uvm_swap.c revision 1.101 1 /* $NetBSD: uvm_swap.c,v 1.101 2006/06/12 21:05:47 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.101 2006/06/12 21:05:47 christos Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap extent.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187
188 #define getvndxfer(vnx) do { \
189 int sp = splbio(); \
190 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
191 splx(sp); \
192 } while (/*CONSTCOND*/ 0)
193
194 #define putvndxfer(vnx) { \
195 pool_put(&vndxfer_pool, (void *)(vnx)); \
196 }
197
198 #define getvndbuf(vbp) do { \
199 int sp = splbio(); \
200 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
201 splx(sp); \
202 } while (/*CONSTCOND*/ 0)
203
204 #define putvndbuf(vbp) { \
205 pool_put(&vndbuf_pool, (void *)(vbp)); \
206 }
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218
219 /* locks */
220 static struct lock swap_syscall_lock;
221
222 /*
223 * prototypes
224 */
225 static struct swapdev *swapdrum_getsdp(int);
226
227 static struct swapdev *swaplist_find(struct vnode *, int);
228 static void swaplist_insert(struct swapdev *,
229 struct swappri *, int);
230 static void swaplist_trim(void);
231
232 static int swap_on(struct lwp *, struct swapdev *);
233 static int swap_off(struct lwp *, struct swapdev *);
234
235 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
236
237 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
238 static void sw_reg_iodone(struct buf *);
239 static void sw_reg_start(struct swapdev *);
240
241 static int uvm_swap_io(struct vm_page **, int, int, int);
242
243 /*
244 * uvm_swap_init: init the swap system data structures and locks
245 *
246 * => called at boot time from init_main.c after the filesystems
247 * are brought up (which happens after uvm_init())
248 */
249 void
250 uvm_swap_init(void)
251 {
252 UVMHIST_FUNC("uvm_swap_init");
253
254 UVMHIST_CALLED(pdhist);
255 /*
256 * first, init the swap list, its counter, and its lock.
257 * then get a handle on the vnode for /dev/drum by using
258 * the its dev_t number ("swapdev", from MD conf.c).
259 */
260
261 LIST_INIT(&swap_priority);
262 uvmexp.nswapdev = 0;
263 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
264 simple_lock_init(&uvm.swap_data_lock);
265
266 if (bdevvp(swapdev, &swapdev_vp))
267 panic("uvm_swap_init: can't get vnode for swap device");
268
269 /*
270 * create swap block resource map to map /dev/drum. the range
271 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
272 * that block 0 is reserved (used to indicate an allocation
273 * failure, or no allocation).
274 */
275 swapmap = extent_create("swapmap", 1, INT_MAX,
276 M_VMSWAP, 0, 0, EX_NOWAIT);
277 if (swapmap == 0)
278 panic("uvm_swap_init: extent_create failed");
279
280 /*
281 * done!
282 */
283 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
284 }
285
286 /*
287 * swaplist functions: functions that operate on the list of swap
288 * devices on the system.
289 */
290
291 /*
292 * swaplist_insert: insert swap device "sdp" into the global list
293 *
294 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
295 * => caller must provide a newly malloc'd swappri structure (we will
296 * FREE it if we don't need it... this it to prevent malloc blocking
297 * here while adding swap)
298 */
299 static void
300 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
301 {
302 struct swappri *spp, *pspp;
303 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
304
305 /*
306 * find entry at or after which to insert the new device.
307 */
308 pspp = NULL;
309 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
310 if (priority <= spp->spi_priority)
311 break;
312 pspp = spp;
313 }
314
315 /*
316 * new priority?
317 */
318 if (spp == NULL || spp->spi_priority != priority) {
319 spp = newspp; /* use newspp! */
320 UVMHIST_LOG(pdhist, "created new swappri = %d",
321 priority, 0, 0, 0);
322
323 spp->spi_priority = priority;
324 CIRCLEQ_INIT(&spp->spi_swapdev);
325
326 if (pspp)
327 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
328 else
329 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
330 } else {
331 /* we don't need a new priority structure, free it */
332 FREE(newspp, M_VMSWAP);
333 }
334
335 /*
336 * priority found (or created). now insert on the priority's
337 * circleq list and bump the total number of swapdevs.
338 */
339 sdp->swd_priority = priority;
340 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
341 uvmexp.nswapdev++;
342 }
343
344 /*
345 * swaplist_find: find and optionally remove a swap device from the
346 * global list.
347 *
348 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
349 * => we return the swapdev we found (and removed)
350 */
351 static struct swapdev *
352 swaplist_find(struct vnode *vp, boolean_t remove)
353 {
354 struct swapdev *sdp;
355 struct swappri *spp;
356
357 /*
358 * search the lists for the requested vp
359 */
360
361 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
362 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
363 if (sdp->swd_vp == vp) {
364 if (remove) {
365 CIRCLEQ_REMOVE(&spp->spi_swapdev,
366 sdp, swd_next);
367 uvmexp.nswapdev--;
368 }
369 return(sdp);
370 }
371 }
372 }
373 return (NULL);
374 }
375
376
377 /*
378 * swaplist_trim: scan priority list for empty priority entries and kill
379 * them.
380 *
381 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
382 */
383 static void
384 swaplist_trim(void)
385 {
386 struct swappri *spp, *nextspp;
387
388 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
389 nextspp = LIST_NEXT(spp, spi_swappri);
390 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
391 (void *)&spp->spi_swapdev)
392 continue;
393 LIST_REMOVE(spp, spi_swappri);
394 free(spp, M_VMSWAP);
395 }
396 }
397
398 /*
399 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
400 * to the "swapdev" that maps that section of the drum.
