uvm_swap.c revision 1.110 1 /* $NetBSD: uvm_swap.c,v 1.110 2006/10/22 09:44:21 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.110 2006/10/22 09:44:21 yamt Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/vnode.h>
53 #include <sys/file.h>
54 #include <sys/vmem.h>
55 #include <sys/kmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap arena.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187
188 #define getvndxfer(vnx) do { \
189 int sp = splbio(); \
190 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
191 splx(sp); \
192 } while (/*CONSTCOND*/ 0)
193
194 #define putvndxfer(vnx) { \
195 pool_put(&vndxfer_pool, (void *)(vnx)); \
196 }
197
198 #define getvndbuf(vbp) do { \
199 int sp = splbio(); \
200 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
201 splx(sp); \
202 } while (/*CONSTCOND*/ 0)
203
204 #define putvndbuf(vbp) { \
205 pool_put(&vndbuf_pool, (void *)(vbp)); \
206 }
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static struct lock swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct lwp *, struct swapdev *);
231 static int swap_off(struct lwp *, struct swapdev *);
232
233 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
234
235 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
236 static void sw_reg_iodone(struct buf *);
237 static void sw_reg_start(struct swapdev *);
238
239 static int uvm_swap_io(struct vm_page **, int, int, int);
240
241 /*
242 * uvm_swap_init: init the swap system data structures and locks
243 *
244 * => called at boot time from init_main.c after the filesystems
245 * are brought up (which happens after uvm_init())
246 */
247 void
248 uvm_swap_init(void)
249 {
250 UVMHIST_FUNC("uvm_swap_init");
251
252 UVMHIST_CALLED(pdhist);
253 /*
254 * first, init the swap list, its counter, and its lock.
255 * then get a handle on the vnode for /dev/drum by using
256 * the its dev_t number ("swapdev", from MD conf.c).
257 */
258
259 LIST_INIT(&swap_priority);
260 uvmexp.nswapdev = 0;
261 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
262 simple_lock_init(&uvm.swap_data_lock);
263
264 if (bdevvp(swapdev, &swapdev_vp))
265 panic("uvm_swap_init: can't get vnode for swap device");
266
267 /*
268 * create swap block resource map to map /dev/drum. the range
269 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
270 * that block 0 is reserved (used to indicate an allocation
271 * failure, or no allocation).
272 */
273 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
274 VM_NOSLEEP);
275 if (swapmap == 0)
276 panic("uvm_swap_init: extent_create failed");
277
278 /*
279 * done!
280 */
281 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
282 }
283
284 /*
285 * swaplist functions: functions that operate on the list of swap
286 * devices on the system.
287 */
288
289 /*
290 * swaplist_insert: insert swap device "sdp" into the global list
291 *
292 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
293 * => caller must provide a newly malloc'd swappri structure (we will
294 * FREE it if we don't need it... this it to prevent malloc blocking
295 * here while adding swap)
296 */
297 static void
298 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
299 {
300 struct swappri *spp, *pspp;
301 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
302
303 /*
304 * find entry at or after which to insert the new device.
305 */
306 pspp = NULL;
307 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
308 if (priority <= spp->spi_priority)
309 break;
310 pspp = spp;
311 }
312
313 /*
314 * new priority?
315 */
316 if (spp == NULL || spp->spi_priority != priority) {
317 spp = newspp; /* use newspp! */
318 UVMHIST_LOG(pdhist, "created new swappri = %d",
319 priority, 0, 0, 0);
320
321 spp->spi_priority = priority;
322 CIRCLEQ_INIT(&spp->spi_swapdev);
323
324 if (pspp)
325 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
326 else
327 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
328 } else {
329 /* we don't need a new priority structure, free it */
330 kmem_free(newspp, sizeof(*newspp));
331 }
332
333 /*
334 * priority found (or created). now insert on the priority's
335 * circleq list and bump the total number of swapdevs.
336 */
337 sdp->swd_priority = priority;
338 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
339 uvmexp.nswapdev++;
340 }
341
342 /*
343 * swaplist_find: find and optionally remove a swap device from the
344 * global list.
345 *
346 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
347 * => we return the swapdev we found (and removed)
348 */
349 static struct swapdev *
350 swaplist_find(struct vnode *vp, boolean_t remove)
351 {
352 struct swapdev *sdp;
353 struct swappri *spp;
354
355 /*
356 * search the lists for the requested vp
357 */
358
359 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
360 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
361 if (sdp->swd_vp == vp) {
362 if (remove) {
363 CIRCLEQ_REMOVE(&spp->spi_swapdev,
364 sdp, swd_next);
365 uvmexp.nswapdev--;
366 }
367 return(sdp);
368 }
369 }
370 }
371 return (NULL);
372 }
373
374
375 /*
376 * swaplist_trim: scan priority list for empty priority entries and kill
377 * them.
378 *
379 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
380 */
381 static void
382 swaplist_trim(void)
383 {
384 struct swappri *spp, *nextspp;
385
386 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
387 nextspp = LIST_NEXT(spp, spi_swappri);
388 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
389 (void *)&spp->spi_swapdev)
390 continue;
391 LIST_REMOVE(spp, spi_swappri);
392 kmem_free(spp, sizeof(*spp));
393 }
394 }
395
396 /*
397 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
398 * to the "swapdev" that maps that section of the drum.
