uvm_swap.c revision 1.114 1 /* $NetBSD: uvm_swap.c,v 1.114 2006/12/02 03:23:38 elad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.114 2006/12/02 03:23:38 elad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/sa.h>
60 #include <sys/syscallargs.h>
61 #include <sys/swap.h>
62 #include <sys/kauth.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap arena.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
187
188 #define getvndxfer(vnx) do { \
189 int sp = splbio(); \
190 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
191 splx(sp); \
192 } while (/*CONSTCOND*/ 0)
193
194 #define putvndxfer(vnx) { \
195 pool_put(&vndxfer_pool, (void *)(vnx)); \
196 }
197
198 #define getvndbuf(vbp) do { \
199 int sp = splbio(); \
200 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
201 splx(sp); \
202 } while (/*CONSTCOND*/ 0)
203
204 #define putvndbuf(vbp) { \
205 pool_put(&vndbuf_pool, (void *)(vbp)); \
206 }
207
208 /*
209 * local variables
210 */
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 static struct lock swap_syscall_lock;
220
221 /*
222 * prototypes
223 */
224 static struct swapdev *swapdrum_getsdp(int);
225
226 static struct swapdev *swaplist_find(struct vnode *, int);
227 static void swaplist_insert(struct swapdev *,
228 struct swappri *, int);
229 static void swaplist_trim(void);
230
231 static int swap_on(struct lwp *, struct swapdev *);
232 static int swap_off(struct lwp *, struct swapdev *);
233
234 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
235
236 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
237 static void sw_reg_iodone(struct buf *);
238 static void sw_reg_start(struct swapdev *);
239
240 static int uvm_swap_io(struct vm_page **, int, int, int);
241
242 /*
243 * uvm_swap_init: init the swap system data structures and locks
244 *
245 * => called at boot time from init_main.c after the filesystems
246 * are brought up (which happens after uvm_init())
247 */
248 void
249 uvm_swap_init(void)
250 {
251 UVMHIST_FUNC("uvm_swap_init");
252
253 UVMHIST_CALLED(pdhist);
254 /*
255 * first, init the swap list, its counter, and its lock.
256 * then get a handle on the vnode for /dev/drum by using
257 * the its dev_t number ("swapdev", from MD conf.c).
258 */
259
260 LIST_INIT(&swap_priority);
261 uvmexp.nswapdev = 0;
262 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
263 simple_lock_init(&uvm.swap_data_lock);
264
265 if (bdevvp(swapdev, &swapdev_vp))
266 panic("uvm_swap_init: can't get vnode for swap device");
267
268 /*
269 * create swap block resource map to map /dev/drum. the range
270 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
271 * that block 0 is reserved (used to indicate an allocation
272 * failure, or no allocation).
273 */
274 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
275 VM_NOSLEEP);
276 if (swapmap == 0)
277 panic("uvm_swap_init: extent_create failed");
278
279 /*
280 * done!
281 */
282 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
283 }
284
285 /*
286 * swaplist functions: functions that operate on the list of swap
287 * devices on the system.
288 */
289
290 /*
291 * swaplist_insert: insert swap device "sdp" into the global list
292 *
293 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
294 * => caller must provide a newly malloc'd swappri structure (we will
295 * FREE it if we don't need it... this it to prevent malloc blocking
296 * here while adding swap)
297 */
298 static void
299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
300 {
301 struct swappri *spp, *pspp;
302 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
303
304 /*
305 * find entry at or after which to insert the new device.
306 */
307 pspp = NULL;
308 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
309 if (priority <= spp->spi_priority)
310 break;
311 pspp = spp;
312 }
313
314 /*
315 * new priority?
316 */
317 if (spp == NULL || spp->spi_priority != priority) {
318 spp = newspp; /* use newspp! */
319 UVMHIST_LOG(pdhist, "created new swappri = %d",
320 priority, 0, 0, 0);
321
322 spp->spi_priority = priority;
323 CIRCLEQ_INIT(&spp->spi_swapdev);
324
325 if (pspp)
326 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
327 else
328 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
329 } else {
330 /* we don't need a new priority structure, free it */
331 FREE(newspp, M_VMSWAP);
332 }
333
334 /*
335 * priority found (or created). now insert on the priority's
336 * circleq list and bump the total number of swapdevs.
337 */
338 sdp->swd_priority = priority;
339 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
340 uvmexp.nswapdev++;
341 }
342
343 /*
344 * swaplist_find: find and optionally remove a swap device from the
345 * global list.
346 *
347 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
348 * => we return the swapdev we found (and removed)
349 */
350 static struct swapdev *
351 swaplist_find(struct vnode *vp, boolean_t remove)
352 {
353 struct swapdev *sdp;
354 struct swappri *spp;
355
356 /*
357 * search the lists for the requested vp
358 */
359
360 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
361 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
362 if (sdp->swd_vp == vp) {
363 if (remove) {
364 CIRCLEQ_REMOVE(&spp->spi_swapdev,
365 sdp, swd_next);
366 uvmexp.nswapdev--;
367 }
368 return(sdp);
369 }
370 }
371 }
372 return (NULL);
373 }
374
375 /*
376 * provide an external function to check if a given vnode is used as a
377 * swap device.
378 */
379 boolean_t
380 uvm_is_swap_device(struct vnode *vp)
381 {
382 boolean_t r;
383
384 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
385 simple_lock(&uvm.swap_data_lock);
386 r = (swaplist_find(vp, 0) != NULL) ? TRUE : FALSE;
387 simple_unlock(&uvm.swap_data_lock);
388 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
389
390 return (r);
391 }
392
393 /*
394 * swaplist_trim: scan priority list for empty priority entries and kill
395 * them.