401 *
402 * => each swapdev takes one big contig chunk of the drum
403 * => caller must hold uvm.swap_data_lock
404 */
405 static struct swapdev *
406 swapdrum_getsdp(int pgno)
407 {
408 struct swapdev *sdp;
409 struct swappri *spp;
410
411 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
412 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
413 if (sdp->swd_flags & SWF_FAKE)
414 continue;
415 if (pgno >= sdp->swd_drumoffset &&
416 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
417 return sdp;
418 }
419 }
420 }
421 return NULL;
422 }
423
424
425 /*
426 * sys_swapctl: main entry point for swapctl(2) system call
427 * [with two helper functions: swap_on and swap_off]
428 */
429 int
430 sys_swapctl(struct lwp *l, void *v, register_t *retval)
431 {
432 struct sys_swapctl_args /* {
433 syscallarg(int) cmd;
434 syscallarg(void *) arg;
435 syscallarg(int) misc;
436 } */ *uap = (struct sys_swapctl_args *)v;
437 struct proc *p = l->l_proc;
438 struct vnode *vp;
439 struct nameidata nd;
440 struct swappri *spp;
441 struct swapdev *sdp;
442 struct swapent *sep;
443 #define SWAP_PATH_MAX (PATH_MAX + 1)
444 char *userpath;
445 size_t len;
446 int error, misc;
447 int priority;
448 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
449
450 misc = SCARG(uap, misc);
451
452 /*
453 * ensure serialized syscall access by grabbing the swap_syscall_lock
454 */
455 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
456
457 /*
458 * we handle the non-priv NSWAP and STATS request first.
459 *
460 * SWAP_NSWAP: return number of config'd swap devices
461 * [can also be obtained with uvmexp sysctl]
462 */
463 if (SCARG(uap, cmd) == SWAP_NSWAP) {
464 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
465 0, 0, 0);
466 *retval = uvmexp.nswapdev;
467 error = 0;
468 goto out;
469 }
470
471 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
472 /*
473 * SWAP_STATS: get stats on current # of configured swap devs
474 *
475 * note that the swap_priority list can't change as long
476 * as we are holding the swap_syscall_lock. we don't want
477 * to grab the uvm.swap_data_lock because we may fault&sleep during
478 * copyout() and we don't want to be holding that lock then!
479 */
480 if (SCARG(uap, cmd) == SWAP_STATS
481 #if defined(COMPAT_13)
482 || SCARG(uap, cmd) == SWAP_OSTATS
483 #endif
484 ) {
485 if ((size_t)misc > (size_t)uvmexp.nswapdev)
486 misc = uvmexp.nswapdev;
487 #if defined(COMPAT_13)
488 if (SCARG(uap, cmd) == SWAP_OSTATS)
489 len = sizeof(struct oswapent) * misc;
490 else
491 #endif
492 len = sizeof(struct swapent) * misc;
493 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
494
495 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
496 error = copyout(sep, SCARG(uap, arg), len);
497
498 free(sep, M_TEMP);
499 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
500 goto out;
501 }
502 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
503 dev_t *devp = (dev_t *)SCARG(uap, arg);
504
505 error = copyout(&dumpdev, devp, sizeof(dumpdev));
506 goto out;
507 }
508
509 /*
510 * all other requests require superuser privs. verify.
511 */
512 if ((error = kauth_authorize_generic(p->p_cred, KAUTH_GENERIC_ISSUSER,
513 &p->p_acflag)))
514 goto out;
515
516 /*
517 * at this point we expect a path name in arg. we will
518 * use namei() to gain a vnode reference (vref), and lock
519 * the vnode (VOP_LOCK).
520 *
521 * XXX: a NULL arg means use the root vnode pointer (e.g. for
522 * miniroot)
523 */
524 if (SCARG(uap, arg) == NULL) {
525 vp = rootvp; /* miniroot */
526 if (vget(vp, LK_EXCLUSIVE)) {
527 error = EBUSY;
528 goto out;
529 }
530 if (SCARG(uap, cmd) == SWAP_ON &&
531 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
532 panic("swapctl: miniroot copy failed");
533 } else {
534 int space;
535 char *where;
536
537 if (SCARG(uap, cmd) == SWAP_ON) {
538 if ((error = copyinstr(SCARG(uap, arg), userpath,
539 SWAP_PATH_MAX, &len)))
540 goto out;
541 space = UIO_SYSSPACE;
542 where = userpath;
543 } else {
544 space = UIO_USERSPACE;
545 where = (char *)SCARG(uap, arg);
546 }
547 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
548 if ((error = namei(&nd)))
549 goto out;
550 vp = nd.ni_vp;
551 }
552 /* note: "vp" is referenced and locked */
553
554 error = 0; /* assume no error */
555 switch(SCARG(uap, cmd)) {
556
557 case SWAP_DUMPDEV:
558 if (vp->v_type != VBLK) {
559 error = ENOTBLK;
560 break;
561 }
562 dumpdev = vp->v_rdev;
563 cpu_dumpconf();
564 break;
565
566 case SWAP_CTL:
567 /*
568 * get new priority, remove old entry (if any) and then
569 * reinsert it in the correct place. finally, prune out
570 * any empty priority structures.
