi_priority != priority) {
    341   1.1       mrg 		spp = newspp;  /* use newspp! */
    342  1.32       chs 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    343  1.32       chs 			    priority, 0, 0, 0);
    344   1.1       mrg 
    345   1.1       mrg 		spp->spi_priority = priority;
    346   1.1       mrg 		CIRCLEQ_INIT(&spp->spi_swapdev);
    347   1.1       mrg 
    348   1.1       mrg 		if (pspp)
    349   1.1       mrg 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    350   1.1       mrg 		else
    351   1.1       mrg 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    352   1.1       mrg 	} else {
    353   1.1       mrg 	  	/* we don't need a new priority structure, free it */
    354   1.1       mrg 		FREE(newspp, M_VMSWAP);
    355   1.1       mrg 	}
    356   1.1       mrg 
    357   1.1       mrg 	/*
    358   1.1       mrg 	 * priority found (or created).   now insert on the priority's
    359   1.1       mrg 	 * circleq list and bump the total number of swapdevs.
    360   1.1       mrg 	 */
    361   1.1       mrg 	sdp->swd_priority = priority;
    362   1.1       mrg 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    363   1.1       mrg 	uvmexp.nswapdev++;
    364   1.1       mrg }
    365   1.1       mrg 
    366   1.1       mrg /*
    367   1.1       mrg  * swaplist_find: find and optionally remove a swap device from the
    368   1.1       mrg  *	global list.
    369   1.1       mrg  *
    370  1.26       chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    371   1.1       mrg  * => we return the swapdev we found (and removed)
    372   1.1       mrg  */
    373   1.1       mrg static struct swapdev *
    374   1.1       mrg swaplist_find(vp, remove)
    375   1.1       mrg 	struct vnode *vp;
    376   1.1       mrg 	boolean_t remove;
    377   1.1       mrg {
    378   1.1       mrg 	struct swapdev *sdp;
    379   1.1       mrg 	struct swappri *spp;
    380   1.1       mrg 
    381   1.1       mrg 	/*
    382   1.1       mrg 	 * search the lists for the requested vp
    383   1.1       mrg 	 */
    384  1.55       chs 
    385  1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    386  1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    387   1.1       mrg 			if (sdp->swd_vp == vp) {
    388   1.1       mrg 				if (remove) {
    389   1.1       mrg 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    390   1.1       mrg 					    sdp, swd_next);
    391   1.1       mrg 					uvmexp.nswapdev--;
    392   1.1       mrg 				}
    393   1.1       mrg 				return(sdp);
    394   1.1       mrg 			}
    395  1.55       chs 		}
    396   1.1       mrg 	}
    397   1.1       mrg 	return (NULL);
    398   1.1       mrg }
    399   1.1       mrg 
    400   1.1       mrg 
    401   1.1       mrg /*
    402   1.1       mrg  * swaplist_trim: scan priority list for empty priority entries and kill
    403   1.1       mrg  *	them.
    404   1.1       mrg  *
    405  1.26       chs  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    406   1.1       mrg  */
    407   1.1       mrg static void
    408   1.1       mrg swaplist_trim()
    409   1.1       mrg {
    410   1.1       mrg 	struct swappri *spp, *nextspp;
    411   1.1       mrg 
    412  1.32       chs 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    413  1.32       chs 		nextspp = LIST_NEXT(spp, spi_swappri);
    414  1.32       chs 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    415  1.32       chs 		    (void *)&spp->spi_swapdev)
    416   1.1       mrg 			continue;
    417   1.1       mrg 		LIST_REMOVE(spp, spi_swappri);
    418  1.32       chs 		free(spp, M_VMSWAP);
    419   1.1       mrg 	}
    420   1.1       mrg }
    421   1.1       mrg 
    422   1.1       mrg /*
    423   1.1       mrg  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    424   1.1       mrg  *	to the "swapdev" that maps that section of the drum.
    425   1.1       mrg  *
    426   1.1       mrg  * => each swapdev takes one big contig chunk of the drum
    427  1.26       chs  * => caller must hold uvm.swap_data_lock
    428   1.1       mrg  */
    429   1.1       mrg static struct swapdev *
    430   1.1       mrg swapdrum_getsdp(pgno)
    431   1.1       mrg 	int pgno;
    432   1.1       mrg {
    433   1.1       mrg 	struct swapdev *sdp;
    434   1.1       mrg 	struct swappri *spp;
    435  1.51       chs 
    436  1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    437  1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    438  1.48      fvdl 			if (sdp->swd_flags & SWF_FAKE)
    439  1.48      fvdl 				continue;
    440   1.1       mrg 			if (pgno >= sdp->swd_drumoffset &&
    441   1.1       mrg 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    442   1.1       mrg 				return sdp;
    443   1.1       mrg 			}
    444  1.48      fvdl 		}
    445  1.55       chs 	}
    446   1.1       mrg 	return NULL;
    447   1.1       mrg }
    448   1.1       mrg 
    449   1.1       mrg 
    450   1.1       mrg /*
    451   1.1       mrg  * sys_swapctl: main entry point for swapctl(2) system call
    452   1.1       mrg  * 	[with two helper functions: swap_on and swap_off]
    453   1.1       mrg  */
    454   1.1       mrg int
    455  1.74   thorpej sys_swapctl(l, v, retval)
    456  1.74   thorpej 	struct lwp *l;
    457   1.1       mrg 	void *v;
    458   1.1       mrg 	register_t *retval;
    459   1.1       mrg {
    460   1.1       mrg 	struct sys_swapctl_args /* {
    461   1.1       mrg 		syscallarg(int) cmd;
    462   1.1       mrg 		syscallarg(void *) arg;
    463   1.1       mrg 		syscallarg(int) misc;
    464   1.1       mrg 	} */ *uap = (struct sys_swapctl_args *)v;
    465  1.74   thorpej 	struct proc *p = l->l_proc;
    466   1.1       mrg 	struct vnode *vp;
    467   1.1       mrg 	struct nameidata nd;
    468   1.1       mrg 	struct swappri *spp;
    469   1.1       mrg 	struct swapdev *sdp;
    470   1.1       mrg 	struct swapent *sep;
    471  1.16       mrg 	char	userpath[PATH_MAX + 1];
    472  1.18     enami 	size_t	len;
    473  1.61      manu 	int	error, misc;
    474   1.1       mrg 	int	priority;
    475   1.1       mrg 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    476   1.1       mrg 
    477   1.1       mrg 	misc = SCARG(uap, misc);
    478   1.1       mrg 
    479   1.1       mrg 	/*
    480   1.1       mrg 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    481   1.1       mrg 	 */
    482  1.32       chs 	lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
    483  1.24       mrg 
    484   1.1       mrg 	/*
    485   1.1       mrg 	 * we handle the non-priv NSWAP and STATS request first.
    486   1.1       mrg 	 *
    487  1.51       chs 	 * SWAP_NSWAP: return number of config'd swap devices
    488   1.1       mrg 	 * [can also be obtained with uvmexp sysctl]
    489   1.1       mrg 	 */
    490   1.1       mrg 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    491   1.8       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    492   1.8       mrg 		    0, 0, 0);
    493   1.1       mrg 		*retval = uvmexp.nswapdev;
    494  1.16       mrg 		error = 0;
    495  1.16       mrg 		goto out;
    496   1.1       mrg 	}
    497   1.1       mrg 
    498   1.1       mrg 	/*
    499   1.1       mrg 	 * SWAP_STATS: get stats on current # of configured swap devs
    500   1.1       mrg 	 *
    501  1.51       chs 	 * note that the swap_priority list can't change as long
    502   1.1       mrg 	 * as we are holding the swap_syscall_lock.  we don't want
    503  1.51       chs 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    504   1.1       mrg 	 * copyout() and we don't want to be holding that lock then!
    505   1.1       mrg 	 */
    506  1.16       mrg 	if (SCARG(uap, cmd) == SWAP_STATS
    507  1.16       mrg #if defined(COMPAT_13)
    508  1.16       mrg 	    || SCARG(uap, cmd) == SWAP_OSTATS
    509  1.16       mrg #endif
    510  1.16       mrg 	    ) {
    511  1.61      manu 		misc = MIN(uvmexp.nswapdev, misc);
    512  1.16       mrg #if defined(COMPAT_13)
    513  1.61      manu 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    514  1.61      manu 			len = sizeof(struct oswapent) * misc;
    515  1.62      manu 		else
    516  1.16       mrg #endif
    517  1.62      manu 			len = sizeof(struct swapent) * misc;
    518  1.62      manu 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    519  1.62      manu 
    520  1.62      manu 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    521  1.61      manu 		error = copyout(sep, (void *)SCARG(uap, arg), len);
    522   1.1       mrg 
    523  1.61      manu 		free(sep, M_TEMP);
    524  1.16       mrg 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    525  1.16       mrg 		goto out;
    526  1.51       chs 	}
    527  1.55       chs 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    528  1.55       chs 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    529  1.55       chs 
    530  1.55       chs 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    531  1.55       chs 		goto out;
    532  1.55       chs 	}
    533   1.1       mrg 
    534   1.1       mrg 	/*
    535   1.1       mrg 	 * all other requests require superuser privs.   verify.
