uvm_swap.c revision 1.108 1 /* $NetBSD: uvm_swap.c,v 1.108 2006/10/12 04:35:40 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.108 2006/10/12 04:35:40 thorpej Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/extent.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap extent.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187
188 #define getvndxfer(vnx) do { \
189 int sp = splbio(); \
190 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
191 splx(sp); \
192 } while (/*CONSTCOND*/ 0)
193
194 #define putvndxfer(vnx) { \
195 pool_put(&vndxfer_pool, (void *)(vnx)); \
196 }
197
198 #define getvndbuf(vbp) do { \
199 int sp = splbio(); \
200 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
201 splx(sp); \
202 } while (/*CONSTCOND*/ 0)
203
204 #define putvndbuf(vbp) { \
205 pool_put(&vndbuf_pool, (void *)(vbp)); \
206 }
207
208 /*
209 * local variables
210 */
211 static struct extent *swapmap; /* controls the mapping of /dev/drum */
212
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218
219 /* locks */
220 static struct lock swap_syscall_lock;
221
222 /*
223 * prototypes
224 */
225 static struct swapdev *swapdrum_getsdp(int);
226
227 static struct swapdev *swaplist_find(struct vnode *, int);
228 static void swaplist_insert(struct swapdev *,
229 struct swappri *, int);
230 static void swaplist_trim(void);
231
232 static int swap_on(struct lwp *, struct swapdev *);
233 static int swap_off(struct lwp *, struct swapdev *);
234
235 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
236
237 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
238 static void sw_reg_iodone(struct buf *);
239 static void sw_reg_start(struct swapdev *);
240
241 static int uvm_swap_io(struct vm_page **, int, int, int);
242
243 /*
244 * uvm_swap_init: init the swap system data structures and locks
245 *
246 * => called at boot time from init_main.c after the filesystems
247 * are brought up (which happens after uvm_init())
248 */
249 void
250 uvm_swap_init(void)
251 {
252 UVMHIST_FUNC("uvm_swap_init");
253
254 UVMHIST_CALLED(pdhist);
255 /*
256 * first, init the swap list, its counter, and its lock.
257 * then get a handle on the vnode for /dev/drum by using
258 * the its dev_t number ("swapdev", from MD conf.c).
259 */
260
261 LIST_INIT(&swap_priority);
262 uvmexp.nswapdev = 0;
263 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
264 simple_lock_init(&uvm.swap_data_lock);
265
266 if (bdevvp(swapdev, &swapdev_vp))
267 panic("uvm_swap_init: can't get vnode for swap device");
268
269 /*
270 * create swap block resource map to map /dev/drum. the range
271 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
272 * that block 0 is reserved (used to indicate an allocation
273 * failure, or no allocation).
274 */
275 swapmap = extent_create("swapmap", 1, INT_MAX,
276 M_VMSWAP, 0, 0, EX_NOWAIT);
277 if (swapmap == 0)
278 panic("uvm_swap_init: extent_create failed");
279
280 /*
281 * done!
282 */
283 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
284 }
285
286 /*
287 * swaplist functions: functions that operate on the list of swap
288 * devices on the system.
289 */
290
291 /*
292 * swaplist_insert: insert swap device "sdp" into the global list
293 *
294 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
295 * => caller must provide a newly malloc'd swappri structure (we will
296 * FREE it if we don't need it... this it to prevent malloc blocking
297 * here while adding swap)
298 */
299 static void
300 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
301 {
302 struct swappri *spp, *pspp;
303 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
304
305 /*
306 * find entry at or after which to insert the new device.
307 */
308 pspp = NULL;
309 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
310 if (priority <= spp->spi_priority)
311 break;
312 pspp = spp;
313 }
314
315 /*
316 * new priority?
317 */
318 if (spp == NULL || spp->spi_priority != priority) {
319 spp = newspp; /* use newspp! */
320 UVMHIST_LOG(pdhist, "created new swappri = %d",
321 priority, 0, 0, 0);
322
323 spp->spi_priority = priority;
324 CIRCLEQ_INIT(&spp->spi_swapdev);
325
326 if (pspp)
327 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
328 else
329 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
330 } else {
331 /* we don't need a new priority structure, free it */
332 FREE(newspp, M_VMSWAP);
333 }
334
335 /*
336 * priority found (or created). now insert on the priority's
337 * circleq list and bump the total number of swapdevs.
338 */
339 sdp->swd_priority = priority;
340 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
341 uvmexp.nswapdev++;
342 }
343
344 /*
345 * swaplist_find: find and optionally remove a swap device from the
346 * global list.
347 *
348 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
349 * => we return the swapdev we found (and removed)
350 */
351 static struct swapdev *
352 swaplist_find(struct vnode *vp, boolean_t remove)
353 {
354 struct swapdev *sdp;
355 struct swappri *spp;
356
357 /*
358 * search the lists for the requested vp
359 */
360
361 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
362 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
363 if (sdp->swd_vp == vp) {
364 if (remove) {
365 CIRCLEQ_REMOVE(&spp->spi_swapdev,
366 sdp, swd_next);
367 uvmexp.nswapdev--;
368 }
369 return(sdp);
370 }
371 }
372 }
373 return (NULL);
374 }
375
376
377 /*
378 * swaplist_trim: scan priority list for empty priority entries and kill
379 * them.