396 *
397 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
398 */
399 static void
400 swaplist_trim(void)
401 {
402 struct swappri *spp, *nextspp;
403
404 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
405 nextspp = LIST_NEXT(spp, spi_swappri);
406 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
407 (void *)&spp->spi_swapdev)
408 continue;
409 LIST_REMOVE(spp, spi_swappri);
410 free(spp, M_VMSWAP);
411 }
412 }
413
414 /*
415 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
416 * to the "swapdev" that maps that section of the drum.
417 *
418 * => each swapdev takes one big contig chunk of the drum
419 * => caller must hold uvm.swap_data_lock
420 */
421 static struct swapdev *
422 swapdrum_getsdp(int pgno)
423 {
424 struct swapdev *sdp;
425 struct swappri *spp;
426
427 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
428 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
429 if (sdp->swd_flags & SWF_FAKE)
430 continue;
431 if (pgno >= sdp->swd_drumoffset &&
432 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
433 return sdp;
434 }
435 }
436 }
437 return NULL;
438 }
439
440
441 /*
442 * sys_swapctl: main entry point for swapctl(2) system call
443 * [with two helper functions: swap_on and swap_off]
444 */
445 int
446 sys_swapctl(struct lwp *l, void *v, register_t *retval)
447 {
448 struct sys_swapctl_args /* {
449 syscallarg(int) cmd;
450 syscallarg(void *) arg;
451 syscallarg(int) misc;
452 } */ *uap = (struct sys_swapctl_args *)v;
453 struct vnode *vp;
454 struct nameidata nd;
455 struct swappri *spp;
456 struct swapdev *sdp;
457 struct swapent *sep;
458 #define SWAP_PATH_MAX (PATH_MAX + 1)
459 char *userpath;
460 size_t len;
461 int error, misc;
462 int priority;
463 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
464
465 misc = SCARG(uap, misc);
466
467 /*
468 * ensure serialized syscall access by grabbing the swap_syscall_lock
469 */
470 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
471
472 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
473 /*
474 * we handle the non-priv NSWAP and STATS request first.
475 *
476 * SWAP_NSWAP: return number of config'd swap devices
477 * [can also be obtained with uvmexp sysctl]
478 */
479 if (SCARG(uap, cmd) == SWAP_NSWAP) {
480 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
481 0, 0, 0);
482 *retval = uvmexp.nswapdev;
483 error = 0;
484 goto out;
485 }
486
487 /*
488 * SWAP_STATS: get stats on current # of configured swap devs
489 *
490 * note that the swap_priority list can't change as long
491 * as we are holding the swap_syscall_lock. we don't want
492 * to grab the uvm.swap_data_lock because we may fault&sleep during
493 * copyout() and we don't want to be holding that lock then!
494 */
495 if (SCARG(uap, cmd) == SWAP_STATS
496 #if defined(COMPAT_13)
497 || SCARG(uap, cmd) == SWAP_OSTATS
498 #endif
499 ) {
500 if ((size_t)misc > (size_t)uvmexp.nswapdev)
501 misc = uvmexp.nswapdev;
502 #if defined(COMPAT_13)
503 if (SCARG(uap, cmd) == SWAP_OSTATS)
504 len = sizeof(struct oswapent) * misc;
505 else
506 #endif
507 len = sizeof(struct swapent) * misc;
508 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
509
510 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
511 error = copyout(sep, SCARG(uap, arg), len);
512
513 free(sep, M_TEMP);
514 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
515 goto out;
516 }
517 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
518 dev_t *devp = (dev_t *)SCARG(uap, arg);
519
520 error = copyout(&dumpdev, devp, sizeof(dumpdev));
521 goto out;
522 }
523
524 /*
525 * all other requests require superuser privs. verify.
526 */
527 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
528 0, NULL, NULL, NULL)))
529 goto out;
530
531 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
532 /* drop the current dump device */
533 dumpdev = NODEV;
534 cpu_dumpconf();
535 goto out;
536 }
537
538 /*
539 * at this point we expect a path name in arg. we will
540 * use namei() to gain a vnode reference (vref), and lock
541 * the vnode (VOP_LOCK).
542 *
543 * XXX: a NULL arg means use the root vnode pointer (e.g. for
544 * miniroot)
545 */
546 if (SCARG(uap, arg) == NULL) {
547 vp = rootvp; /* miniroot */
548 if (vget(vp, LK_EXCLUSIVE)) {
549 error = EBUSY;
550 goto out;
551 }
552 if (SCARG(uap, cmd) == SWAP_ON &&
553 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
554 panic("swapctl: miniroot copy failed");
555 } else {
556 int space;
557 char *where;
558
559 if (SCARG(uap, cmd) == SWAP_ON) {
560 if ((error = copyinstr(SCARG(uap, arg), userpath,
561 SWAP_PATH_MAX, &len)))
562 goto out;
563 space = UIO_SYSSPACE;
564 where = userpath;
565 } else {
566 space = UIO_USERSPACE;
567 where = (char *)SCARG(uap, arg);
568 }
569 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
570 if ((error = namei(&nd)))
571 goto out;
572 vp = nd.ni_vp;
573 }
574 /* note: "vp" is referenced and locked */
575
576 error = 0; /* assume no error */
577 switch(SCARG(uap, cmd)) {
578
579 case SWAP_DUMPDEV:
580 if (vp->v_type != VBLK) {
581 error = ENOTBLK;
582 break;
583 }
584 if (bdevsw_lookup(vp->v_rdev))
585 dumpdev = vp->v_rdev;
586 else
587 dumpdev = NODEV;
588 cpu_dumpconf();
589 break;
590
591 case SWAP_CTL:
592 /*
593 * get new priority, remove old entry (if any) and then
594 * reinsert it in the correct place. finally, prune out
595 * any empty priority structures.