399 *
400 * => each swapdev takes one big contig chunk of the drum
401 * => caller must hold uvm.swap_data_lock
402 */
403 static struct swapdev *
404 swapdrum_getsdp(int pgno)
405 {
406 struct swapdev *sdp;
407 struct swappri *spp;
408
409 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
410 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
411 if (sdp->swd_flags & SWF_FAKE)
412 continue;
413 if (pgno >= sdp->swd_drumoffset &&
414 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
415 return sdp;
416 }
417 }
418 }
419 return NULL;
420 }
421
422
423 /*
424 * sys_swapctl: main entry point for swapctl(2) system call
425 * [with two helper functions: swap_on and swap_off]
426 */
427 int
428 sys_swapctl(struct lwp *l, void *v, register_t *retval)
429 {
430 struct sys_swapctl_args /* {
431 syscallarg(int) cmd;
432 syscallarg(void *) arg;
433 syscallarg(int) misc;
434 } */ *uap = (struct sys_swapctl_args *)v;
435 struct vnode *vp;
436 struct nameidata nd;
437 struct swappri *spp;
438 struct swapdev *sdp;
439 struct swapent *sep;
440 #define SWAP_PATH_MAX (PATH_MAX + 1)
441 char *userpath;
442 size_t len;
443 int error, misc;
444 int priority;
445 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
446
447 misc = SCARG(uap, misc);
448
449 /*
450 * ensure serialized syscall access by grabbing the swap_syscall_lock
451 */
452 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
453
454 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
455 /*
456 * we handle the non-priv NSWAP and STATS request first.
457 *
458 * SWAP_NSWAP: return number of config'd swap devices
459 * [can also be obtained with uvmexp sysctl]
460 */
461 if (SCARG(uap, cmd) == SWAP_NSWAP) {
462 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
463 0, 0, 0);
464 *retval = uvmexp.nswapdev;
465 error = 0;
466 goto out;
467 }
468
469 /*
470 * SWAP_STATS: get stats on current # of configured swap devs
471 *
472 * note that the swap_priority list can't change as long
473 * as we are holding the swap_syscall_lock. we don't want
474 * to grab the uvm.swap_data_lock because we may fault&sleep during
475 * copyout() and we don't want to be holding that lock then!
476 */
477 if (SCARG(uap, cmd) == SWAP_STATS
478 #if defined(COMPAT_13)
479 || SCARG(uap, cmd) == SWAP_OSTATS
480 #endif
481 ) {
482 if ((size_t)misc > (size_t)uvmexp.nswapdev)
483 misc = uvmexp.nswapdev;
484 #if defined(COMPAT_13)
485 if (SCARG(uap, cmd) == SWAP_OSTATS)
486 len = sizeof(struct oswapent) * misc;
487 else
488 #endif
489 len = sizeof(struct swapent) * misc;
490 sep = kmem_alloc(len, KM_SLEEP);
491
492 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
493 error = copyout(sep, SCARG(uap, arg), len);
494
495 kmem_free(sep, len);
496 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
497 goto out;
498 }
499 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
500 dev_t *devp = (dev_t *)SCARG(uap, arg);
501
502 error = copyout(&dumpdev, devp, sizeof(dumpdev));
503 goto out;
504 }
505
506 /*
507 * all other requests require superuser privs. verify.
508 */
509 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
510 0, NULL, NULL, NULL)))
511 goto out;
512
513 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
514 /* drop the current dump device */
515 dumpdev = NODEV;
516 cpu_dumpconf();
517 goto out;
518 }
519
520 /*
521 * at this point we expect a path name in arg. we will
522 * use namei() to gain a vnode reference (vref), and lock
523 * the vnode (VOP_LOCK).
524 *
525 * XXX: a NULL arg means use the root vnode pointer (e.g. for
526 * miniroot)
527 */
528 if (SCARG(uap, arg) == NULL) {
529 vp = rootvp; /* miniroot */
530 if (vget(vp, LK_EXCLUSIVE)) {
531 error = EBUSY;
532 goto out;
533 }
534 if (SCARG(uap, cmd) == SWAP_ON &&
535 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
536 panic("swapctl: miniroot copy failed");
537 } else {
538 int space;
539 char *where;
540
541 if (SCARG(uap, cmd) == SWAP_ON) {
542 if ((error = copyinstr(SCARG(uap, arg), userpath,
543 SWAP_PATH_MAX, &len)))
544 goto out;
545 space = UIO_SYSSPACE;
546 where = userpath;
547 } else {
548 space = UIO_USERSPACE;
549 where = (char *)SCARG(uap, arg);
550 }
551 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
552 if ((error = namei(&nd)))
553 goto out;
554 vp = nd.ni_vp;
555 }
556 /* note: "vp" is referenced and locked */
557
558 error = 0; /* assume no error */
559 switch(SCARG(uap, cmd)) {
560
561 case SWAP_DUMPDEV:
562 if (vp->v_type != VBLK) {
563 error = ENOTBLK;
564 break;
565 }
566 if (bdevsw_lookup(vp->v_rdev))
567 dumpdev = vp->v_rdev;
568 else
569 dumpdev = NODEV;
570 cpu_dumpconf();
571 break;
572
573 case SWAP_CTL:
574 /*
575 * get new priority, remove old entry (if any) and then
576 * reinsert it in the correct place. finally, prune out
577 * any empty priority structures.