    536   1.1       mrg 	 */
    537  1.16       mrg 	if ((error = suser(p->p_ucred, &p->p_acflag)))
    538  1.16       mrg 		goto out;
    539   1.1       mrg 
    540   1.1       mrg 	/*
    541   1.1       mrg 	 * at this point we expect a path name in arg.   we will
    542   1.1       mrg 	 * use namei() to gain a vnode reference (vref), and lock
    543   1.1       mrg 	 * the vnode (VOP_LOCK).
    544   1.1       mrg 	 *
    545   1.1       mrg 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    546  1.16       mrg 	 * miniroot)
    547   1.1       mrg 	 */
    548   1.1       mrg 	if (SCARG(uap, arg) == NULL) {
    549   1.1       mrg 		vp = rootvp;		/* miniroot */
    550   1.7      fvdl 		if (vget(vp, LK_EXCLUSIVE)) {
    551  1.16       mrg 			error = EBUSY;
    552  1.16       mrg 			goto out;
    553   1.1       mrg 		}
    554  1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON &&
    555  1.16       mrg 		    copystr("miniroot", userpath, sizeof userpath, &len))
    556  1.16       mrg 			panic("swapctl: miniroot copy failed");
    557   1.1       mrg 	} else {
    558  1.16       mrg 		int	space;
    559  1.16       mrg 		char	*where;
    560  1.16       mrg 
    561  1.16       mrg 		if (SCARG(uap, cmd) == SWAP_ON) {
    562  1.16       mrg 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    563  1.16       mrg 			    sizeof userpath, &len)))
    564  1.16       mrg 				goto out;
    565  1.16       mrg 			space = UIO_SYSSPACE;
    566  1.16       mrg 			where = userpath;
    567  1.16       mrg 		} else {
    568  1.16       mrg 			space = UIO_USERSPACE;
    569  1.16       mrg 			where = (char *)SCARG(uap, arg);
    570   1.1       mrg 		}
    571  1.16       mrg 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
    572  1.16       mrg 		if ((error = namei(&nd)))
    573  1.16       mrg 			goto out;
    574   1.1       mrg 		vp = nd.ni_vp;
    575   1.1       mrg 	}
    576   1.1       mrg 	/* note: "vp" is referenced and locked */
    577   1.1       mrg 
    578   1.1       mrg 	error = 0;		/* assume no error */
    579   1.1       mrg 	switch(SCARG(uap, cmd)) {
    580  1.40       mrg 
    581  1.24       mrg 	case SWAP_DUMPDEV:
    582  1.24       mrg 		if (vp->v_type != VBLK) {
    583  1.24       mrg 			error = ENOTBLK;
    584  1.45        pk 			break;
    585  1.24       mrg 		}
    586  1.24       mrg 		dumpdev = vp->v_rdev;
    587  1.68  drochner 		cpu_dumpconf();
    588  1.24       mrg 		break;
    589  1.24       mrg 
    590   1.1       mrg 	case SWAP_CTL:
    591   1.1       mrg 		/*
    592   1.1       mrg 		 * get new priority, remove old entry (if any) and then
    593   1.1       mrg 		 * reinsert it in the correct place.  finally, prune out
    594   1.1       mrg 		 * any empty priority structures.
    595   1.1       mrg 		 */
    596   1.1       mrg 		priority = SCARG(uap, misc);
    597  1.32       chs 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    598  1.26       chs 		simple_lock(&uvm.swap_data_lock);
    599   1.1       mrg 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    600   1.1       mrg 			error = ENOENT;
    601   1.1       mrg 		} else {
    602   1.1       mrg 			swaplist_insert(sdp, spp, priority);
    603   1.1       mrg 			swaplist_trim();
    604   1.1       mrg 		}
    605  1.26       chs 		simple_unlock(&uvm.swap_data_lock);
    606   1.1       mrg 		if (error)
    607   1.1       mrg 			free(spp, M_VMSWAP);
    608   1.1       mrg 		break;
    609   1.1       mrg 
    610   1.1       mrg 	case SWAP_ON:
    611  1.32       chs 
    612   1.1       mrg 		/*
    613   1.1       mrg 		 * check for duplicates.   if none found, then insert a
    614   1.1       mrg 		 * dummy entry on the list to prevent someone else from
    615   1.1       mrg 		 * trying to enable this device while we are working on
    616   1.1       mrg 		 * it.
    617   1.1       mrg 		 */
    618  1.32       chs 
    619   1.1       mrg 		priority = SCARG(uap, misc);
    620  1.48      fvdl 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    621  1.48      fvdl 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    622  1.67       chs 		memset(sdp, 0, sizeof(*sdp));
    623  1.67       chs 		sdp->swd_flags = SWF_FAKE;
    624  1.67       chs 		sdp->swd_vp = vp;
    625  1.67       chs 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    626  1.66   hannken 		bufq_alloc(&sdp->swd_tab, BUFQ_DISKSORT|BUFQ_SORT_RAWBLOCK);
    627  1.26       chs 		simple_lock(&uvm.swap_data_lock);
    628  1.48      fvdl 		if (swaplist_find(vp, 0) != NULL) {
    629   1.1       mrg 			error = EBUSY;
    630  1.26       chs 			simple_unlock(&uvm.swap_data_lock);
    631  1.66   hannken 			bufq_free(&sdp->swd_tab);
    632  1.48      fvdl 			free(sdp, M_VMSWAP);
    633  1.48      fvdl 			free(spp, M_VMSWAP);
    634  1.16       mrg 			break;
    635   1.1       mrg 		}
    636   1.1       mrg 		swaplist_insert(sdp, spp, priority);
    637  1.26       chs 		simple_unlock(&uvm.swap_data_lock);
    638   1.1       mrg 
    639  1.16       mrg 		sdp->swd_pathlen = len;
    640  1.16       mrg 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    641  1.19        pk 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    642  1.19        pk 			panic("swapctl: copystr");
    643  1.32       chs 
    644   1.1       mrg 		/*
    645   1.1       mrg 		 * we've now got a FAKE placeholder in the swap list.
    646   1.1       mrg 		 * now attempt to enable swap on it.  if we fail, undo
    647   1.1       mrg 		 * what we've done and kill the fake entry we just inserted.
    648   1.1       mrg 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    649   1.1       mrg 		 */
    650  1.32       chs 
    651   1.1       mrg 		if ((error = swap_on(p, sdp)) != 0) {
    652  1.26       chs 			simple_lock(&uvm.swap_data_lock);
    653   1.8       mrg 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    654   1.1       mrg 			swaplist_trim();
    655  1.26       chs 			simple_unlock(&uvm.swap_data_lock);
    656  1.66   hannken 			bufq_free(&sdp->swd_tab);
    657  1.19        pk 			free(sdp->swd_path, M_VMSWAP);
    658  1.32       chs 			free(sdp, M_VMSWAP);
    659   1.1       mrg 			break;
    660   1.1       mrg 		}
    661   1.1       mrg 		break;
    662   1.1       mrg 
    663   1.1       mrg 	case SWAP_OFF:
    664  1.26       chs 		simple_lock(&uvm.swap_data_lock);
    665   1.1       mrg 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    666  1.26       chs 			simple_unlock(&uvm.swap_data_lock);
    667   1.1       mrg 			error = ENXIO;
    668   1.1       mrg 			break;
    669   1.1       mrg 		}
    670  1.32       chs 
    671   1.1       mrg 		/*
    672   1.1       mrg 		 * If a device isn't in use or enabled, we
    673   1.1       mrg 		 * can't stop swapping from it (again).
    674   1.1       mrg 		 */
    675   1.1       mrg 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    676  1.26       chs 			simple_unlock(&uvm.swap_data_lock);
    677   1.1       mrg 			error = EBUSY;
    678  1.16       mrg 			break;
    679   1.1       mrg 		}
    680   1.1       mrg 
    681   1.1       mrg 		/*
    682  1.32       chs 		 * do the real work.
    683   1.1       mrg 		 */
    684  1.45        pk 		error = swap_off(p, sdp);
    685   1.1       mrg 		break;
    686   1.1       mrg 
    687   1.1       mrg 	default:
    688   1.1       mrg 		error = EINVAL;
    689   1.1       mrg 	}
    690   1.1       mrg 
    691   1.1       mrg 	/*
    692  1.39       chs 	 * done!  release the ref gained by namei() and unlock.
    693   1.1       mrg 	 */
    694   1.1       mrg 	vput(vp);
    695  1.39       chs 
    696  1.16       mrg out:
    697  1.32       chs 	lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
    698   1.1       mrg 
    699   1.1       mrg 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    700   1.1       mrg 	return (error);
    701  1.61      manu }
    702  1.61      manu 
    703  1.61      manu /*
    704  1.61      manu  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    705  1.61      manu  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    706  1.61      manu  * emulation to use it directly without going through sys_swapctl().