596 */
597 priority = SCARG(uap, misc);
598 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
599 simple_lock(&uvm.swap_data_lock);
600 if ((sdp = swaplist_find(vp, 1)) == NULL) {
601 error = ENOENT;
602 } else {
603 swaplist_insert(sdp, spp, priority);
604 swaplist_trim();
605 }
606 simple_unlock(&uvm.swap_data_lock);
607 if (error)
608 free(spp, M_VMSWAP);
609 break;
610
611 case SWAP_ON:
612
613 /*
614 * check for duplicates. if none found, then insert a
615 * dummy entry on the list to prevent someone else from
616 * trying to enable this device while we are working on
617 * it.
618 */
619
620 priority = SCARG(uap, misc);
621 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
622 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
623 memset(sdp, 0, sizeof(*sdp));
624 sdp->swd_flags = SWF_FAKE;
625 sdp->swd_vp = vp;
626 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
627 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
628 simple_lock(&uvm.swap_data_lock);
629 if (swaplist_find(vp, 0) != NULL) {
630 error = EBUSY;
631 simple_unlock(&uvm.swap_data_lock);
632 bufq_free(sdp->swd_tab);
633 free(sdp, M_VMSWAP);
634 free(spp, M_VMSWAP);
635 break;
636 }
637 swaplist_insert(sdp, spp, priority);
638 simple_unlock(&uvm.swap_data_lock);
639
640 sdp->swd_pathlen = len;
641 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
642 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
643 panic("swapctl: copystr");
644
645 /*
646 * we've now got a FAKE placeholder in the swap list.
647 * now attempt to enable swap on it. if we fail, undo
648 * what we've done and kill the fake entry we just inserted.
649 * if swap_on is a success, it will clear the SWF_FAKE flag
650 */
651
652 if ((error = swap_on(l, sdp)) != 0) {
653 simple_lock(&uvm.swap_data_lock);
654 (void) swaplist_find(vp, 1); /* kill fake entry */
655 swaplist_trim();
656 simple_unlock(&uvm.swap_data_lock);
657 bufq_free(sdp->swd_tab);
658 free(sdp->swd_path, M_VMSWAP);
659 free(sdp, M_VMSWAP);
660 break;
661 }
662 break;
663
664 case SWAP_OFF:
665 simple_lock(&uvm.swap_data_lock);
666 if ((sdp = swaplist_find(vp, 0)) == NULL) {
667 simple_unlock(&uvm.swap_data_lock);
668 error = ENXIO;
669 break;
670 }
671
672 /*
673 * If a device isn't in use or enabled, we
674 * can't stop swapping from it (again).
675 */
676 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
677 simple_unlock(&uvm.swap_data_lock);
678 error = EBUSY;
679 break;
680 }
681
682 /*
683 * do the real work.
684 */
685 error = swap_off(l, sdp);
686 break;
687
688 default:
689 error = EINVAL;
690 }
691
692 /*
693 * done! release the ref gained by namei() and unlock.
694 */
695 vput(vp);
696
697 out:
698 free(userpath, M_TEMP);
699 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
700
701 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
702 return (error);
703 }
704
705 /*
706 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
707 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
708 * emulation to use it directly without going through sys_swapctl().
709 * The problem with using sys_swapctl() there is that it involves
710 * copying the swapent array to the stackgap, and this array's size
711 * is not known at build time. Hence it would not be possible to
712 * ensure it would fit in the stackgap in any case.
713 */
714 void
715 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
716 {
717
718 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, NULL);
719 uvm_swap_stats_locked(cmd, sep, sec, retval);
720 lockmgr(&swap_syscall_lock, LK_RELEASE, NULL);
721 }
722
723 static void
724 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
725 {
726 struct swappri *spp;
727 struct swapdev *sdp;
728 int count = 0;
729
730 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
731 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
732 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
733 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
734 /*
735 * backwards compatibility for system call.
736 * note that we use 'struct oswapent' as an
737 * overlay into both 'struct swapdev' and
738 * the userland 'struct swapent', as we
739 * want to retain backwards compatibility
740 * with NetBSD 1.3.
741 */
742 sdp->swd_ose.ose_inuse =
743 btodb((uint64_t)sdp->swd_npginuse <<
744 PAGE_SHIFT);
745 (void)memcpy(sep, &sdp->swd_ose,
746 sizeof(struct oswapent));
747
748 /* now copy out the path if necessary */
749 #if !defined(COMPAT_13)
750 (void) cmd;
751 #endif
752 #if defined(COMPAT_13)
753 if (cmd == SWAP_STATS)
754 #endif
755 (void)memcpy(&sep->se_path, sdp->swd_path,
756 sdp->swd_pathlen);
757
758 count++;
759 #if defined(COMPAT_13)
760 if (cmd == SWAP_OSTATS)
761 sep = (struct swapent *)
762 ((struct oswapent *)sep + 1);
763 else
764 #endif
765 sep++;
766 }
767 }
768
769 *retval = count;
770 return;
771 }
772
773 /*
774 * swap_on: attempt to enable a swapdev for swapping. note that the
775 * swapdev is already on the global list, but disabled (marked
776 * SWF_FAKE).
777 *
778 * => we avoid the start of the disk (to protect disk labels)
779 * => we also avoid the miniroot, if we are swapping to root.
