Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.118
      1 /*	$NetBSD: uvm_swap.c,v 1.118 2007/02/19 01:35:20 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.118 2007/02/19 01:35:20 ad Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/vmem.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/syscallargs.h>
     60 #include <sys/swap.h>
     61 #include <sys/kauth.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (sleep lock): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm.swap_data_lock (simple_lock): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL);
    185 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL);
    186 
    187 #define	getvndxfer(vnx)	do {						\
    188 	int sp = splbio();						\
    189 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    190 	splx(sp);							\
    191 } while (/*CONSTCOND*/ 0)
    192 
    193 #define putvndxfer(vnx) {						\
    194 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    195 }
    196 
    197 #define	getvndbuf(vbp)	do {						\
    198 	int sp = splbio();						\
    199 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    200 	splx(sp);							\
    201 } while (/*CONSTCOND*/ 0)
    202 
    203 #define putvndbuf(vbp) {						\
    204 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    205 }
    206 
    207 /*
    208  * local variables
    209  */
    210 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212 
    213 /* list of all active swap devices [by priority] */
    214 LIST_HEAD(swap_priority, swappri);
    215 static struct swap_priority swap_priority;
    216 
    217 /* locks */
    218 static krwlock_t swap_syscall_lock;
    219 
    220 /*
    221  * prototypes
    222  */
    223 static struct swapdev	*swapdrum_getsdp(int);
    224 
    225 static struct swapdev	*swaplist_find(struct vnode *, int);
    226 static void		 swaplist_insert(struct swapdev *,
    227 					 struct swappri *, int);
    228 static void		 swaplist_trim(void);
    229 
    230 static int swap_on(struct lwp *, struct swapdev *);
    231 static int swap_off(struct lwp *, struct swapdev *);
    232 
    233 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    234 
    235 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    236 static void sw_reg_iodone(struct buf *);
    237 static void sw_reg_start(struct swapdev *);
    238 
    239 static int uvm_swap_io(struct vm_page **, int, int, int);
    240 
    241 /*
    242  * uvm_swap_init: init the swap system data structures and locks
    243  *
    244  * => called at boot time from init_main.c after the filesystems
    245  *	are brought up (which happens after uvm_init())
    246  */
    247 void
    248 uvm_swap_init(void)
    249 {
    250 	UVMHIST_FUNC("uvm_swap_init");
    251 
    252 	UVMHIST_CALLED(pdhist);
    253 	/*
    254 	 * first, init the swap list, its counter, and its lock.
    255 	 * then get a handle on the vnode for /dev/drum by using
    256 	 * the its dev_t number ("swapdev", from MD conf.c).
    257 	 */
    258 
    259 	LIST_INIT(&swap_priority);
    260 	uvmexp.nswapdev = 0;
    261 	rw_init(&swap_syscall_lock);
    262 	cv_init(&uvm.scheduler_cv, "schedule");
    263 	simple_lock_init(&uvm.swap_data_lock);
    264 
    265 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    266 	mutex_init(&uvm.scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    267 
    268 	if (bdevvp(swapdev, &swapdev_vp))
    269 		panic("uvm_swap_init: can't get vnode for swap device");
    270 
    271 	/*
    272 	 * create swap block resource map to map /dev/drum.   the range
    273 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    274 	 * that block 0 is reserved (used to indicate an allocation
    275 	 * failure, or no allocation).
    276 	 */
    277 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    278 	    VM_NOSLEEP);
    279 	if (swapmap == 0)
    280 		panic("uvm_swap_init: extent_create failed");
    281 
    282 	/*
    283 	 * done!
    284 	 */
    285 	uvm.swap_running = TRUE;
    286 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    287 }
    288 
    289 /*
    290  * swaplist functions: functions that operate on the list of swap
    291  * devices on the system.
