uvm_swap.c revision 1.117 1 /* $NetBSD: uvm_swap.c,v 1.117 2007/02/15 20:21:13 ad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.117 2007/02/15 20:21:13 ad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap arena.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 struct oswapent swd_ose;
128 #define swd_dev swd_ose.ose_dev /* device id */
129 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
130 #define swd_priority swd_ose.ose_priority /* our priority */
131 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
132 char *swd_path; /* saved pathname of device */
133 int swd_pathlen; /* length of pathname */
134 int swd_npages; /* #pages we can use */
135 int swd_npginuse; /* #pages in use */
136 int swd_npgbad; /* #pages bad */
137 int swd_drumoffset; /* page0 offset in drum */
138 int swd_drumsize; /* #pages in drum */
139 blist_t swd_blist; /* blist for this swapdev */
140 struct vnode *swd_vp; /* backing vnode */
141 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
142
143 int swd_bsize; /* blocksize (bytes) */
144 int swd_maxactive; /* max active i/o reqs */
145 struct bufq_state *swd_tab; /* buffer list */
146 int swd_active; /* number of active buffers */
147 };
148
149 /*
150 * swap device priority entry; the list is kept sorted on `spi_priority'.
151 */
152 struct swappri {
153 int spi_priority; /* priority */
154 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
155 /* circleq of swapdevs at this priority */
156 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
157 };
158
159 /*
160 * The following two structures are used to keep track of data transfers
161 * on swap devices associated with regular files.
162 * NOTE: this code is more or less a copy of vnd.c; we use the same
163 * structure names here to ease porting..
164 */
165 struct vndxfer {
166 struct buf *vx_bp; /* Pointer to parent buffer */
167 struct swapdev *vx_sdp;
168 int vx_error;
169 int vx_pending; /* # of pending aux buffers */
170 int vx_flags;
171 #define VX_BUSY 1
172 #define VX_DEAD 2
173 };
174
175 struct vndbuf {
176 struct buf vb_buf;
177 struct vndxfer *vb_xfer;
178 };
179
180
181 /*
182 * We keep a of pool vndbuf's and vndxfer structures.
183 */
184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
186
187 #define getvndxfer(vnx) do { \
188 int sp = splbio(); \
189 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
190 splx(sp); \
191 } while (/*CONSTCOND*/ 0)
192
193 #define putvndxfer(vnx) { \
194 pool_put(&vndxfer_pool, (void *)(vnx)); \
195 }
196
197 #define getvndbuf(vbp) do { \
198 int sp = splbio(); \
199 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
200 splx(sp); \
201 } while (/*CONSTCOND*/ 0)
202
203 #define putvndbuf(vbp) { \
204 pool_put(&vndbuf_pool, (void *)(vbp)); \
205 }
206
207 /*
208 * local variables
209 */
210 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /*
221 * prototypes
222 */
223 static struct swapdev *swapdrum_getsdp(int);
224
225 static struct swapdev *swaplist_find(struct vnode *, int);
226 static void swaplist_insert(struct swapdev *,
227 struct swappri *, int);
228 static void swaplist_trim(void);
229
230 static int swap_on(struct lwp *, struct swapdev *);
231 static int swap_off(struct lwp *, struct swapdev *);
232
233 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
234
235 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
236 static void sw_reg_iodone(struct buf *);
237 static void sw_reg_start(struct swapdev *);
238
239 static int uvm_swap_io(struct vm_page **, int, int, int);
240
241 /*
242 * uvm_swap_init: init the swap system data structures and locks
243 *
244 * => called at boot time from init_main.c after the filesystems
245 * are brought up (which happens after uvm_init())
246 */
247 void
248 uvm_swap_init(void)
249 {
250 UVMHIST_FUNC("uvm_swap_init");
251
252 UVMHIST_CALLED(pdhist);
253 /*
254 * first, init the swap list, its counter, and its lock.
255 * then get a handle on the vnode for /dev/drum by using
256 * the its dev_t number ("swapdev", from MD conf.c).
257 */
258
259 LIST_INIT(&swap_priority);
260 uvmexp.nswapdev = 0;
261 rw_init(&swap_syscall_lock);
262 cv_init(&uvm.scheduler_cv, "schedule");
263 simple_lock_init(&uvm.swap_data_lock);
264
265 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
266 mutex_init(&uvm.scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
267
268 if (bdevvp(swapdev, &swapdev_vp))
269 panic("uvm_swap_init: can't get vnode for swap device");
270
271 /*
272 * create swap block resource map to map /dev/drum. the range
273 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
274 * that block 0 is reserved (used to indicate an allocation
275 * failure, or no allocation).
276 */
277 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
278 VM_NOSLEEP);
279 if (swapmap == 0)
280 panic("uvm_swap_init: extent_create failed");
281
282 /*
283 * done!
284 */
285 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
286 }
287
288 /*
289 * swaplist functions: functions that operate on the list of swap
290 * devices on the system.
291 */
292
293 /*
294 * swaplist_insert: insert swap device "sdp" into the global list
295 *
296 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
297 * => caller must provide a newly malloc'd swappri structure (we will
298 * FREE it if we don't need it... this it to prevent malloc blocking
299 * here while adding swap)
300 */
301 static void
302 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
303 {
304 struct swappri *spp, *pspp;
305 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
306
307 /*
308 * find entry at or after which to insert the new device.
309 */
310 pspp = NULL;
311 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
312 if (priority <= spp->spi_priority)
313 break;
314 pspp = spp;
315 }
316
317 /*
318 * new priority?