780 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
781 * if needed.
782 */
783 static int
784 swap_on(struct lwp *l, struct swapdev *sdp)
785 {
786 struct vnode *vp;
787 int error, npages, nblocks, size;
788 long addr;
789 u_long result;
790 struct vattr va;
791 #ifdef NFS
792 extern int (**nfsv2_vnodeop_p)(void *);
793 #endif /* NFS */
794 const struct bdevsw *bdev;
795 dev_t dev;
796 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
797
798 /*
799 * we want to enable swapping on sdp. the swd_vp contains
800 * the vnode we want (locked and ref'd), and the swd_dev
801 * contains the dev_t of the file, if it a block device.
802 */
803
804 vp = sdp->swd_vp;
805 dev = sdp->swd_dev;
806
807 /*
808 * open the swap file (mostly useful for block device files to
809 * let device driver know what is up).
810 *
811 * we skip the open/close for root on swap because the root
812 * has already been opened when root was mounted (mountroot).
813 */
814 if (vp != rootvp) {
815 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
816 return (error);
817 }
818
819 /* XXX this only works for block devices */
820 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
821
822 /*
823 * we now need to determine the size of the swap area. for
824 * block specials we can call the d_psize function.
825 * for normal files, we must stat [get attrs].
826 *
827 * we put the result in nblks.
828 * for normal files, we also want the filesystem block size
829 * (which we get with statfs).
830 */
831 switch (vp->v_type) {
832 case VBLK:
833 bdev = bdevsw_lookup(dev);
834 if (bdev == NULL || bdev->d_psize == NULL ||
835 (nblocks = (*bdev->d_psize)(dev)) == -1) {
836 error = ENXIO;
837 goto bad;
838 }
839 break;
840
841 case VREG:
842 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
843 goto bad;
844 nblocks = (int)btodb(va.va_size);
845 if ((error =
846 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
847 goto bad;
848
849 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
850 /*
851 * limit the max # of outstanding I/O requests we issue
852 * at any one time. take it easy on NFS servers.
853 */
854 #ifdef NFS
855 if (vp->v_op == nfsv2_vnodeop_p)
856 sdp->swd_maxactive = 2; /* XXX */
857 else
858 #endif /* NFS */
859 sdp->swd_maxactive = 8; /* XXX */
860 break;
861
862 default:
863 error = ENXIO;
864 goto bad;
865 }
866
867 /*
868 * save nblocks in a safe place and convert to pages.
869 */
870
871 sdp->swd_ose.ose_nblks = nblocks;
872 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
873
874 /*
875 * for block special files, we want to make sure that leave
876 * the disklabel and bootblocks alone, so we arrange to skip
877 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
878 * note that because of this the "size" can be less than the
879 * actual number of blocks on the device.
880 */
881 if (vp->v_type == VBLK) {
882 /* we use pages 1 to (size - 1) [inclusive] */
883 size = npages - 1;
884 addr = 1;
885 } else {
886 /* we use pages 0 to (size - 1) [inclusive] */
887 size = npages;
888 addr = 0;
889 }
890
891 /*
892 * make sure we have enough blocks for a reasonable sized swap
893 * area. we want at least one page.
894 */
895
896 if (size < 1) {
897 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
898 error = EINVAL;
899 goto bad;
900 }
901
902 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
903
904 /*
905 * now we need to allocate an extent to manage this swap device
906 */
907
908 sdp->swd_blist = blist_create(npages);
909 /* mark all expect the `saved' region free. */
910 blist_free(sdp->swd_blist, addr, size);
911
912 /*
913 * if the vnode we are swapping to is the root vnode
914 * (i.e. we are swapping to the miniroot) then we want
915 * to make sure we don't overwrite it. do a statfs to
916 * find its size and skip over it.
917 */
918 if (vp == rootvp) {
919 struct mount *mp;
920 struct statvfs *sp;
921 int rootblocks, rootpages;
922
923 mp = rootvnode->v_mount;
924 sp = &mp->mnt_stat;
925 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
926 /*
927 * XXX: sp->f_blocks isn't the total number of
928 * blocks in the filesystem, it's the number of
929 * data blocks. so, our rootblocks almost
930 * definitely underestimates the total size
931 * of the filesystem - how badly depends on the
932 * details of the filesystem type. there isn't
933 * an obvious way to deal with this cleanly
934 * and perfectly, so for now we just pad our
935 * rootblocks estimate with an extra 5 percent.
936 */
937 rootblocks += (rootblocks >> 5) +
938 (rootblocks >> 6) +
939 (rootblocks >> 7);
940 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
941 if (rootpages > size)
942 panic("swap_on: miniroot larger than swap?");
943
944 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
945 panic("swap_on: unable to preserve miniroot");
946 }
947
948 size -= rootpages;
949 printf("Preserved %d pages of miniroot ", rootpages);
950 printf("leaving %d pages of swap\n", size);
951 }
952
953 /*
954 * add a ref to vp to reflect usage as a swap device.
955 */
956 vref(vp);
957
958 /*
959 * now add the new swapdev to the drum and enable.
960 */
961 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
962 if (result == 0)
963 panic("swapdrum_add");
964
965 sdp->swd_drumoffset = (int)result;
966 sdp->swd_drumsize = npages;
967 sdp->swd_npages = size;
968 simple_lock(&uvm.swap_data_lock);
969 sdp->swd_flags &= ~SWF_FAKE; /* going live */
970 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
971 uvmexp.swpages += size;
972 uvmexp.swpgavail += size;
973 simple_unlock(&uvm.swap_data_lock);
974 return (0);
975
976 /*
977 * failure: clean up and return error.