380 *
381 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
382 */
383 static void
384 swaplist_trim(void)
385 {
386 struct swappri *spp, *nextspp;
387
388 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
389 nextspp = LIST_NEXT(spp, spi_swappri);
390 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
391 (void *)&spp->spi_swapdev)
392 continue;
393 LIST_REMOVE(spp, spi_swappri);
394 free(spp, M_VMSWAP);
395 }
396 }
397
398 /*
399 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
400 * to the "swapdev" that maps that section of the drum.
401 *
402 * => each swapdev takes one big contig chunk of the drum
403 * => caller must hold uvm.swap_data_lock
404 */
405 static struct swapdev *
406 swapdrum_getsdp(int pgno)
407 {
408 struct swapdev *sdp;
409 struct swappri *spp;
410
411 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
412 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
413 if (sdp->swd_flags & SWF_FAKE)
414 continue;
415 if (pgno >= sdp->swd_drumoffset &&
416 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
417 return sdp;
418 }
419 }
420 }
421 return NULL;
422 }
423
424
425 /*
426 * sys_swapctl: main entry point for swapctl(2) system call
427 * [with two helper functions: swap_on and swap_off]
428 */
429 int
430 sys_swapctl(struct lwp *l, void *v, register_t *retval)
431 {
432 struct sys_swapctl_args /* {
433 syscallarg(int) cmd;
434 syscallarg(void *) arg;
435 syscallarg(int) misc;
436 } */ *uap = (struct sys_swapctl_args *)v;
437 struct vnode *vp;
438 struct nameidata nd;
439 struct swappri *spp;
440 struct swapdev *sdp;
441 struct swapent *sep;
442 #define SWAP_PATH_MAX (PATH_MAX + 1)
443 char *userpath;
444 size_t len;
445 int error, misc;
446 int priority;
447 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
448
449 misc = SCARG(uap, misc);
450
451 /*
452 * ensure serialized syscall access by grabbing the swap_syscall_lock
453 */
454 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
455
456 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
457 /*
458 * we handle the non-priv NSWAP and STATS request first.
459 *
460 * SWAP_NSWAP: return number of config'd swap devices
461 * [can also be obtained with uvmexp sysctl]
462 */
463 if (SCARG(uap, cmd) == SWAP_NSWAP) {
464 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
465 0, 0, 0);
466 *retval = uvmexp.nswapdev;
467 error = 0;
468 goto out;
469 }
470
471 /*
472 * SWAP_STATS: get stats on current # of configured swap devs
473 *
474 * note that the swap_priority list can't change as long
475 * as we are holding the swap_syscall_lock. we don't want
476 * to grab the uvm.swap_data_lock because we may fault&sleep during
477 * copyout() and we don't want to be holding that lock then!
478 */
479 if (SCARG(uap, cmd) == SWAP_STATS
480 #if defined(COMPAT_13)
481 || SCARG(uap, cmd) == SWAP_OSTATS
482 #endif
483 ) {
484 if ((size_t)misc > (size_t)uvmexp.nswapdev)
485 misc = uvmexp.nswapdev;
486 #if defined(COMPAT_13)
487 if (SCARG(uap, cmd) == SWAP_OSTATS)
488 len = sizeof(struct oswapent) * misc;
489 else
490 #endif
491 len = sizeof(struct swapent) * misc;
492 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
493
494 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
495 error = copyout(sep, SCARG(uap, arg), len);
496
497 free(sep, M_TEMP);
498 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
499 goto out;
500 }
501 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
502 dev_t *devp = (dev_t *)SCARG(uap, arg);
503
504 error = copyout(&dumpdev, devp, sizeof(dumpdev));
505 goto out;
506 }
507
508 /*
509 * all other requests require superuser privs. verify.
510 */
511 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
512 0, NULL, NULL, NULL)))
513 goto out;
514
515 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
516 /* drop the current dump device */
517 dumpdev = NODEV;
518 cpu_dumpconf();
519 goto out;
520 }
521
522 /*
523 * at this point we expect a path name in arg. we will
524 * use namei() to gain a vnode reference (vref), and lock
525 * the vnode (VOP_LOCK).
526 *
527 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 * miniroot)
529 */
530 if (SCARG(uap, arg) == NULL) {
531 vp = rootvp; /* miniroot */
532 if (vget(vp, LK_EXCLUSIVE)) {
533 error = EBUSY;
534 goto out;
535 }
536 if (SCARG(uap, cmd) == SWAP_ON &&
537 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
538 panic("swapctl: miniroot copy failed");
539 } else {
540 int space;
541 char *where;
542
543 if (SCARG(uap, cmd) == SWAP_ON) {
544 if ((error = copyinstr(SCARG(uap, arg), userpath,
545 SWAP_PATH_MAX, &len)))
546 goto out;
547 space = UIO_SYSSPACE;
548 where = userpath;
549 } else {
550 space = UIO_USERSPACE;
551 where = (char *)SCARG(uap, arg);
552 }
553 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
554 if ((error = namei(&nd)))
555 goto out;
556 vp = nd.ni_vp;
557 }
558 /* note: "vp" is referenced and locked */
559
560 error = 0; /* assume no error */
561 switch(SCARG(uap, cmd)) {
562
563 case SWAP_DUMPDEV:
564 if (vp->v_type != VBLK) {
565 error = ENOTBLK;
566 break;
567 }
568 dumpdev = vp->v_rdev;
569 cpu_dumpconf();
570 break;
571
572 case SWAP_CTL:
573 /*
574 * get new priority, remove old entry (if any) and then
575 * reinsert it in the correct place. finally, prune out
576 * any empty priority structures.