578 */
579 priority = SCARG(uap, misc);
580 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
581 simple_lock(&uvm.swap_data_lock);
582 if ((sdp = swaplist_find(vp, 1)) == NULL) {
583 error = ENOENT;
584 } else {
585 swaplist_insert(sdp, spp, priority);
586 swaplist_trim();
587 }
588 simple_unlock(&uvm.swap_data_lock);
589 if (error)
590 kmem_free(spp, sizeof(*spp));
591 break;
592
593 case SWAP_ON:
594
595 /*
596 * check for duplicates. if none found, then insert a
597 * dummy entry on the list to prevent someone else from
598 * trying to enable this device while we are working on
599 * it.
600 */
601
602 priority = SCARG(uap, misc);
603 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
604 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
605 sdp->swd_flags = SWF_FAKE;
606 sdp->swd_vp = vp;
607 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
608 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
609 simple_lock(&uvm.swap_data_lock);
610 if (swaplist_find(vp, 0) != NULL) {
611 error = EBUSY;
612 simple_unlock(&uvm.swap_data_lock);
613 bufq_free(sdp->swd_tab);
614 kmem_free(sdp, sizeof(*sdp));
615 kmem_free(spp, sizeof(*spp));
616 break;
617 }
618 swaplist_insert(sdp, spp, priority);
619 simple_unlock(&uvm.swap_data_lock);
620
621 sdp->swd_pathlen = len;
622 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
623 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
624 panic("swapctl: copystr");
625
626 /*
627 * we've now got a FAKE placeholder in the swap list.
628 * now attempt to enable swap on it. if we fail, undo
629 * what we've done and kill the fake entry we just inserted.
630 * if swap_on is a success, it will clear the SWF_FAKE flag
631 */
632
633 if ((error = swap_on(l, sdp)) != 0) {
634 simple_lock(&uvm.swap_data_lock);
635 (void) swaplist_find(vp, 1); /* kill fake entry */
636 swaplist_trim();
637 simple_unlock(&uvm.swap_data_lock);
638 bufq_free(sdp->swd_tab);
639 kmem_free(sdp->swd_path, sdp->swd_pathlen);
640 kmem_free(sdp, sizeof(*sdp));
641 break;
642 }
643 break;
644
645 case SWAP_OFF:
646 simple_lock(&uvm.swap_data_lock);
647 if ((sdp = swaplist_find(vp, 0)) == NULL) {
648 simple_unlock(&uvm.swap_data_lock);
649 error = ENXIO;
650 break;
651 }
652
653 /*
654 * If a device isn't in use or enabled, we
655 * can't stop swapping from it (again).
656 */
657 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
658 simple_unlock(&uvm.swap_data_lock);
659 error = EBUSY;
660 break;
661 }
662
663 /*
664 * do the real work.
665 */
666 error = swap_off(l, sdp);
667 break;
668
669 default:
670 error = EINVAL;
671 }
672
673 /*
674 * done! release the ref gained by namei() and unlock.
675 */
676 vput(vp);
677
678 out:
679 kmem_free(userpath, SWAP_PATH_MAX);
680 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
681
682 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
683 return (error);
684 }
685
686 /*
687 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
688 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
689 * emulation to use it directly without going through sys_swapctl().
690 * The problem with using sys_swapctl() there is that it involves
691 * copying the swapent array to the stackgap, and this array's size
692 * is not known at build time. Hence it would not be possible to
693 * ensure it would fit in the stackgap in any case.
694 */
695 void
696 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
697 {
698
699 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
700 uvm_swap_stats_locked(cmd, sep, sec, retval);
701 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
702 }
703
704 static void
705 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
706 {
707 struct swappri *spp;
708 struct swapdev *sdp;
709 int count = 0;
710
711 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
712 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
713 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
714 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
715 /*
716 * backwards compatibility for system call.
717 * note that we use 'struct oswapent' as an
718 * overlay into both 'struct swapdev' and
719 * the userland 'struct swapent', as we
720 * want to retain backwards compatibility
721 * with NetBSD 1.3.
722 */
723 sdp->swd_ose.ose_inuse =
724 btodb((uint64_t)sdp->swd_npginuse <<
725 PAGE_SHIFT);
726 (void)memcpy(sep, &sdp->swd_ose,
727 sizeof(struct oswapent));
728
729 /* now copy out the path if necessary */
730 #if !defined(COMPAT_13)
731 (void) cmd;
732 #endif
733 #if defined(COMPAT_13)
734 if (cmd == SWAP_STATS)
735 #endif
736 (void)memcpy(&sep->se_path, sdp->swd_path,
737 sdp->swd_pathlen);
738
739 count++;
740 #if defined(COMPAT_13)
741 if (cmd == SWAP_OSTATS)
742 sep = (struct swapent *)
743 ((struct oswapent *)sep + 1);
744 else
745 #endif
746 sep++;
747 }
748 }
749
750 *retval = count;
751 return;
752 }
753
754 /*
755 * swap_on: attempt to enable a swapdev for swapping. note that the
756 * swapdev is already on the global list, but disabled (marked
757 * SWF_FAKE).
758 *
759 * => we avoid the start of the disk (to protect disk labels)
760 * => we also avoid the miniroot, if we are swapping to root.
761 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
762 * if needed.
763 */
764 static int
765 swap_on(struct lwp *l, struct swapdev *sdp)
766 {
767 struct vnode *vp;
768 int error, npages, nblocks, size;
769 long addr;
770 u_long result;
771 struct vattr va;
772 #ifdef NFS
773 extern int (**nfsv2_vnodeop_p)(void *);
774 #endif /* NFS */
775 const struct bdevsw *bdev;
776 dev_t dev;
777 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
778
779 /*
780 * we want to enable swapping on sdp. the swd_vp contains
781 * the vnode we want (locked and ref'd), and the swd_dev
782 * contains the dev_t of the file, if it a block device.