978 */
979
980 bad:
981 if (sdp->swd_blist) {
982 blist_destroy(sdp->swd_blist);
983 }
984 if (vp != rootvp) {
985 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
986 }
987 return (error);
988 }
989
990 /*
991 * swap_off: stop swapping on swapdev
992 *
993 * => swap data should be locked, we will unlock.
994 */
995 static int
996 swap_off(struct lwp *l, struct swapdev *sdp)
997 {
998 int npages = sdp->swd_npages;
999 int error = 0;
1000
1001 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1002 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1003
1004 /* disable the swap area being removed */
1005 sdp->swd_flags &= ~SWF_ENABLE;
1006 uvmexp.swpgavail -= npages;
1007 simple_unlock(&uvm.swap_data_lock);
1008
1009 /*
1010 * the idea is to find all the pages that are paged out to this
1011 * device, and page them all in. in uvm, swap-backed pageable
1012 * memory can take two forms: aobjs and anons. call the
1013 * swapoff hook for each subsystem to bring in pages.
1014 */
1015
1016 if (uao_swap_off(sdp->swd_drumoffset,
1017 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1018 amap_swap_off(sdp->swd_drumoffset,
1019 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1020 error = ENOMEM;
1021 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1022 error = EBUSY;
1023 }
1024
1025 if (error) {
1026 simple_lock(&uvm.swap_data_lock);
1027 sdp->swd_flags |= SWF_ENABLE;
1028 uvmexp.swpgavail += npages;
1029 simple_unlock(&uvm.swap_data_lock);
1030
1031 return error;
1032 }
1033
1034 /*
1035 * done with the vnode.
1036 * drop our ref on the vnode before calling VOP_CLOSE()
1037 * so that spec_close() can tell if this is the last close.
1038 */
1039 vrele(sdp->swd_vp);
1040 if (sdp->swd_vp != rootvp) {
1041 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1042 }
1043
1044 simple_lock(&uvm.swap_data_lock);
1045 uvmexp.swpages -= npages;
1046 uvmexp.swpginuse -= sdp->swd_npgbad;
1047
1048 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1049 panic("swap_off: swapdev not in list");
1050 swaplist_trim();
1051 simple_unlock(&uvm.swap_data_lock);
1052
1053 /*
1054 * free all resources!
1055 */
1056 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1057 blist_destroy(sdp->swd_blist);
1058 bufq_free(sdp->swd_tab);
1059 free(sdp, M_VMSWAP);
1060 return (0);
1061 }
1062
1063 /*
1064 * /dev/drum interface and i/o functions
1065 */
1066
1067 /*
1068 * swstrategy: perform I/O on the drum
1069 *
1070 * => we must map the i/o request from the drum to the correct swapdev.
1071 */
1072 static void
1073 swstrategy(struct buf *bp)
1074 {
1075 struct swapdev *sdp;
1076 struct vnode *vp;
1077 int s, pageno, bn;
1078 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1079
1080 /*
1081 * convert block number to swapdev. note that swapdev can't
1082 * be yanked out from under us because we are holding resources
1083 * in it (i.e. the blocks we are doing I/O on).
1084 */
1085 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1086 simple_lock(&uvm.swap_data_lock);
1087 sdp = swapdrum_getsdp(pageno);
1088 simple_unlock(&uvm.swap_data_lock);
1089 if (sdp == NULL) {
1090 bp->b_error = EINVAL;
1091 bp->b_flags |= B_ERROR;
1092 biodone(bp);
1093 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1094 return;
1095 }
1096
1097 /*
1098 * convert drum page number to block number on this swapdev.
1099 */
1100
1101 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1102 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1103
1104 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1105 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1106 sdp->swd_drumoffset, bn, bp->b_bcount);
1107
1108 /*
1109 * for block devices we finish up here.
1110 * for regular files we have to do more work which we delegate
1111 * to sw_reg_strategy().
1112 */
1113
1114 switch (sdp->swd_vp->v_type) {
1115 default:
1116 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1117
1118 case VBLK:
1119
1120 /*
1121 * must convert "bp" from an I/O on /dev/drum to an I/O
1122 * on the swapdev (sdp).
1123 */
1124 s = splbio();
1125 bp->b_blkno = bn; /* swapdev block number */
1126 vp = sdp->swd_vp; /* swapdev vnode pointer */
1127 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1128
1129 /*
1130 * if we are doing a write, we have to redirect the i/o on
1131 * drum's v_numoutput counter to the swapdevs.
1132 */
1133 if ((bp->b_flags & B_READ) == 0) {
1134 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1135 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1136 }
1137
1138 /*
1139 * finally plug in swapdev vnode and start I/O
1140 */
1141 bp->b_vp = vp;
1142 splx(s);
1143 VOP_STRATEGY(vp, bp);
1144 return;
1145
1146 case VREG:
1147 /*
1148 * delegate to sw_reg_strategy function.