571 */
572 priority = SCARG(uap, misc);
573 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
574 simple_lock(&uvm.swap_data_lock);
575 if ((sdp = swaplist_find(vp, 1)) == NULL) {
576 error = ENOENT;
577 } else {
578 swaplist_insert(sdp, spp, priority);
579 swaplist_trim();
580 }
581 simple_unlock(&uvm.swap_data_lock);
582 if (error)
583 free(spp, M_VMSWAP);
584 break;
585
586 case SWAP_ON:
587
588 /*
589 * check for duplicates. if none found, then insert a
590 * dummy entry on the list to prevent someone else from
591 * trying to enable this device while we are working on
592 * it.
593 */
594
595 priority = SCARG(uap, misc);
596 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
597 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
598 memset(sdp, 0, sizeof(*sdp));
599 sdp->swd_flags = SWF_FAKE;
600 sdp->swd_vp = vp;
601 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
602 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
603 simple_lock(&uvm.swap_data_lock);
604 if (swaplist_find(vp, 0) != NULL) {
605 error = EBUSY;
606 simple_unlock(&uvm.swap_data_lock);
607 bufq_free(sdp->swd_tab);
608 free(sdp, M_VMSWAP);
609 free(spp, M_VMSWAP);
610 break;
611 }
612 swaplist_insert(sdp, spp, priority);
613 simple_unlock(&uvm.swap_data_lock);
614
615 sdp->swd_pathlen = len;
616 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
617 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
618 panic("swapctl: copystr");
619
620 /*
621 * we've now got a FAKE placeholder in the swap list.
622 * now attempt to enable swap on it. if we fail, undo
623 * what we've done and kill the fake entry we just inserted.
624 * if swap_on is a success, it will clear the SWF_FAKE flag
625 */
626
627 if ((error = swap_on(l, sdp)) != 0) {
628 simple_lock(&uvm.swap_data_lock);
629 (void) swaplist_find(vp, 1); /* kill fake entry */
630 swaplist_trim();
631 simple_unlock(&uvm.swap_data_lock);
632 bufq_free(sdp->swd_tab);
633 free(sdp->swd_path, M_VMSWAP);
634 free(sdp, M_VMSWAP);
635 break;
636 }
637 break;
638
639 case SWAP_OFF:
640 simple_lock(&uvm.swap_data_lock);
641 if ((sdp = swaplist_find(vp, 0)) == NULL) {
642 simple_unlock(&uvm.swap_data_lock);
643 error = ENXIO;
644 break;
645 }
646
647 /*
648 * If a device isn't in use or enabled, we
649 * can't stop swapping from it (again).
650 */
651 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
652 simple_unlock(&uvm.swap_data_lock);
653 error = EBUSY;
654 break;
655 }
656
657 /*
658 * do the real work.
659 */
660 error = swap_off(l, sdp);
661 break;
662
663 default:
664 error = EINVAL;
665 }
666
667 /*
668 * done! release the ref gained by namei() and unlock.
669 */
670 vput(vp);
671
672 out:
673 free(userpath, M_TEMP);
674 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
675
676 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
677 return (error);
678 }
679
680 /*
681 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
682 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
683 * emulation to use it directly without going through sys_swapctl().
684 * The problem with using sys_swapctl() there is that it involves
685 * copying the swapent array to the stackgap, and this array's size
686 * is not known at build time. Hence it would not be possible to
687 * ensure it would fit in the stackgap in any case.
688 */
689 void
690 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
691 {
692
693 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
694 uvm_swap_stats_locked(cmd, sep, sec, retval);
695 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
696 }
697
698 static void
699 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
700 {
701 struct swappri *spp;
702 struct swapdev *sdp;
703 int count = 0;
704
705 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
706 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
707 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
708 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
709 /*
710 * backwards compatibility for system call.
711 * note that we use 'struct oswapent' as an
712 * overlay into both 'struct swapdev' and
713 * the userland 'struct swapent', as we
714 * want to retain backwards compatibility
715 * with NetBSD 1.3.
716 */
717 sdp->swd_ose.ose_inuse =
718 btodb((uint64_t)sdp->swd_npginuse <<
719 PAGE_SHIFT);
720 (void)memcpy(sep, &sdp->swd_ose,
721 sizeof(struct oswapent));
722
723 /* now copy out the path if necessary */
724 #if defined(COMPAT_13)
725 if (cmd == SWAP_STATS)
726 #endif
727 (void)memcpy(&sep->se_path, sdp->swd_path,
728 sdp->swd_pathlen);
729
730 count++;
731 #if defined(COMPAT_13)
732 if (cmd == SWAP_OSTATS)
733 sep = (struct swapent *)
734 ((struct oswapent *)sep + 1);
735 else
736 #endif
737 sep++;
738 }
739 }
740
741 *retval = count;
742 return;
743 }
744
745 /*
746 * swap_on: attempt to enable a swapdev for swapping. note that the
747 * swapdev is already on the global list, but disabled (marked
748 * SWF_FAKE).
749 *
750 * => we avoid the start of the disk (to protect disk labels)
751 * => we also avoid the miniroot, if we are swapping to root.
752 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
753 * if needed.
754 */
755 static int
756 swap_on(struct lwp *l, struct swapdev *sdp)
757 {
758 struct vnode *vp;
759 struct proc *p = l->l_proc;
760 int error, npages, nblocks, size;
761 long addr;
762 u_long result;
763 struct vattr va;
764 #ifdef NFS
765 extern int (**nfsv2_vnodeop_p)(void *);
766 #endif /* NFS */
767 const struct bdevsw *bdev;
768 dev_t dev;
769 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
770
771 /*
772 * we want to enable swapping on sdp. the swd_vp contains
773 * the vnode we want (locked and ref'd), and the swd_dev
774 * contains the dev_t of the file, if it a block device.