783 */
784
785 vp = sdp->swd_vp;
786 dev = sdp->swd_dev;
787
788 /*
789 * open the swap file (mostly useful for block device files to
790 * let device driver know what is up).
791 *
792 * we skip the open/close for root on swap because the root
793 * has already been opened when root was mounted (mountroot).
794 */
795 if (vp != rootvp) {
796 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
797 return (error);
798 }
799
800 /* XXX this only works for block devices */
801 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
802
803 /*
804 * we now need to determine the size of the swap area. for
805 * block specials we can call the d_psize function.
806 * for normal files, we must stat [get attrs].
807 *
808 * we put the result in nblks.
809 * for normal files, we also want the filesystem block size
810 * (which we get with statfs).
811 */
812 switch (vp->v_type) {
813 case VBLK:
814 bdev = bdevsw_lookup(dev);
815 if (bdev == NULL || bdev->d_psize == NULL ||
816 (nblocks = (*bdev->d_psize)(dev)) == -1) {
817 error = ENXIO;
818 goto bad;
819 }
820 break;
821
822 case VREG:
823 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
824 goto bad;
825 nblocks = (int)btodb(va.va_size);
826 if ((error =
827 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
828 goto bad;
829
830 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
831 /*
832 * limit the max # of outstanding I/O requests we issue
833 * at any one time. take it easy on NFS servers.
834 */
835 #ifdef NFS
836 if (vp->v_op == nfsv2_vnodeop_p)
837 sdp->swd_maxactive = 2; /* XXX */
838 else
839 #endif /* NFS */
840 sdp->swd_maxactive = 8; /* XXX */
841 break;
842
843 default:
844 error = ENXIO;
845 goto bad;
846 }
847
848 /*
849 * save nblocks in a safe place and convert to pages.
850 */
851
852 sdp->swd_ose.ose_nblks = nblocks;
853 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
854
855 /*
856 * for block special files, we want to make sure that leave
857 * the disklabel and bootblocks alone, so we arrange to skip
858 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
859 * note that because of this the "size" can be less than the
860 * actual number of blocks on the device.
861 */
862 if (vp->v_type == VBLK) {
863 /* we use pages 1 to (size - 1) [inclusive] */
864 size = npages - 1;
865 addr = 1;
866 } else {
867 /* we use pages 0 to (size - 1) [inclusive] */
868 size = npages;
869 addr = 0;
870 }
871
872 /*
873 * make sure we have enough blocks for a reasonable sized swap
874 * area. we want at least one page.
875 */
876
877 if (size < 1) {
878 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
879 error = EINVAL;
880 goto bad;
881 }
882
883 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
884
885 /*
886 * now we need to allocate an extent to manage this swap device
887 */
888
889 sdp->swd_blist = blist_create(npages);
890 /* mark all expect the `saved' region free. */
891 blist_free(sdp->swd_blist, addr, size);
892
893 /*
894 * if the vnode we are swapping to is the root vnode
895 * (i.e. we are swapping to the miniroot) then we want
896 * to make sure we don't overwrite it. do a statfs to
897 * find its size and skip over it.
898 */
899 if (vp == rootvp) {
900 struct mount *mp;
901 struct statvfs *sp;
902 int rootblocks, rootpages;
903
904 mp = rootvnode->v_mount;
905 sp = &mp->mnt_stat;
906 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
907 /*
908 * XXX: sp->f_blocks isn't the total number of
909 * blocks in the filesystem, it's the number of
910 * data blocks. so, our rootblocks almost
911 * definitely underestimates the total size
912 * of the filesystem - how badly depends on the
913 * details of the filesystem type. there isn't
914 * an obvious way to deal with this cleanly
915 * and perfectly, so for now we just pad our
916 * rootblocks estimate with an extra 5 percent.
917 */
918 rootblocks += (rootblocks >> 5) +
919 (rootblocks >> 6) +
920 (rootblocks >> 7);
921 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
922 if (rootpages > size)
923 panic("swap_on: miniroot larger than swap?");
924
925 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
926 panic("swap_on: unable to preserve miniroot");
927 }
928
929 size -= rootpages;
930 printf("Preserved %d pages of miniroot ", rootpages);
931 printf("leaving %d pages of swap\n", size);
932 }
933
934 /*
935 * add a ref to vp to reflect usage as a swap device.
936 */
937 vref(vp);
938
939 /*
940 * now add the new swapdev to the drum and enable.
941 */
942 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
943 if (result == 0)
944 panic("swapdrum_add");
945
946 sdp->swd_drumoffset = (int)result;
947 sdp->swd_drumsize = npages;
948 sdp->swd_npages = size;
949 simple_lock(&uvm.swap_data_lock);
950 sdp->swd_flags &= ~SWF_FAKE; /* going live */
951 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
952 uvmexp.swpages += size;
953 uvmexp.swpgavail += size;
954 simple_unlock(&uvm.swap_data_lock);
955 return (0);
956
957 /*
958 * failure: clean up and return error.
959 */
960
961 bad:
962 if (sdp->swd_blist) {
963 blist_destroy(sdp->swd_blist);
964 }
965 if (vp != rootvp) {
966 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
967 }
968 return (error);
969 }
970
971 /*
972 * swap_off: stop swapping on swapdev
973 *
974 * => swap data should be locked, we will unlock.