1149 */
1150 sw_reg_strategy(sdp, bp, bn);
1151 return;
1152 }
1153 /* NOTREACHED */
1154 }
1155
1156 /*
1157 * swread: the read function for the drum (just a call to physio)
1158 */
1159 /*ARGSUSED*/
1160 static int
1161 swread(dev_t dev, struct uio *uio, int ioflag)
1162 {
1163 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1164
1165 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1166 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1167 }
1168
1169 /*
1170 * swwrite: the write function for the drum (just a call to physio)
1171 */
1172 /*ARGSUSED*/
1173 static int
1174 swwrite(dev_t dev, struct uio *uio, int ioflag)
1175 {
1176 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1177
1178 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1179 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1180 }
1181
1182 const struct bdevsw swap_bdevsw = {
1183 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1184 };
1185
1186 const struct cdevsw swap_cdevsw = {
1187 nullopen, nullclose, swread, swwrite, noioctl,
1188 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1189 };
1190
1191 /*
1192 * sw_reg_strategy: handle swap i/o to regular files
1193 */
1194 static void
1195 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1196 {
1197 struct vnode *vp;
1198 struct vndxfer *vnx;
1199 daddr_t nbn;
1200 caddr_t addr;
1201 off_t byteoff;
1202 int s, off, nra, error, sz, resid;
1203 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1204
1205 /*
1206 * allocate a vndxfer head for this transfer and point it to
1207 * our buffer.
1208 */
1209 getvndxfer(vnx);
1210 vnx->vx_flags = VX_BUSY;
1211 vnx->vx_error = 0;
1212 vnx->vx_pending = 0;
1213 vnx->vx_bp = bp;
1214 vnx->vx_sdp = sdp;
1215
1216 /*
1217 * setup for main loop where we read filesystem blocks into
1218 * our buffer.
1219 */
1220 error = 0;
1221 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1222 addr = bp->b_data; /* current position in buffer */
1223 byteoff = dbtob((uint64_t)bn);
1224
1225 for (resid = bp->b_resid; resid; resid -= sz) {
1226 struct vndbuf *nbp;
1227
1228 /*
1229 * translate byteoffset into block number. return values:
1230 * vp = vnode of underlying device
1231 * nbn = new block number (on underlying vnode dev)
1232 * nra = num blocks we can read-ahead (excludes requested
1233 * block)
1234 */
1235 nra = 0;
1236 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1237 &vp, &nbn, &nra);
1238
1239 if (error == 0 && nbn == (daddr_t)-1) {
1240 /*
1241 * this used to just set error, but that doesn't
1242 * do the right thing. Instead, it causes random
1243 * memory errors. The panic() should remain until
1244 * this condition doesn't destabilize the system.
1245 */
1246 #if 1
1247 panic("sw_reg_strategy: swap to sparse file");
1248 #else
1249 error = EIO; /* failure */
1250 #endif
1251 }
1252
1253 /*
1254 * punt if there was an error or a hole in the file.
1255 * we must wait for any i/o ops we have already started
1256 * to finish before returning.
1257 *
1258 * XXX we could deal with holes here but it would be
1259 * a hassle (in the write case).
1260 */
1261 if (error) {
1262 s = splbio();
1263 vnx->vx_error = error; /* pass error up */
1264 goto out;
1265 }
1266
1267 /*
1268 * compute the size ("sz") of this transfer (in bytes).
1269 */
1270 off = byteoff % sdp->swd_bsize;
1271 sz = (1 + nra) * sdp->swd_bsize - off;
1272 if (sz > resid)
1273 sz = resid;
1274
1275 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1276 "vp %p/%p offset 0x%x/0x%x",
1277 sdp->swd_vp, vp, byteoff, nbn);
1278
1279 /*
1280 * now get a buf structure. note that the vb_buf is
1281 * at the front of the nbp structure so that you can
1282 * cast pointers between the two structure easily.
1283 */
1284 getvndbuf(nbp);
1285 BUF_INIT(&nbp->vb_buf);
1286 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1287 nbp->vb_buf.b_bcount = sz;
1288 nbp->vb_buf.b_bufsize = sz;
1289 nbp->vb_buf.b_error = 0;
1290 nbp->vb_buf.b_data = addr;
1291 nbp->vb_buf.b_lblkno = 0;
1292 nbp->vb_buf.b_blkno = nbn + btodb(off);
1293 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1294 nbp->vb_buf.b_iodone = sw_reg_iodone;
1295 nbp->vb_buf.b_vp = vp;
1296 if (vp->v_type == VBLK) {
1297 nbp->vb_buf.b_dev = vp->v_rdev;
1298 }
1299
1300 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1301
1302 /*
1303 * Just sort by block number
1304 */
1305 s = splbio();
1306 if (vnx->vx_error != 0) {
1307 putvndbuf(nbp);
1308 goto out;
1309 }
1310 vnx->vx_pending++;
1311
1312 /* sort it in and start I/O if we are not over our limit */
1313 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1314 sw_reg_start(sdp);
1315 splx(s);
1316
1317 /*
1318 * advance to the next I/O
1319 */
1320 byteoff += sz;
1321 addr += sz;
1322 }
1323
1324 s = splbio();
1325
1326 out: /* Arrive here at splbio */
1327 vnx->vx_flags &= ~VX_BUSY;
1328 if (vnx->vx_pending == 0) {
1329 if (vnx->vx_error != 0) {
1330 bp->b_error = vnx->vx_error;
1331 bp->b_flags |= B_ERROR;
1332 }
1333 putvndxfer(vnx);
1334 biodone(bp);
1335 }
1336 splx(s);
1337 }
1338
1339 /*
1340 * sw_reg_start: start an I/O request on the requested swapdev
1341 *
1342 * => reqs are sorted by b_rawblkno (above)
1343 */
1344 static void
1345 sw_reg_start(struct swapdev *sdp)
1346 {
1347 struct buf *bp;
1348 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1349
1350 /* recursion control */
1351 if ((sdp->swd_flags & SWF_BUSY) != 0)
1352 return;
1353
1354 sdp->swd_flags |= SWF_BUSY;
1355
1356 while (sdp->swd_active < sdp->swd_maxactive) {
1357 bp = BUFQ_GET(sdp->swd_tab);
1358 if (bp == NULL)
1359 break;
1360 sdp->swd_active++;
1361
1362 UVMHIST_LOG(pdhist,
1363 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1364 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1365 if ((bp->b_flags & B_READ) == 0)
1366 V_INCR_NUMOUTPUT(bp->b_vp);
1367
1368 VOP_STRATEGY(bp->b_vp, bp);
1369 }
1370 sdp->swd_flags &= ~SWF_BUSY;
1371 }
1372
1373 /*
1374 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1375 *
1376 * => note that we can recover the vndbuf struct by casting the buf ptr
1377 */
1378 static void
1379 sw_reg_iodone(struct buf *bp)
1380 {
1381 struct vndbuf *vbp = (struct vndbuf *) bp;
1382 struct vndxfer *vnx = vbp->vb_xfer;
1383 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1384 struct swapdev *sdp = vnx->vx_sdp;
1385 int s, resid, error;
1386 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1387
1388 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1389 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1390 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1391 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1392
1393 /*
1394 * protect vbp at splbio and update.