775 */
776
777 vp = sdp->swd_vp;
778 dev = sdp->swd_dev;
779
780 /*
781 * open the swap file (mostly useful for block device files to
782 * let device driver know what is up).
783 *
784 * we skip the open/close for root on swap because the root
785 * has already been opened when root was mounted (mountroot).
786 */
787 if (vp != rootvp) {
788 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_cred, l)))
789 return (error);
790 }
791
792 /* XXX this only works for block devices */
793 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
794
795 /*
796 * we now need to determine the size of the swap area. for
797 * block specials we can call the d_psize function.
798 * for normal files, we must stat [get attrs].
799 *
800 * we put the result in nblks.
801 * for normal files, we also want the filesystem block size
802 * (which we get with statfs).
803 */
804 switch (vp->v_type) {
805 case VBLK:
806 bdev = bdevsw_lookup(dev);
807 if (bdev == NULL || bdev->d_psize == NULL ||
808 (nblocks = (*bdev->d_psize)(dev)) == -1) {
809 error = ENXIO;
810 goto bad;
811 }
812 break;
813
814 case VREG:
815 if ((error = VOP_GETATTR(vp, &va, p->p_cred, l)))
816 goto bad;
817 nblocks = (int)btodb(va.va_size);
818 if ((error =
819 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
820 goto bad;
821
822 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
823 /*
824 * limit the max # of outstanding I/O requests we issue
825 * at any one time. take it easy on NFS servers.
826 */
827 #ifdef NFS
828 if (vp->v_op == nfsv2_vnodeop_p)
829 sdp->swd_maxactive = 2; /* XXX */
830 else
831 #endif /* NFS */
832 sdp->swd_maxactive = 8; /* XXX */
833 break;
834
835 default:
836 error = ENXIO;
837 goto bad;
838 }
839
840 /*
841 * save nblocks in a safe place and convert to pages.
842 */
843
844 sdp->swd_ose.ose_nblks = nblocks;
845 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
846
847 /*
848 * for block special files, we want to make sure that leave
849 * the disklabel and bootblocks alone, so we arrange to skip
850 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
851 * note that because of this the "size" can be less than the
852 * actual number of blocks on the device.
853 */
854 if (vp->v_type == VBLK) {
855 /* we use pages 1 to (size - 1) [inclusive] */
856 size = npages - 1;
857 addr = 1;
858 } else {
859 /* we use pages 0 to (size - 1) [inclusive] */
860 size = npages;
861 addr = 0;
862 }
863
864 /*
865 * make sure we have enough blocks for a reasonable sized swap
866 * area. we want at least one page.
867 */
868
869 if (size < 1) {
870 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
871 error = EINVAL;
872 goto bad;
873 }
874
875 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
876
877 /*
878 * now we need to allocate an extent to manage this swap device
879 */
880
881 sdp->swd_blist = blist_create(npages);
882 /* mark all expect the `saved' region free. */
883 blist_free(sdp->swd_blist, addr, size);
884
885 /*
886 * if the vnode we are swapping to is the root vnode
887 * (i.e. we are swapping to the miniroot) then we want
888 * to make sure we don't overwrite it. do a statfs to
889 * find its size and skip over it.
890 */
891 if (vp == rootvp) {
892 struct mount *mp;
893 struct statvfs *sp;
894 int rootblocks, rootpages;
895
896 mp = rootvnode->v_mount;
897 sp = &mp->mnt_stat;
898 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
899 /*
900 * XXX: sp->f_blocks isn't the total number of
901 * blocks in the filesystem, it's the number of
902 * data blocks. so, our rootblocks almost
903 * definitely underestimates the total size
904 * of the filesystem - how badly depends on the
905 * details of the filesystem type. there isn't
906 * an obvious way to deal with this cleanly
907 * and perfectly, so for now we just pad our
908 * rootblocks estimate with an extra 5 percent.
909 */
910 rootblocks += (rootblocks >> 5) +
911 (rootblocks >> 6) +
912 (rootblocks >> 7);
913 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
914 if (rootpages > size)
915 panic("swap_on: miniroot larger than swap?");
916
917 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
918 panic("swap_on: unable to preserve miniroot");
919 }
920
921 size -= rootpages;
922 printf("Preserved %d pages of miniroot ", rootpages);
923 printf("leaving %d pages of swap\n", size);
924 }
925
926 /*
927 * add a ref to vp to reflect usage as a swap device.
928 */
929 vref(vp);
930
931 /*
932 * now add the new swapdev to the drum and enable.
933 */
934 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
935 EX_WAITOK, &result))
936 panic("swapdrum_add");
937
938 sdp->swd_drumoffset = (int)result;
939 sdp->swd_drumsize = npages;
940 sdp->swd_npages = size;
941 simple_lock(&uvm.swap_data_lock);
942 sdp->swd_flags &= ~SWF_FAKE; /* going live */
943 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
944 uvmexp.swpages += size;
945 uvmexp.swpgavail += size;
946 simple_unlock(&uvm.swap_data_lock);
947 return (0);
948
949 /*
950 * failure: clean up and return error.
951 */
952
953 bad:
954 if (sdp->swd_blist) {
955 blist_destroy(sdp->swd_blist);
956 }
957 if (vp != rootvp) {
958 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_cred, l);
959 }
960 return (error);
961 }
962
963 /*
964 * swap_off: stop swapping on swapdev
965 *
966 * => swap data should be locked, we will unlock.