319 */
320 if (spp == NULL || spp->spi_priority != priority) {
321 spp = newspp; /* use newspp! */
322 UVMHIST_LOG(pdhist, "created new swappri = %d",
323 priority, 0, 0, 0);
324
325 spp->spi_priority = priority;
326 CIRCLEQ_INIT(&spp->spi_swapdev);
327
328 if (pspp)
329 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
330 else
331 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
332 } else {
333 /* we don't need a new priority structure, free it */
334 FREE(newspp, M_VMSWAP);
335 }
336
337 /*
338 * priority found (or created). now insert on the priority's
339 * circleq list and bump the total number of swapdevs.
340 */
341 sdp->swd_priority = priority;
342 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
343 uvmexp.nswapdev++;
344 }
345
346 /*
347 * swaplist_find: find and optionally remove a swap device from the
348 * global list.
349 *
350 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
351 * => we return the swapdev we found (and removed)
352 */
353 static struct swapdev *
354 swaplist_find(struct vnode *vp, boolean_t remove)
355 {
356 struct swapdev *sdp;
357 struct swappri *spp;
358
359 /*
360 * search the lists for the requested vp
361 */
362
363 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
364 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
365 if (sdp->swd_vp == vp) {
366 if (remove) {
367 CIRCLEQ_REMOVE(&spp->spi_swapdev,
368 sdp, swd_next);
369 uvmexp.nswapdev--;
370 }
371 return(sdp);
372 }
373 }
374 }
375 return (NULL);
376 }
377
378 /*
379 * swaplist_trim: scan priority list for empty priority entries and kill
380 * them.
381 *
382 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
383 */
384 static void
385 swaplist_trim(void)
386 {
387 struct swappri *spp, *nextspp;
388
389 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
390 nextspp = LIST_NEXT(spp, spi_swappri);
391 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
392 (void *)&spp->spi_swapdev)
393 continue;
394 LIST_REMOVE(spp, spi_swappri);
395 free(spp, M_VMSWAP);
396 }
397 }
398
399 /*
400 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
401 * to the "swapdev" that maps that section of the drum.
402 *
403 * => each swapdev takes one big contig chunk of the drum
404 * => caller must hold uvm.swap_data_lock
405 */
406 static struct swapdev *
407 swapdrum_getsdp(int pgno)
408 {
409 struct swapdev *sdp;
410 struct swappri *spp;
411
412 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
413 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
414 if (sdp->swd_flags & SWF_FAKE)
415 continue;
416 if (pgno >= sdp->swd_drumoffset &&
417 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
418 return sdp;
419 }
420 }
421 }
422 return NULL;
423 }
424
425
426 /*
427 * sys_swapctl: main entry point for swapctl(2) system call
428 * [with two helper functions: swap_on and swap_off]
429 */
430 int
431 sys_swapctl(struct lwp *l, void *v, register_t *retval)
432 {
433 struct sys_swapctl_args /* {
434 syscallarg(int) cmd;
435 syscallarg(void *) arg;
436 syscallarg(int) misc;
437 } */ *uap = (struct sys_swapctl_args *)v;
438 struct vnode *vp;
439 struct nameidata nd;
440 struct swappri *spp;
441 struct swapdev *sdp;
442 struct swapent *sep;
443 #define SWAP_PATH_MAX (PATH_MAX + 1)
444 char *userpath;
445 size_t len;
446 int error, misc;
447 int priority;
448 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
449
450 misc = SCARG(uap, misc);
451
452 /*
453 * ensure serialized syscall access by grabbing the swap_syscall_lock
454 */
455 rw_enter(&swap_syscall_lock, RW_WRITER);
456
457 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
458 /*
459 * we handle the non-priv NSWAP and STATS request first.
460 *
461 * SWAP_NSWAP: return number of config'd swap devices
462 * [can also be obtained with uvmexp sysctl]
463 */
464 if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
466 0, 0, 0);
467 *retval = uvmexp.nswapdev;
468 error = 0;
469 goto out;
470 }
471
472 /*
473 * SWAP_STATS: get stats on current # of configured swap devs
474 *
475 * note that the swap_priority list can't change as long
476 * as we are holding the swap_syscall_lock. we don't want
477 * to grab the uvm.swap_data_lock because we may fault&sleep during
478 * copyout() and we don't want to be holding that lock then!
479 */
480 if (SCARG(uap, cmd) == SWAP_STATS
481 #if defined(COMPAT_13)
482 || SCARG(uap, cmd) == SWAP_OSTATS
483 #endif
484 ) {
485 if ((size_t)misc > (size_t)uvmexp.nswapdev)
486 misc = uvmexp.nswapdev;
487 #if defined(COMPAT_13)
488 if (SCARG(uap, cmd) == SWAP_OSTATS)
489 len = sizeof(struct oswapent) * misc;
490 else
491 #endif
492 len = sizeof(struct swapent) * misc;
493 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
494
495 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
496 error = copyout(sep, SCARG(uap, arg), len);
497
498 free(sep, M_TEMP);
499 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
500 goto out;
501 }
502 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
503 dev_t *devp = (dev_t *)SCARG(uap, arg);
504
505 error = copyout(&dumpdev, devp, sizeof(dumpdev));
506 goto out;
507 }
508
509 /*
510 * all other requests require superuser privs. verify.
511 */
512 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
513 0, NULL, NULL, NULL)))
514 goto out;
515
516 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
517 /* drop the current dump device */
518 dumpdev = NODEV;
519 cpu_dumpconf();
520 goto out;
521 }
522
523 /*
524 * at this point we expect a path name in arg. we will
525 * use namei() to gain a vnode reference (vref), and lock
526 * the vnode (VOP_LOCK).