1395 */
1396
1397 s = splbio();
1398 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1399 pbp->b_resid -= resid;
1400 vnx->vx_pending--;
1401
1402 if (vbp->vb_buf.b_flags & B_ERROR) {
1403 /* pass error upward */
1404 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1405 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1406 vnx->vx_error = error;
1407 }
1408
1409 /*
1410 * kill vbp structure
1411 */
1412 putvndbuf(vbp);
1413
1414 /*
1415 * wrap up this transaction if it has run to completion or, in
1416 * case of an error, when all auxiliary buffers have returned.
1417 */
1418 if (vnx->vx_error != 0) {
1419 /* pass error upward */
1420 pbp->b_flags |= B_ERROR;
1421 pbp->b_error = vnx->vx_error;
1422 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1423 putvndxfer(vnx);
1424 biodone(pbp);
1425 }
1426 } else if (pbp->b_resid == 0) {
1427 KASSERT(vnx->vx_pending == 0);
1428 if ((vnx->vx_flags & VX_BUSY) == 0) {
1429 UVMHIST_LOG(pdhist, " iodone error=%d !",
1430 pbp, vnx->vx_error, 0, 0);
1431 putvndxfer(vnx);
1432 biodone(pbp);
1433 }
1434 }
1435
1436 /*
1437 * done! start next swapdev I/O if one is pending
1438 */
1439 sdp->swd_active--;
1440 sw_reg_start(sdp);
1441 splx(s);
1442 }
1443
1444
1445 /*
1446 * uvm_swap_alloc: allocate space on swap
1447 *
1448 * => allocation is done "round robin" down the priority list, as we
1449 * allocate in a priority we "rotate" the circle queue.
1450 * => space can be freed with uvm_swap_free
1451 * => we return the page slot number in /dev/drum (0 == invalid slot)
1452 * => we lock uvm.swap_data_lock
1453 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1454 */
1455 int
1456 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1457 {
1458 struct swapdev *sdp;
1459 struct swappri *spp;
1460 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1461
1462 /*
1463 * no swap devices configured yet? definite failure.
1464 */
1465 if (uvmexp.nswapdev < 1)
1466 return 0;
1467
1468 /*
1469 * lock data lock, convert slots into blocks, and enter loop
1470 */
1471 simple_lock(&uvm.swap_data_lock);
1472
1473 ReTry: /* XXXMRG */
1474 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1475 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1476 uint64_t result;
1477
1478 /* if it's not enabled, then we can't swap from it */
1479 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1480 continue;
1481 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1482 continue;
1483 result = blist_alloc(sdp->swd_blist, *nslots);
1484 if (result == BLIST_NONE) {
1485 continue;
1486 }
1487 KASSERT(result < sdp->swd_drumsize);
1488
1489 /*
1490 * successful allocation! now rotate the circleq.
1491 */
1492 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1493 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1494 sdp->swd_npginuse += *nslots;
1495 uvmexp.swpginuse += *nslots;
1496 simple_unlock(&uvm.swap_data_lock);
1497 /* done! return drum slot number */
1498 UVMHIST_LOG(pdhist,
1499 "success! returning %d slots starting at %d",
1500 *nslots, result + sdp->swd_drumoffset, 0, 0);
1501 return (result + sdp->swd_drumoffset);
1502 }
1503 }
1504
1505 /* XXXMRG: BEGIN HACK */
1506 if (*nslots > 1 && lessok) {
1507 *nslots = 1;
1508 /* XXXMRG: ugh! blist should support this for us */
1509 goto ReTry;
1510 }
1511 /* XXXMRG: END HACK */
1512
1513 simple_unlock(&uvm.swap_data_lock);
1514 return 0;
1515 }
1516
1517 boolean_t
1518 uvm_swapisfull(void)
1519 {
1520 boolean_t rv;
1521
1522 simple_lock(&uvm.swap_data_lock);
1523 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1524 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1525 simple_unlock(&uvm.swap_data_lock);
1526
1527 return (rv);
1528 }
1529
1530 /*
1531 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1532 *
1533 * => we lock uvm.swap_data_lock
1534 */
1535 void
1536 uvm_swap_markbad(int startslot, int nslots)
1537 {
1538 struct swapdev *sdp;
1539 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1540
1541 simple_lock(&uvm.swap_data_lock);
1542 sdp = swapdrum_getsdp(startslot);
1543 KASSERT(sdp != NULL);
1544
1545 /*
1546 * we just keep track of how many pages have been marked bad
1547 * in this device, to make everything add up in swap_off().
