uvm_swap.c revision 1.107 1 /* $NetBSD: uvm_swap.c,v 1.107 2006/10/12 01:32:54 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.107 2006/10/12 01:32:54 christos Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap extent.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187
188 #define getvndxfer(vnx) do { \
189 int sp = splbio(); \
190 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
191 splx(sp); \
192 } while (/*CONSTCOND*/ 0)
193
194 #define putvndxfer(vnx) { \
195 pool_put(&vndxfer_pool, (void *)(vnx)); \
196 }
197
198 #define getvndbuf(vbp) do { \
199 int sp = splbio(); \
200 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
201 splx(sp); \
202 } while (/*CONSTCOND*/ 0)
203
204 #define putvndbuf(vbp) { \
205 pool_put(&vndbuf_pool, (void *)(vbp)); \
206 }
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218
219 /* locks */
220 static struct lock swap_syscall_lock;
221
222 /*
223 * prototypes
224 */
225 static struct swapdev *swapdrum_getsdp(int);
226
227 static struct swapdev *swaplist_find(struct vnode *, int);
228 static void swaplist_insert(struct swapdev *,
229 struct swappri *, int);
230 static void swaplist_trim(void);
231
232 static int swap_on(struct lwp *, struct swapdev *);
233 static int swap_off(struct lwp *, struct swapdev *);
234
235 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
236
237 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
238 static void sw_reg_iodone(struct buf *);
239 static void sw_reg_start(struct swapdev *);
240
241 static int uvm_swap_io(struct vm_page **, int, int, int);
242
243 /*
244 * uvm_swap_init: init the swap system data structures and locks
245 *
246 * => called at boot time from init_main.c after the filesystems
247 * are brought up (which happens after uvm_init())
248 */
249 void
250 uvm_swap_init(void)
251 {
252 UVMHIST_FUNC("uvm_swap_init");
253
254 UVMHIST_CALLED(pdhist);
255 /*
256 * first, init the swap list, its counter, and its lock.
257 * then get a handle on the vnode for /dev/drum by using
258 * the its dev_t number ("swapdev", from MD conf.c).
259 */
260
261 LIST_INIT(&swap_priority);
262 uvmexp.nswapdev = 0;
263 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
264 simple_lock_init(&uvm.swap_data_lock);
265
266 if (bdevvp(swapdev, &swapdev_vp))
267 panic("uvm_swap_init: can't get vnode for swap device");
268
269 /*
270 * create swap block resource map to map /dev/drum. the range
271 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
272 * that block 0 is reserved (used to indicate an allocation
273 * failure, or no allocation).
274 */
275 swapmap = extent_create("swapmap", 1, INT_MAX,
276 M_VMSWAP, 0, 0, EX_NOWAIT);
277 if (swapmap == 0)
278 panic("uvm_swap_init: extent_create failed");
279
280 /*
281 * done!
282 */
283 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
284 }
285
286 /*
287 * swaplist functions: functions that operate on the list of swap
288 * devices on the system.
289 */
290
291 /*
292 * swaplist_insert: insert swap device "sdp" into the global list
293 *
294 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
295 * => caller must provide a newly malloc'd swappri structure (we will
296 * FREE it if we don't need it... this it to prevent malloc blocking
297 * here while adding swap)
298 */
299 static void
300 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
301 {
302 struct swappri *spp, *pspp;
303 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
304
305 /*
306 * find entry at or after which to insert the new device.
307 */
308 pspp = NULL;
309 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
310 if (priority <= spp->spi_priority)
311 break;
312 pspp = spp;
313 }
314
315 /*
316 * new priority?
317 */
318 if (spp == NULL || spp->spi_priority != priority) {
319 spp = newspp; /* use newspp! */
320 UVMHIST_LOG(pdhist, "created new swappri = %d",
321 priority, 0, 0, 0);
322
323 spp->spi_priority = priority;
324 CIRCLEQ_INIT(&spp->spi_swapdev);
325
326 if (pspp)
327 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
328 else
329 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
330 } else {
331 /* we don't need a new priority structure, free it */
332 FREE(newspp, M_VMSWAP);
333 }
334
335 /*
336 * priority found (or created). now insert on the priority's
337 * circleq list and bump the total number of swapdevs.
338 */
339 sdp->swd_priority = priority;
340 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
341 uvmexp.nswapdev++;
342 }
343
344 /*
345 * swaplist_find: find and optionally remove a swap device from the
346 * global list.
347 *
348 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
349 * => we return the swapdev we found (and removed)
350 */
351 static struct swapdev *
352 swaplist_find(struct vnode *vp, boolean_t remove)
353 {
354 struct swapdev *sdp;
355 struct swappri *spp;
356
357 /*
358 * search the lists for the requested vp
359 */
360
361 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
362 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
363 if (sdp->swd_vp == vp) {
364 if (remove) {
365 CIRCLEQ_REMOVE(&spp->spi_swapdev,
366 sdp, swd_next);
367 uvmexp.nswapdev--;
368 }
369 return(sdp);
370 }
371 }
372 }
373 return (NULL);
374 }
375
376
377 /*
378 * swaplist_trim: scan priority list for empty priority entries and kill
379 * them.
380 *
381 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
382 */
383 static void
384 swaplist_trim(void)
385 {
386 struct swappri *spp, *nextspp;
387
388 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
389 nextspp = LIST_NEXT(spp, spi_swappri);
390 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
391 (void *)&spp->spi_swapdev)
392 continue;
393 LIST_REMOVE(spp, spi_swappri);
394 free(spp, M_VMSWAP);
395 }
396 }
397
398 /*
399 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
400 * to the "swapdev" that maps that section of the drum.