527 *
528 * XXX: a NULL arg means use the root vnode pointer (e.g. for
529 * miniroot)
530 */
531 if (SCARG(uap, arg) == NULL) {
532 vp = rootvp; /* miniroot */
533 if (vget(vp, LK_EXCLUSIVE)) {
534 error = EBUSY;
535 goto out;
536 }
537 if (SCARG(uap, cmd) == SWAP_ON &&
538 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
539 panic("swapctl: miniroot copy failed");
540 } else {
541 int space;
542 char *where;
543
544 if (SCARG(uap, cmd) == SWAP_ON) {
545 if ((error = copyinstr(SCARG(uap, arg), userpath,
546 SWAP_PATH_MAX, &len)))
547 goto out;
548 space = UIO_SYSSPACE;
549 where = userpath;
550 } else {
551 space = UIO_USERSPACE;
552 where = (char *)SCARG(uap, arg);
553 }
554 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
555 if ((error = namei(&nd)))
556 goto out;
557 vp = nd.ni_vp;
558 }
559 /* note: "vp" is referenced and locked */
560
561 error = 0; /* assume no error */
562 switch(SCARG(uap, cmd)) {
563
564 case SWAP_DUMPDEV:
565 if (vp->v_type != VBLK) {
566 error = ENOTBLK;
567 break;
568 }
569 if (bdevsw_lookup(vp->v_rdev))
570 dumpdev = vp->v_rdev;
571 else
572 dumpdev = NODEV;
573 cpu_dumpconf();
574 break;
575
576 case SWAP_CTL:
577 /*
578 * get new priority, remove old entry (if any) and then
579 * reinsert it in the correct place. finally, prune out
580 * any empty priority structures.
581 */
582 priority = SCARG(uap, misc);
583 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
584 simple_lock(&uvm.swap_data_lock);
585 if ((sdp = swaplist_find(vp, 1)) == NULL) {
586 error = ENOENT;
587 } else {
588 swaplist_insert(sdp, spp, priority);
589 swaplist_trim();
590 }
591 simple_unlock(&uvm.swap_data_lock);
592 if (error)
593 free(spp, M_VMSWAP);
594 break;
595
596 case SWAP_ON:
597
598 /*
599 * check for duplicates. if none found, then insert a
600 * dummy entry on the list to prevent someone else from
601 * trying to enable this device while we are working on
602 * it.
603 */
604
605 priority = SCARG(uap, misc);
606 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
607 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
608 memset(sdp, 0, sizeof(*sdp));
609 sdp->swd_flags = SWF_FAKE;
610 sdp->swd_vp = vp;
611 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
612 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
613 simple_lock(&uvm.swap_data_lock);
614 if (swaplist_find(vp, 0) != NULL) {
615 error = EBUSY;
616 simple_unlock(&uvm.swap_data_lock);
617 bufq_free(sdp->swd_tab);
618 free(sdp, M_VMSWAP);
619 free(spp, M_VMSWAP);
620 break;
621 }
622 swaplist_insert(sdp, spp, priority);
623 simple_unlock(&uvm.swap_data_lock);
624
625 sdp->swd_pathlen = len;
626 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
627 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
628 panic("swapctl: copystr");
629
630 /*
631 * we've now got a FAKE placeholder in the swap list.
632 * now attempt to enable swap on it. if we fail, undo
633 * what we've done and kill the fake entry we just inserted.
634 * if swap_on is a success, it will clear the SWF_FAKE flag
635 */
636
637 if ((error = swap_on(l, sdp)) != 0) {
638 simple_lock(&uvm.swap_data_lock);
639 (void) swaplist_find(vp, 1); /* kill fake entry */
640 swaplist_trim();
641 simple_unlock(&uvm.swap_data_lock);
642 bufq_free(sdp->swd_tab);
643 free(sdp->swd_path, M_VMSWAP);
644 free(sdp, M_VMSWAP);
645 break;
646 }
647 break;
648
649 case SWAP_OFF:
650 simple_lock(&uvm.swap_data_lock);
651 if ((sdp = swaplist_find(vp, 0)) == NULL) {
652 simple_unlock(&uvm.swap_data_lock);
653 error = ENXIO;
654 break;
655 }
656
657 /*
658 * If a device isn't in use or enabled, we
659 * can't stop swapping from it (again).
660 */
661 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
662 simple_unlock(&uvm.swap_data_lock);
663 error = EBUSY;
664 break;
665 }
666
667 /*
668 * do the real work.
669 */
670 error = swap_off(l, sdp);
671 break;
672
673 default:
674 error = EINVAL;
675 }
676
677 /*
678 * done! release the ref gained by namei() and unlock.
679 */
680 vput(vp);
681
682 out:
683 free(userpath, M_TEMP);
684 rw_exit(&swap_syscall_lock);
685
686 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
687 return (error);
688 }
689
690 /*
691 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
692 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
693 * emulation to use it directly without going through sys_swapctl().
694 * The problem with using sys_swapctl() there is that it involves
695 * copying the swapent array to the stackgap, and this array's size
696 * is not known at build time. Hence it would not be possible to
697 * ensure it would fit in the stackgap in any case.
698 */
699 void
700 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
701 {
702
703 rw_enter(&swap_syscall_lock, RW_READER);
704 uvm_swap_stats_locked(cmd, sep, sec, retval);
705 rw_exit(&swap_syscall_lock);
706 }
707
708 static void
709 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
710 {
711 struct swappri *spp;
712 struct swapdev *sdp;
713 int count = 0;
714
715 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
716 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
717 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
718 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
719 /*
720 * backwards compatibility for system call.
721 * note that we use 'struct oswapent' as an
722 * overlay into both 'struct swapdev' and
723 * the userland 'struct swapent', as we
724 * want to retain backwards compatibility
725 * with NetBSD 1.3.