1548 * we assume here that the range of slots will all be within
1549 * one swap device.
1550 */
1551
1552 KASSERT(uvmexp.swpgonly >= nslots);
1553 uvmexp.swpgonly -= nslots;
1554 sdp->swd_npgbad += nslots;
1555 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1556 simple_unlock(&uvm.swap_data_lock);
1557 }
1558
1559 /*
1560 * uvm_swap_free: free swap slots
1561 *
1562 * => this can be all or part of an allocation made by uvm_swap_alloc
1563 * => we lock uvm.swap_data_lock
1564 */
1565 void
1566 uvm_swap_free(int startslot, int nslots)
1567 {
1568 struct swapdev *sdp;
1569 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1570
1571 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1572 startslot, 0, 0);
1573
1574 /*
1575 * ignore attempts to free the "bad" slot.
1576 */
1577
1578 if (startslot == SWSLOT_BAD) {
1579 return;
1580 }
1581
1582 /*
1583 * convert drum slot offset back to sdp, free the blocks
1584 * in the extent, and return. must hold pri lock to do
1585 * lookup and access the extent.
1586 */
1587
1588 simple_lock(&uvm.swap_data_lock);
1589 sdp = swapdrum_getsdp(startslot);
1590 KASSERT(uvmexp.nswapdev >= 1);
1591 KASSERT(sdp != NULL);
1592 KASSERT(sdp->swd_npginuse >= nslots);
1593 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1594 sdp->swd_npginuse -= nslots;
1595 uvmexp.swpginuse -= nslots;
1596 simple_unlock(&uvm.swap_data_lock);
1597 }
1598
1599 /*
1600 * uvm_swap_put: put any number of pages into a contig place on swap
1601 *
1602 * => can be sync or async
1603 */
1604
1605 int
1606 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1607 {
1608 int error;
1609
1610 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1611 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1612 return error;
1613 }
1614
1615 /*
1616 * uvm_swap_get: get a single page from swap
1617 *
1618 * => usually a sync op (from fault)
1619 */
1620
1621 int
1622 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1623 {
1624 int error;
1625
1626 uvmexp.nswget++;
1627 KASSERT(flags & PGO_SYNCIO);
1628 if (swslot == SWSLOT_BAD) {
1629 return EIO;
1630 }
1631
1632 error = uvm_swap_io(&page, swslot, 1, B_READ |
1633 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1634 if (error == 0) {
1635
1636 /*
1637 * this page is no longer only in swap.
1638 */
1639
1640 simple_lock(&uvm.swap_data_lock);
1641 KASSERT(uvmexp.swpgonly > 0);
1642 uvmexp.swpgonly--;
1643 simple_unlock(&uvm.swap_data_lock);
1644 }
1645 return error;
1646 }
1647
1648 /*
1649 * uvm_swap_io: do an i/o operation to swap
1650 */
1651
1652 static int
1653 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1654 {
1655 daddr_t startblk;
1656 struct buf *bp;
1657 vaddr_t kva;
1658 int error, s, mapinflags;
1659 boolean_t write, async;
1660 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1661
1662 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1663 startslot, npages, flags, 0);
1664
1665 write = (flags & B_READ) == 0;
1666 async = (flags & B_ASYNC) != 0;
1667
1668 /*
1669 * convert starting drum slot to block number
1670 */
1671
1672 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1673
1674 /*
1675 * first, map the pages into the kernel.
1676 */
1677
1678 mapinflags = !write ?
1679 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1680 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1681 kva = uvm_pagermapin(pps, npages, mapinflags);
1682
1683 /*
1684 * now allocate a buf for the i/o.
1685 */
1686
1687 bp = getiobuf();
1688
1689 /*
1690 * fill in the bp/sbp. we currently route our i/o through
1691 * /dev/drum's vnode [swapdev_vp].
1692 */
1693
1694 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1695 bp->b_proc = &proc0; /* XXX */
1696 bp->b_vnbufs.le_next = NOLIST;
1697 bp->b_data = (caddr_t)kva;
1698 bp->b_blkno = startblk;
1699 bp->b_vp = swapdev_vp;
1700 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1701
1702 /*
1703 * bump v_numoutput (counter of number of active outputs).
1704 */
1705
1706 if (write) {
1707 s = splbio();
1708 V_INCR_NUMOUTPUT(swapdev_vp);
1709 splx(s);
1710 }
1711
1712 /*
1713 * for async ops we must set up the iodone handler.
1714 */
1715
1716 if (async) {
1717 bp->b_flags |= B_CALL;
1718 bp->b_iodone = uvm_aio_biodone;
1719 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1720 if (curproc == uvm.pagedaemon_proc)
1721 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1722 else
1723 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1724 } else {
1725 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1726 }
1727 UVMHIST_LOG(pdhist,
1728 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1729 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1730
1731 /*
1732 * now we start the I/O, and if async, return.
1733 */
1734
1735 VOP_STRATEGY(swapdev_vp, bp);
1736 if (async)
1737 return 0;
1738
1739 /*
1740 * must be sync i/o. wait for it to finish
1741 */
1742
1743 error = biowait(bp);
1744
1745 /*
1746 * kill the pager mapping
1747 */
1748
1749 uvm_pagermapout(kva, npages);
1750
1751 /*
1752 * now dispose of the buf and we're done.
1753 */
1754
1755 s = splbio();
1756 if (write)
1757 vwakeup(bp);
1758 putiobuf(bp);
1759 splx(s);
1760 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1761 return (error);
1762 }
1763