401 *
402 * => each swapdev takes one big contig chunk of the drum
403 * => caller must hold uvm.swap_data_lock
404 */
405 static struct swapdev *
406 swapdrum_getsdp(int pgno)
407 {
408 struct swapdev *sdp;
409 struct swappri *spp;
410
411 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
412 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
413 if (sdp->swd_flags & SWF_FAKE)
414 continue;
415 if (pgno >= sdp->swd_drumoffset &&
416 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
417 return sdp;
418 }
419 }
420 }
421 return NULL;
422 }
423
424
425 /*
426 * sys_swapctl: main entry point for swapctl(2) system call
427 * [with two helper functions: swap_on and swap_off]
428 */
429 int
430 sys_swapctl(struct lwp *l, void *v, register_t *retval)
431 {
432 struct sys_swapctl_args /* {
433 syscallarg(int) cmd;
434 syscallarg(void *) arg;
435 syscallarg(int) misc;
436 } */ *uap = (struct sys_swapctl_args *)v;
437 struct vnode *vp;
438 struct nameidata nd;
439 struct swappri *spp;
440 struct swapdev *sdp;
441 struct swapent *sep;
442 #define SWAP_PATH_MAX (PATH_MAX + 1)
443 char *userpath;
444 size_t len;
445 int error, misc;
446 int priority;
447 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
448
449 misc = SCARG(uap, misc);
450
451 /*
452 * ensure serialized syscall access by grabbing the swap_syscall_lock
453 */
454 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
455
456 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
457 /*
458 * we handle the non-priv NSWAP and STATS request first.
459 *
460 * SWAP_NSWAP: return number of config'd swap devices
461 * [can also be obtained with uvmexp sysctl]
462 */
463 if (SCARG(uap, cmd) == SWAP_NSWAP) {
464 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
465 0, 0, 0);
466 *retval = uvmexp.nswapdev;
467 error = 0;
468 goto out;
469 }
470
471 /*
472 * SWAP_STATS: get stats on current # of configured swap devs
473 *
474 * note that the swap_priority list can't change as long
475 * as we are holding the swap_syscall_lock. we don't want
476 * to grab the uvm.swap_data_lock because we may fault&sleep during
477 * copyout() and we don't want to be holding that lock then!
478 */
479 if (SCARG(uap, cmd) == SWAP_STATS
480 #if defined(COMPAT_13)
481 || SCARG(uap, cmd) == SWAP_OSTATS
482 #endif
483 ) {
484 if ((size_t)misc > (size_t)uvmexp.nswapdev)
485 misc = uvmexp.nswapdev;
486 #if defined(COMPAT_13)
487 if (SCARG(uap, cmd) == SWAP_OSTATS)
488 len = sizeof(struct oswapent) * misc;
489 else
490 #endif
491 len = sizeof(struct swapent) * misc;
492 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
493
494 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
495 error = copyout(sep, SCARG(uap, arg), len);
496
497 free(sep, M_TEMP);
498 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
499 goto out;
500 }
501 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
502 dev_t *devp = (dev_t *)SCARG(uap, arg);
503
504 error = copyout(&dumpdev, devp, sizeof(dumpdev));
505 goto out;
506 }
507
508 /*
509 * all other requests require superuser privs. verify.
510 */
511 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
512 0, NULL, NULL, NULL)))
513 goto out;
514
515 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
516 /* drop the current dump device */
517 dumpdev = NODEV;
518 cpu_dumpconf();
519 goto out;
520 }
521
522 /*
523 * at this point we expect a path name in arg. we will
524 * use namei() to gain a vnode reference (vref), and lock
525 * the vnode (VOP_LOCK).
526 *
527 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 * miniroot)
529 */
530 if (SCARG(uap, arg) == NULL) {
531 vp = rootvp; /* miniroot */
532 if (vget(vp, LK_EXCLUSIVE)) {
533 error = EBUSY;
534 goto out;
535 }
536 if (SCARG(uap, cmd) == SWAP_ON &&
537 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
538 panic("swapctl: miniroot copy failed");
539 } else {
540 int space;
541 char *where;
542
543 if (SCARG(uap, cmd) == SWAP_ON) {
544 if ((error = copyinstr(SCARG(uap, arg), userpath,
545 SWAP_PATH_MAX, &len)))
546 goto out;
547 space = UIO_SYSSPACE;
548 where = userpath;
549 } else {
550 space = UIO_USERSPACE;
551 where = (char *)SCARG(uap, arg);
552 }
553 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
554 if ((error = namei(&nd)))
555 goto out;
556 vp = nd.ni_vp;
557 }
558 /* note: "vp" is referenced and locked */
559
560 error = 0; /* assume no error */
561 switch(SCARG(uap, cmd)) {
562
563 case SWAP_DUMPDEV:
564 if (vp->v_type != VBLK) {
565 error = ENOTBLK;
566 break;
567 }
568 dumpdev = vp->v_rdev;
569 cpu_dumpconf();
570 break;
571
572 case SWAP_CTL:
573 /*
574 * get new priority, remove old entry (if any) and then
575 * reinsert it in the correct place. finally, prune out
576 * any empty priority structures.