726 */
727 sdp->swd_ose.ose_inuse =
728 btodb((uint64_t)sdp->swd_npginuse <<
729 PAGE_SHIFT);
730 (void)memcpy(sep, &sdp->swd_ose,
731 sizeof(struct oswapent));
732
733 /* now copy out the path if necessary */
734 #if !defined(COMPAT_13)
735 (void) cmd;
736 #endif
737 #if defined(COMPAT_13)
738 if (cmd == SWAP_STATS)
739 #endif
740 (void)memcpy(&sep->se_path, sdp->swd_path,
741 sdp->swd_pathlen);
742
743 count++;
744 #if defined(COMPAT_13)
745 if (cmd == SWAP_OSTATS)
746 sep = (struct swapent *)
747 ((struct oswapent *)sep + 1);
748 else
749 #endif
750 sep++;
751 }
752 }
753
754 *retval = count;
755 return;
756 }
757
758 /*
759 * swap_on: attempt to enable a swapdev for swapping. note that the
760 * swapdev is already on the global list, but disabled (marked
761 * SWF_FAKE).
762 *
763 * => we avoid the start of the disk (to protect disk labels)
764 * => we also avoid the miniroot, if we are swapping to root.
765 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
766 * if needed.
767 */
768 static int
769 swap_on(struct lwp *l, struct swapdev *sdp)
770 {
771 struct vnode *vp;
772 int error, npages, nblocks, size;
773 long addr;
774 u_long result;
775 struct vattr va;
776 #ifdef NFS
777 extern int (**nfsv2_vnodeop_p)(void *);
778 #endif /* NFS */
779 const struct bdevsw *bdev;
780 dev_t dev;
781 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
782
783 /*
784 * we want to enable swapping on sdp. the swd_vp contains
785 * the vnode we want (locked and ref'd), and the swd_dev
786 * contains the dev_t of the file, if it a block device.
787 */
788
789 vp = sdp->swd_vp;
790 dev = sdp->swd_dev;
791
792 /*
793 * open the swap file (mostly useful for block device files to
794 * let device driver know what is up).
795 *
796 * we skip the open/close for root on swap because the root
797 * has already been opened when root was mounted (mountroot).
798 */
799 if (vp != rootvp) {
800 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
801 return (error);
802 }
803
804 /* XXX this only works for block devices */
805 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
806
807 /*
808 * we now need to determine the size of the swap area. for
809 * block specials we can call the d_psize function.
810 * for normal files, we must stat [get attrs].
811 *
812 * we put the result in nblks.
813 * for normal files, we also want the filesystem block size
814 * (which we get with statfs).
815 */
816 switch (vp->v_type) {
817 case VBLK:
818 bdev = bdevsw_lookup(dev);
819 if (bdev == NULL || bdev->d_psize == NULL ||
820 (nblocks = (*bdev->d_psize)(dev)) == -1) {
821 error = ENXIO;
822 goto bad;
823 }
824 break;
825
826 case VREG:
827 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
828 goto bad;
829 nblocks = (int)btodb(va.va_size);
830 if ((error =
831 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
832 goto bad;
833
834 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
835 /*
836 * limit the max # of outstanding I/O requests we issue
837 * at any one time. take it easy on NFS servers.
838 */
839 #ifdef NFS
840 if (vp->v_op == nfsv2_vnodeop_p)
841 sdp->swd_maxactive = 2; /* XXX */
842 else
843 #endif /* NFS */
844 sdp->swd_maxactive = 8; /* XXX */
845 break;
846
847 default:
848 error = ENXIO;
849 goto bad;
850 }
851
852 /*
853 * save nblocks in a safe place and convert to pages.
854 */
855
856 sdp->swd_ose.ose_nblks = nblocks;
857 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
858
859 /*
860 * for block special files, we want to make sure that leave
861 * the disklabel and bootblocks alone, so we arrange to skip
862 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
863 * note that because of this the "size" can be less than the
864 * actual number of blocks on the device.
865 */
866 if (vp->v_type == VBLK) {
867 /* we use pages 1 to (size - 1) [inclusive] */
868 size = npages - 1;
869 addr = 1;
870 } else {
871 /* we use pages 0 to (size - 1) [inclusive] */
872 size = npages;
873 addr = 0;
874 }
875
876 /*
877 * make sure we have enough blocks for a reasonable sized swap
878 * area. we want at least one page.
879 */
880
881 if (size < 1) {
882 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
883 error = EINVAL;
884 goto bad;
885 }
886
887 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
888
889 /*
890 * now we need to allocate an extent to manage this swap device
891 */
892
893 sdp->swd_blist = blist_create(npages);
894 /* mark all expect the `saved' region free. */
895 blist_free(sdp->swd_blist, addr, size);
896
897 /*
898 * if the vnode we are swapping to is the root vnode
899 * (i.e. we are swapping to the miniroot) then we want
900 * to make sure we don't overwrite it. do a statfs to
901 * find its size and skip over it.
902 */
903 if (vp == rootvp) {
904 struct mount *mp;
905 struct statvfs *sp;
906 int rootblocks, rootpages;
907
908 mp = rootvnode->v_mount;
909 sp = &mp->mnt_stat;
910 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
911 /*
912 * XXX: sp->f_blocks isn't the total number of
913 * blocks in the filesystem, it's the number of
914 * data blocks. so, our rootblocks almost
915 * definitely underestimates the total size
916 * of the filesystem - how badly depends on the
917 * details of the filesystem type. there isn't
918 * an obvious way to deal with this cleanly
919 * and perfectly, so for now we just pad our
920 * rootblocks estimate with an extra 5 percent.
921 */
922 rootblocks += (rootblocks >> 5) +
923 (rootblocks >> 6) +
924 (rootblocks >> 7);
925 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
926 if (rootpages > size)
927 panic("swap_on: miniroot larger than swap?");
928
929 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
930 panic("swap_on: unable to preserve miniroot");
931 }
932
933 size -= rootpages;
934 printf("Preserved %d pages of miniroot ", rootpages);
935 printf("leaving %d pages of swap\n", size);
936 }
937
938 /*
939 * add a ref to vp to reflect usage as a swap device.