    707  1.61      manu  * The problem with using sys_swapctl() there is that it involves
    708  1.61      manu  * copying the swapent array to the stackgap, and this array's size
    709  1.61      manu  * is not known at build time. Hence it would not be possible to
    710  1.61      manu  * ensure it would fit in the stackgap in any case.
    711  1.61      manu  */
    712  1.61      manu void
    713  1.61      manu uvm_swap_stats(cmd, sep, sec, retval)
    714  1.61      manu 	int cmd;
    715  1.61      manu 	struct swapent *sep;
    716  1.61      manu 	int sec;
    717  1.61      manu 	register_t *retval;
    718  1.61      manu {
    719  1.61      manu 	struct swappri *spp;
    720  1.61      manu 	struct swapdev *sdp;
    721  1.61      manu 	int count = 0;
    722  1.61      manu 
    723  1.61      manu 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    724  1.61      manu 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    725  1.61      manu 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    726  1.61      manu 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    727  1.61      manu 		  	/*
    728  1.61      manu 			 * backwards compatibility for system call.
    729  1.61      manu 			 * note that we use 'struct oswapent' as an
    730  1.61      manu 			 * overlay into both 'struct swapdev' and
    731  1.61      manu 			 * the userland 'struct swapent', as we
    732  1.61      manu 			 * want to retain backwards compatibility
    733  1.61      manu 			 * with NetBSD 1.3.
    734  1.61      manu 			 */
    735  1.61      manu 			sdp->swd_ose.ose_inuse =
    736  1.61      manu 			    btodb((u_int64_t)sdp->swd_npginuse <<
    737  1.61      manu 			    PAGE_SHIFT);
    738  1.61      manu 			(void)memcpy(sep, &sdp->swd_ose,
    739  1.61      manu 			    sizeof(struct oswapent));
    740  1.61      manu 
    741  1.61      manu 			/* now copy out the path if necessary */
    742  1.61      manu #if defined(COMPAT_13)
    743  1.61      manu 			if (cmd == SWAP_STATS)
    744  1.61      manu #endif
    745  1.61      manu 				(void)memcpy(&sep->se_path, sdp->swd_path,
    746  1.61      manu 				    sdp->swd_pathlen);
    747  1.61      manu 
    748  1.61      manu 			count++;
    749  1.61      manu #if defined(COMPAT_13)
    750  1.61      manu 			if (cmd == SWAP_OSTATS)
    751  1.61      manu 				sep = (struct swapent *)
    752  1.61      manu 				    ((struct oswapent *)sep + 1);
    753  1.61      manu 			else
    754  1.61      manu #endif
    755  1.61      manu 				sep++;
    756  1.61      manu 		}
    757  1.61      manu 	}
    758  1.61      manu 
    759  1.61      manu 	*retval = count;
    760  1.61      manu 	return;
    761   1.1       mrg }
    762   1.1       mrg 
    763   1.1       mrg /*
    764   1.1       mrg  * swap_on: attempt to enable a swapdev for swapping.   note that the
    765   1.1       mrg  *	swapdev is already on the global list, but disabled (marked
    766   1.1       mrg  *	SWF_FAKE).
    767   1.1       mrg  *
    768   1.1       mrg  * => we avoid the start of the disk (to protect disk labels)
    769   1.1       mrg  * => we also avoid the miniroot, if we are swapping to root.
    770  1.26       chs  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    771   1.1       mrg  *	if needed.
    772   1.1       mrg  */
    773   1.1       mrg static int
    774   1.1       mrg swap_on(p, sdp)
    775   1.1       mrg 	struct proc *p;
    776   1.1       mrg 	struct swapdev *sdp;
    777   1.1       mrg {
    778   1.1       mrg 	static int count = 0;	/* static */
    779   1.1       mrg 	struct vnode *vp;
    780   1.1       mrg 	int error, npages, nblocks, size;
    781   1.1       mrg 	long addr;
    782  1.48      fvdl 	u_long result;
    783   1.1       mrg 	struct vattr va;
    784   1.1       mrg #ifdef NFS
    785   1.1       mrg 	extern int (**nfsv2_vnodeop_p) __P((void *));
    786   1.1       mrg #endif /* NFS */
    787  1.69   gehenna 	const struct bdevsw *bdev;
    788   1.1       mrg 	dev_t dev;
    789   1.1       mrg 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    790   1.1       mrg 
    791   1.1       mrg 	/*
    792   1.1       mrg 	 * we want to enable swapping on sdp.   the swd_vp contains
    793   1.1       mrg 	 * the vnode we want (locked and ref'd), and the swd_dev
    794   1.1       mrg 	 * contains the dev_t of the file, if it a block device.
    795   1.1       mrg 	 */
    796   1.1       mrg 
    797   1.1       mrg 	vp = sdp->swd_vp;
    798   1.1       mrg 	dev = sdp->swd_dev;
    799   1.1       mrg 
    800   1.1       mrg 	/*
    801   1.1       mrg 	 * open the swap file (mostly useful for block device files to
    802   1.1       mrg 	 * let device driver know what is up).
    803   1.1       mrg 	 *
    804   1.1       mrg 	 * we skip the open/close for root on swap because the root
    805   1.1       mrg 	 * has already been opened when root was mounted (mountroot).
    806   1.1       mrg 	 */
    807   1.1       mrg 	if (vp != rootvp) {
    808   1.1       mrg 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
    809   1.1       mrg 			return (error);
    810   1.1       mrg 	}
    811   1.1       mrg 
    812   1.1       mrg 	/* XXX this only works for block devices */
    813   1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    814   1.1       mrg 
    815   1.1       mrg 	/*
    816   1.1       mrg 	 * we now need to determine the size of the swap area.   for
    817   1.1       mrg 	 * block specials we can call the d_psize function.
    818   1.1       mrg 	 * for normal files, we must stat [get attrs].
    819   1.1       mrg 	 *
    820   1.1       mrg 	 * we put the result in nblks.
    821   1.1       mrg 	 * for normal files, we also want the filesystem block size
    822   1.1       mrg 	 * (which we get with statfs).
    823   1.1       mrg 	 */
    824   1.1       mrg 	switch (vp->v_type) {
    825   1.1       mrg 	case VBLK:
    826  1.69   gehenna 		bdev = bdevsw_lookup(dev);
    827  1.69   gehenna 		if (bdev == NULL || bdev->d_psize == NULL ||
    828  1.69   gehenna 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    829   1.1       mrg 			error = ENXIO;
    830   1.1       mrg 			goto bad;
    831   1.1       mrg 		}
    832   1.1       mrg 		break;
    833   1.1       mrg 
    834   1.1       mrg 	case VREG:
    835   1.1       mrg 		if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
    836   1.1       mrg 			goto bad;
    837   1.1       mrg 		nblocks = (int)btodb(va.va_size);
    838   1.1       mrg 		if ((error =
    839   1.1       mrg 		     VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
    840   1.1       mrg 			goto bad;
    841   1.1       mrg 
    842   1.1       mrg 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    843   1.1       mrg 		/*
    844   1.1       mrg 		 * limit the max # of outstanding I/O requests we issue
    845   1.1       mrg 		 * at any one time.   take it easy on NFS servers.
    846   1.1       mrg 		 */
    847   1.1       mrg #ifdef NFS
    848   1.1       mrg 		if (vp->v_op == nfsv2_vnodeop_p)
    849   1.1       mrg 			sdp->swd_maxactive = 2; /* XXX */
    850   1.1       mrg 		else
    851   1.1       mrg #endif /* NFS */
    852   1.1       mrg 			sdp->swd_maxactive = 8; /* XXX */
    853   1.1       mrg 		break;
    854   1.1       mrg 
    855   1.1       mrg 	default:
    856   1.1       mrg 		error = ENXIO;
    857   1.1       mrg 		goto bad;
    858   1.1       mrg 	}
    859   1.1       mrg 
    860   1.1       mrg 	/*
    861   1.1       mrg 	 * save nblocks in a safe place and convert to pages.
    862   1.1       mrg 	 */
    863   1.1       mrg 
    864  1.16       mrg 	sdp->swd_ose.ose_nblks = nblocks;
    865  1.20       chs 	npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
    866   1.1       mrg 
    867   1.1       mrg 	/*
    868   1.1       mrg 	 * for block special files, we want to make sure that leave
    869   1.1       mrg 	 * the disklabel and bootblocks alone, so we arrange to skip
    870  1.32       chs 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    871   1.1       mrg 	 * note that because of this the "size" can be less than the
    872   1.1       mrg 	 * actual number of blocks on the device.
    873   1.1       mrg 	 */
    874   1.1       mrg 	if (vp->v_type == VBLK) {
    875   1.1       mrg 		/* we use pages 1 to (size - 1) [inclusive] */
    876   1.1       mrg 		size = npages - 1;
    877   1.1       mrg 		addr = 1;
    878   1.1       mrg 	} else {
    879   1.1       mrg 		/* we use pages 0 to (size - 1) [inclusive] */
    880   1.1       mrg 		size = npages;
    881   1.1       mrg 		addr = 0;
    882   1.1       mrg 	}
    883   1.1       mrg 
    884   1.1       mrg 	/*
    885   1.1       mrg 	 * make sure we have enough blocks for a reasonable sized swap
    886   1.1       mrg 	 * area.   we want at least one page.