577 */
578 priority = SCARG(uap, misc);
579 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
580 simple_lock(&uvm.swap_data_lock);
581 if ((sdp = swaplist_find(vp, 1)) == NULL) {
582 error = ENOENT;
583 } else {
584 swaplist_insert(sdp, spp, priority);
585 swaplist_trim();
586 }
587 simple_unlock(&uvm.swap_data_lock);
588 if (error)
589 free(spp, M_VMSWAP);
590 break;
591
592 case SWAP_ON:
593
594 /*
595 * check for duplicates. if none found, then insert a
596 * dummy entry on the list to prevent someone else from
597 * trying to enable this device while we are working on
598 * it.
599 */
600
601 priority = SCARG(uap, misc);
602 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
603 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
604 memset(sdp, 0, sizeof(*sdp));
605 sdp->swd_flags = SWF_FAKE;
606 sdp->swd_vp = vp;
607 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
608 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
609 simple_lock(&uvm.swap_data_lock);
610 if (swaplist_find(vp, 0) != NULL) {
611 error = EBUSY;
612 simple_unlock(&uvm.swap_data_lock);
613 bufq_free(sdp->swd_tab);
614 free(sdp, M_VMSWAP);
615 free(spp, M_VMSWAP);
616 break;
617 }
618 swaplist_insert(sdp, spp, priority);
619 simple_unlock(&uvm.swap_data_lock);
620
621 sdp->swd_pathlen = len;
622 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
623 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
624 panic("swapctl: copystr");
625
626 /*
627 * we've now got a FAKE placeholder in the swap list.
628 * now attempt to enable swap on it. if we fail, undo
629 * what we've done and kill the fake entry we just inserted.
630 * if swap_on is a success, it will clear the SWF_FAKE flag
631 */
632
633 if ((error = swap_on(l, sdp)) != 0) {
634 simple_lock(&uvm.swap_data_lock);
635 (void) swaplist_find(vp, 1); /* kill fake entry */
636 swaplist_trim();
637 simple_unlock(&uvm.swap_data_lock);
638 bufq_free(sdp->swd_tab);
639 free(sdp->swd_path, M_VMSWAP);
640 free(sdp, M_VMSWAP);
641 break;
642 }
643 break;
644
645 case SWAP_OFF:
646 simple_lock(&uvm.swap_data_lock);
647 if ((sdp = swaplist_find(vp, 0)) == NULL) {
648 simple_unlock(&uvm.swap_data_lock);
649 error = ENXIO;
650 break;
651 }
652
653 /*
654 * If a device isn't in use or enabled, we
655 * can't stop swapping from it (again).
656 */
657 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
658 simple_unlock(&uvm.swap_data_lock);
659 error = EBUSY;
660 break;
661 }
662
663 /*
664 * do the real work.
665 */
666 error = swap_off(l, sdp);
667 break;
668
669 default:
670 error = EINVAL;
671 }
672
673 /*
674 * done! release the ref gained by namei() and unlock.
675 */
676 vput(vp);
677
678 out:
679 free(userpath, M_TEMP);
680 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
681
682 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
683 return (error);
684 }
685
686 /*
687 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
688 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
689 * emulation to use it directly without going through sys_swapctl().
690 * The problem with using sys_swapctl() there is that it involves
691 * copying the swapent array to the stackgap, and this array's size
692 * is not known at build time. Hence it would not be possible to
693 * ensure it would fit in the stackgap in any case.
694 */
695 void
696 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
697 {
698
699 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
700 uvm_swap_stats_locked(cmd, sep, sec, retval);
701 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
702 }
703
704 static void
705 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
706 {
707 struct swappri *spp;
708 struct swapdev *sdp;
709 int count = 0;
710
711 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
712 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
713 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
714 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
715 /*
716 * backwards compatibility for system call.
717 * note that we use 'struct oswapent' as an
718 * overlay into both 'struct swapdev' and
719 * the userland 'struct swapent', as we
720 * want to retain backwards compatibility
721 * with NetBSD 1.3.
722 */
723 sdp->swd_ose.ose_inuse =
724 btodb((uint64_t)sdp->swd_npginuse <<
725 PAGE_SHIFT);
726 (void)memcpy(sep, &sdp->swd_ose,
727 sizeof(struct oswapent));
728
729 /* now copy out the path if necessary */
730 #if !defined(COMPAT_13)
731 (void) cmd;
732 #endif
733 #if defined(COMPAT_13)
734 if (cmd == SWAP_STATS)
735 #endif
736 (void)memcpy(&sep->se_path, sdp->swd_path,
737 sdp->swd_pathlen);
738
739 count++;
740 #if defined(COMPAT_13)
741 if (cmd == SWAP_OSTATS)
742 sep = (struct swapent *)
743 ((struct oswapent *)sep + 1);
744 else
745 #endif
746 sep++;
747 }
748 }
749
750 *retval = count;
751 return;
752 }
753
754 /*
755 * swap_on: attempt to enable a swapdev for swapping. note that the
756 * swapdev is already on the global list, but disabled (marked
757 * SWF_FAKE).
758 *
759 * => we avoid the start of the disk (to protect disk labels)
760 * => we also avoid the miniroot, if we are swapping to root.
761 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
762 * if needed.
763 */
764 static int
765 swap_on(struct lwp *l, struct swapdev *sdp)
766 {
767 struct vnode *vp;
768 int error, npages, nblocks, size;
769 long addr;
770 u_long result;
771 struct vattr va;
772 #ifdef NFS
773 extern int (**nfsv2_vnodeop_p)(void *);
774 #endif /* NFS */
775 const struct bdevsw *bdev;
776 dev_t dev;
777 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
778
779 /*
780 * we want to enable swapping on sdp. the swd_vp contains
781 * the vnode we want (locked and ref'd), and the swd_dev
782 * contains the dev_t of the file, if it a block device.