940 */
941 vref(vp);
942
943 /*
944 * now add the new swapdev to the drum and enable.
945 */
946 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
947 if (result == 0)
948 panic("swapdrum_add");
949
950 sdp->swd_drumoffset = (int)result;
951 sdp->swd_drumsize = npages;
952 sdp->swd_npages = size;
953 simple_lock(&uvm.swap_data_lock);
954 sdp->swd_flags &= ~SWF_FAKE; /* going live */
955 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
956 uvmexp.swpages += size;
957 uvmexp.swpgavail += size;
958 simple_unlock(&uvm.swap_data_lock);
959 return (0);
960
961 /*
962 * failure: clean up and return error.
963 */
964
965 bad:
966 if (sdp->swd_blist) {
967 blist_destroy(sdp->swd_blist);
968 }
969 if (vp != rootvp) {
970 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
971 }
972 return (error);
973 }
974
975 /*
976 * swap_off: stop swapping on swapdev
977 *
978 * => swap data should be locked, we will unlock.
979 */
980 static int
981 swap_off(struct lwp *l, struct swapdev *sdp)
982 {
983 int npages = sdp->swd_npages;
984 int error = 0;
985
986 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
987 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
988
989 /* disable the swap area being removed */
990 sdp->swd_flags &= ~SWF_ENABLE;
991 uvmexp.swpgavail -= npages;
992 simple_unlock(&uvm.swap_data_lock);
993
994 /*
995 * the idea is to find all the pages that are paged out to this
996 * device, and page them all in. in uvm, swap-backed pageable
997 * memory can take two forms: aobjs and anons. call the
998 * swapoff hook for each subsystem to bring in pages.
999 */
1000
1001 if (uao_swap_off(sdp->swd_drumoffset,
1002 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1003 amap_swap_off(sdp->swd_drumoffset,
1004 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1005 error = ENOMEM;
1006 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1007 error = EBUSY;
1008 }
1009
1010 if (error) {
1011 simple_lock(&uvm.swap_data_lock);
1012 sdp->swd_flags |= SWF_ENABLE;
1013 uvmexp.swpgavail += npages;
1014 simple_unlock(&uvm.swap_data_lock);
1015
1016 return error;
1017 }
1018
1019 /*
1020 * done with the vnode.
1021 * drop our ref on the vnode before calling VOP_CLOSE()
1022 * so that spec_close() can tell if this is the last close.
1023 */
1024 vrele(sdp->swd_vp);
1025 if (sdp->swd_vp != rootvp) {
1026 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1027 }
1028
1029 simple_lock(&uvm.swap_data_lock);
1030 uvmexp.swpages -= npages;
1031 uvmexp.swpginuse -= sdp->swd_npgbad;
1032
1033 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1034 panic("swap_off: swapdev not in list");
1035 swaplist_trim();
1036 simple_unlock(&uvm.swap_data_lock);
1037
1038 /*
1039 * free all resources!
1040 */
1041 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1042 blist_destroy(sdp->swd_blist);
1043 bufq_free(sdp->swd_tab);
1044 free(sdp, M_VMSWAP);
1045 return (0);
1046 }
1047
1048 /*
1049 * /dev/drum interface and i/o functions
1050 */
1051
1052 /*
1053 * swstrategy: perform I/O on the drum
1054 *
1055 * => we must map the i/o request from the drum to the correct swapdev.
1056 */
1057 static void
1058 swstrategy(struct buf *bp)
1059 {
1060 struct swapdev *sdp;
1061 struct vnode *vp;
1062 int s, pageno, bn;
1063 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1064
1065 /*
1066 * convert block number to swapdev. note that swapdev can't
1067 * be yanked out from under us because we are holding resources
1068 * in it (i.e. the blocks we are doing I/O on).
1069 */
1070 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1071 simple_lock(&uvm.swap_data_lock);
1072 sdp = swapdrum_getsdp(pageno);
1073 simple_unlock(&uvm.swap_data_lock);
1074 if (sdp == NULL) {
1075 bp->b_error = EINVAL;
1076 bp->b_flags |= B_ERROR;
1077 biodone(bp);
1078 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1079 return;
1080 }
1081
1082 /*
1083 * convert drum page number to block number on this swapdev.
1084 */
1085
1086 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1087 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1088
1089 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1090 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1091 sdp->swd_drumoffset, bn, bp->b_bcount);
1092
1093 /*
1094 * for block devices we finish up here.
1095 * for regular files we have to do more work which we delegate
1096 * to sw_reg_strategy().
1097 */
1098
1099 switch (sdp->swd_vp->v_type) {
1100 default:
1101 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1102
1103 case VBLK:
1104
1105 /*
1106 * must convert "bp" from an I/O on /dev/drum to an I/O
1107 * on the swapdev (sdp).
1108 */
1109 s = splbio();
1110 bp->b_blkno = bn; /* swapdev block number */
1111 vp = sdp->swd_vp; /* swapdev vnode pointer */
1112 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1113
1114 /*
1115 * if we are doing a write, we have to redirect the i/o on
1116 * drum's v_numoutput counter to the swapdevs.
1117 */
1118 if ((bp->b_flags & B_READ) == 0) {
1119 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1120 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1121 }
1122
1123 /*
1124 * finally plug in swapdev vnode and start I/O
1125 */
1126 bp->b_vp = vp;
1127 splx(s);
1128 VOP_STRATEGY(vp, bp);
1129 return;
1130
1131 case VREG:
1132 /*
1133 * delegate to sw_reg_strategy function.