    887   1.1       mrg 	 */
    888   1.1       mrg 
    889   1.1       mrg 	if (size < 1) {
    890   1.1       mrg 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    891   1.1       mrg 		error = EINVAL;
    892   1.1       mrg 		goto bad;
    893   1.1       mrg 	}
    894   1.1       mrg 
    895   1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    896   1.1       mrg 
    897   1.1       mrg 	/*
    898   1.1       mrg 	 * now we need to allocate an extent to manage this swap device
    899   1.1       mrg 	 */
    900  1.42     enami 	snprintf(sdp->swd_exname, sizeof(sdp->swd_exname), "swap0x%04x",
    901  1.42     enami 	    count++);
    902   1.1       mrg 
    903   1.1       mrg 	/* note that extent_create's 3rd arg is inclusive, thus "- 1" */
    904  1.42     enami 	sdp->swd_ex = extent_create(sdp->swd_exname, 0, npages - 1, M_VMSWAP,
    905  1.12        pk 				    0, 0, EX_WAITOK);
    906   1.1       mrg 	/* allocate the `saved' region from the extent so it won't be used */
    907   1.1       mrg 	if (addr) {
    908   1.1       mrg 		if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
    909   1.1       mrg 			panic("disklabel region");
    910   1.1       mrg 	}
    911   1.1       mrg 
    912   1.1       mrg 	/*
    913  1.51       chs 	 * if the vnode we are swapping to is the root vnode
    914   1.1       mrg 	 * (i.e. we are swapping to the miniroot) then we want
    915  1.51       chs 	 * to make sure we don't overwrite it.   do a statfs to
    916   1.1       mrg 	 * find its size and skip over it.
    917   1.1       mrg 	 */
    918   1.1       mrg 	if (vp == rootvp) {
    919   1.1       mrg 		struct mount *mp;
    920   1.1       mrg 		struct statfs *sp;
    921   1.1       mrg 		int rootblocks, rootpages;
    922   1.1       mrg 
    923   1.1       mrg 		mp = rootvnode->v_mount;
    924   1.1       mrg 		sp = &mp->mnt_stat;
    925   1.1       mrg 		rootblocks = sp->f_blocks * btodb(sp->f_bsize);
    926  1.64  fredette 		/*
    927  1.64  fredette 		 * XXX: sp->f_blocks isn't the total number of
    928  1.64  fredette 		 * blocks in the filesystem, it's the number of
    929  1.64  fredette 		 * data blocks.  so, our rootblocks almost
    930  1.64  fredette 		 * definitely underestimates the total size
    931  1.64  fredette 		 * of the filesystem - how badly depends on the
    932  1.64  fredette 		 * details of the filesystem type.  there isn't
    933  1.64  fredette 		 * an obvious way to deal with this cleanly
    934  1.64  fredette 		 * and perfectly, so for now we just pad our
    935  1.64  fredette 		 * rootblocks estimate with an extra 5 percent.
    936  1.64  fredette 		 */
    937  1.64  fredette 		rootblocks += (rootblocks >> 5) +
    938  1.64  fredette 			(rootblocks >> 6) +
    939  1.64  fredette 			(rootblocks >> 7);
    940  1.20       chs 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    941  1.32       chs 		if (rootpages > size)
    942   1.1       mrg 			panic("swap_on: miniroot larger than swap?");
    943   1.1       mrg 
    944  1.51       chs 		if (extent_alloc_region(sdp->swd_ex, addr,
    945   1.1       mrg 					rootpages, EX_WAITOK))
    946   1.1       mrg 			panic("swap_on: unable to preserve miniroot");
    947   1.1       mrg 
    948  1.32       chs 		size -= rootpages;
    949   1.1       mrg 		printf("Preserved %d pages of miniroot ", rootpages);
    950  1.32       chs 		printf("leaving %d pages of swap\n", size);
    951   1.1       mrg 	}
    952   1.1       mrg 
    953  1.43       chs   	/*
    954  1.43       chs 	 * try to add anons to reflect the new swap space.
    955  1.43       chs 	 */
    956  1.43       chs 
    957  1.43       chs 	error = uvm_anon_add(size);
    958  1.43       chs 	if (error) {
    959  1.43       chs 		goto bad;
    960  1.43       chs 	}
    961  1.43       chs 
    962  1.39       chs 	/*
    963  1.39       chs 	 * add a ref to vp to reflect usage as a swap device.
    964  1.39       chs 	 */
    965  1.39       chs 	vref(vp);
    966  1.39       chs 
    967   1.1       mrg 	/*
    968   1.1       mrg 	 * now add the new swapdev to the drum and enable.
    969   1.1       mrg 	 */
    970  1.48      fvdl 	if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
    971  1.48      fvdl 	    EX_WAITOK, &result))
    972  1.48      fvdl 		panic("swapdrum_add");
    973  1.48      fvdl 
    974  1.48      fvdl 	sdp->swd_drumoffset = (int)result;
    975  1.48      fvdl 	sdp->swd_drumsize = npages;
    976  1.48      fvdl 	sdp->swd_npages = size;
    977  1.26       chs 	simple_lock(&uvm.swap_data_lock);
    978   1.1       mrg 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    979   1.1       mrg 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    980  1.32       chs 	uvmexp.swpages += size;
    981  1.26       chs 	simple_unlock(&uvm.swap_data_lock);
    982   1.1       mrg 	return (0);
    983   1.1       mrg 
    984   1.1       mrg 	/*
    985  1.43       chs 	 * failure: clean up and return error.
    986   1.1       mrg 	 */
    987  1.43       chs 
    988  1.43       chs bad:
    989  1.43       chs 	if (sdp->swd_ex) {
    990  1.43       chs 		extent_destroy(sdp->swd_ex);
    991  1.43       chs 	}
    992  1.43       chs 	if (vp != rootvp) {
    993   1.1       mrg 		(void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
    994  1.43       chs 	}
    995   1.1       mrg 	return (error);
    996   1.1       mrg }
    997   1.1       mrg 
    998   1.1       mrg /*
    999   1.1       mrg  * swap_off: stop swapping on swapdev
   1000   1.1       mrg  *
   1001  1.32       chs  * => swap data should be locked, we will unlock.
   1002   1.1       mrg  */
   1003   1.1       mrg static int
   1004   1.1       mrg swap_off(p, sdp)
   1005   1.1       mrg 	struct proc *p;
   1006   1.1       mrg 	struct swapdev *sdp;
   1007   1.1       mrg {
   1008   1.1       mrg 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1009  1.32       chs 	UVMHIST_LOG(pdhist, "  dev=%x", sdp->swd_dev,0,0,0);
   1010   1.1       mrg 
   1011  1.32       chs 	/* disable the swap area being removed */
   1012   1.1       mrg 	sdp->swd_flags &= ~SWF_ENABLE;
   1013  1.32       chs 	simple_unlock(&uvm.swap_data_lock);
   1014  1.32       chs 
   1015  1.32       chs 	/*
   1016  1.32       chs 	 * the idea is to find all the pages that are paged out to this
   1017  1.32       chs 	 * device, and page them all in.  in uvm, swap-backed pageable
   1018  1.32       chs 	 * memory can take two forms: aobjs and anons.  call the
   1019  1.32       chs 	 * swapoff hook for each subsystem to bring in pages.
   1020  1.32       chs 	 */
   1021   1.1       mrg 
   1022  1.32       chs 	if (uao_swap_off(sdp->swd_drumoffset,
   1023  1.32       chs 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1024  1.32       chs 	    anon_swap_off(sdp->swd_drumoffset,
   1025  1.32       chs 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1026  1.51       chs 
   1027  1.32       chs 		simple_lock(&uvm.swap_data_lock);
   1028  1.32       chs 		sdp->swd_flags |= SWF_ENABLE;
   1029  1.32       chs 		simple_unlock(&uvm.swap_data_lock);
   1030  1.32       chs 		return ENOMEM;
   1031  1.32       chs 	}
   1032  1.46       chs 	KASSERT(sdp->swd_npginuse == sdp->swd_npgbad);
   1033   1.1       mrg 
   1034   1.1       mrg 	/*
   1035  1.58     enami 	 * done with the vnode.
   1036  1.39       chs 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1037  1.39       chs 	 * so that spec_close() can tell if this is the last close.
   1038   1.1       mrg 	 */
   1039  1.39       chs 	vrele(sdp->swd_vp);
   1040  1.32       chs 	if (sdp->swd_vp != rootvp) {
   1041  1.32       chs 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
   1042  1.32       chs 	}
   1043  1.32       chs 
   1044  1.32       chs 	/* remove anons from the system */
   1045  1.32       chs 	uvm_anon_remove(sdp->swd_npages);
   1046  1.32       chs 
   1047  1.32       chs 	simple_lock(&uvm.swap_data_lock);
   1048  1.32       chs 	uvmexp.swpages -= sdp->swd_npages;
   1049   1.1       mrg 
   1050  1.32       chs 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1051  1.70    provos 		panic("swap_off: swapdev not in list");
   1052  1.32       chs 	swaplist_trim();
   1053  1.48      fvdl 	simple_unlock(&uvm.swap_data_lock);
   1054   1.1       mrg 
   1055  1.32       chs 	/*
   1056  1.32       chs 	 * free all resources!