783 */
784
785 vp = sdp->swd_vp;
786 dev = sdp->swd_dev;
787
788 /*
789 * open the swap file (mostly useful for block device files to
790 * let device driver know what is up).
791 *
792 * we skip the open/close for root on swap because the root
793 * has already been opened when root was mounted (mountroot).
794 */
795 if (vp != rootvp) {
796 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
797 return (error);
798 }
799
800 /* XXX this only works for block devices */
801 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
802
803 /*
804 * we now need to determine the size of the swap area. for
805 * block specials we can call the d_psize function.
806 * for normal files, we must stat [get attrs].
807 *
808 * we put the result in nblks.
809 * for normal files, we also want the filesystem block size
810 * (which we get with statfs).
811 */
812 switch (vp->v_type) {
813 case VBLK:
814 bdev = bdevsw_lookup(dev);
815 if (bdev == NULL || bdev->d_psize == NULL ||
816 (nblocks = (*bdev->d_psize)(dev)) == -1) {
817 error = ENXIO;
818 goto bad;
819 }
820 break;
821
822 case VREG:
823 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
824 goto bad;
825 nblocks = (int)btodb(va.va_size);
826 if ((error =
827 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
828 goto bad;
829
830 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
831 /*
832 * limit the max # of outstanding I/O requests we issue
833 * at any one time. take it easy on NFS servers.
834 */
835 #ifdef NFS
836 if (vp->v_op == nfsv2_vnodeop_p)
837 sdp->swd_maxactive = 2; /* XXX */
838 else
839 #endif /* NFS */
840 sdp->swd_maxactive = 8; /* XXX */
841 break;
842
843 default:
844 error = ENXIO;
845 goto bad;
846 }
847
848 /*
849 * save nblocks in a safe place and convert to pages.
850 */
851
852 sdp->swd_ose.ose_nblks = nblocks;
853 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
854
855 /*
856 * for block special files, we want to make sure that leave
857 * the disklabel and bootblocks alone, so we arrange to skip
858 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
859 * note that because of this the "size" can be less than the
860 * actual number of blocks on the device.
861 */
862 if (vp->v_type == VBLK) {
863 /* we use pages 1 to (size - 1) [inclusive] */
864 size = npages - 1;
865 addr = 1;
866 } else {
867 /* we use pages 0 to (size - 1) [inclusive] */
868 size = npages;
869 addr = 0;
870 }
871
872 /*
873 * make sure we have enough blocks for a reasonable sized swap
874 * area. we want at least one page.
875 */
876
877 if (size < 1) {
878 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
879 error = EINVAL;
880 goto bad;
881 }
882
883 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
884
885 /*
886 * now we need to allocate an extent to manage this swap device
887 */
888
889 sdp->swd_blist = blist_create(npages);
890 /* mark all expect the `saved' region free. */
891 blist_free(sdp->swd_blist, addr, size);
892
893 /*
894 * if the vnode we are swapping to is the root vnode
895 * (i.e. we are swapping to the miniroot) then we want
896 * to make sure we don't overwrite it. do a statfs to
897 * find its size and skip over it.
898 */
899 if (vp == rootvp) {
900 struct mount *mp;
901 struct statvfs *sp;
902 int rootblocks, rootpages;
903
904 mp = rootvnode->v_mount;
905 sp = &mp->mnt_stat;
906 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
907 /*
908 * XXX: sp->f_blocks isn't the total number of
909 * blocks in the filesystem, it's the number of
910 * data blocks. so, our rootblocks almost
911 * definitely underestimates the total size
912 * of the filesystem - how badly depends on the
913 * details of the filesystem type. there isn't
914 * an obvious way to deal with this cleanly
915 * and perfectly, so for now we just pad our
916 * rootblocks estimate with an extra 5 percent.
917 */
918 rootblocks += (rootblocks >> 5) +
919 (rootblocks >> 6) +
920 (rootblocks >> 7);
921 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
922 if (rootpages > size)
923 panic("swap_on: miniroot larger than swap?");
924
925 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
926 panic("swap_on: unable to preserve miniroot");
927 }
928
929 size -= rootpages;
930 printf("Preserved %d pages of miniroot ", rootpages);
931 printf("leaving %d pages of swap\n", size);
932 }
933
934 /*
935 * add a ref to vp to reflect usage as a swap device.
936 */
937 vref(vp);
938
939 /*
940 * now add the new swapdev to the drum and enable.
941 */
942 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
943 EX_WAITOK, &result))
944 panic("swapdrum_add");
945
946 sdp->swd_drumoffset = (int)result;
947 sdp->swd_drumsize = npages;
948 sdp->swd_npages = size;
949 simple_lock(&uvm.swap_data_lock);
950 sdp->swd_flags &= ~SWF_FAKE; /* going live */
951 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
952 uvmexp.swpages += size;
953 uvmexp.swpgavail += size;
954 simple_unlock(&uvm.swap_data_lock);
955 return (0);
956
957 /*
958 * failure: clean up and return error.
959 */
960
961 bad:
962 if (sdp->swd_blist) {
963 blist_destroy(sdp->swd_blist);
964 }
965 if (vp != rootvp) {
966 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
967 }
968 return (error);
969 }
970
971 /*
972 * swap_off: stop swapping on swapdev
973 *
974 * => swap data should be locked, we will unlock.