975 */
976 static int
977 swap_off(struct lwp *l, struct swapdev *sdp)
978 {
979 int npages = sdp->swd_npages;
980 int error = 0;
981
982 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
983 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
984
985 /* disable the swap area being removed */
986 sdp->swd_flags &= ~SWF_ENABLE;
987 uvmexp.swpgavail -= npages;
988 simple_unlock(&uvm.swap_data_lock);
989
990 /*
991 * the idea is to find all the pages that are paged out to this
992 * device, and page them all in. in uvm, swap-backed pageable
993 * memory can take two forms: aobjs and anons. call the
994 * swapoff hook for each subsystem to bring in pages.
995 */
996
997 if (uao_swap_off(sdp->swd_drumoffset,
998 sdp->swd_drumoffset + sdp->swd_drumsize) ||
999 amap_swap_off(sdp->swd_drumoffset,
1000 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1001 error = ENOMEM;
1002 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1003 error = EBUSY;
1004 }
1005
1006 if (error) {
1007 simple_lock(&uvm.swap_data_lock);
1008 sdp->swd_flags |= SWF_ENABLE;
1009 uvmexp.swpgavail += npages;
1010 simple_unlock(&uvm.swap_data_lock);
1011
1012 return error;
1013 }
1014
1015 /*
1016 * done with the vnode.
1017 * drop our ref on the vnode before calling VOP_CLOSE()
1018 * so that spec_close() can tell if this is the last close.
1019 */
1020 vrele(sdp->swd_vp);
1021 if (sdp->swd_vp != rootvp) {
1022 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1023 }
1024
1025 simple_lock(&uvm.swap_data_lock);
1026 uvmexp.swpages -= npages;
1027 uvmexp.swpginuse -= sdp->swd_npgbad;
1028
1029 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1030 panic("swap_off: swapdev not in list");
1031 swaplist_trim();
1032 simple_unlock(&uvm.swap_data_lock);
1033
1034 /*
1035 * free all resources!
1036 */
1037 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1038 blist_destroy(sdp->swd_blist);
1039 bufq_free(sdp->swd_tab);
1040 kmem_free(sdp, sizeof(*sdp));
1041 return (0);
1042 }
1043
1044 /*
1045 * /dev/drum interface and i/o functions
1046 */
1047
1048 /*
1049 * swstrategy: perform I/O on the drum
1050 *
1051 * => we must map the i/o request from the drum to the correct swapdev.
1052 */
1053 static void
1054 swstrategy(struct buf *bp)
1055 {
1056 struct swapdev *sdp;
1057 struct vnode *vp;
1058 int s, pageno, bn;
1059 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1060
1061 /*
1062 * convert block number to swapdev. note that swapdev can't
1063 * be yanked out from under us because we are holding resources
1064 * in it (i.e. the blocks we are doing I/O on).
1065 */
1066 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1067 simple_lock(&uvm.swap_data_lock);
1068 sdp = swapdrum_getsdp(pageno);
1069 simple_unlock(&uvm.swap_data_lock);
1070 if (sdp == NULL) {
1071 bp->b_error = EINVAL;
1072 bp->b_flags |= B_ERROR;
1073 biodone(bp);
1074 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1075 return;
1076 }
1077
1078 /*
1079 * convert drum page number to block number on this swapdev.
1080 */
1081
1082 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1083 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1084
1085 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1086 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1087 sdp->swd_drumoffset, bn, bp->b_bcount);
1088
1089 /*
1090 * for block devices we finish up here.
1091 * for regular files we have to do more work which we delegate
1092 * to sw_reg_strategy().
1093 */
1094
1095 switch (sdp->swd_vp->v_type) {
1096 default:
1097 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1098
1099 case VBLK:
1100
1101 /*
1102 * must convert "bp" from an I/O on /dev/drum to an I/O
1103 * on the swapdev (sdp).
1104 */
1105 s = splbio();
1106 bp->b_blkno = bn; /* swapdev block number */
1107 vp = sdp->swd_vp; /* swapdev vnode pointer */
1108 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1109
1110 /*
1111 * if we are doing a write, we have to redirect the i/o on
1112 * drum's v_numoutput counter to the swapdevs.
1113 */
1114 if ((bp->b_flags & B_READ) == 0) {
1115 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1116 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1117 }
1118
1119 /*
1120 * finally plug in swapdev vnode and start I/O
1121 */
1122 bp->b_vp = vp;
1123 splx(s);
1124 VOP_STRATEGY(vp, bp);
1125 return;
1126
1127 case VREG:
1128 /*
1129 * delegate to sw_reg_strategy function.
1130 */
1131 sw_reg_strategy(sdp, bp, bn);
1132 return;
1133 }
1134 /* NOTREACHED */
1135 }
1136
1137 /*
1138 * swread: the read function for the drum (just a call to physio)
1139 */
1140 /*ARGSUSED*/
1141 static int
1142 swread(dev_t dev, struct uio *uio, int ioflag __unused)
1143 {
1144 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1145
1146 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1147 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1148 }
1149
1150 /*
1151 * swwrite: the write function for the drum (just a call to physio)
1152 */
1153 /*ARGSUSED*/
1154 static int
1155 swwrite(dev_t dev, struct uio *uio, int ioflag __unused)
1156 {
1157 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1158
1159 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1160 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1161 }
1162
1163 const struct bdevsw swap_bdevsw = {
1164 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1165 };
1166
1167 const struct cdevsw swap_cdevsw = {
1168 nullopen, nullclose, swread, swwrite, noioctl,
1169 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1170 };
1171
1172 /*
1173 * sw_reg_strategy: handle swap i/o to regular files
1174 */
1175 static void
1176 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1177 {
1178 struct vnode *vp;
1179 struct vndxfer *vnx;
1180 daddr_t nbn;
1181 caddr_t addr;
1182 off_t byteoff;
1183 int s, off, nra, error, sz, resid;
1184 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1185
1186 /*
1187 * allocate a vndxfer head for this transfer and point it to
1188 * our buffer.