577 */
578 priority = SCARG(uap, misc);
579 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
580 simple_lock(&uvm.swap_data_lock);
581 if ((sdp = swaplist_find(vp, 1)) == NULL) {
582 error = ENOENT;
583 } else {
584 swaplist_insert(sdp, spp, priority);
585 swaplist_trim();
586 }
587 simple_unlock(&uvm.swap_data_lock);
588 if (error)
589 free(spp, M_VMSWAP);
590 break;
591
592 case SWAP_ON:
593
594 /*
595 * check for duplicates. if none found, then insert a
596 * dummy entry on the list to prevent someone else from
597 * trying to enable this device while we are working on
598 * it.
599 */
600
601 priority = SCARG(uap, misc);
602 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
603 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
604 memset(sdp, 0, sizeof(*sdp));
605 sdp->swd_flags = SWF_FAKE;
606 sdp->swd_vp = vp;
607 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
608 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
609 simple_lock(&uvm.swap_data_lock);
610 if (swaplist_find(vp, 0) != NULL) {
611 error = EBUSY;
612 simple_unlock(&uvm.swap_data_lock);
613 bufq_free(sdp->swd_tab);
614 free(sdp, M_VMSWAP);
615 free(spp, M_VMSWAP);
616 break;
617 }
618 swaplist_insert(sdp, spp, priority);
619 simple_unlock(&uvm.swap_data_lock);
620
621 sdp->swd_pathlen = len;
622 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
623 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
624 panic("swapctl: copystr");
625
626 /*
627 * we've now got a FAKE placeholder in the swap list.
628 * now attempt to enable swap on it. if we fail, undo
629 * what we've done and kill the fake entry we just inserted.
630 * if swap_on is a success, it will clear the SWF_FAKE flag
631 */
632
633 if ((error = swap_on(l, sdp)) != 0) {
634 simple_lock(&uvm.swap_data_lock);
635 (void) swaplist_find(vp, 1); /* kill fake entry */
636 swaplist_trim();
637 simple_unlock(&uvm.swap_data_lock);
638 bufq_free(sdp->swd_tab);
639 free(sdp->swd_path, M_VMSWAP);
640 free(sdp, M_VMSWAP);
641 break;
642 }
643 break;
644
645 case SWAP_OFF:
646 simple_lock(&uvm.swap_data_lock);
647 if ((sdp = swaplist_find(vp, 0)) == NULL) {
648 simple_unlock(&uvm.swap_data_lock);
649 error = ENXIO;
650 break;
651 }
652
653 /*
654 * If a device isn't in use or enabled, we
655 * can't stop swapping from it (again).
656 */
657 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
658 simple_unlock(&uvm.swap_data_lock);
659 error = EBUSY;
660 break;
661 }
662
663 /*
664 * do the real work.
665 */
666 error = swap_off(l, sdp);
667 break;
668
669 default:
670 error = EINVAL;
671 }
672
673 /*
674 * done! release the ref gained by namei() and unlock.
675 */
676 vput(vp);
677
678 out:
679 free(userpath, M_TEMP);
680 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
681
682 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
683 return (error);
684 }
685
686 /*
687 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
688 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
689 * emulation to use it directly without going through sys_swapctl().
690 * The problem with using sys_swapctl() there is that it involves
691 * copying the swapent array to the stackgap, and this array's size
692 * is not known at build time. Hence it would not be possible to
693 * ensure it would fit in the stackgap in any case.
694 */
695 void
696 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
697 {
698
699 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
700 uvm_swap_stats_locked(cmd, sep, sec, retval);
701 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
702 }
703
704 static void
705 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
706 {
707 struct swappri *spp;
708 struct swapdev *sdp;
709 int count = 0;
710
711 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
712 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
713 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
714 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
715 /*
716 * backwards compatibility for system call.
717 * note that we use 'struct oswapent' as an
718 * overlay into both 'struct swapdev' and
719 * the userland 'struct swapent', as we
720 * want to retain backwards compatibility
721 * with NetBSD 1.3.
722 */
723 sdp->swd_ose.ose_inuse =
724 btodb((uint64_t)sdp->swd_npginuse <<
725 PAGE_SHIFT);
726 (void)memcpy(sep, &sdp->swd_ose,
727 sizeof(struct oswapent));
728
729 /* now copy out the path if necessary */
730 #if defined(COMPAT_13)
731 if (cmd == SWAP_STATS)
732 #endif
733 (void)memcpy(&sep->se_path, sdp->swd_path,
734 sdp->swd_pathlen);
735
736 count++;
737 #if defined(COMPAT_13)
738 if (cmd == SWAP_OSTATS)
739 sep = (struct swapent *)
740 ((struct oswapent *)sep + 1);
741 else
742 #endif
743 sep++;
744 }
745 }
746
747 *retval = count;
748 return;
749 }
750
751 /*
752 * swap_on: attempt to enable a swapdev for swapping. note that the
753 * swapdev is already on the global list, but disabled (marked
754 * SWF_FAKE).
755 *
756 * => we avoid the start of the disk (to protect disk labels)
757 * => we also avoid the miniroot, if we are swapping to root.
758 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
759 * if needed.
760 */
761 static int
762 swap_on(struct lwp *l, struct swapdev *sdp)
763 {
764 struct vnode *vp;
765 int error, npages, nblocks, size;
766 long addr;
767 u_long result;
768 struct vattr va;
769 #ifdef NFS
770 extern int (**nfsv2_vnodeop_p)(void *);
771 #endif /* NFS */
772 const struct bdevsw *bdev;
773 dev_t dev;
774 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
775
776 /*
777 * we want to enable swapping on sdp. the swd_vp contains
778 * the vnode we want (locked and ref'd), and the swd_dev
779 * contains the dev_t of the file, if it a block device.