975 */
976 static int
977 swap_off(struct lwp *l, struct swapdev *sdp)
978 {
979 int npages = sdp->swd_npages;
980 int error = 0;
981
982 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
983 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
984
985 /* disable the swap area being removed */
986 sdp->swd_flags &= ~SWF_ENABLE;
987 uvmexp.swpgavail -= npages;
988 simple_unlock(&uvm.swap_data_lock);
989
990 /*
991 * the idea is to find all the pages that are paged out to this
992 * device, and page them all in. in uvm, swap-backed pageable
993 * memory can take two forms: aobjs and anons. call the
994 * swapoff hook for each subsystem to bring in pages.
995 */
996
997 if (uao_swap_off(sdp->swd_drumoffset,
998 sdp->swd_drumoffset + sdp->swd_drumsize) ||
999 amap_swap_off(sdp->swd_drumoffset,
1000 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1001 error = ENOMEM;
1002 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1003 error = EBUSY;
1004 }
1005
1006 if (error) {
1007 simple_lock(&uvm.swap_data_lock);
1008 sdp->swd_flags |= SWF_ENABLE;
1009 uvmexp.swpgavail += npages;
1010 simple_unlock(&uvm.swap_data_lock);
1011
1012 return error;
1013 }
1014
1015 /*
1016 * done with the vnode.
1017 * drop our ref on the vnode before calling VOP_CLOSE()
1018 * so that spec_close() can tell if this is the last close.
1019 */
1020 vrele(sdp->swd_vp);
1021 if (sdp->swd_vp != rootvp) {
1022 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1023 }
1024
1025 simple_lock(&uvm.swap_data_lock);
1026 uvmexp.swpages -= npages;
1027 uvmexp.swpginuse -= sdp->swd_npgbad;
1028
1029 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1030 panic("swap_off: swapdev not in list");
1031 swaplist_trim();
1032 simple_unlock(&uvm.swap_data_lock);
1033
1034 /*
1035 * free all resources!
1036 */
1037 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1038 EX_WAITOK);
1039 blist_destroy(sdp->swd_blist);
1040 bufq_free(sdp->swd_tab);
1041 free(sdp, M_VMSWAP);
1042 return (0);
1043 }
1044
1045 /*
1046 * /dev/drum interface and i/o functions
1047 */
1048
1049 /*
1050 * swstrategy: perform I/O on the drum
1051 *
1052 * => we must map the i/o request from the drum to the correct swapdev.
1053 */
1054 static void
1055 swstrategy(struct buf *bp)
1056 {
1057 struct swapdev *sdp;
1058 struct vnode *vp;
1059 int s, pageno, bn;
1060 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1061
1062 /*
1063 * convert block number to swapdev. note that swapdev can't
1064 * be yanked out from under us because we are holding resources
1065 * in it (i.e. the blocks we are doing I/O on).
1066 */
1067 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1068 simple_lock(&uvm.swap_data_lock);
1069 sdp = swapdrum_getsdp(pageno);
1070 simple_unlock(&uvm.swap_data_lock);
1071 if (sdp == NULL) {
1072 bp->b_error = EINVAL;
1073 bp->b_flags |= B_ERROR;
1074 biodone(bp);
1075 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1076 return;
1077 }
1078
1079 /*
1080 * convert drum page number to block number on this swapdev.
1081 */
1082
1083 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1084 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1085
1086 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1087 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1088 sdp->swd_drumoffset, bn, bp->b_bcount);
1089
1090 /*
1091 * for block devices we finish up here.
1092 * for regular files we have to do more work which we delegate
1093 * to sw_reg_strategy().
1094 */
1095
1096 switch (sdp->swd_vp->v_type) {
1097 default:
1098 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1099
1100 case VBLK:
1101
1102 /*
1103 * must convert "bp" from an I/O on /dev/drum to an I/O
1104 * on the swapdev (sdp).
1105 */
1106 s = splbio();
1107 bp->b_blkno = bn; /* swapdev block number */
1108 vp = sdp->swd_vp; /* swapdev vnode pointer */
1109 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1110
1111 /*
1112 * if we are doing a write, we have to redirect the i/o on
1113 * drum's v_numoutput counter to the swapdevs.
1114 */
1115 if ((bp->b_flags & B_READ) == 0) {
1116 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1117 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1118 }
1119
1120 /*
1121 * finally plug in swapdev vnode and start I/O
1122 */
1123 bp->b_vp = vp;
1124 splx(s);
1125 VOP_STRATEGY(vp, bp);
1126 return;
1127
1128 case VREG:
1129 /*
1130 * delegate to sw_reg_strategy function.
1131 */
1132 sw_reg_strategy(sdp, bp, bn);
1133 return;
1134 }
1135 /* NOTREACHED */
1136 }
1137
1138 /*
1139 * swread: the read function for the drum (just a call to physio)
1140 */
1141 /*ARGSUSED*/
1142 static int
1143 swread(dev_t dev, struct uio *uio, int ioflag __unused)
1144 {
1145 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1146
1147 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1148 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1149 }
1150
1151 /*
1152 * swwrite: the write function for the drum (just a call to physio)
1153 */
1154 /*ARGSUSED*/
1155 static int
1156 swwrite(dev_t dev, struct uio *uio, int ioflag __unused)
1157 {
1158 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1159
1160 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1161 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1162 }
1163
1164 const struct bdevsw swap_bdevsw = {
1165 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1166 };
1167
1168 const struct cdevsw swap_cdevsw = {
1169 nullopen, nullclose, swread, swwrite, noioctl,
1170 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1171 };
1172
1173 /*
1174 * sw_reg_strategy: handle swap i/o to regular files
1175 */
1176 static void
1177 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1178 {
1179 struct vnode *vp;
1180 struct vndxfer *vnx;
1181 daddr_t nbn;
1182 caddr_t addr;
1183 off_t byteoff;
1184 int s, off, nra, error, sz, resid;
1185 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1186
1187 /*
1188 * allocate a vndxfer head for this transfer and point it to
1189 * our buffer.