1134 */
1135 sw_reg_strategy(sdp, bp, bn);
1136 return;
1137 }
1138 /* NOTREACHED */
1139 }
1140
1141 /*
1142 * swread: the read function for the drum (just a call to physio)
1143 */
1144 /*ARGSUSED*/
1145 static int
1146 swread(dev_t dev, struct uio *uio, int ioflag)
1147 {
1148 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1149
1150 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1151 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1152 }
1153
1154 /*
1155 * swwrite: the write function for the drum (just a call to physio)
1156 */
1157 /*ARGSUSED*/
1158 static int
1159 swwrite(dev_t dev, struct uio *uio, int ioflag)
1160 {
1161 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1162
1163 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1164 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1165 }
1166
1167 const struct bdevsw swap_bdevsw = {
1168 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1169 };
1170
1171 const struct cdevsw swap_cdevsw = {
1172 nullopen, nullclose, swread, swwrite, noioctl,
1173 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1174 };
1175
1176 /*
1177 * sw_reg_strategy: handle swap i/o to regular files
1178 */
1179 static void
1180 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1181 {
1182 struct vnode *vp;
1183 struct vndxfer *vnx;
1184 daddr_t nbn;
1185 caddr_t addr;
1186 off_t byteoff;
1187 int s, off, nra, error, sz, resid;
1188 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1189
1190 /*
1191 * allocate a vndxfer head for this transfer and point it to
1192 * our buffer.
1193 */
1194 getvndxfer(vnx);
1195 vnx->vx_flags = VX_BUSY;
1196 vnx->vx_error = 0;
1197 vnx->vx_pending = 0;
1198 vnx->vx_bp = bp;
1199 vnx->vx_sdp = sdp;
1200
1201 /*
1202 * setup for main loop where we read filesystem blocks into
1203 * our buffer.
1204 */
1205 error = 0;
1206 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1207 addr = bp->b_data; /* current position in buffer */
1208 byteoff = dbtob((uint64_t)bn);
1209
1210 for (resid = bp->b_resid; resid; resid -= sz) {
1211 struct vndbuf *nbp;
1212
1213 /*
1214 * translate byteoffset into block number. return values:
1215 * vp = vnode of underlying device
1216 * nbn = new block number (on underlying vnode dev)
1217 * nra = num blocks we can read-ahead (excludes requested
1218 * block)
1219 */
1220 nra = 0;
1221 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1222 &vp, &nbn, &nra);
1223
1224 if (error == 0 && nbn == (daddr_t)-1) {
1225 /*
1226 * this used to just set error, but that doesn't
1227 * do the right thing. Instead, it causes random
1228 * memory errors. The panic() should remain until
1229 * this condition doesn't destabilize the system.
1230 */
1231 #if 1
1232 panic("sw_reg_strategy: swap to sparse file");
1233 #else
1234 error = EIO; /* failure */
1235 #endif
1236 }
1237
1238 /*
1239 * punt if there was an error or a hole in the file.
1240 * we must wait for any i/o ops we have already started
1241 * to finish before returning.
1242 *
1243 * XXX we could deal with holes here but it would be
1244 * a hassle (in the write case).
1245 */
1246 if (error) {
1247 s = splbio();
1248 vnx->vx_error = error; /* pass error up */
1249 goto out;
1250 }
1251
1252 /*
1253 * compute the size ("sz") of this transfer (in bytes).
1254 */
1255 off = byteoff % sdp->swd_bsize;
1256 sz = (1 + nra) * sdp->swd_bsize - off;
1257 if (sz > resid)
1258 sz = resid;
1259
1260 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1261 "vp %p/%p offset 0x%x/0x%x",
1262 sdp->swd_vp, vp, byteoff, nbn);
1263
1264 /*
1265 * now get a buf structure. note that the vb_buf is
1266 * at the front of the nbp structure so that you can
1267 * cast pointers between the two structure easily.
1268 */
1269 getvndbuf(nbp);
1270 BUF_INIT(&nbp->vb_buf);
1271 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1272 nbp->vb_buf.b_bcount = sz;
1273 nbp->vb_buf.b_bufsize = sz;
1274 nbp->vb_buf.b_error = 0;
1275 nbp->vb_buf.b_data = addr;
1276 nbp->vb_buf.b_lblkno = 0;
1277 nbp->vb_buf.b_blkno = nbn + btodb(off);
1278 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1279 nbp->vb_buf.b_iodone = sw_reg_iodone;
1280 nbp->vb_buf.b_vp = vp;
1281 if (vp->v_type == VBLK) {
1282 nbp->vb_buf.b_dev = vp->v_rdev;
1283 }
1284
1285 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1286
1287 /*
1288 * Just sort by block number
1289 */
1290 s = splbio();
1291 if (vnx->vx_error != 0) {
1292 putvndbuf(nbp);
1293 goto out;
1294 }
1295 vnx->vx_pending++;
1296
1297 /* sort it in and start I/O if we are not over our limit */
1298 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1299 sw_reg_start(sdp);
1300 splx(s);
1301
1302 /*
1303 * advance to the next I/O
1304 */
1305 byteoff += sz;
1306 addr += sz;
1307 }
1308
1309 s = splbio();
1310
1311 out: /* Arrive here at splbio */
1312 vnx->vx_flags &= ~VX_BUSY;
1313 if (vnx->vx_pending == 0) {
1314 if (vnx->vx_error != 0) {
1315 bp->b_error = vnx->vx_error;
1316 bp->b_flags |= B_ERROR;
1317 }
1318 putvndxfer(vnx);
1319 biodone(bp);
1320 }
1321 splx(s);
1322 }
1323
1324 /*
1325 * sw_reg_start: start an I/O request on the requested swapdev
1326 *
1327 * => reqs are sorted by b_rawblkno (above)
1328 */
1329 static void
1330 sw_reg_start(struct swapdev *sdp)
1331 {
1332 struct buf *bp;
1333 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1334
1335 /* recursion control */
1336 if ((sdp->swd_flags & SWF_BUSY) != 0)
1337 return;
1338
1339 sdp->swd_flags |= SWF_BUSY;
1340
1341 while (sdp->swd_active < sdp->swd_maxactive) {
1342 bp = BUFQ_GET(sdp->swd_tab);
1343 if (bp == NULL)
1344 break;
1345 sdp->swd_active++;
1346
1347 UVMHIST_LOG(pdhist,
1348 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1349 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1350 if ((bp->b_flags & B_READ) == 0)
1351 V_INCR_NUMOUTPUT(bp->b_vp);
1352
1353 VOP_STRATEGY(bp->b_vp, bp);
1354 }
1355 sdp->swd_flags &= ~SWF_BUSY;
1356 }
1357
1358 /*
1359 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1360 *
1361 * => note that we can recover the vndbuf struct by casting the buf ptr
1362 */
1363 static void
1364 sw_reg_iodone(struct buf *bp)
1365 {
1366 struct vndbuf *vbp = (struct vndbuf *) bp;
1367 struct vndxfer *vnx = vbp->vb_xfer;
1368 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1369 struct swapdev *sdp = vnx->vx_sdp;
1370 int s, resid, error;
1371 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1372
1373 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1374 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1375 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1376 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1377
1378 /*
1379 * protect vbp at splbio and update.