780 */
781
782 vp = sdp->swd_vp;
783 dev = sdp->swd_dev;
784
785 /*
786 * open the swap file (mostly useful for block device files to
787 * let device driver know what is up).
788 *
789 * we skip the open/close for root on swap because the root
790 * has already been opened when root was mounted (mountroot).
791 */
792 if (vp != rootvp) {
793 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
794 return (error);
795 }
796
797 /* XXX this only works for block devices */
798 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
799
800 /*
801 * we now need to determine the size of the swap area. for
802 * block specials we can call the d_psize function.
803 * for normal files, we must stat [get attrs].
804 *
805 * we put the result in nblks.
806 * for normal files, we also want the filesystem block size
807 * (which we get with statfs).
808 */
809 switch (vp->v_type) {
810 case VBLK:
811 bdev = bdevsw_lookup(dev);
812 if (bdev == NULL || bdev->d_psize == NULL ||
813 (nblocks = (*bdev->d_psize)(dev)) == -1) {
814 error = ENXIO;
815 goto bad;
816 }
817 break;
818
819 case VREG:
820 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
821 goto bad;
822 nblocks = (int)btodb(va.va_size);
823 if ((error =
824 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
825 goto bad;
826
827 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
828 /*
829 * limit the max # of outstanding I/O requests we issue
830 * at any one time. take it easy on NFS servers.
831 */
832 #ifdef NFS
833 if (vp->v_op == nfsv2_vnodeop_p)
834 sdp->swd_maxactive = 2; /* XXX */
835 else
836 #endif /* NFS */
837 sdp->swd_maxactive = 8; /* XXX */
838 break;
839
840 default:
841 error = ENXIO;
842 goto bad;
843 }
844
845 /*
846 * save nblocks in a safe place and convert to pages.
847 */
848
849 sdp->swd_ose.ose_nblks = nblocks;
850 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
851
852 /*
853 * for block special files, we want to make sure that leave
854 * the disklabel and bootblocks alone, so we arrange to skip
855 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
856 * note that because of this the "size" can be less than the
857 * actual number of blocks on the device.
858 */
859 if (vp->v_type == VBLK) {
860 /* we use pages 1 to (size - 1) [inclusive] */
861 size = npages - 1;
862 addr = 1;
863 } else {
864 /* we use pages 0 to (size - 1) [inclusive] */
865 size = npages;
866 addr = 0;
867 }
868
869 /*
870 * make sure we have enough blocks for a reasonable sized swap
871 * area. we want at least one page.
872 */
873
874 if (size < 1) {
875 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
876 error = EINVAL;
877 goto bad;
878 }
879
880 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
881
882 /*
883 * now we need to allocate an extent to manage this swap device
884 */
885
886 sdp->swd_blist = blist_create(npages);
887 /* mark all expect the `saved' region free. */
888 blist_free(sdp->swd_blist, addr, size);
889
890 /*
891 * if the vnode we are swapping to is the root vnode
892 * (i.e. we are swapping to the miniroot) then we want
893 * to make sure we don't overwrite it. do a statfs to
894 * find its size and skip over it.
895 */
896 if (vp == rootvp) {
897 struct mount *mp;
898 struct statvfs *sp;
899 int rootblocks, rootpages;
900
901 mp = rootvnode->v_mount;
902 sp = &mp->mnt_stat;
903 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
904 /*
905 * XXX: sp->f_blocks isn't the total number of
906 * blocks in the filesystem, it's the number of
907 * data blocks. so, our rootblocks almost
908 * definitely underestimates the total size
909 * of the filesystem - how badly depends on the
910 * details of the filesystem type. there isn't
911 * an obvious way to deal with this cleanly
912 * and perfectly, so for now we just pad our
913 * rootblocks estimate with an extra 5 percent.
914 */
915 rootblocks += (rootblocks >> 5) +
916 (rootblocks >> 6) +
917 (rootblocks >> 7);
918 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
919 if (rootpages > size)
920 panic("swap_on: miniroot larger than swap?");
921
922 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
923 panic("swap_on: unable to preserve miniroot");
924 }
925
926 size -= rootpages;
927 printf("Preserved %d pages of miniroot ", rootpages);
928 printf("leaving %d pages of swap\n", size);
929 }
930
931 /*
932 * add a ref to vp to reflect usage as a swap device.
933 */
934 vref(vp);
935
936 /*
937 * now add the new swapdev to the drum and enable.
938 */
939 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
940 EX_WAITOK, &result))
941 panic("swapdrum_add");
942
943 sdp->swd_drumoffset = (int)result;
944 sdp->swd_drumsize = npages;
945 sdp->swd_npages = size;
946 simple_lock(&uvm.swap_data_lock);
947 sdp->swd_flags &= ~SWF_FAKE; /* going live */
948 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
949 uvmexp.swpages += size;
950 uvmexp.swpgavail += size;
951 simple_unlock(&uvm.swap_data_lock);
952 return (0);
953
954 /*
955 * failure: clean up and return error.
956 */
957
958 bad:
959 if (sdp->swd_blist) {
960 blist_destroy(sdp->swd_blist);
961 }
962 if (vp != rootvp) {
963 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
964 }
965 return (error);
966 }
967
968 /*
969 * swap_off: stop swapping on swapdev
970 *
971 * => swap data should be locked, we will unlock.