967 */
968 static int
969 swap_off(struct lwp *l, struct swapdev *sdp)
970 {
971 struct proc *p = l->l_proc;
972 int npages = sdp->swd_npages;
973 int error = 0;
974
975 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
976 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
977
978 /* disable the swap area being removed */
979 sdp->swd_flags &= ~SWF_ENABLE;
980 uvmexp.swpgavail -= npages;
981 simple_unlock(&uvm.swap_data_lock);
982
983 /*
984 * the idea is to find all the pages that are paged out to this
985 * device, and page them all in. in uvm, swap-backed pageable
986 * memory can take two forms: aobjs and anons. call the
987 * swapoff hook for each subsystem to bring in pages.
988 */
989
990 if (uao_swap_off(sdp->swd_drumoffset,
991 sdp->swd_drumoffset + sdp->swd_drumsize) ||
992 amap_swap_off(sdp->swd_drumoffset,
993 sdp->swd_drumoffset + sdp->swd_drumsize)) {
994 error = ENOMEM;
995 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
996 error = EBUSY;
997 }
998
999 if (error) {
1000 simple_lock(&uvm.swap_data_lock);
1001 sdp->swd_flags |= SWF_ENABLE;
1002 uvmexp.swpgavail += npages;
1003 simple_unlock(&uvm.swap_data_lock);
1004
1005 return error;
1006 }
1007
1008 /*
1009 * done with the vnode.
1010 * drop our ref on the vnode before calling VOP_CLOSE()
1011 * so that spec_close() can tell if this is the last close.
1012 */
1013 vrele(sdp->swd_vp);
1014 if (sdp->swd_vp != rootvp) {
1015 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_cred, l);
1016 }
1017
1018 simple_lock(&uvm.swap_data_lock);
1019 uvmexp.swpages -= npages;
1020 uvmexp.swpginuse -= sdp->swd_npgbad;
1021
1022 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1023 panic("swap_off: swapdev not in list");
1024 swaplist_trim();
1025 simple_unlock(&uvm.swap_data_lock);
1026
1027 /*
1028 * free all resources!
1029 */
1030 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1031 EX_WAITOK);
1032 blist_destroy(sdp->swd_blist);
1033 bufq_free(sdp->swd_tab);
1034 free(sdp, M_VMSWAP);
1035 return (0);
1036 }
1037
1038 /*
1039 * /dev/drum interface and i/o functions
1040 */
1041
1042 /*
1043 * swstrategy: perform I/O on the drum
1044 *
1045 * => we must map the i/o request from the drum to the correct swapdev.
1046 */
1047 static void
1048 swstrategy(struct buf *bp)
1049 {
1050 struct swapdev *sdp;
1051 struct vnode *vp;
1052 int s, pageno, bn;
1053 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1054
1055 /*
1056 * convert block number to swapdev. note that swapdev can't
1057 * be yanked out from under us because we are holding resources
1058 * in it (i.e. the blocks we are doing I/O on).
1059 */
1060 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1061 simple_lock(&uvm.swap_data_lock);
1062 sdp = swapdrum_getsdp(pageno);
1063 simple_unlock(&uvm.swap_data_lock);
1064 if (sdp == NULL) {
1065 bp->b_error = EINVAL;
1066 bp->b_flags |= B_ERROR;
1067 biodone(bp);
1068 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1069 return;
1070 }
1071
1072 /*
1073 * convert drum page number to block number on this swapdev.
1074 */
1075
1076 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1077 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1078
1079 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1080 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1081 sdp->swd_drumoffset, bn, bp->b_bcount);
1082
1083 /*
1084 * for block devices we finish up here.
1085 * for regular files we have to do more work which we delegate
1086 * to sw_reg_strategy().
1087 */
1088
1089 switch (sdp->swd_vp->v_type) {
1090 default:
1091 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1092
1093 case VBLK:
1094
1095 /*
1096 * must convert "bp" from an I/O on /dev/drum to an I/O
1097 * on the swapdev (sdp).
1098 */
1099 s = splbio();
1100 bp->b_blkno = bn; /* swapdev block number */
1101 vp = sdp->swd_vp; /* swapdev vnode pointer */
1102 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1103
1104 /*
1105 * if we are doing a write, we have to redirect the i/o on
1106 * drum's v_numoutput counter to the swapdevs.
1107 */
1108 if ((bp->b_flags & B_READ) == 0) {
1109 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1110 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1111 }
1112
1113 /*
1114 * finally plug in swapdev vnode and start I/O
1115 */
1116 bp->b_vp = vp;
1117 splx(s);
1118 VOP_STRATEGY(vp, bp);
1119 return;
1120
1121 case VREG:
1122 /*
1123 * delegate to sw_reg_strategy function.
1124 */
1125 sw_reg_strategy(sdp, bp, bn);
1126 return;
1127 }
1128 /* NOTREACHED */
1129 }
1130
1131 /*
1132 * swread: the read function for the drum (just a call to physio)
1133 */
1134 /*ARGSUSED*/
1135 static int
1136 swread(dev_t dev, struct uio *uio, int ioflag)
1137 {
1138 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1139
1140 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1141 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1142 }
1143
1144 /*
1145 * swwrite: the write function for the drum (just a call to physio)
1146 */
1147 /*ARGSUSED*/
1148 static int
1149 swwrite(dev_t dev, struct uio *uio, int ioflag)
1150 {
1151 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1152
1153 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1154 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1155 }
1156
1157 const struct bdevsw swap_bdevsw = {
1158 noopen, noclose, swstrategy, noioctl, nodump, nosize,
1159 };
1160
1161 const struct cdevsw swap_cdevsw = {
1162 nullopen, nullclose, swread, swwrite, noioctl,
1163 nostop, notty, nopoll, nommap, nokqfilter
1164 };
1165
1166 /*
1167 * sw_reg_strategy: handle swap i/o to regular files
1168 */
1169 static void
1170 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1171 {
1172 struct vnode *vp;
1173 struct vndxfer *vnx;
1174 daddr_t nbn;
1175 caddr_t addr;
1176 off_t byteoff;
1177 int s, off, nra, error, sz, resid;
1178 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1179
1180 /*
1181 * allocate a vndxfer head for this transfer and point it to
1182 * our buffer.