1380 */
1381
1382 s = splbio();
1383 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1384 pbp->b_resid -= resid;
1385 vnx->vx_pending--;
1386
1387 if (vbp->vb_buf.b_flags & B_ERROR) {
1388 /* pass error upward */
1389 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1390 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1391 vnx->vx_error = error;
1392 }
1393
1394 /*
1395 * kill vbp structure
1396 */
1397 putvndbuf(vbp);
1398
1399 /*
1400 * wrap up this transaction if it has run to completion or, in
1401 * case of an error, when all auxiliary buffers have returned.
1402 */
1403 if (vnx->vx_error != 0) {
1404 /* pass error upward */
1405 pbp->b_flags |= B_ERROR;
1406 pbp->b_error = vnx->vx_error;
1407 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1408 putvndxfer(vnx);
1409 biodone(pbp);
1410 }
1411 } else if (pbp->b_resid == 0) {
1412 KASSERT(vnx->vx_pending == 0);
1413 if ((vnx->vx_flags & VX_BUSY) == 0) {
1414 UVMHIST_LOG(pdhist, " iodone error=%d !",
1415 pbp, vnx->vx_error, 0, 0);
1416 putvndxfer(vnx);
1417 biodone(pbp);
1418 }
1419 }
1420
1421 /*
1422 * done! start next swapdev I/O if one is pending
1423 */
1424 sdp->swd_active--;
1425 sw_reg_start(sdp);
1426 splx(s);
1427 }
1428
1429
1430 /*
1431 * uvm_swap_alloc: allocate space on swap
1432 *
1433 * => allocation is done "round robin" down the priority list, as we
1434 * allocate in a priority we "rotate" the circle queue.
1435 * => space can be freed with uvm_swap_free
1436 * => we return the page slot number in /dev/drum (0 == invalid slot)
1437 * => we lock uvm.swap_data_lock
1438 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1439 */
1440 int
1441 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
1442 {
1443 struct swapdev *sdp;
1444 struct swappri *spp;
1445 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1446
1447 /*
1448 * no swap devices configured yet? definite failure.
1449 */
1450 if (uvmexp.nswapdev < 1)
1451 return 0;
1452
1453 /*
1454 * lock data lock, convert slots into blocks, and enter loop
1455 */
1456 simple_lock(&uvm.swap_data_lock);
1457
1458 ReTry: /* XXXMRG */
1459 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1460 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1461 uint64_t result;
1462
1463 /* if it's not enabled, then we can't swap from it */
1464 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1465 continue;
1466 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1467 continue;
1468 result = blist_alloc(sdp->swd_blist, *nslots);
1469 if (result == BLIST_NONE) {
1470 continue;
1471 }
1472 KASSERT(result < sdp->swd_drumsize);
1473
1474 /*
1475 * successful allocation! now rotate the circleq.
1476 */
1477 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1478 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1479 sdp->swd_npginuse += *nslots;
1480 uvmexp.swpginuse += *nslots;
1481 simple_unlock(&uvm.swap_data_lock);
1482 /* done! return drum slot number */
1483 UVMHIST_LOG(pdhist,
1484 "success! returning %d slots starting at %d",
1485 *nslots, result + sdp->swd_drumoffset, 0, 0);
1486 return (result + sdp->swd_drumoffset);
1487 }
1488 }
1489
1490 /* XXXMRG: BEGIN HACK */
1491 if (*nslots > 1 && lessok) {
1492 *nslots = 1;
1493 /* XXXMRG: ugh! blist should support this for us */
1494 goto ReTry;
1495 }
1496 /* XXXMRG: END HACK */
1497
1498 simple_unlock(&uvm.swap_data_lock);
1499 return 0;
1500 }
1501
1502 boolean_t
1503 uvm_swapisfull(void)
1504 {
1505 boolean_t rv;
1506
1507 simple_lock(&uvm.swap_data_lock);
1508 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1509 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1510 simple_unlock(&uvm.swap_data_lock);
1511
1512 return (rv);
1513 }
1514
1515 /*
1516 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1517 *
1518 * => we lock uvm.swap_data_lock
1519 */
1520 void
1521 uvm_swap_markbad(int startslot, int nslots)
1522 {
1523 struct swapdev *sdp;
1524 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1525
1526 simple_lock(&uvm.swap_data_lock);
1527 sdp = swapdrum_getsdp(startslot);
1528 KASSERT(sdp != NULL);
1529
1530 /*
1531 * we just keep track of how many pages have been marked bad
1532 * in this device, to make everything add up in swap_off().