972 */
973 static int
974 swap_off(struct lwp *l, struct swapdev *sdp)
975 {
976 int npages = sdp->swd_npages;
977 int error = 0;
978
979 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
980 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
981
982 /* disable the swap area being removed */
983 sdp->swd_flags &= ~SWF_ENABLE;
984 uvmexp.swpgavail -= npages;
985 simple_unlock(&uvm.swap_data_lock);
986
987 /*
988 * the idea is to find all the pages that are paged out to this
989 * device, and page them all in. in uvm, swap-backed pageable
990 * memory can take two forms: aobjs and anons. call the
991 * swapoff hook for each subsystem to bring in pages.
992 */
993
994 if (uao_swap_off(sdp->swd_drumoffset,
995 sdp->swd_drumoffset + sdp->swd_drumsize) ||
996 amap_swap_off(sdp->swd_drumoffset,
997 sdp->swd_drumoffset + sdp->swd_drumsize)) {
998 error = ENOMEM;
999 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1000 error = EBUSY;
1001 }
1002
1003 if (error) {
1004 simple_lock(&uvm.swap_data_lock);
1005 sdp->swd_flags |= SWF_ENABLE;
1006 uvmexp.swpgavail += npages;
1007 simple_unlock(&uvm.swap_data_lock);
1008
1009 return error;
1010 }
1011
1012 /*
1013 * done with the vnode.
1014 * drop our ref on the vnode before calling VOP_CLOSE()
1015 * so that spec_close() can tell if this is the last close.
1016 */
1017 vrele(sdp->swd_vp);
1018 if (sdp->swd_vp != rootvp) {
1019 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1020 }
1021
1022 simple_lock(&uvm.swap_data_lock);
1023 uvmexp.swpages -= npages;
1024 uvmexp.swpginuse -= sdp->swd_npgbad;
1025
1026 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1027 panic("swap_off: swapdev not in list");
1028 swaplist_trim();
1029 simple_unlock(&uvm.swap_data_lock);
1030
1031 /*
1032 * free all resources!
1033 */
1034 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1035 EX_WAITOK);
1036 blist_destroy(sdp->swd_blist);
1037 bufq_free(sdp->swd_tab);
1038 free(sdp, M_VMSWAP);
1039 return (0);
1040 }
1041
1042 /*
1043 * /dev/drum interface and i/o functions
1044 */
1045
1046 /*
1047 * swstrategy: perform I/O on the drum
1048 *
1049 * => we must map the i/o request from the drum to the correct swapdev.
1050 */
1051 static void
1052 swstrategy(struct buf *bp)
1053 {
1054 struct swapdev *sdp;
1055 struct vnode *vp;
1056 int s, pageno, bn;
1057 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1058
1059 /*
1060 * convert block number to swapdev. note that swapdev can't
1061 * be yanked out from under us because we are holding resources
1062 * in it (i.e. the blocks we are doing I/O on).
1063 */
1064 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1065 simple_lock(&uvm.swap_data_lock);
1066 sdp = swapdrum_getsdp(pageno);
1067 simple_unlock(&uvm.swap_data_lock);
1068 if (sdp == NULL) {
1069 bp->b_error = EINVAL;
1070 bp->b_flags |= B_ERROR;
1071 biodone(bp);
1072 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1073 return;
1074 }
1075
1076 /*
1077 * convert drum page number to block number on this swapdev.
1078 */
1079
1080 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1081 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1082
1083 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1084 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1085 sdp->swd_drumoffset, bn, bp->b_bcount);
1086
1087 /*
1088 * for block devices we finish up here.
1089 * for regular files we have to do more work which we delegate
1090 * to sw_reg_strategy().
1091 */
1092
1093 switch (sdp->swd_vp->v_type) {
1094 default:
1095 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1096
1097 case VBLK:
1098
1099 /*
1100 * must convert "bp" from an I/O on /dev/drum to an I/O
1101 * on the swapdev (sdp).
1102 */
1103 s = splbio();
1104 bp->b_blkno = bn; /* swapdev block number */
1105 vp = sdp->swd_vp; /* swapdev vnode pointer */
1106 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1107
1108 /*
1109 * if we are doing a write, we have to redirect the i/o on
1110 * drum's v_numoutput counter to the swapdevs.
1111 */
1112 if ((bp->b_flags & B_READ) == 0) {
1113 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1114 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1115 }
1116
1117 /*
1118 * finally plug in swapdev vnode and start I/O
1119 */
1120 bp->b_vp = vp;
1121 splx(s);
1122 VOP_STRATEGY(vp, bp);
1123 return;
1124
1125 case VREG:
1126 /*
1127 * delegate to sw_reg_strategy function.
1128 */
1129 sw_reg_strategy(sdp, bp, bn);
1130 return;
1131 }
1132 /* NOTREACHED */
1133 }
1134
1135 /*
1136 * swread: the read function for the drum (just a call to physio)
1137 */
1138 /*ARGSUSED*/
1139 static int
1140 swread(dev_t dev, struct uio *uio, int ioflag __unused)
1141 {
1142 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1143
1144 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1145 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1146 }
1147
1148 /*
1149 * swwrite: the write function for the drum (just a call to physio)
1150 */
1151 /*ARGSUSED*/
1152 static int
1153 swwrite(dev_t dev, struct uio *uio, int ioflag __unused)
1154 {
1155 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1156
1157 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1158 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1159 }
1160
1161 const struct bdevsw swap_bdevsw = {
1162 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1163 };
1164
1165 const struct cdevsw swap_cdevsw = {
1166 nullopen, nullclose, swread, swwrite, noioctl,
1167 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1168 };
1169
1170 /*
1171 * sw_reg_strategy: handle swap i/o to regular files
1172 */
1173 static void
1174 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1175 {
1176 struct vnode *vp;
1177 struct vndxfer *vnx;
1178 daddr_t nbn;
1179 caddr_t addr;
1180 off_t byteoff;
1181 int s, off, nra, error, sz, resid;
1182 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1183
1184 /*
1185 * allocate a vndxfer head for this transfer and point it to
1186 * our buffer.