   1057  1.32       chs 	 */
   1058  1.32       chs 	extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
   1059  1.32       chs 		    EX_WAITOK);
   1060   1.1       mrg 	extent_destroy(sdp->swd_ex);
   1061  1.66   hannken 	bufq_free(&sdp->swd_tab);
   1062  1.32       chs 	free(sdp, M_VMSWAP);
   1063   1.1       mrg 	return (0);
   1064   1.1       mrg }
   1065   1.1       mrg 
   1066   1.1       mrg /*
   1067   1.1       mrg  * /dev/drum interface and i/o functions
   1068   1.1       mrg  */
   1069   1.1       mrg 
   1070   1.1       mrg /*
   1071   1.1       mrg  * swread: the read function for the drum (just a call to physio)
   1072   1.1       mrg  */
   1073   1.1       mrg /*ARGSUSED*/
   1074   1.1       mrg int
   1075   1.1       mrg swread(dev, uio, ioflag)
   1076   1.1       mrg 	dev_t dev;
   1077   1.1       mrg 	struct uio *uio;
   1078   1.1       mrg 	int ioflag;
   1079   1.1       mrg {
   1080   1.1       mrg 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1081   1.1       mrg 
   1082   1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1083   1.1       mrg 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1084   1.1       mrg }
   1085   1.1       mrg 
   1086   1.1       mrg /*
   1087   1.1       mrg  * swwrite: the write function for the drum (just a call to physio)
   1088   1.1       mrg  */
   1089   1.1       mrg /*ARGSUSED*/
   1090   1.1       mrg int
   1091   1.1       mrg swwrite(dev, uio, ioflag)
   1092   1.1       mrg 	dev_t dev;
   1093   1.1       mrg 	struct uio *uio;
   1094   1.1       mrg 	int ioflag;
   1095   1.1       mrg {
   1096   1.1       mrg 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1097   1.1       mrg 
   1098   1.1       mrg 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1099   1.1       mrg 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1100   1.1       mrg }
   1101   1.1       mrg 
   1102   1.1       mrg /*
   1103   1.1       mrg  * swstrategy: perform I/O on the drum
   1104   1.1       mrg  *
   1105   1.1       mrg  * => we must map the i/o request from the drum to the correct swapdev.
   1106   1.1       mrg  */
   1107   1.1       mrg void
   1108   1.1       mrg swstrategy(bp)
   1109   1.1       mrg 	struct buf *bp;
   1110   1.1       mrg {
   1111   1.1       mrg 	struct swapdev *sdp;
   1112   1.1       mrg 	struct vnode *vp;
   1113  1.25       chs 	int s, pageno, bn;
   1114   1.1       mrg 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1115   1.1       mrg 
   1116   1.1       mrg 	/*
   1117   1.1       mrg 	 * convert block number to swapdev.   note that swapdev can't
   1118   1.1       mrg 	 * be yanked out from under us because we are holding resources
   1119   1.1       mrg 	 * in it (i.e. the blocks we are doing I/O on).
   1120   1.1       mrg 	 */
   1121  1.41       chs 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1122  1.26       chs 	simple_lock(&uvm.swap_data_lock);
   1123   1.1       mrg 	sdp = swapdrum_getsdp(pageno);
   1124  1.26       chs 	simple_unlock(&uvm.swap_data_lock);
   1125   1.1       mrg 	if (sdp == NULL) {
   1126   1.1       mrg 		bp->b_error = EINVAL;
   1127   1.1       mrg 		bp->b_flags |= B_ERROR;
   1128   1.1       mrg 		biodone(bp);
   1129   1.1       mrg 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1130   1.1       mrg 		return;
   1131   1.1       mrg 	}
   1132   1.1       mrg 
   1133   1.1       mrg 	/*
   1134   1.1       mrg 	 * convert drum page number to block number on this swapdev.
   1135   1.1       mrg 	 */
   1136   1.1       mrg 
   1137  1.32       chs 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1138  1.44     enami 	bn = btodb((u_int64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1139   1.1       mrg 
   1140  1.41       chs 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1141   1.1       mrg 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1142   1.1       mrg 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1143   1.1       mrg 
   1144   1.1       mrg 	/*
   1145   1.1       mrg 	 * for block devices we finish up here.
   1146  1.32       chs 	 * for regular files we have to do more work which we delegate
   1147   1.1       mrg 	 * to sw_reg_strategy().
   1148   1.1       mrg 	 */
   1149   1.1       mrg 
   1150   1.1       mrg 	switch (sdp->swd_vp->v_type) {
   1151   1.1       mrg 	default:
   1152   1.1       mrg 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1153  1.32       chs 
   1154   1.1       mrg 	case VBLK:
   1155   1.1       mrg 
   1156   1.1       mrg 		/*
   1157   1.1       mrg 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1158   1.1       mrg 		 * on the swapdev (sdp).
   1159   1.1       mrg 		 */
   1160  1.25       chs 		s = splbio();
   1161   1.1       mrg 		bp->b_blkno = bn;		/* swapdev block number */
   1162   1.1       mrg 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1163   1.1       mrg 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1164   1.1       mrg 
   1165   1.1       mrg 		/*
   1166   1.1       mrg 		 * if we are doing a write, we have to redirect the i/o on
   1167   1.1       mrg 		 * drum's v_numoutput counter to the swapdevs.
   1168   1.1       mrg 		 */
   1169   1.1       mrg 		if ((bp->b_flags & B_READ) == 0) {
   1170   1.1       mrg 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1171   1.1       mrg 			vp->v_numoutput++;	/* put it on swapdev */
   1172   1.1       mrg 		}
   1173   1.1       mrg 
   1174  1.41       chs 		/*
   1175   1.1       mrg 		 * finally plug in swapdev vnode and start I/O
   1176   1.1       mrg 		 */
   1177   1.1       mrg 		bp->b_vp = vp;
   1178  1.25       chs 		splx(s);
   1179   1.1       mrg 		VOP_STRATEGY(bp);
   1180   1.1       mrg 		return;
   1181  1.32       chs 
   1182   1.1       mrg 	case VREG:
   1183   1.1       mrg 		/*
   1184  1.32       chs 		 * delegate to sw_reg_strategy function.
   1185   1.1       mrg 		 */
   1186   1.1       mrg 		sw_reg_strategy(sdp, bp, bn);
   1187   1.1       mrg 		return;
   1188   1.1       mrg 	}
   1189   1.1       mrg 	/* NOTREACHED */
   1190   1.1       mrg }
   1191   1.1       mrg 
   1192   1.1       mrg /*
   1193   1.1       mrg  * sw_reg_strategy: handle swap i/o to regular files
   1194   1.1       mrg  */
   1195   1.1       mrg static void
   1196   1.1       mrg sw_reg_strategy(sdp, bp, bn)
   1197   1.1       mrg 	struct swapdev	*sdp;
   1198   1.1       mrg 	struct buf	*bp;
   1199   1.1       mrg 	int		bn;
   1200   1.1       mrg {
   1201   1.1       mrg 	struct vnode	*vp;
   1202   1.1       mrg 	struct vndxfer	*vnx;
   1203  1.44     enami 	daddr_t		nbn;
   1204   1.1       mrg 	caddr_t		addr;
   1205  1.44     enami 	off_t		byteoff;
   1206   1.9       mrg 	int		s, off, nra, error, sz, resid;
   1207   1.1       mrg 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1208   1.1       mrg 
   1209   1.1       mrg 	/*
   1210   1.1       mrg 	 * allocate a vndxfer head for this transfer and point it to
   1211   1.1       mrg 	 * our buffer.
   1212   1.1       mrg 	 */
   1213  1.12        pk 	getvndxfer(vnx);
   1214   1.1       mrg 	vnx->vx_flags = VX_BUSY;
   1215   1.1       mrg 	vnx->vx_error = 0;
   1216   1.1       mrg 	vnx->vx_pending = 0;
   1217   1.1       mrg 	vnx->vx_bp = bp;
   1218   1.1       mrg 	vnx->vx_sdp = sdp;
   1219   1.1       mrg 
   1220   1.1       mrg 	/*
   1221   1.1       mrg 	 * setup for main loop where we read filesystem blocks into
   1222   1.1       mrg 	 * our buffer.