1533 * we assume here that the range of slots will all be within
1534 * one swap device.
1535 */
1536
1537 KASSERT(uvmexp.swpgonly >= nslots);
1538 uvmexp.swpgonly -= nslots;
1539 sdp->swd_npgbad += nslots;
1540 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1541 simple_unlock(&uvm.swap_data_lock);
1542 }
1543
1544 /*
1545 * uvm_swap_free: free swap slots
1546 *
1547 * => this can be all or part of an allocation made by uvm_swap_alloc
1548 * => we lock uvm.swap_data_lock
1549 */
1550 void
1551 uvm_swap_free(int startslot, int nslots)
1552 {
1553 struct swapdev *sdp;
1554 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1555
1556 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1557 startslot, 0, 0);
1558
1559 /*
1560 * ignore attempts to free the "bad" slot.
1561 */
1562
1563 if (startslot == SWSLOT_BAD) {
1564 return;
1565 }
1566
1567 /*
1568 * convert drum slot offset back to sdp, free the blocks
1569 * in the extent, and return. must hold pri lock to do
1570 * lookup and access the extent.
1571 */
1572
1573 simple_lock(&uvm.swap_data_lock);
1574 sdp = swapdrum_getsdp(startslot);
1575 KASSERT(uvmexp.nswapdev >= 1);
1576 KASSERT(sdp != NULL);
1577 KASSERT(sdp->swd_npginuse >= nslots);
1578 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1579 sdp->swd_npginuse -= nslots;
1580 uvmexp.swpginuse -= nslots;
1581 simple_unlock(&uvm.swap_data_lock);
1582 }
1583
1584 /*
1585 * uvm_swap_put: put any number of pages into a contig place on swap
1586 *
1587 * => can be sync or async
1588 */
1589
1590 int
1591 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1592 {
1593 int error;
1594
1595 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1596 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1597 return error;
1598 }
1599
1600 /*
1601 * uvm_swap_get: get a single page from swap
1602 *
1603 * => usually a sync op (from fault)
1604 */
1605
1606 int
1607 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1608 {
1609 int error;
1610
1611 uvmexp.nswget++;
1612 KASSERT(flags & PGO_SYNCIO);
1613 if (swslot == SWSLOT_BAD) {
1614 return EIO;
1615 }
1616
1617 error = uvm_swap_io(&page, swslot, 1, B_READ |
1618 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1619 if (error == 0) {
1620
1621 /*
1622 * this page is no longer only in swap.
1623 */
1624
1625 simple_lock(&uvm.swap_data_lock);
1626 KASSERT(uvmexp.swpgonly > 0);
1627 uvmexp.swpgonly--;
1628 simple_unlock(&uvm.swap_data_lock);
1629 }
1630 return error;
1631 }
1632
1633 /*
1634 * uvm_swap_io: do an i/o operation to swap
1635 */
1636
1637 static int
1638 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1639 {
1640 daddr_t startblk;
1641 struct buf *bp;
1642 vaddr_t kva;
1643 int error, s, mapinflags;
1644 boolean_t write, async;
1645 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1646
1647 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1648 startslot, npages, flags, 0);
1649
1650 write = (flags & B_READ) == 0;
1651 async = (flags & B_ASYNC) != 0;
1652
1653 /*
1654 * convert starting drum slot to block number
1655 */
1656
1657 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1658
1659 /*
1660 * first, map the pages into the kernel.
1661 */
1662
1663 mapinflags = !write ?
1664 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1665 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1666 kva = uvm_pagermapin(pps, npages, mapinflags);
1667
1668 /*
1669 * now allocate a buf for the i/o.
1670 */
1671
1672 bp = getiobuf();
1673
1674 /*
1675 * fill in the bp/sbp. we currently route our i/o through
1676 * /dev/drum's vnode [swapdev_vp].
1677 */
1678
1679 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1680 bp->b_proc = &proc0; /* XXX */
1681 bp->b_vnbufs.le_next = NOLIST;
1682 bp->b_data = (caddr_t)kva;
1683 bp->b_blkno = startblk;
1684 bp->b_vp = swapdev_vp;
1685 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1686
1687 /*
1688 * bump v_numoutput (counter of number of active outputs).
1689 */
1690
1691 if (write) {
1692 s = splbio();
1693 V_INCR_NUMOUTPUT(swapdev_vp);
1694 splx(s);
1695 }
1696
1697 /*
1698 * for async ops we must set up the iodone handler.
1699 */
1700
1701 if (async) {
1702 bp->b_flags |= B_CALL;
1703 bp->b_iodone = uvm_aio_biodone;
1704 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1705 if (curproc == uvm.pagedaemon_proc)
1706 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1707 else
1708 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1709 } else {
1710 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1711 }
1712 UVMHIST_LOG(pdhist,
1713 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1714 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1715
1716 /*
1717 * now we start the I/O, and if async, return.
1718 */
1719
1720 VOP_STRATEGY(swapdev_vp, bp);
1721 if (async)
1722 return 0;
1723
1724 /*
1725 * must be sync i/o. wait for it to finish
1726 */
1727
1728 error = biowait(bp);
1729
1730 /*
1731 * kill the pager mapping
1732 */
1733
1734 uvm_pagermapout(kva, npages);
1735
1736 /*
1737 * now dispose of the buf and we're done.
1738 */
1739
1740 s = splbio();
1741 if (write)
1742 vwakeup(bp);
1743 putiobuf(bp);
1744 splx(s);
1745 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1746 return (error);
1747 }
1748