1183 */
1184 getvndxfer(vnx);
1185 vnx->vx_flags = VX_BUSY;
1186 vnx->vx_error = 0;
1187 vnx->vx_pending = 0;
1188 vnx->vx_bp = bp;
1189 vnx->vx_sdp = sdp;
1190
1191 /*
1192 * setup for main loop where we read filesystem blocks into
1193 * our buffer.
1194 */
1195 error = 0;
1196 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1197 addr = bp->b_data; /* current position in buffer */
1198 byteoff = dbtob((uint64_t)bn);
1199
1200 for (resid = bp->b_resid; resid; resid -= sz) {
1201 struct vndbuf *nbp;
1202
1203 /*
1204 * translate byteoffset into block number. return values:
1205 * vp = vnode of underlying device
1206 * nbn = new block number (on underlying vnode dev)
1207 * nra = num blocks we can read-ahead (excludes requested
1208 * block)
1209 */
1210 nra = 0;
1211 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1212 &vp, &nbn, &nra);
1213
1214 if (error == 0 && nbn == (daddr_t)-1) {
1215 /*
1216 * this used to just set error, but that doesn't
1217 * do the right thing. Instead, it causes random
1218 * memory errors. The panic() should remain until
1219 * this condition doesn't destabilize the system.
1220 */
1221 #if 1
1222 panic("sw_reg_strategy: swap to sparse file");
1223 #else
1224 error = EIO; /* failure */
1225 #endif
1226 }
1227
1228 /*
1229 * punt if there was an error or a hole in the file.
1230 * we must wait for any i/o ops we have already started
1231 * to finish before returning.
1232 *
1233 * XXX we could deal with holes here but it would be
1234 * a hassle (in the write case).
1235 */
1236 if (error) {
1237 s = splbio();
1238 vnx->vx_error = error; /* pass error up */
1239 goto out;
1240 }
1241
1242 /*
1243 * compute the size ("sz") of this transfer (in bytes).
1244 */
1245 off = byteoff % sdp->swd_bsize;
1246 sz = (1 + nra) * sdp->swd_bsize - off;
1247 if (sz > resid)
1248 sz = resid;
1249
1250 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1251 "vp %p/%p offset 0x%x/0x%x",
1252 sdp->swd_vp, vp, byteoff, nbn);
1253
1254 /*
1255 * now get a buf structure. note that the vb_buf is
1256 * at the front of the nbp structure so that you can
1257 * cast pointers between the two structure easily.
1258 */
1259 getvndbuf(nbp);
1260 BUF_INIT(&nbp->vb_buf);
1261 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1262 nbp->vb_buf.b_bcount = sz;
1263 nbp->vb_buf.b_bufsize = sz;
1264 nbp->vb_buf.b_error = 0;
1265 nbp->vb_buf.b_data = addr;
1266 nbp->vb_buf.b_lblkno = 0;
1267 nbp->vb_buf.b_blkno = nbn + btodb(off);
1268 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1269 nbp->vb_buf.b_iodone = sw_reg_iodone;
1270 nbp->vb_buf.b_vp = vp;
1271 if (vp->v_type == VBLK) {
1272 nbp->vb_buf.b_dev = vp->v_rdev;
1273 }
1274
1275 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1276
1277 /*
1278 * Just sort by block number
1279 */
1280 s = splbio();
1281 if (vnx->vx_error != 0) {
1282 putvndbuf(nbp);
1283 goto out;
1284 }
1285 vnx->vx_pending++;
1286
1287 /* sort it in and start I/O if we are not over our limit */
1288 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1289 sw_reg_start(sdp);
1290 splx(s);
1291
1292 /*
1293 * advance to the next I/O
1294 */
1295 byteoff += sz;
1296 addr += sz;
1297 }
1298
1299 s = splbio();
1300
1301 out: /* Arrive here at splbio */
1302 vnx->vx_flags &= ~VX_BUSY;
1303 if (vnx->vx_pending == 0) {
1304 if (vnx->vx_error != 0) {
1305 bp->b_error = vnx->vx_error;
1306 bp->b_flags |= B_ERROR;
1307 }
1308 putvndxfer(vnx);
1309 biodone(bp);
1310 }
1311 splx(s);
1312 }
1313
1314 /*
1315 * sw_reg_start: start an I/O request on the requested swapdev
1316 *
1317 * => reqs are sorted by b_rawblkno (above)
1318 */
1319 static void
1320 sw_reg_start(struct swapdev *sdp)
1321 {
1322 struct buf *bp;
1323 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1324
1325 /* recursion control */
1326 if ((sdp->swd_flags & SWF_BUSY) != 0)
1327 return;
1328
1329 sdp->swd_flags |= SWF_BUSY;
1330
1331 while (sdp->swd_active < sdp->swd_maxactive) {
1332 bp = BUFQ_GET(sdp->swd_tab);
1333 if (bp == NULL)
1334 break;
1335 sdp->swd_active++;
1336
1337 UVMHIST_LOG(pdhist,
1338 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1339 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1340 if ((bp->b_flags & B_READ) == 0)
1341 V_INCR_NUMOUTPUT(bp->b_vp);
1342
1343 VOP_STRATEGY(bp->b_vp, bp);
1344 }
1345 sdp->swd_flags &= ~SWF_BUSY;
1346 }
1347
1348 /*
1349 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1350 *
1351 * => note that we can recover the vndbuf struct by casting the buf ptr
1352 */
1353 static void
1354 sw_reg_iodone(struct buf *bp)
1355 {
1356 struct vndbuf *vbp = (struct vndbuf *) bp;
1357 struct vndxfer *vnx = vbp->vb_xfer;
1358 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1359 struct swapdev *sdp = vnx->vx_sdp;
1360 int s, resid, error;
1361 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1362
1363 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1364 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1365 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1366 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1367
1368 /*
1369 * protect vbp at splbio and update.