   1223   1.1       mrg 	 */
   1224   1.1       mrg 	error = 0;
   1225   1.1       mrg 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1226   1.1       mrg 	addr = bp->b_data;		/* current position in buffer */
   1227  1.44     enami 	byteoff = dbtob((u_int64_t)bn);
   1228   1.1       mrg 
   1229   1.1       mrg 	for (resid = bp->b_resid; resid; resid -= sz) {
   1230   1.1       mrg 		struct vndbuf	*nbp;
   1231   1.1       mrg 
   1232   1.1       mrg 		/*
   1233   1.1       mrg 		 * translate byteoffset into block number.  return values:
   1234   1.1       mrg 		 *   vp = vnode of underlying device
   1235   1.1       mrg 		 *  nbn = new block number (on underlying vnode dev)
   1236   1.1       mrg 		 *  nra = num blocks we can read-ahead (excludes requested
   1237   1.1       mrg 		 *	block)
   1238   1.1       mrg 		 */
   1239   1.1       mrg 		nra = 0;
   1240   1.1       mrg 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1241   1.1       mrg 				 	&vp, &nbn, &nra);
   1242   1.1       mrg 
   1243  1.32       chs 		if (error == 0 && nbn == (daddr_t)-1) {
   1244  1.51       chs 			/*
   1245  1.23      marc 			 * this used to just set error, but that doesn't
   1246  1.23      marc 			 * do the right thing.  Instead, it causes random
   1247  1.23      marc 			 * memory errors.  The panic() should remain until
   1248  1.23      marc 			 * this condition doesn't destabilize the system.
   1249  1.23      marc 			 */
   1250  1.23      marc #if 1
   1251  1.23      marc 			panic("sw_reg_strategy: swap to sparse file");
   1252  1.23      marc #else
   1253   1.1       mrg 			error = EIO;	/* failure */
   1254  1.23      marc #endif
   1255  1.23      marc 		}
   1256   1.1       mrg 
   1257   1.1       mrg 		/*
   1258   1.1       mrg 		 * punt if there was an error or a hole in the file.
   1259   1.1       mrg 		 * we must wait for any i/o ops we have already started
   1260   1.1       mrg 		 * to finish before returning.
   1261   1.1       mrg 		 *
   1262   1.1       mrg 		 * XXX we could deal with holes here but it would be
   1263   1.1       mrg 		 * a hassle (in the write case).
   1264   1.1       mrg 		 */
   1265   1.1       mrg 		if (error) {
   1266   1.1       mrg 			s = splbio();
   1267   1.1       mrg 			vnx->vx_error = error;	/* pass error up */
   1268   1.1       mrg 			goto out;
   1269   1.1       mrg 		}
   1270   1.1       mrg 
   1271   1.1       mrg 		/*
   1272   1.1       mrg 		 * compute the size ("sz") of this transfer (in bytes).
   1273   1.1       mrg 		 */
   1274  1.41       chs 		off = byteoff % sdp->swd_bsize;
   1275  1.41       chs 		sz = (1 + nra) * sdp->swd_bsize - off;
   1276  1.41       chs 		if (sz > resid)
   1277   1.1       mrg 			sz = resid;
   1278   1.1       mrg 
   1279  1.41       chs 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1280  1.41       chs 			    "vp %p/%p offset 0x%x/0x%x",
   1281  1.41       chs 			    sdp->swd_vp, vp, byteoff, nbn);
   1282   1.1       mrg 
   1283   1.1       mrg 		/*
   1284   1.1       mrg 		 * now get a buf structure.   note that the vb_buf is
   1285   1.1       mrg 		 * at the front of the nbp structure so that you can
   1286   1.1       mrg 		 * cast pointers between the two structure easily.
   1287   1.1       mrg 		 */
   1288  1.12        pk 		getvndbuf(nbp);
   1289   1.1       mrg 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1290   1.1       mrg 		nbp->vb_buf.b_bcount   = sz;
   1291  1.12        pk 		nbp->vb_buf.b_bufsize  = sz;
   1292   1.1       mrg 		nbp->vb_buf.b_error    = 0;
   1293   1.1       mrg 		nbp->vb_buf.b_data     = addr;
   1294  1.41       chs 		nbp->vb_buf.b_lblkno   = 0;
   1295   1.1       mrg 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1296  1.34   thorpej 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1297   1.1       mrg 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1298  1.53       chs 		nbp->vb_buf.b_vp       = vp;
   1299  1.53       chs 		if (vp->v_type == VBLK) {
   1300  1.53       chs 			nbp->vb_buf.b_dev = vp->v_rdev;
   1301  1.53       chs 		}
   1302  1.30      fvdl 		LIST_INIT(&nbp->vb_buf.b_dep);
   1303   1.1       mrg 
   1304   1.1       mrg 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1305   1.1       mrg 
   1306   1.1       mrg 		/*
   1307   1.1       mrg 		 * Just sort by block number
   1308   1.1       mrg 		 */
   1309   1.1       mrg 		s = splbio();
   1310   1.1       mrg 		if (vnx->vx_error != 0) {
   1311   1.1       mrg 			putvndbuf(nbp);
   1312   1.1       mrg 			goto out;
   1313   1.1       mrg 		}
   1314   1.1       mrg 		vnx->vx_pending++;
   1315   1.1       mrg 
   1316   1.1       mrg 		/* sort it in and start I/O if we are not over our limit */
   1317  1.65   hannken 		BUFQ_PUT(&sdp->swd_tab, &nbp->vb_buf);
   1318   1.1       mrg 		sw_reg_start(sdp);
   1319   1.1       mrg 		splx(s);
   1320   1.1       mrg 
   1321   1.1       mrg 		/*
   1322   1.1       mrg 		 * advance to the next I/O
   1323   1.1       mrg 		 */
   1324   1.9       mrg 		byteoff += sz;
   1325   1.1       mrg 		addr += sz;
   1326   1.1       mrg 	}
   1327   1.1       mrg 
   1328   1.1       mrg 	s = splbio();
   1329   1.1       mrg 
   1330   1.1       mrg out: /* Arrive here at splbio */
   1331   1.1       mrg 	vnx->vx_flags &= ~VX_BUSY;
   1332   1.1       mrg 	if (vnx->vx_pending == 0) {
   1333   1.1       mrg 		if (vnx->vx_error != 0) {
   1334   1.1       mrg 			bp->b_error = vnx->vx_error;
   1335   1.1       mrg 			bp->b_flags |= B_ERROR;
   1336   1.1       mrg 		}
   1337   1.1       mrg 		putvndxfer(vnx);
   1338   1.1       mrg 		biodone(bp);
   1339   1.1       mrg 	}
   1340   1.1       mrg 	splx(s);
   1341   1.1       mrg }
   1342   1.1       mrg 
   1343   1.1       mrg /*
   1344   1.1       mrg  * sw_reg_start: start an I/O request on the requested swapdev
   1345   1.1       mrg  *
   1346  1.65   hannken  * => reqs are sorted by b_rawblkno (above)
   1347   1.1       mrg  */
   1348   1.1       mrg static void
   1349   1.1       mrg sw_reg_start(sdp)
   1350   1.1       mrg 	struct swapdev	*sdp;
   1351   1.1       mrg {
   1352   1.1       mrg 	struct buf	*bp;
   1353   1.1       mrg 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1354   1.1       mrg 
   1355   1.8       mrg 	/* recursion control */
   1356   1.1       mrg 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1357   1.1       mrg 		return;
   1358   1.1       mrg 
   1359   1.1       mrg 	sdp->swd_flags |= SWF_BUSY;
   1360   1.1       mrg 
   1361  1.33   thorpej 	while (sdp->swd_active < sdp->swd_maxactive) {
   1362  1.65   hannken 		bp = BUFQ_GET(&sdp->swd_tab);
   1363   1.1       mrg 		if (bp == NULL)
   1364   1.1       mrg 			break;
   1365  1.33   thorpej 		sdp->swd_active++;
   1366   1.1       mrg 
   1367   1.1       mrg 		UVMHIST_LOG(pdhist,
   1368   1.1       mrg 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1369   1.1       mrg 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1370   1.1       mrg 		if ((bp->b_flags & B_READ) == 0)
   1371   1.1       mrg 			bp->b_vp->v_numoutput++;
   1372  1.41       chs 
   1373   1.1       mrg 		VOP_STRATEGY(bp);
   1374   1.1       mrg 	}
   1375   1.1       mrg 	sdp->swd_flags &= ~SWF_BUSY;
   1376   1.1       mrg }
   1377   1.1       mrg 
   1378   1.1       mrg /*
   1379   1.1       mrg  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1380   1.1       mrg  *
   1381   1.1       mrg  * => note that we can recover the vndbuf struct by casting the buf ptr
   1382   1.1       mrg  */
   1383   1.1       mrg static void
   1384   1.1       mrg sw_reg_iodone(bp)
   1385   1.1       mrg 	struct buf *bp;
   1386   1.1       mrg {
   1387   1.1       mrg 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1388   1.1       mrg 	struct vndxfer *vnx = vbp->vb_xfer;
   1389   1.1       mrg 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1390   1.1       mrg 	struct swapdev	*sdp = vnx->vx_sdp;
   1391  1.72       chs 	int s, resid, error;
   1392   1.1       mrg 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1393   1.1       mrg 
   1394   1.1       mrg 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1395   1.1       mrg 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1396   1.1       mrg 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1397   1.1       mrg 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1398   1.1       mrg 
   1399   1.1       mrg 	/*
   1400   1.1       mrg 	 * protect vbp at splbio and update.