1189 */
1190 getvndxfer(vnx);
1191 vnx->vx_flags = VX_BUSY;
1192 vnx->vx_error = 0;
1193 vnx->vx_pending = 0;
1194 vnx->vx_bp = bp;
1195 vnx->vx_sdp = sdp;
1196
1197 /*
1198 * setup for main loop where we read filesystem blocks into
1199 * our buffer.
1200 */
1201 error = 0;
1202 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1203 addr = bp->b_data; /* current position in buffer */
1204 byteoff = dbtob((uint64_t)bn);
1205
1206 for (resid = bp->b_resid; resid; resid -= sz) {
1207 struct vndbuf *nbp;
1208
1209 /*
1210 * translate byteoffset into block number. return values:
1211 * vp = vnode of underlying device
1212 * nbn = new block number (on underlying vnode dev)
1213 * nra = num blocks we can read-ahead (excludes requested
1214 * block)
1215 */
1216 nra = 0;
1217 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1218 &vp, &nbn, &nra);
1219
1220 if (error == 0 && nbn == (daddr_t)-1) {
1221 /*
1222 * this used to just set error, but that doesn't
1223 * do the right thing. Instead, it causes random
1224 * memory errors. The panic() should remain until
1225 * this condition doesn't destabilize the system.
1226 */
1227 #if 1
1228 panic("sw_reg_strategy: swap to sparse file");
1229 #else
1230 error = EIO; /* failure */
1231 #endif
1232 }
1233
1234 /*
1235 * punt if there was an error or a hole in the file.
1236 * we must wait for any i/o ops we have already started
1237 * to finish before returning.
1238 *
1239 * XXX we could deal with holes here but it would be
1240 * a hassle (in the write case).
1241 */
1242 if (error) {
1243 s = splbio();
1244 vnx->vx_error = error; /* pass error up */
1245 goto out;
1246 }
1247
1248 /*
1249 * compute the size ("sz") of this transfer (in bytes).
1250 */
1251 off = byteoff % sdp->swd_bsize;
1252 sz = (1 + nra) * sdp->swd_bsize - off;
1253 if (sz > resid)
1254 sz = resid;
1255
1256 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1257 "vp %p/%p offset 0x%x/0x%x",
1258 sdp->swd_vp, vp, byteoff, nbn);
1259
1260 /*
1261 * now get a buf structure. note that the vb_buf is
1262 * at the front of the nbp structure so that you can
1263 * cast pointers between the two structure easily.
1264 */
1265 getvndbuf(nbp);
1266 BUF_INIT(&nbp->vb_buf);
1267 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1268 nbp->vb_buf.b_bcount = sz;
1269 nbp->vb_buf.b_bufsize = sz;
1270 nbp->vb_buf.b_error = 0;
1271 nbp->vb_buf.b_data = addr;
1272 nbp->vb_buf.b_lblkno = 0;
1273 nbp->vb_buf.b_blkno = nbn + btodb(off);
1274 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1275 nbp->vb_buf.b_iodone = sw_reg_iodone;
1276 nbp->vb_buf.b_vp = vp;
1277 if (vp->v_type == VBLK) {
1278 nbp->vb_buf.b_dev = vp->v_rdev;
1279 }
1280
1281 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1282
1283 /*
1284 * Just sort by block number
1285 */
1286 s = splbio();
1287 if (vnx->vx_error != 0) {
1288 putvndbuf(nbp);
1289 goto out;
1290 }
1291 vnx->vx_pending++;
1292
1293 /* sort it in and start I/O if we are not over our limit */
1294 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1295 sw_reg_start(sdp);
1296 splx(s);
1297
1298 /*
1299 * advance to the next I/O
1300 */
1301 byteoff += sz;
1302 addr += sz;
1303 }
1304
1305 s = splbio();
1306
1307 out: /* Arrive here at splbio */
1308 vnx->vx_flags &= ~VX_BUSY;
1309 if (vnx->vx_pending == 0) {
1310 if (vnx->vx_error != 0) {
1311 bp->b_error = vnx->vx_error;
1312 bp->b_flags |= B_ERROR;
1313 }
1314 putvndxfer(vnx);
1315 biodone(bp);
1316 }
1317 splx(s);
1318 }
1319
1320 /*
1321 * sw_reg_start: start an I/O request on the requested swapdev
1322 *
1323 * => reqs are sorted by b_rawblkno (above)
1324 */
1325 static void
1326 sw_reg_start(struct swapdev *sdp)
1327 {
1328 struct buf *bp;
1329 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1330
1331 /* recursion control */
1332 if ((sdp->swd_flags & SWF_BUSY) != 0)
1333 return;
1334
1335 sdp->swd_flags |= SWF_BUSY;
1336
1337 while (sdp->swd_active < sdp->swd_maxactive) {
1338 bp = BUFQ_GET(sdp->swd_tab);
1339 if (bp == NULL)
1340 break;
1341 sdp->swd_active++;
1342
1343 UVMHIST_LOG(pdhist,
1344 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1345 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1346 if ((bp->b_flags & B_READ) == 0)
1347 V_INCR_NUMOUTPUT(bp->b_vp);
1348
1349 VOP_STRATEGY(bp->b_vp, bp);
1350 }
1351 sdp->swd_flags &= ~SWF_BUSY;
1352 }
1353
1354 /*
1355 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1356 *
1357 * => note that we can recover the vndbuf struct by casting the buf ptr
1358 */
1359 static void
1360 sw_reg_iodone(struct buf *bp)
1361 {
1362 struct vndbuf *vbp = (struct vndbuf *) bp;
1363 struct vndxfer *vnx = vbp->vb_xfer;
1364 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1365 struct swapdev *sdp = vnx->vx_sdp;
1366 int s, resid, error;
1367 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1368
1369 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1370 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1371 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1372 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1373
1374 /*
1375 * protect vbp at splbio and update.