    292  */
    293 
    294 /*
    295  * swaplist_insert: insert swap device "sdp" into the global list
    296  *
    297  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    298  * => caller must provide a newly malloc'd swappri structure (we will
    299  *	FREE it if we don't need it... this it to prevent malloc blocking
    300  *	here while adding swap)
    301  */
    302 static void
    303 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    304 {
    305 	struct swappri *spp, *pspp;
    306 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    307 
    308 	/*
    309 	 * find entry at or after which to insert the new device.
    310 	 */
    311 	pspp = NULL;
    312 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    313 		if (priority <= spp->spi_priority)
    314 			break;
    315 		pspp = spp;
    316 	}
    317 
    318 	/*
    319 	 * new priority?
    320 	 */
    321 	if (spp == NULL || spp->spi_priority != priority) {
    322 		spp = newspp;  /* use newspp! */
    323 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    324 			    priority, 0, 0, 0);
    325 
    326 		spp->spi_priority = priority;
    327 		CIRCLEQ_INIT(&spp->spi_swapdev);
    328 
    329 		if (pspp)
    330 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    331 		else
    332 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    333 	} else {
    334 	  	/* we don't need a new priority structure, free it */
    335 		FREE(newspp, M_VMSWAP);
    336 	}
    337 
    338 	/*
    339 	 * priority found (or created).   now insert on the priority's
    340 	 * circleq list and bump the total number of swapdevs.
    341 	 */
    342 	sdp->swd_priority = priority;
    343 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    344 	uvmexp.nswapdev++;
    345 }
    346 
    347 /*
    348  * swaplist_find: find and optionally remove a swap device from the
    349  *	global list.
    350  *
    351  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    352  * => we return the swapdev we found (and removed)
    353  */
    354 static struct swapdev *
    355 swaplist_find(struct vnode *vp, boolean_t remove)
    356 {
    357 	struct swapdev *sdp;
    358 	struct swappri *spp;
    359 
    360 	/*
    361 	 * search the lists for the requested vp
    362 	 */
    363 
    364 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    365 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    366 			if (sdp->swd_vp == vp) {
    367 				if (remove) {
    368 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    369 					    sdp, swd_next);
    370 					uvmexp.nswapdev--;
    371 				}
    372 				return(sdp);
    373 			}
    374 		}
    375 	}
    376 	return (NULL);
    377 }
    378 
    379 /*
    380  * swaplist_trim: scan priority list for empty priority entries and kill
    381  *	them.
    382  *
    383  * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
    384  */
    385 static void
    386 swaplist_trim(void)
    387 {
    388 	struct swappri *spp, *nextspp;
    389 
    390 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    391 		nextspp = LIST_NEXT(spp, spi_swappri);
    392 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    393 		    (void *)&spp->spi_swapdev)
    394 			continue;
    395 		LIST_REMOVE(spp, spi_swappri);
    396 		free(spp, M_VMSWAP);
    397 	}
    398 }
    399 
    400 /*
    401  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    402  *	to the "swapdev" that maps that section of the drum.
    403  *
    404  * => each swapdev takes one big contig chunk of the drum
    405  * => caller must hold uvm.swap_data_lock
    406  */
    407 static struct swapdev *
    408 swapdrum_getsdp(int pgno)
    409 {
    410 	struct swapdev *sdp;
    411 	struct swappri *spp;
    412 
    413 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    414 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    415 			if (sdp->swd_flags & SWF_FAKE)
    416 				continue;
    417 			if (pgno >= sdp->swd_drumoffset &&
    418 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    419 				return sdp;
    420 			}
    421 		}
    422 	}
    423 	return NULL;
    424 }
    425 
    426 
    427 /*
    428  * sys_swapctl: main entry point for swapctl(2) system call
    429  * 	[with two helper functions: swap_on and swap_off]
    430  */
    431 int
    432 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    433 {
    434 	struct sys_swapctl_args /* {
    435 		syscallarg(int) cmd;
    436 		syscallarg(void *) arg;
    437 		syscallarg(int) misc;
    438 	} */ *uap = (struct sys_swapctl_args *)v;
    439 	struct vnode *vp;
    440 	struct nameidata nd;
    441 	struct swappri *spp;
    442 	struct swapdev *sdp;
    443 	struct swapent *sep;
    444 #define SWAP_PATH_MAX (PATH_MAX + 1)
    445 	char	*userpath;
    446 	size_t	len;
    447 	int	error, misc;
    448 	int	priority;
    449 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    450 
    451 	misc = SCARG(uap, misc);
    452 
    453 	/*
    454 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    455 	 */
    456 	rw_enter(&swap_syscall_lock, RW_WRITER);
    457 
    458 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    459 	/*
    460 	 * we handle the non-priv NSWAP and STATS request first.