1187 */
1188 getvndxfer(vnx);
1189 vnx->vx_flags = VX_BUSY;
1190 vnx->vx_error = 0;
1191 vnx->vx_pending = 0;
1192 vnx->vx_bp = bp;
1193 vnx->vx_sdp = sdp;
1194
1195 /*
1196 * setup for main loop where we read filesystem blocks into
1197 * our buffer.
1198 */
1199 error = 0;
1200 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1201 addr = bp->b_data; /* current position in buffer */
1202 byteoff = dbtob((uint64_t)bn);
1203
1204 for (resid = bp->b_resid; resid; resid -= sz) {
1205 struct vndbuf *nbp;
1206
1207 /*
1208 * translate byteoffset into block number. return values:
1209 * vp = vnode of underlying device
1210 * nbn = new block number (on underlying vnode dev)
1211 * nra = num blocks we can read-ahead (excludes requested
1212 * block)
1213 */
1214 nra = 0;
1215 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1216 &vp, &nbn, &nra);
1217
1218 if (error == 0 && nbn == (daddr_t)-1) {
1219 /*
1220 * this used to just set error, but that doesn't
1221 * do the right thing. Instead, it causes random
1222 * memory errors. The panic() should remain until
1223 * this condition doesn't destabilize the system.
1224 */
1225 #if 1
1226 panic("sw_reg_strategy: swap to sparse file");
1227 #else
1228 error = EIO; /* failure */
1229 #endif
1230 }
1231
1232 /*
1233 * punt if there was an error or a hole in the file.
1234 * we must wait for any i/o ops we have already started
1235 * to finish before returning.
1236 *
1237 * XXX we could deal with holes here but it would be
1238 * a hassle (in the write case).
1239 */
1240 if (error) {
1241 s = splbio();
1242 vnx->vx_error = error; /* pass error up */
1243 goto out;
1244 }
1245
1246 /*
1247 * compute the size ("sz") of this transfer (in bytes).
1248 */
1249 off = byteoff % sdp->swd_bsize;
1250 sz = (1 + nra) * sdp->swd_bsize - off;
1251 if (sz > resid)
1252 sz = resid;
1253
1254 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1255 "vp %p/%p offset 0x%x/0x%x",
1256 sdp->swd_vp, vp, byteoff, nbn);
1257
1258 /*
1259 * now get a buf structure. note that the vb_buf is
1260 * at the front of the nbp structure so that you can
1261 * cast pointers between the two structure easily.
1262 */
1263 getvndbuf(nbp);
1264 BUF_INIT(&nbp->vb_buf);
1265 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1266 nbp->vb_buf.b_bcount = sz;
1267 nbp->vb_buf.b_bufsize = sz;
1268 nbp->vb_buf.b_error = 0;
1269 nbp->vb_buf.b_data = addr;
1270 nbp->vb_buf.b_lblkno = 0;
1271 nbp->vb_buf.b_blkno = nbn + btodb(off);
1272 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1273 nbp->vb_buf.b_iodone = sw_reg_iodone;
1274 nbp->vb_buf.b_vp = vp;
1275 if (vp->v_type == VBLK) {
1276 nbp->vb_buf.b_dev = vp->v_rdev;
1277 }
1278
1279 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1280
1281 /*
1282 * Just sort by block number
1283 */
1284 s = splbio();
1285 if (vnx->vx_error != 0) {
1286 putvndbuf(nbp);
1287 goto out;
1288 }
1289 vnx->vx_pending++;
1290
1291 /* sort it in and start I/O if we are not over our limit */
1292 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1293 sw_reg_start(sdp);
1294 splx(s);
1295
1296 /*
1297 * advance to the next I/O
1298 */
1299 byteoff += sz;
1300 addr += sz;
1301 }
1302
1303 s = splbio();
1304
1305 out: /* Arrive here at splbio */
1306 vnx->vx_flags &= ~VX_BUSY;
1307 if (vnx->vx_pending == 0) {
1308 if (vnx->vx_error != 0) {
1309 bp->b_error = vnx->vx_error;
1310 bp->b_flags |= B_ERROR;
1311 }
1312 putvndxfer(vnx);
1313 biodone(bp);
1314 }
1315 splx(s);
1316 }
1317
1318 /*
1319 * sw_reg_start: start an I/O request on the requested swapdev
1320 *
1321 * => reqs are sorted by b_rawblkno (above)
1322 */
1323 static void
1324 sw_reg_start(struct swapdev *sdp)
1325 {
1326 struct buf *bp;
1327 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1328
1329 /* recursion control */
1330 if ((sdp->swd_flags & SWF_BUSY) != 0)
1331 return;
1332
1333 sdp->swd_flags |= SWF_BUSY;
1334
1335 while (sdp->swd_active < sdp->swd_maxactive) {
1336 bp = BUFQ_GET(sdp->swd_tab);
1337 if (bp == NULL)
1338 break;
1339 sdp->swd_active++;
1340
1341 UVMHIST_LOG(pdhist,
1342 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1343 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1344 if ((bp->b_flags & B_READ) == 0)
1345 V_INCR_NUMOUTPUT(bp->b_vp);
1346
1347 VOP_STRATEGY(bp->b_vp, bp);
1348 }
1349 sdp->swd_flags &= ~SWF_BUSY;
1350 }
1351
1352 /*
1353 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1354 *
1355 * => note that we can recover the vndbuf struct by casting the buf ptr
1356 */
1357 static void
1358 sw_reg_iodone(struct buf *bp)
1359 {
1360 struct vndbuf *vbp = (struct vndbuf *) bp;
1361 struct vndxfer *vnx = vbp->vb_xfer;
1362 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1363 struct swapdev *sdp = vnx->vx_sdp;
1364 int s, resid, error;
1365 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1366
1367 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1368 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1369 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1370 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1371
1372 /*
1373 * protect vbp at splbio and update.