1376 */
1377
1378 s = splbio();
1379 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1380 pbp->b_resid -= resid;
1381 vnx->vx_pending--;
1382
1383 if (vbp->vb_buf.b_flags & B_ERROR) {
1384 /* pass error upward */
1385 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1386 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1387 vnx->vx_error = error;
1388 }
1389
1390 /*
1391 * kill vbp structure
1392 */
1393 putvndbuf(vbp);
1394
1395 /*
1396 * wrap up this transaction if it has run to completion or, in
1397 * case of an error, when all auxiliary buffers have returned.
1398 */
1399 if (vnx->vx_error != 0) {
1400 /* pass error upward */
1401 pbp->b_flags |= B_ERROR;
1402 pbp->b_error = vnx->vx_error;
1403 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1404 putvndxfer(vnx);
1405 biodone(pbp);
1406 }
1407 } else if (pbp->b_resid == 0) {
1408 KASSERT(vnx->vx_pending == 0);
1409 if ((vnx->vx_flags & VX_BUSY) == 0) {
1410 UVMHIST_LOG(pdhist, " iodone error=%d !",
1411 pbp, vnx->vx_error, 0, 0);
1412 putvndxfer(vnx);
1413 biodone(pbp);
1414 }
1415 }
1416
1417 /*
1418 * done! start next swapdev I/O if one is pending
1419 */
1420 sdp->swd_active--;
1421 sw_reg_start(sdp);
1422 splx(s);
1423 }
1424
1425
1426 /*
1427 * uvm_swap_alloc: allocate space on swap
1428 *
1429 * => allocation is done "round robin" down the priority list, as we
1430 * allocate in a priority we "rotate" the circle queue.
1431 * => space can be freed with uvm_swap_free
1432 * => we return the page slot number in /dev/drum (0 == invalid slot)
1433 * => we lock uvm.swap_data_lock
1434 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1435 */
1436 int
1437 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1438 {
1439 struct swapdev *sdp;
1440 struct swappri *spp;
1441 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1442
1443 /*
1444 * no swap devices configured yet? definite failure.
1445 */
1446 if (uvmexp.nswapdev < 1)
1447 return 0;
1448
1449 /*
1450 * lock data lock, convert slots into blocks, and enter loop
1451 */
1452 simple_lock(&uvm.swap_data_lock);
1453
1454 ReTry: /* XXXMRG */
1455 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1456 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1457 uint64_t result;
1458
1459 /* if it's not enabled, then we can't swap from it */
1460 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1461 continue;
1462 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1463 continue;
1464 result = blist_alloc(sdp->swd_blist, *nslots);
1465 if (result == BLIST_NONE) {
1466 continue;
1467 }
1468 KASSERT(result < sdp->swd_drumsize);
1469
1470 /*
1471 * successful allocation! now rotate the circleq.
1472 */
1473 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1474 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1475 sdp->swd_npginuse += *nslots;
1476 uvmexp.swpginuse += *nslots;
1477 simple_unlock(&uvm.swap_data_lock);
1478 /* done! return drum slot number */
1479 UVMHIST_LOG(pdhist,
1480 "success! returning %d slots starting at %d",
1481 *nslots, result + sdp->swd_drumoffset, 0, 0);
1482 return (result + sdp->swd_drumoffset);
1483 }
1484 }
1485
1486 /* XXXMRG: BEGIN HACK */
1487 if (*nslots > 1 && lessok) {
1488 *nslots = 1;
1489 /* XXXMRG: ugh! blist should support this for us */
1490 goto ReTry;
1491 }
1492 /* XXXMRG: END HACK */
1493
1494 simple_unlock(&uvm.swap_data_lock);
1495 return 0;
1496 }
1497
1498 boolean_t
1499 uvm_swapisfull(void)
1500 {
1501 boolean_t rv;
1502
1503 simple_lock(&uvm.swap_data_lock);
1504 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1505 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1506 simple_unlock(&uvm.swap_data_lock);
1507
1508 return (rv);
1509 }
1510
1511 /*
1512 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1513 *
1514 * => we lock uvm.swap_data_lock
1515 */
1516 void
1517 uvm_swap_markbad(int startslot, int nslots)
1518 {
1519 struct swapdev *sdp;
1520 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1521
1522 simple_lock(&uvm.swap_data_lock);
1523 sdp = swapdrum_getsdp(startslot);
1524 KASSERT(sdp != NULL);
1525
1526 /*
1527 * we just keep track of how many pages have been marked bad
1528 * in this device, to make everything add up in swap_off().