   1401   1.1       mrg 	 */
   1402   1.1       mrg 
   1403   1.1       mrg 	s = splbio();
   1404   1.1       mrg 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1405   1.1       mrg 	pbp->b_resid -= resid;
   1406   1.1       mrg 	vnx->vx_pending--;
   1407   1.1       mrg 
   1408  1.72       chs 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1409   1.1       mrg 		/* pass error upward */
   1410  1.72       chs 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1411  1.72       chs 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1412  1.72       chs 		vnx->vx_error = error;
   1413  1.35       chs 	}
   1414  1.35       chs 
   1415  1.35       chs 	/*
   1416   1.1       mrg 	 * kill vbp structure
   1417   1.1       mrg 	 */
   1418   1.1       mrg 	putvndbuf(vbp);
   1419   1.1       mrg 
   1420   1.1       mrg 	/*
   1421   1.1       mrg 	 * wrap up this transaction if it has run to completion or, in
   1422   1.1       mrg 	 * case of an error, when all auxiliary buffers have returned.
   1423   1.1       mrg 	 */
   1424   1.1       mrg 	if (vnx->vx_error != 0) {
   1425   1.1       mrg 		/* pass error upward */
   1426   1.1       mrg 		pbp->b_flags |= B_ERROR;
   1427   1.1       mrg 		pbp->b_error = vnx->vx_error;
   1428   1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1429   1.1       mrg 			putvndxfer(vnx);
   1430   1.1       mrg 			biodone(pbp);
   1431   1.1       mrg 		}
   1432  1.11        pk 	} else if (pbp->b_resid == 0) {
   1433  1.46       chs 		KASSERT(vnx->vx_pending == 0);
   1434   1.1       mrg 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1435   1.8       mrg 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1436   1.8       mrg 			    pbp, vnx->vx_error, 0, 0);
   1437   1.8       mrg 			putvndxfer(vnx);
   1438   1.1       mrg 			biodone(pbp);
   1439   1.1       mrg 		}
   1440   1.1       mrg 	}
   1441   1.1       mrg 
   1442   1.1       mrg 	/*
   1443   1.1       mrg 	 * done!   start next swapdev I/O if one is pending
   1444   1.1       mrg 	 */
   1445  1.33   thorpej 	sdp->swd_active--;
   1446   1.1       mrg 	sw_reg_start(sdp);
   1447   1.1       mrg 	splx(s);
   1448   1.1       mrg }
   1449   1.1       mrg 
   1450   1.1       mrg 
   1451   1.1       mrg /*
   1452   1.1       mrg  * uvm_swap_alloc: allocate space on swap
   1453   1.1       mrg  *
   1454   1.1       mrg  * => allocation is done "round robin" down the priority list, as we
   1455   1.1       mrg  *	allocate in a priority we "rotate" the circle queue.
   1456   1.1       mrg  * => space can be freed with uvm_swap_free
   1457   1.1       mrg  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1458  1.26       chs  * => we lock uvm.swap_data_lock
   1459   1.1       mrg  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1460   1.1       mrg  */
   1461   1.1       mrg int
   1462   1.1       mrg uvm_swap_alloc(nslots, lessok)
   1463   1.1       mrg 	int *nslots;	/* IN/OUT */
   1464   1.1       mrg 	boolean_t lessok;
   1465   1.1       mrg {
   1466   1.1       mrg 	struct swapdev *sdp;
   1467   1.1       mrg 	struct swappri *spp;
   1468   1.1       mrg 	u_long	result;
   1469   1.1       mrg 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1470   1.1       mrg 
   1471   1.1       mrg 	/*
   1472   1.1       mrg 	 * no swap devices configured yet?   definite failure.
   1473   1.1       mrg 	 */
   1474   1.1       mrg 	if (uvmexp.nswapdev < 1)
   1475   1.1       mrg 		return 0;
   1476  1.51       chs 
   1477   1.1       mrg 	/*
   1478   1.1       mrg 	 * lock data lock, convert slots into blocks, and enter loop
   1479   1.1       mrg 	 */
   1480  1.26       chs 	simple_lock(&uvm.swap_data_lock);
   1481   1.1       mrg 
   1482   1.1       mrg ReTry:	/* XXXMRG */
   1483  1.55       chs 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1484  1.55       chs 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1485   1.1       mrg 			/* if it's not enabled, then we can't swap from it */
   1486   1.1       mrg 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1487   1.1       mrg 				continue;
   1488   1.1       mrg 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1489   1.1       mrg 				continue;
   1490   1.1       mrg 			if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
   1491   1.1       mrg 					 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
   1492   1.1       mrg 					 &result) != 0) {
   1493   1.1       mrg 				continue;
   1494   1.1       mrg 			}
   1495   1.1       mrg 
   1496   1.1       mrg 			/*
   1497   1.1       mrg 			 * successful allocation!  now rotate the circleq.
   1498   1.1       mrg 			 */
   1499   1.1       mrg 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1500   1.1       mrg 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1501   1.1       mrg 			sdp->swd_npginuse += *nslots;
   1502   1.1       mrg 			uvmexp.swpginuse += *nslots;
   1503  1.26       chs 			simple_unlock(&uvm.swap_data_lock);
   1504   1.1       mrg 			/* done!  return drum slot number */
   1505   1.1       mrg 			UVMHIST_LOG(pdhist,
   1506   1.1       mrg 			    "success!  returning %d slots starting at %d",
   1507   1.1       mrg 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1508  1.55       chs 			return (result + sdp->swd_drumoffset);
   1509   1.1       mrg 		}
   1510   1.1       mrg 	}
   1511   1.1       mrg 
   1512   1.1       mrg 	/* XXXMRG: BEGIN HACK */
   1513   1.1       mrg 	if (*nslots > 1 && lessok) {
   1514   1.1       mrg 		*nslots = 1;
   1515   1.1       mrg 		goto ReTry;	/* XXXMRG: ugh!  extent should support this for us */
   1516   1.1       mrg 	}
   1517   1.1       mrg 	/* XXXMRG: END HACK */
   1518   1.1       mrg 
   1519  1.26       chs 	simple_unlock(&uvm.swap_data_lock);
   1520  1.55       chs 	return 0;
   1521   1.1       mrg }
   1522   1.1       mrg 
   1523   1.1       mrg /*
   1524  1.32       chs  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1525  1.32       chs  *
   1526  1.32       chs  * => we lock uvm.swap_data_lock
   1527  1.32       chs  */
   1528  1.32       chs void
   1529  1.32       chs uvm_swap_markbad(startslot, nslots)
   1530  1.32       chs 	int startslot;
   1531  1.32       chs 	int nslots;
   1532  1.32       chs {
   1533  1.32       chs 	struct swapdev *sdp;
   1534  1.32       chs 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1535  1.32       chs 
   1536  1.32       chs 	simple_lock(&uvm.swap_data_lock);
   1537  1.32       chs 	sdp = swapdrum_getsdp(startslot);
   1538  1.32       chs 
   1539  1.32       chs 	/*
   1540  1.32       chs 	 * we just keep track of how many pages have been marked bad
   1541  1.32       chs 	 * in this device, to make everything add up in swap_off().
   1542  1.32       chs 	 * we assume here that the range of slots will all be within
   1543  1.32       chs 	 * one swap device.
   1544  1.32       chs 	 */
   1545  1.41       chs 
   1546  1.32       chs 	sdp->swd_npgbad += nslots;
   1547  1.41       chs 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1548  1.32       chs 	simple_unlock(&uvm.swap_data_lock);
   1549  1.32       chs }
   1550  1.32       chs 
   1551  1.32       chs /*
   1552   1.1       mrg  * uvm_swap_free: free swap slots
   1553   1.1       mrg  *
   1554   1.1       mrg  * => this can be all or part of an allocation made by uvm_swap_alloc
   1555  1.26       chs  * => we lock uvm.swap_data_lock
   1556   1.1       mrg  */
   1557   1.1       mrg void
   1558   1.1       mrg uvm_swap_free(startslot, nslots)
   1559   1.1       mrg 	int startslot;
   1560   1.1       mrg 	int nslots;
   1561   1.1       mrg {
   1562   1.1       mrg 	struct swapdev *sdp;
   1563   1.1       mrg 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1564   1.1       mrg 
   1565   1.1       mrg 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1566   1.1       mrg 	    startslot, 0, 0);
   1567  1.32       chs 
   1568  1.32       chs 	/*
   1569  1.32       chs 	 * ignore attempts to free the "bad" slot.
   1570  1.32       chs 	 */
   1571  1.46       chs 
   1572  1.32       chs 	if (startslot == SWSLOT_BAD) {
   1573  1.32       chs 		return;
   1574  1.32       chs 	}
   1575  1.32       chs 
   1576   1.1       mrg 	/*
   1577  1.51       chs 	 * convert drum slot offset back to sdp, free the blocks
   1578  1.51       chs 	 * in the extent, and return.   must hold pri lock to do
   1579   1.1       mrg 	 * lookup and access the extent.