1374 */
1375
1376 s = splbio();
1377 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1378 pbp->b_resid -= resid;
1379 vnx->vx_pending--;
1380
1381 if (vbp->vb_buf.b_flags & B_ERROR) {
1382 /* pass error upward */
1383 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1384 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1385 vnx->vx_error = error;
1386 }
1387
1388 /*
1389 * kill vbp structure
1390 */
1391 putvndbuf(vbp);
1392
1393 /*
1394 * wrap up this transaction if it has run to completion or, in
1395 * case of an error, when all auxiliary buffers have returned.
1396 */
1397 if (vnx->vx_error != 0) {
1398 /* pass error upward */
1399 pbp->b_flags |= B_ERROR;
1400 pbp->b_error = vnx->vx_error;
1401 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1402 putvndxfer(vnx);
1403 biodone(pbp);
1404 }
1405 } else if (pbp->b_resid == 0) {
1406 KASSERT(vnx->vx_pending == 0);
1407 if ((vnx->vx_flags & VX_BUSY) == 0) {
1408 UVMHIST_LOG(pdhist, " iodone error=%d !",
1409 pbp, vnx->vx_error, 0, 0);
1410 putvndxfer(vnx);
1411 biodone(pbp);
1412 }
1413 }
1414
1415 /*
1416 * done! start next swapdev I/O if one is pending
1417 */
1418 sdp->swd_active--;
1419 sw_reg_start(sdp);
1420 splx(s);
1421 }
1422
1423
1424 /*
1425 * uvm_swap_alloc: allocate space on swap
1426 *
1427 * => allocation is done "round robin" down the priority list, as we
1428 * allocate in a priority we "rotate" the circle queue.
1429 * => space can be freed with uvm_swap_free
1430 * => we return the page slot number in /dev/drum (0 == invalid slot)
1431 * => we lock uvm.swap_data_lock
1432 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1433 */
1434 int
1435 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1436 {
1437 struct swapdev *sdp;
1438 struct swappri *spp;
1439 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1440
1441 /*
1442 * no swap devices configured yet? definite failure.
1443 */
1444 if (uvmexp.nswapdev < 1)
1445 return 0;
1446
1447 /*
1448 * lock data lock, convert slots into blocks, and enter loop
1449 */
1450 simple_lock(&uvm.swap_data_lock);
1451
1452 ReTry: /* XXXMRG */
1453 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1454 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1455 uint64_t result;
1456
1457 /* if it's not enabled, then we can't swap from it */
1458 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1459 continue;
1460 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1461 continue;
1462 result = blist_alloc(sdp->swd_blist, *nslots);
1463 if (result == BLIST_NONE) {
1464 continue;
1465 }
1466 KASSERT(result < sdp->swd_drumsize);
1467
1468 /*
1469 * successful allocation! now rotate the circleq.
1470 */
1471 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1472 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1473 sdp->swd_npginuse += *nslots;
1474 uvmexp.swpginuse += *nslots;
1475 simple_unlock(&uvm.swap_data_lock);
1476 /* done! return drum slot number */
1477 UVMHIST_LOG(pdhist,
1478 "success! returning %d slots starting at %d",
1479 *nslots, result + sdp->swd_drumoffset, 0, 0);
1480 return (result + sdp->swd_drumoffset);
1481 }
1482 }
1483
1484 /* XXXMRG: BEGIN HACK */
1485 if (*nslots > 1 && lessok) {
1486 *nslots = 1;
1487 /* XXXMRG: ugh! blist should support this for us */
1488 goto ReTry;
1489 }
1490 /* XXXMRG: END HACK */
1491
1492 simple_unlock(&uvm.swap_data_lock);
1493 return 0;
1494 }
1495
1496 boolean_t
1497 uvm_swapisfull(void)
1498 {
1499 boolean_t rv;
1500
1501 simple_lock(&uvm.swap_data_lock);
1502 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1503 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1504 simple_unlock(&uvm.swap_data_lock);
1505
1506 return (rv);
1507 }
1508
1509 /*
1510 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1511 *
1512 * => we lock uvm.swap_data_lock
1513 */
1514 void
1515 uvm_swap_markbad(int startslot, int nslots)
1516 {
1517 struct swapdev *sdp;
1518 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1519
1520 simple_lock(&uvm.swap_data_lock);
1521 sdp = swapdrum_getsdp(startslot);
1522 KASSERT(sdp != NULL);
1523
1524 /*
1525 * we just keep track of how many pages have been marked bad
1526 * in this device, to make everything add up in swap_off().