1370 */
1371
1372 s = splbio();
1373 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1374 pbp->b_resid -= resid;
1375 vnx->vx_pending--;
1376
1377 if (vbp->vb_buf.b_flags & B_ERROR) {
1378 /* pass error upward */
1379 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1380 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1381 vnx->vx_error = error;
1382 }
1383
1384 /*
1385 * kill vbp structure
1386 */
1387 putvndbuf(vbp);
1388
1389 /*
1390 * wrap up this transaction if it has run to completion or, in
1391 * case of an error, when all auxiliary buffers have returned.
1392 */
1393 if (vnx->vx_error != 0) {
1394 /* pass error upward */
1395 pbp->b_flags |= B_ERROR;
1396 pbp->b_error = vnx->vx_error;
1397 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1398 putvndxfer(vnx);
1399 biodone(pbp);
1400 }
1401 } else if (pbp->b_resid == 0) {
1402 KASSERT(vnx->vx_pending == 0);
1403 if ((vnx->vx_flags & VX_BUSY) == 0) {
1404 UVMHIST_LOG(pdhist, " iodone error=%d !",
1405 pbp, vnx->vx_error, 0, 0);
1406 putvndxfer(vnx);
1407 biodone(pbp);
1408 }
1409 }
1410
1411 /*
1412 * done! start next swapdev I/O if one is pending
1413 */
1414 sdp->swd_active--;
1415 sw_reg_start(sdp);
1416 splx(s);
1417 }
1418
1419
1420 /*
1421 * uvm_swap_alloc: allocate space on swap
1422 *
1423 * => allocation is done "round robin" down the priority list, as we
1424 * allocate in a priority we "rotate" the circle queue.
1425 * => space can be freed with uvm_swap_free
1426 * => we return the page slot number in /dev/drum (0 == invalid slot)
1427 * => we lock uvm.swap_data_lock
1428 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1429 */
1430 int
1431 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1432 {
1433 struct swapdev *sdp;
1434 struct swappri *spp;
1435 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1436
1437 /*
1438 * no swap devices configured yet? definite failure.
1439 */
1440 if (uvmexp.nswapdev < 1)
1441 return 0;
1442
1443 /*
1444 * lock data lock, convert slots into blocks, and enter loop
1445 */
1446 simple_lock(&uvm.swap_data_lock);
1447
1448 ReTry: /* XXXMRG */
1449 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1450 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1451 uint64_t result;
1452
1453 /* if it's not enabled, then we can't swap from it */
1454 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1455 continue;
1456 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1457 continue;
1458 result = blist_alloc(sdp->swd_blist, *nslots);
1459 if (result == BLIST_NONE) {
1460 continue;
1461 }
1462 KASSERT(result < sdp->swd_drumsize);
1463
1464 /*
1465 * successful allocation! now rotate the circleq.
1466 */
1467 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1468 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1469 sdp->swd_npginuse += *nslots;
1470 uvmexp.swpginuse += *nslots;
1471 simple_unlock(&uvm.swap_data_lock);
1472 /* done! return drum slot number */
1473 UVMHIST_LOG(pdhist,
1474 "success! returning %d slots starting at %d",
1475 *nslots, result + sdp->swd_drumoffset, 0, 0);
1476 return (result + sdp->swd_drumoffset);
1477 }
1478 }
1479
1480 /* XXXMRG: BEGIN HACK */
1481 if (*nslots > 1 && lessok) {
1482 *nslots = 1;
1483 /* XXXMRG: ugh! blist should support this for us */
1484 goto ReTry;
1485 }
1486 /* XXXMRG: END HACK */
1487
1488 simple_unlock(&uvm.swap_data_lock);
1489 return 0;
1490 }
1491
1492 boolean_t
1493 uvm_swapisfull(void)
1494 {
1495 boolean_t rv;
1496
1497 simple_lock(&uvm.swap_data_lock);
1498 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1499 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1500 simple_unlock(&uvm.swap_data_lock);
1501
1502 return (rv);
1503 }
1504
1505 /*
1506 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1507 *
1508 * => we lock uvm.swap_data_lock
1509 */
1510 void
1511 uvm_swap_markbad(int startslot, int nslots)
1512 {
1513 struct swapdev *sdp;
1514 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1515
1516 simple_lock(&uvm.swap_data_lock);
1517 sdp = swapdrum_getsdp(startslot);
1518 KASSERT(sdp != NULL);
1519
1520 /*
1521 * we just keep track of how many pages have been marked bad
1522 * in this device, to make everything add up in swap_off().