   1580   1.1       mrg 	 */
   1581  1.46       chs 
   1582  1.26       chs 	simple_lock(&uvm.swap_data_lock);
   1583   1.1       mrg 	sdp = swapdrum_getsdp(startslot);
   1584  1.46       chs 	KASSERT(uvmexp.nswapdev >= 1);
   1585  1.46       chs 	KASSERT(sdp != NULL);
   1586  1.46       chs 	KASSERT(sdp->swd_npginuse >= nslots);
   1587  1.12        pk 	if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
   1588  1.32       chs 			EX_MALLOCOK|EX_NOWAIT) != 0) {
   1589  1.32       chs 		printf("warning: resource shortage: %d pages of swap lost\n",
   1590  1.12        pk 			nslots);
   1591  1.32       chs 	}
   1592   1.1       mrg 	sdp->swd_npginuse -= nslots;
   1593   1.1       mrg 	uvmexp.swpginuse -= nslots;
   1594  1.26       chs 	simple_unlock(&uvm.swap_data_lock);
   1595   1.1       mrg }
   1596   1.1       mrg 
   1597   1.1       mrg /*
   1598   1.1       mrg  * uvm_swap_put: put any number of pages into a contig place on swap
   1599   1.1       mrg  *
   1600   1.1       mrg  * => can be sync or async
   1601   1.1       mrg  */
   1602  1.54       chs 
   1603   1.1       mrg int
   1604   1.1       mrg uvm_swap_put(swslot, ppsp, npages, flags)
   1605   1.1       mrg 	int swslot;
   1606   1.1       mrg 	struct vm_page **ppsp;
   1607  1.54       chs 	int npages;
   1608  1.54       chs 	int flags;
   1609   1.1       mrg {
   1610  1.56       chs 	int error;
   1611   1.1       mrg 
   1612  1.56       chs 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1613   1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1614  1.56       chs 	return error;
   1615   1.1       mrg }
   1616   1.1       mrg 
   1617   1.1       mrg /*
   1618   1.1       mrg  * uvm_swap_get: get a single page from swap
   1619   1.1       mrg  *
   1620   1.1       mrg  * => usually a sync op (from fault)
   1621   1.1       mrg  */
   1622  1.54       chs 
   1623   1.1       mrg int
   1624   1.1       mrg uvm_swap_get(page, swslot, flags)
   1625   1.1       mrg 	struct vm_page *page;
   1626   1.1       mrg 	int swslot, flags;
   1627   1.1       mrg {
   1628  1.56       chs 	int error;
   1629   1.1       mrg 
   1630   1.1       mrg 	uvmexp.nswget++;
   1631  1.46       chs 	KASSERT(flags & PGO_SYNCIO);
   1632  1.32       chs 	if (swslot == SWSLOT_BAD) {
   1633  1.47       chs 		return EIO;
   1634  1.32       chs 	}
   1635  1.56       chs 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1636   1.1       mrg 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1637  1.56       chs 	if (error == 0) {
   1638  1.47       chs 
   1639  1.26       chs 		/*
   1640  1.54       chs 		 * this page is no longer only in swap.
   1641  1.26       chs 		 */
   1642  1.47       chs 
   1643  1.26       chs 		simple_lock(&uvm.swap_data_lock);
   1644  1.56       chs 		KASSERT(uvmexp.swpgonly > 0);
   1645  1.54       chs 		uvmexp.swpgonly--;
   1646  1.26       chs 		simple_unlock(&uvm.swap_data_lock);
   1647  1.26       chs 	}
   1648  1.56       chs 	return error;
   1649   1.1       mrg }
   1650   1.1       mrg 
   1651   1.1       mrg /*
   1652   1.1       mrg  * uvm_swap_io: do an i/o operation to swap
   1653   1.1       mrg  */
   1654   1.1       mrg 
   1655   1.1       mrg static int
   1656   1.1       mrg uvm_swap_io(pps, startslot, npages, flags)
   1657   1.1       mrg 	struct vm_page **pps;
   1658   1.1       mrg 	int startslot, npages, flags;
   1659   1.1       mrg {
   1660   1.1       mrg 	daddr_t startblk;
   1661   1.1       mrg 	struct	buf *bp;
   1662  1.15       eeh 	vaddr_t kva;
   1663  1.54       chs 	int	error, s, mapinflags;
   1664  1.41       chs 	boolean_t write, async;
   1665   1.1       mrg 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1666   1.1       mrg 
   1667   1.1       mrg 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1668   1.1       mrg 	    startslot, npages, flags, 0);
   1669  1.32       chs 
   1670  1.41       chs 	write = (flags & B_READ) == 0;
   1671  1.41       chs 	async = (flags & B_ASYNC) != 0;
   1672  1.41       chs 
   1673   1.1       mrg 	/*
   1674   1.1       mrg 	 * convert starting drum slot to block number
   1675   1.1       mrg 	 */
   1676  1.54       chs 
   1677  1.44     enami 	startblk = btodb((u_int64_t)startslot << PAGE_SHIFT);
   1678   1.1       mrg 
   1679   1.1       mrg 	/*
   1680  1.54       chs 	 * first, map the pages into the kernel.
   1681  1.41       chs 	 */
   1682  1.41       chs 
   1683  1.54       chs 	mapinflags = !write ?
   1684  1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1685  1.54       chs 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1686  1.41       chs 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1687   1.1       mrg 
   1688  1.51       chs 	/*
   1689  1.41       chs 	 * now allocate a buf for the i/o.
   1690   1.1       mrg 	 */
   1691  1.54       chs 
   1692   1.1       mrg 	s = splbio();
   1693  1.54       chs 	bp = pool_get(&bufpool, PR_WAITOK);
   1694  1.41       chs 	splx(s);
   1695   1.1       mrg 
   1696   1.1       mrg 	/*
   1697   1.1       mrg 	 * fill in the bp/sbp.   we currently route our i/o through
   1698   1.1       mrg 	 * /dev/drum's vnode [swapdev_vp].
   1699   1.1       mrg 	 */
   1700  1.54       chs 
   1701  1.21   mycroft 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1702   1.1       mrg 	bp->b_proc = &proc0;	/* XXX */
   1703  1.12        pk 	bp->b_vnbufs.le_next = NOLIST;
   1704   1.1       mrg 	bp->b_data = (caddr_t)kva;
   1705   1.1       mrg 	bp->b_blkno = startblk;
   1706   1.1       mrg 	bp->b_vp = swapdev_vp;
   1707  1.53       chs 	bp->b_dev = swapdev_vp->v_rdev;
   1708  1.41       chs 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1709  1.30      fvdl 	LIST_INIT(&bp->b_dep);
   1710   1.1       mrg 
   1711  1.51       chs 	/*
   1712  1.41       chs 	 * bump v_numoutput (counter of number of active outputs).
   1713   1.1       mrg 	 */
   1714  1.54       chs 
   1715  1.41       chs 	if (write) {
   1716   1.1       mrg 		s = splbio();
   1717   1.1       mrg 		swapdev_vp->v_numoutput++;
   1718   1.1       mrg 		splx(s);
   1719   1.1       mrg 	}
   1720   1.1       mrg 
   1721   1.1       mrg 	/*
   1722  1.41       chs 	 * for async ops we must set up the iodone handler.
   1723   1.1       mrg 	 */
   1724  1.54       chs 
   1725  1.41       chs 	if (async) {
   1726  1.54       chs 		bp->b_flags |= B_CALL;
   1727  1.41       chs 		bp->b_iodone = uvm_aio_biodone;
   1728   1.1       mrg 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1729   1.1       mrg 	}
   1730   1.1       mrg 	UVMHIST_LOG(pdhist,
   1731  1.41       chs 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1732   1.1       mrg 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1733   1.1       mrg 
   1734   1.1       mrg 	/*
   1735   1.1       mrg 	 * now we start the I/O, and if async, return.
   1736   1.1       mrg 	 */
   1737  1.54       chs 
   1738   1.1       mrg 	VOP_STRATEGY(bp);
   1739  1.41       chs 	if (async)
   1740  1.47       chs 		return 0;
   1741   1.1       mrg 
   1742   1.1       mrg 	/*
   1743   1.1       mrg 	 * must be sync i/o.   wait for it to finish
   1744   1.1       mrg 	 */
   1745  1.54       chs 
   1746  1.47       chs 	error = biowait(bp);
   1747   1.1       mrg 
   1748   1.1       mrg 	/*
   1749   1.1       mrg 	 * kill the pager mapping
   1750   1.1       mrg 	 */
   1751  1.54       chs 
   1752   1.1       mrg 	uvm_pagermapout(kva, npages);
   1753   1.1       mrg 
   1754   1.1       mrg 	/*
   1755  1.54       chs 	 * now dispose of the buf and we're done.
   1756   1.1       mrg 	 */
   1757  1.54       chs 
   1758   1.1       mrg 	s = splbio();
   1759  1.41       chs 	if (write)
   1760  1.41       chs 		vwakeup(bp);
   1761  1.41       chs 	pool_put(&bufpool, bp);
   1762   1.1       mrg 	splx(s);
   1763  1.47       chs 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1764  1.47       chs 	return (error);
   1765   1.1       mrg }
   1766