    461 	 *
    462 	 * SWAP_NSWAP: return number of config'd swap devices
    463 	 * [can also be obtained with uvmexp sysctl]
    464 	 */
    465 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    467 		    0, 0, 0);
    468 		*retval = uvmexp.nswapdev;
    469 		error = 0;
    470 		goto out;
    471 	}
    472 
    473 	/*
    474 	 * SWAP_STATS: get stats on current # of configured swap devs
    475 	 *
    476 	 * note that the swap_priority list can't change as long
    477 	 * as we are holding the swap_syscall_lock.  we don't want
    478 	 * to grab the uvm.swap_data_lock because we may fault&sleep during
    479 	 * copyout() and we don't want to be holding that lock then!
    480 	 */
    481 	if (SCARG(uap, cmd) == SWAP_STATS
    482 #if defined(COMPAT_13)
    483 	    || SCARG(uap, cmd) == SWAP_OSTATS
    484 #endif
    485 	    ) {
    486 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    487 			misc = uvmexp.nswapdev;
    488 #if defined(COMPAT_13)
    489 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    490 			len = sizeof(struct oswapent) * misc;
    491 		else
    492 #endif
    493 			len = sizeof(struct swapent) * misc;
    494 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    495 
    496 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    497 		error = copyout(sep, SCARG(uap, arg), len);
    498 
    499 		free(sep, M_TEMP);
    500 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    501 		goto out;
    502 	}
    503 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    504 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    505 
    506 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    507 		goto out;
    508 	}
    509 
    510 	/*
    511 	 * all other requests require superuser privs.   verify.
    512 	 */
    513 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    514 	    0, NULL, NULL, NULL)))
    515 		goto out;
    516 
    517 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    518 		/* drop the current dump device */
    519 		dumpdev = NODEV;
    520 		cpu_dumpconf();
    521 		goto out;
    522 	}
    523 
    524 	/*
    525 	 * at this point we expect a path name in arg.   we will
    526 	 * use namei() to gain a vnode reference (vref), and lock
    527 	 * the vnode (VOP_LOCK).
    528 	 *
    529 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    530 	 * miniroot)
    531 	 */
    532 	if (SCARG(uap, arg) == NULL) {
    533 		vp = rootvp;		/* miniroot */
    534 		if (vget(vp, LK_EXCLUSIVE)) {
    535 			error = EBUSY;
    536 			goto out;
    537 		}
    538 		if (SCARG(uap, cmd) == SWAP_ON &&
    539 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    540 			panic("swapctl: miniroot copy failed");
    541 	} else {
    542 		int	space;
    543 		char	*where;
    544 
    545 		if (SCARG(uap, cmd) == SWAP_ON) {
    546 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    547 			    SWAP_PATH_MAX, &len)))
    548 				goto out;
    549 			space = UIO_SYSSPACE;
    550 			where = userpath;
    551 		} else {
    552 			space = UIO_USERSPACE;
    553 			where = (char *)SCARG(uap, arg);
    554 		}
    555 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
    556 		if ((error = namei(&nd)))
    557 			goto out;
    558 		vp = nd.ni_vp;
    559 	}
    560 	/* note: "vp" is referenced and locked */
    561 
    562 	error = 0;		/* assume no error */
    563 	switch(SCARG(uap, cmd)) {
    564 
    565 	case SWAP_DUMPDEV:
    566 		if (vp->v_type != VBLK) {
    567 			error = ENOTBLK;
    568 			break;
    569 		}
    570 		if (bdevsw_lookup(vp->v_rdev))
    571 			dumpdev = vp->v_rdev;
    572 		else
    573 			dumpdev = NODEV;
    574 		cpu_dumpconf();
    575 		break;
    576 
    577 	case SWAP_CTL:
    578 		/*
    579 		 * get new priority, remove old entry (if any) and then
    580 		 * reinsert it in the correct place.  finally, prune out
    581 		 * any empty priority structures.