1527 * we assume here that the range of slots will all be within
1528 * one swap device.
1529 */
1530
1531 KASSERT(uvmexp.swpgonly >= nslots);
1532 uvmexp.swpgonly -= nslots;
1533 sdp->swd_npgbad += nslots;
1534 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1535 simple_unlock(&uvm.swap_data_lock);
1536 }
1537
1538 /*
1539 * uvm_swap_free: free swap slots
1540 *
1541 * => this can be all or part of an allocation made by uvm_swap_alloc
1542 * => we lock uvm.swap_data_lock
1543 */
1544 void
1545 uvm_swap_free(int startslot, int nslots)
1546 {
1547 struct swapdev *sdp;
1548 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1549
1550 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1551 startslot, 0, 0);
1552
1553 /*
1554 * ignore attempts to free the "bad" slot.
1555 */
1556
1557 if (startslot == SWSLOT_BAD) {
1558 return;
1559 }
1560
1561 /*
1562 * convert drum slot offset back to sdp, free the blocks
1563 * in the extent, and return. must hold pri lock to do
1564 * lookup and access the extent.
1565 */
1566
1567 simple_lock(&uvm.swap_data_lock);
1568 sdp = swapdrum_getsdp(startslot);
1569 KASSERT(uvmexp.nswapdev >= 1);
1570 KASSERT(sdp != NULL);
1571 KASSERT(sdp->swd_npginuse >= nslots);
1572 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1573 sdp->swd_npginuse -= nslots;
1574 uvmexp.swpginuse -= nslots;
1575 simple_unlock(&uvm.swap_data_lock);
1576 }
1577
1578 /*
1579 * uvm_swap_put: put any number of pages into a contig place on swap
1580 *
1581 * => can be sync or async
1582 */
1583
1584 int
1585 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1586 {
1587 int error;
1588
1589 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1590 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1591 return error;
1592 }
1593
1594 /*
1595 * uvm_swap_get: get a single page from swap
1596 *
1597 * => usually a sync op (from fault)
1598 */
1599
1600 int
1601 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1602 {
1603 int error;
1604
1605 uvmexp.nswget++;
1606 KASSERT(flags & PGO_SYNCIO);
1607 if (swslot == SWSLOT_BAD) {
1608 return EIO;
1609 }
1610
1611 error = uvm_swap_io(&page, swslot, 1, B_READ |
1612 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1613 if (error == 0) {
1614
1615 /*
1616 * this page is no longer only in swap.
1617 */
1618
1619 simple_lock(&uvm.swap_data_lock);
1620 KASSERT(uvmexp.swpgonly > 0);
1621 uvmexp.swpgonly--;
1622 simple_unlock(&uvm.swap_data_lock);
1623 }
1624 return error;
1625 }
1626
1627 /*
1628 * uvm_swap_io: do an i/o operation to swap
1629 */
1630
1631 static int
1632 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1633 {
1634 daddr_t startblk;
1635 struct buf *bp;
1636 vaddr_t kva;
1637 int error, s, mapinflags;
1638 boolean_t write, async;
1639 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1640
1641 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1642 startslot, npages, flags, 0);
1643
1644 write = (flags & B_READ) == 0;
1645 async = (flags & B_ASYNC) != 0;
1646
1647 /*
1648 * convert starting drum slot to block number
1649 */
1650
1651 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1652
1653 /*
1654 * first, map the pages into the kernel.
1655 */
1656
1657 mapinflags = !write ?
1658 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1659 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1660 kva = uvm_pagermapin(pps, npages, mapinflags);
1661
1662 /*
1663 * now allocate a buf for the i/o.
1664 */
1665
1666 bp = getiobuf();
1667
1668 /*
1669 * fill in the bp/sbp. we currently route our i/o through
1670 * /dev/drum's vnode [swapdev_vp].
1671 */
1672
1673 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1674 bp->b_proc = &proc0; /* XXX */
1675 bp->b_vnbufs.le_next = NOLIST;
1676 bp->b_data = (caddr_t)kva;
1677 bp->b_blkno = startblk;
1678 bp->b_vp = swapdev_vp;
1679 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1680
1681 /*
1682 * bump v_numoutput (counter of number of active outputs).
1683 */
1684
1685 if (write) {
1686 s = splbio();
1687 V_INCR_NUMOUTPUT(swapdev_vp);
1688 splx(s);
1689 }
1690
1691 /*
1692 * for async ops we must set up the iodone handler.
1693 */
1694
1695 if (async) {
1696 bp->b_flags |= B_CALL;
1697 bp->b_iodone = uvm_aio_biodone;
1698 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1699 if (curproc == uvm.pagedaemon_proc)
1700 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1701 else
1702 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1703 } else {
1704 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1705 }
1706 UVMHIST_LOG(pdhist,
1707 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1708 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1709
1710 /*
1711 * now we start the I/O, and if async, return.
1712 */
1713
1714 VOP_STRATEGY(swapdev_vp, bp);
1715 if (async)
1716 return 0;
1717
1718 /*
1719 * must be sync i/o. wait for it to finish
1720 */
1721
1722 error = biowait(bp);
1723
1724 /*
1725 * kill the pager mapping
1726 */
1727
1728 uvm_pagermapout(kva, npages);
1729
1730 /*
1731 * now dispose of the buf and we're done.
1732 */
1733
1734 s = splbio();
1735 if (write)
1736 vwakeup(bp);
1737 putiobuf(bp);
1738 splx(s);
1739 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1740 return (error);
1741 }
1742