1190 */
1191 getvndxfer(vnx);
1192 vnx->vx_flags = VX_BUSY;
1193 vnx->vx_error = 0;
1194 vnx->vx_pending = 0;
1195 vnx->vx_bp = bp;
1196 vnx->vx_sdp = sdp;
1197
1198 /*
1199 * setup for main loop where we read filesystem blocks into
1200 * our buffer.
1201 */
1202 error = 0;
1203 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1204 addr = bp->b_data; /* current position in buffer */
1205 byteoff = dbtob((uint64_t)bn);
1206
1207 for (resid = bp->b_resid; resid; resid -= sz) {
1208 struct vndbuf *nbp;
1209
1210 /*
1211 * translate byteoffset into block number. return values:
1212 * vp = vnode of underlying device
1213 * nbn = new block number (on underlying vnode dev)
1214 * nra = num blocks we can read-ahead (excludes requested
1215 * block)
1216 */
1217 nra = 0;
1218 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1219 &vp, &nbn, &nra);
1220
1221 if (error == 0 && nbn == (daddr_t)-1) {
1222 /*
1223 * this used to just set error, but that doesn't
1224 * do the right thing. Instead, it causes random
1225 * memory errors. The panic() should remain until
1226 * this condition doesn't destabilize the system.
1227 */
1228 #if 1
1229 panic("sw_reg_strategy: swap to sparse file");
1230 #else
1231 error = EIO; /* failure */
1232 #endif
1233 }
1234
1235 /*
1236 * punt if there was an error or a hole in the file.
1237 * we must wait for any i/o ops we have already started
1238 * to finish before returning.
1239 *
1240 * XXX we could deal with holes here but it would be
1241 * a hassle (in the write case).
1242 */
1243 if (error) {
1244 s = splbio();
1245 vnx->vx_error = error; /* pass error up */
1246 goto out;
1247 }
1248
1249 /*
1250 * compute the size ("sz") of this transfer (in bytes).
1251 */
1252 off = byteoff % sdp->swd_bsize;
1253 sz = (1 + nra) * sdp->swd_bsize - off;
1254 if (sz > resid)
1255 sz = resid;
1256
1257 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1258 "vp %p/%p offset 0x%x/0x%x",
1259 sdp->swd_vp, vp, byteoff, nbn);
1260
1261 /*
1262 * now get a buf structure. note that the vb_buf is
1263 * at the front of the nbp structure so that you can
1264 * cast pointers between the two structure easily.
1265 */
1266 getvndbuf(nbp);
1267 BUF_INIT(&nbp->vb_buf);
1268 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1269 nbp->vb_buf.b_bcount = sz;
1270 nbp->vb_buf.b_bufsize = sz;
1271 nbp->vb_buf.b_error = 0;
1272 nbp->vb_buf.b_data = addr;
1273 nbp->vb_buf.b_lblkno = 0;
1274 nbp->vb_buf.b_blkno = nbn + btodb(off);
1275 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1276 nbp->vb_buf.b_iodone = sw_reg_iodone;
1277 nbp->vb_buf.b_vp = vp;
1278 if (vp->v_type == VBLK) {
1279 nbp->vb_buf.b_dev = vp->v_rdev;
1280 }
1281
1282 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1283
1284 /*
1285 * Just sort by block number
1286 */
1287 s = splbio();
1288 if (vnx->vx_error != 0) {
1289 putvndbuf(nbp);
1290 goto out;
1291 }
1292 vnx->vx_pending++;
1293
1294 /* sort it in and start I/O if we are not over our limit */
1295 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1296 sw_reg_start(sdp);
1297 splx(s);
1298
1299 /*
1300 * advance to the next I/O
1301 */
1302 byteoff += sz;
1303 addr += sz;
1304 }
1305
1306 s = splbio();
1307
1308 out: /* Arrive here at splbio */
1309 vnx->vx_flags &= ~VX_BUSY;
1310 if (vnx->vx_pending == 0) {
1311 if (vnx->vx_error != 0) {
1312 bp->b_error = vnx->vx_error;
1313 bp->b_flags |= B_ERROR;
1314 }
1315 putvndxfer(vnx);
1316 biodone(bp);
1317 }
1318 splx(s);
1319 }
1320
1321 /*
1322 * sw_reg_start: start an I/O request on the requested swapdev
1323 *
1324 * => reqs are sorted by b_rawblkno (above)
1325 */
1326 static void
1327 sw_reg_start(struct swapdev *sdp)
1328 {
1329 struct buf *bp;
1330 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1331
1332 /* recursion control */
1333 if ((sdp->swd_flags & SWF_BUSY) != 0)
1334 return;
1335
1336 sdp->swd_flags |= SWF_BUSY;
1337
1338 while (sdp->swd_active < sdp->swd_maxactive) {
1339 bp = BUFQ_GET(sdp->swd_tab);
1340 if (bp == NULL)
1341 break;
1342 sdp->swd_active++;
1343
1344 UVMHIST_LOG(pdhist,
1345 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1346 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1347 if ((bp->b_flags & B_READ) == 0)
1348 V_INCR_NUMOUTPUT(bp->b_vp);
1349
1350 VOP_STRATEGY(bp->b_vp, bp);
1351 }
1352 sdp->swd_flags &= ~SWF_BUSY;
1353 }
1354
1355 /*
1356 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1357 *
1358 * => note that we can recover the vndbuf struct by casting the buf ptr
1359 */
1360 static void
1361 sw_reg_iodone(struct buf *bp)
1362 {
1363 struct vndbuf *vbp = (struct vndbuf *) bp;
1364 struct vndxfer *vnx = vbp->vb_xfer;
1365 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1366 struct swapdev *sdp = vnx->vx_sdp;
1367 int s, resid, error;
1368 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1369
1370 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1371 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1372 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1373 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1374
1375 /*
1376 * protect vbp at splbio and update.