1523 * we assume here that the range of slots will all be within
1524 * one swap device.
1525 */
1526
1527 KASSERT(uvmexp.swpgonly >= nslots);
1528 uvmexp.swpgonly -= nslots;
1529 sdp->swd_npgbad += nslots;
1530 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1531 simple_unlock(&uvm.swap_data_lock);
1532 }
1533
1534 /*
1535 * uvm_swap_free: free swap slots
1536 *
1537 * => this can be all or part of an allocation made by uvm_swap_alloc
1538 * => we lock uvm.swap_data_lock
1539 */
1540 void
1541 uvm_swap_free(int startslot, int nslots)
1542 {
1543 struct swapdev *sdp;
1544 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1545
1546 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1547 startslot, 0, 0);
1548
1549 /*
1550 * ignore attempts to free the "bad" slot.
1551 */
1552
1553 if (startslot == SWSLOT_BAD) {
1554 return;
1555 }
1556
1557 /*
1558 * convert drum slot offset back to sdp, free the blocks
1559 * in the extent, and return. must hold pri lock to do
1560 * lookup and access the extent.
1561 */
1562
1563 simple_lock(&uvm.swap_data_lock);
1564 sdp = swapdrum_getsdp(startslot);
1565 KASSERT(uvmexp.nswapdev >= 1);
1566 KASSERT(sdp != NULL);
1567 KASSERT(sdp->swd_npginuse >= nslots);
1568 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1569 sdp->swd_npginuse -= nslots;
1570 uvmexp.swpginuse -= nslots;
1571 simple_unlock(&uvm.swap_data_lock);
1572 }
1573
1574 /*
1575 * uvm_swap_put: put any number of pages into a contig place on swap
1576 *
1577 * => can be sync or async
1578 */
1579
1580 int
1581 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1582 {
1583 int error;
1584
1585 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1586 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1587 return error;
1588 }
1589
1590 /*
1591 * uvm_swap_get: get a single page from swap
1592 *
1593 * => usually a sync op (from fault)
1594 */
1595
1596 int
1597 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1598 {
1599 int error;
1600
1601 uvmexp.nswget++;
1602 KASSERT(flags & PGO_SYNCIO);
1603 if (swslot == SWSLOT_BAD) {
1604 return EIO;
1605 }
1606
1607 error = uvm_swap_io(&page, swslot, 1, B_READ |
1608 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1609 if (error == 0) {
1610
1611 /*
1612 * this page is no longer only in swap.
1613 */
1614
1615 simple_lock(&uvm.swap_data_lock);
1616 KASSERT(uvmexp.swpgonly > 0);
1617 uvmexp.swpgonly--;
1618 simple_unlock(&uvm.swap_data_lock);
1619 }
1620 return error;
1621 }
1622
1623 /*
1624 * uvm_swap_io: do an i/o operation to swap
1625 */
1626
1627 static int
1628 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1629 {
1630 daddr_t startblk;
1631 struct buf *bp;
1632 vaddr_t kva;
1633 int error, s, mapinflags;
1634 boolean_t write, async;
1635 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1636
1637 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1638 startslot, npages, flags, 0);
1639
1640 write = (flags & B_READ) == 0;
1641 async = (flags & B_ASYNC) != 0;
1642
1643 /*
1644 * convert starting drum slot to block number
1645 */
1646
1647 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1648
1649 /*
1650 * first, map the pages into the kernel.
1651 */
1652
1653 mapinflags = !write ?
1654 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1655 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1656 kva = uvm_pagermapin(pps, npages, mapinflags);
1657
1658 /*
1659 * now allocate a buf for the i/o.
1660 */
1661
1662 bp = getiobuf();
1663
1664 /*
1665 * fill in the bp/sbp. we currently route our i/o through
1666 * /dev/drum's vnode [swapdev_vp].
1667 */
1668
1669 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1670 bp->b_proc = &proc0; /* XXX */
1671 bp->b_vnbufs.le_next = NOLIST;
1672 bp->b_data = (caddr_t)kva;
1673 bp->b_blkno = startblk;
1674 bp->b_vp = swapdev_vp;
1675 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1676
1677 /*
1678 * bump v_numoutput (counter of number of active outputs).
1679 */
1680
1681 if (write) {
1682 s = splbio();
1683 V_INCR_NUMOUTPUT(swapdev_vp);
1684 splx(s);
1685 }
1686
1687 /*
1688 * for async ops we must set up the iodone handler.
1689 */
1690
1691 if (async) {
1692 bp->b_flags |= B_CALL;
1693 bp->b_iodone = uvm_aio_biodone;
1694 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1695 if (curproc == uvm.pagedaemon_proc)
1696 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1697 else
1698 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1699 } else {
1700 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1701 }
1702 UVMHIST_LOG(pdhist,
1703 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1704 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1705
1706 /*
1707 * now we start the I/O, and if async, return.
1708 */
1709
1710 VOP_STRATEGY(swapdev_vp, bp);
1711 if (async)
1712 return 0;
1713
1714 /*
1715 * must be sync i/o. wait for it to finish
1716 */
1717
1718 error = biowait(bp);
1719
1720 /*
1721 * kill the pager mapping
1722 */
1723
1724 uvm_pagermapout(kva, npages);
1725
1726 /*
1727 * now dispose of the buf and we're done.
1728 */
1729
1730 s = splbio();
1731 if (write)
1732 vwakeup(bp);
1733 putiobuf(bp);
1734 splx(s);
1735 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1736 return (error);
1737 }
1738