1529 * we assume here that the range of slots will all be within
1530 * one swap device.
1531 */
1532
1533 KASSERT(uvmexp.swpgonly >= nslots);
1534 uvmexp.swpgonly -= nslots;
1535 sdp->swd_npgbad += nslots;
1536 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1537 simple_unlock(&uvm.swap_data_lock);
1538 }
1539
1540 /*
1541 * uvm_swap_free: free swap slots
1542 *
1543 * => this can be all or part of an allocation made by uvm_swap_alloc
1544 * => we lock uvm.swap_data_lock
1545 */
1546 void
1547 uvm_swap_free(int startslot, int nslots)
1548 {
1549 struct swapdev *sdp;
1550 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1551
1552 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1553 startslot, 0, 0);
1554
1555 /*
1556 * ignore attempts to free the "bad" slot.
1557 */
1558
1559 if (startslot == SWSLOT_BAD) {
1560 return;
1561 }
1562
1563 /*
1564 * convert drum slot offset back to sdp, free the blocks
1565 * in the extent, and return. must hold pri lock to do
1566 * lookup and access the extent.
1567 */
1568
1569 simple_lock(&uvm.swap_data_lock);
1570 sdp = swapdrum_getsdp(startslot);
1571 KASSERT(uvmexp.nswapdev >= 1);
1572 KASSERT(sdp != NULL);
1573 KASSERT(sdp->swd_npginuse >= nslots);
1574 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1575 sdp->swd_npginuse -= nslots;
1576 uvmexp.swpginuse -= nslots;
1577 simple_unlock(&uvm.swap_data_lock);
1578 }
1579
1580 /*
1581 * uvm_swap_put: put any number of pages into a contig place on swap
1582 *
1583 * => can be sync or async
1584 */
1585
1586 int
1587 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1588 {
1589 int error;
1590
1591 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1592 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1593 return error;
1594 }
1595
1596 /*
1597 * uvm_swap_get: get a single page from swap
1598 *
1599 * => usually a sync op (from fault)
1600 */
1601
1602 int
1603 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1604 {
1605 int error;
1606
1607 uvmexp.nswget++;
1608 KASSERT(flags & PGO_SYNCIO);
1609 if (swslot == SWSLOT_BAD) {
1610 return EIO;
1611 }
1612
1613 error = uvm_swap_io(&page, swslot, 1, B_READ |
1614 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1615 if (error == 0) {
1616
1617 /*
1618 * this page is no longer only in swap.
1619 */
1620
1621 simple_lock(&uvm.swap_data_lock);
1622 KASSERT(uvmexp.swpgonly > 0);
1623 uvmexp.swpgonly--;
1624 simple_unlock(&uvm.swap_data_lock);
1625 }
1626 return error;
1627 }
1628
1629 /*
1630 * uvm_swap_io: do an i/o operation to swap
1631 */
1632
1633 static int
1634 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1635 {
1636 daddr_t startblk;
1637 struct buf *bp;
1638 vaddr_t kva;
1639 int error, s, mapinflags;
1640 boolean_t write, async;
1641 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1642
1643 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1644 startslot, npages, flags, 0);
1645
1646 write = (flags & B_READ) == 0;
1647 async = (flags & B_ASYNC) != 0;
1648
1649 /*
1650 * convert starting drum slot to block number
1651 */
1652
1653 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1654
1655 /*
1656 * first, map the pages into the kernel.
1657 */
1658
1659 mapinflags = !write ?
1660 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1661 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1662 kva = uvm_pagermapin(pps, npages, mapinflags);
1663
1664 /*
1665 * now allocate a buf for the i/o.
1666 */
1667
1668 bp = getiobuf();
1669
1670 /*
1671 * fill in the bp/sbp. we currently route our i/o through
1672 * /dev/drum's vnode [swapdev_vp].
1673 */
1674
1675 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1676 bp->b_proc = &proc0; /* XXX */
1677 bp->b_vnbufs.le_next = NOLIST;
1678 bp->b_data = (caddr_t)kva;
1679 bp->b_blkno = startblk;
1680 bp->b_vp = swapdev_vp;
1681 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1682
1683 /*
1684 * bump v_numoutput (counter of number of active outputs).
1685 */
1686
1687 if (write) {
1688 s = splbio();
1689 V_INCR_NUMOUTPUT(swapdev_vp);
1690 splx(s);
1691 }
1692
1693 /*
1694 * for async ops we must set up the iodone handler.
1695 */
1696
1697 if (async) {
1698 bp->b_flags |= B_CALL;
1699 bp->b_iodone = uvm_aio_biodone;
1700 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1701 if (curproc == uvm.pagedaemon_proc)
1702 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1703 else
1704 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1705 } else {
1706 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1707 }
1708 UVMHIST_LOG(pdhist,
1709 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1710 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1711
1712 /*
1713 * now we start the I/O, and if async, return.
1714 */
1715
1716 VOP_STRATEGY(swapdev_vp, bp);
1717 if (async)
1718 return 0;
1719
1720 /*
1721 * must be sync i/o. wait for it to finish
1722 */
1723
1724 error = biowait(bp);
1725
1726 /*
1727 * kill the pager mapping
1728 */
1729
1730 uvm_pagermapout(kva, npages);
1731
1732 /*
1733 * now dispose of the buf and we're done.
1734 */
1735
1736 s = splbio();
1737 if (write)
1738 vwakeup(bp);
1739 putiobuf(bp);
1740 splx(s);
1741 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1742 return (error);
1743 }
1744