1377 */
1378
1379 s = splbio();
1380 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1381 pbp->b_resid -= resid;
1382 vnx->vx_pending--;
1383
1384 if (vbp->vb_buf.b_flags & B_ERROR) {
1385 /* pass error upward */
1386 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1387 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1388 vnx->vx_error = error;
1389 }
1390
1391 /*
1392 * kill vbp structure
1393 */
1394 putvndbuf(vbp);
1395
1396 /*
1397 * wrap up this transaction if it has run to completion or, in
1398 * case of an error, when all auxiliary buffers have returned.
1399 */
1400 if (vnx->vx_error != 0) {
1401 /* pass error upward */
1402 pbp->b_flags |= B_ERROR;
1403 pbp->b_error = vnx->vx_error;
1404 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1405 putvndxfer(vnx);
1406 biodone(pbp);
1407 }
1408 } else if (pbp->b_resid == 0) {
1409 KASSERT(vnx->vx_pending == 0);
1410 if ((vnx->vx_flags & VX_BUSY) == 0) {
1411 UVMHIST_LOG(pdhist, " iodone error=%d !",
1412 pbp, vnx->vx_error, 0, 0);
1413 putvndxfer(vnx);
1414 biodone(pbp);
1415 }
1416 }
1417
1418 /*
1419 * done! start next swapdev I/O if one is pending
1420 */
1421 sdp->swd_active--;
1422 sw_reg_start(sdp);
1423 splx(s);
1424 }
1425
1426
1427 /*
1428 * uvm_swap_alloc: allocate space on swap
1429 *
1430 * => allocation is done "round robin" down the priority list, as we
1431 * allocate in a priority we "rotate" the circle queue.
1432 * => space can be freed with uvm_swap_free
1433 * => we return the page slot number in /dev/drum (0 == invalid slot)
1434 * => we lock uvm.swap_data_lock
1435 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1436 */
1437 int
1438 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1439 {
1440 struct swapdev *sdp;
1441 struct swappri *spp;
1442 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1443
1444 /*
1445 * no swap devices configured yet? definite failure.
1446 */
1447 if (uvmexp.nswapdev < 1)
1448 return 0;
1449
1450 /*
1451 * lock data lock, convert slots into blocks, and enter loop
1452 */
1453 simple_lock(&uvm.swap_data_lock);
1454
1455 ReTry: /* XXXMRG */
1456 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1457 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1458 uint64_t result;
1459
1460 /* if it's not enabled, then we can't swap from it */
1461 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1462 continue;
1463 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1464 continue;
1465 result = blist_alloc(sdp->swd_blist, *nslots);
1466 if (result == BLIST_NONE) {
1467 continue;
1468 }
1469 KASSERT(result < sdp->swd_drumsize);
1470
1471 /*
1472 * successful allocation! now rotate the circleq.
1473 */
1474 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1475 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1476 sdp->swd_npginuse += *nslots;
1477 uvmexp.swpginuse += *nslots;
1478 simple_unlock(&uvm.swap_data_lock);
1479 /* done! return drum slot number */
1480 UVMHIST_LOG(pdhist,
1481 "success! returning %d slots starting at %d",
1482 *nslots, result + sdp->swd_drumoffset, 0, 0);
1483 return (result + sdp->swd_drumoffset);
1484 }
1485 }
1486
1487 /* XXXMRG: BEGIN HACK */
1488 if (*nslots > 1 && lessok) {
1489 *nslots = 1;
1490 /* XXXMRG: ugh! blist should support this for us */
1491 goto ReTry;
1492 }
1493 /* XXXMRG: END HACK */
1494
1495 simple_unlock(&uvm.swap_data_lock);
1496 return 0;
1497 }
1498
1499 boolean_t
1500 uvm_swapisfull(void)
1501 {
1502 boolean_t rv;
1503
1504 simple_lock(&uvm.swap_data_lock);
1505 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1506 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1507 simple_unlock(&uvm.swap_data_lock);
1508
1509 return (rv);
1510 }
1511
1512 /*
1513 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1514 *
1515 * => we lock uvm.swap_data_lock
1516 */
1517 void
1518 uvm_swap_markbad(int startslot, int nslots)
1519 {
1520 struct swapdev *sdp;
1521 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1522
1523 simple_lock(&uvm.swap_data_lock);
1524 sdp = swapdrum_getsdp(startslot);
1525 KASSERT(sdp != NULL);
1526
1527 /*
1528 * we just keep track of how many pages have been marked bad
1529 * in this device, to make everything add up in swap_off().
1530 * we assume here that the range of slots will all be within
1531 * one swap device.
1532 */
1533
1534 KASSERT(uvmexp.swpgonly >= nslots);
1535 uvmexp.swpgonly -= nslots;
1536 sdp->swd_npgbad += nslots;
1537 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1538 simple_unlock(&uvm.swap_data_lock);
1539 }
1540
1541 /*
1542 * uvm_swap_free: free swap slots
1543 *
1544 * => this can be all or part of an allocation made by uvm_swap_alloc
1545 * => we lock uvm.swap_data_lock
1546 */
1547 void
1548 uvm_swap_free(int startslot, int nslots)
1549 {
1550 struct swapdev *sdp;
1551 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1552
1553 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1554 startslot, 0, 0);
1555
1556 /*
1557 * ignore attempts to free the "bad" slot.
1558 */
1559
1560 if (startslot == SWSLOT_BAD) {
1561 return;
1562 }
1563
1564 /*
1565 * convert drum slot offset back to sdp, free the blocks
1566 * in the extent, and return. must hold pri lock to do
1567 * lookup and access the extent.
1568 */
1569
1570 simple_lock(&uvm.swap_data_lock);
1571 sdp = swapdrum_getsdp(startslot);
1572 KASSERT(uvmexp.nswapdev >= 1);
1573 KASSERT(sdp != NULL);
1574 KASSERT(sdp->swd_npginuse >= nslots);
1575 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1576 sdp->swd_npginuse -= nslots;
1577 uvmexp.swpginuse -= nslots;
1578 simple_unlock(&uvm.swap_data_lock);
1579 }
1580
1581 /*
1582 * uvm_swap_put: put any number of pages into a contig place on swap
1583 *
1584 * => can be sync or async
1585 */
1586
1587 int
1588 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1589 {
1590 int error;
1591
1592 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1593 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1594 return error;
1595 }
1596
1597 /*
1598 * uvm_swap_get: get a single page from swap
1599 *
1600 * => usually a sync op (from fault)
1601 */
1602
1603 int
1604 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1605 {
1606 int error;
1607
1608 uvmexp.nswget++;
1609 KASSERT(flags & PGO_SYNCIO);
1610 if (swslot == SWSLOT_BAD) {
1611 return EIO;
1612 }
1613
1614 error = uvm_swap_io(&page, swslot, 1, B_READ |
1615 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1616 if (error == 0) {
1617
1618 /*
1619 * this page is no longer only in swap.
1620 */
1621
1622 simple_lock(&uvm.swap_data_lock);
1623 KASSERT(uvmexp.swpgonly > 0);
1624 uvmexp.swpgonly--;
1625 simple_unlock(&uvm.swap_data_lock);
1626 }
1627 return error;
1628 }
1629
1630 /*
1631 * uvm_swap_io: do an i/o operation to swap
1632 */
1633
1634 static int
1635 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1636 {
1637 daddr_t startblk;
1638 struct buf *bp;
1639 vaddr_t kva;
1640 int error, s, mapinflags;
1641 boolean_t write, async;
1642 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1643
1644 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1645 startslot, npages, flags, 0);
1646
1647 write = (flags & B_READ) == 0;
1648 async = (flags & B_ASYNC) != 0;
1649
1650 /*
1651 * convert starting drum slot to block number
1652 */
1653
1654 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1655
1656 /*
1657 * first, map the pages into the kernel.
1658 */
1659
1660 mapinflags = !write ?
1661 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1662 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1663 kva = uvm_pagermapin(pps, npages, mapinflags);
1664
1665 /*
1666 * now allocate a buf for the i/o.
1667 */
1668
1669 bp = getiobuf();
1670
1671 /*
1672 * fill in the bp/sbp. we currently route our i/o through
1673 * /dev/drum's vnode [swapdev_vp].
1674 */
1675
1676 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1677 bp->b_proc = &proc0; /* XXX */
1678 bp->b_vnbufs.le_next = NOLIST;
1679 bp->b_data = (caddr_t)kva;
1680 bp->b_blkno = startblk;
1681 bp->b_vp = swapdev_vp;
1682 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1683
1684 /*
1685 * bump v_numoutput (counter of number of active outputs).
1686 */
1687
1688 if (write) {
1689 s = splbio();
1690 V_INCR_NUMOUTPUT(swapdev_vp);
1691 splx(s);
1692 }
1693
1694 /*
1695 * for async ops we must set up the iodone handler.
1696 */
1697
1698 if (async) {
1699 bp->b_flags |= B_CALL;
1700 bp->b_iodone = uvm_aio_biodone;
1701 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1702 if (curproc == uvm.pagedaemon_proc)
1703 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1704 else
1705 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1706 } else {
1707 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1708 }
1709 UVMHIST_LOG(pdhist,
1710 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1711 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1712
1713 /*
1714 * now we start the I/O, and if async, return.
1715 */
1716
1717 VOP_STRATEGY(swapdev_vp, bp);
1718 if (async)
1719 return 0;
1720
1721 /*
1722 * must be sync i/o. wait for it to finish
1723 */
1724
1725 error = biowait(bp);
1726
1727 /*
1728 * kill the pager mapping
1729 */
1730
1731 uvm_pagermapout(kva, npages);
1732
1733 /*
1734 * now dispose of the buf and we're done.
1735 */
1736
1737 s = splbio();
1738 if (write)
1739 vwakeup(bp);
1740 putiobuf(bp);
1741 splx(s);
1742 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1743 return (error);
1744 }
1745