    582 		 */
    583 		priority = SCARG(uap, misc);
    584 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    585 		simple_lock(&uvm.swap_data_lock);
    586 		if ((sdp = swaplist_find(vp, 1)) == NULL) {
    587 			error = ENOENT;
    588 		} else {
    589 			swaplist_insert(sdp, spp, priority);
    590 			swaplist_trim();
    591 		}
    592 		simple_unlock(&uvm.swap_data_lock);
    593 		if (error)
    594 			free(spp, M_VMSWAP);
    595 		break;
    596 
    597 	case SWAP_ON:
    598 
    599 		/*
    600 		 * check for duplicates.   if none found, then insert a
    601 		 * dummy entry on the list to prevent someone else from
    602 		 * trying to enable this device while we are working on
    603 		 * it.
    604 		 */
    605 
    606 		priority = SCARG(uap, misc);
    607 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    608 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    609 		memset(sdp, 0, sizeof(*sdp));
    610 		sdp->swd_flags = SWF_FAKE;
    611 		sdp->swd_vp = vp;
    612 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    613 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    614 		simple_lock(&uvm.swap_data_lock);
    615 		if (swaplist_find(vp, 0) != NULL) {
    616 			error = EBUSY;
    617 			simple_unlock(&uvm.swap_data_lock);
    618 			bufq_free(sdp->swd_tab);
    619 			free(sdp, M_VMSWAP);
    620 			free(spp, M_VMSWAP);
    621 			break;
    622 		}
    623 		swaplist_insert(sdp, spp, priority);
    624 		simple_unlock(&uvm.swap_data_lock);
    625 
    626 		sdp->swd_pathlen = len;
    627 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    628 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    629 			panic("swapctl: copystr");
    630 
    631 		/*
    632 		 * we've now got a FAKE placeholder in the swap list.
    633 		 * now attempt to enable swap on it.  if we fail, undo
    634 		 * what we've done and kill the fake entry we just inserted.
    635 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    636 		 */
    637 
    638 		if ((error = swap_on(l, sdp)) != 0) {
    639 			simple_lock(&uvm.swap_data_lock);
    640 			(void) swaplist_find(vp, 1);  /* kill fake entry */
    641 			swaplist_trim();
    642 			simple_unlock(&uvm.swap_data_lock);
    643 			bufq_free(sdp->swd_tab);
    644 			free(sdp->swd_path, M_VMSWAP);
    645 			free(sdp, M_VMSWAP);
    646 			break;
    647 		}
    648 		break;
    649 
    650 	case SWAP_OFF:
    651 		simple_lock(&uvm.swap_data_lock);
    652 		if ((sdp = swaplist_find(vp, 0)) == NULL) {
    653 			simple_unlock(&uvm.swap_data_lock);
    654 			error = ENXIO;
    655 			break;
    656 		}
    657 
    658 		/*
    659 		 * If a device isn't in use or enabled, we
    660 		 * can't stop swapping from it (again).
    661 		 */
    662 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    663 			simple_unlock(&uvm.swap_data_lock);
    664 			error = EBUSY;
    665 			break;
    666 		}
    667 
    668 		/*
    669 		 * do the real work.
    670 		 */
    671 		error = swap_off(l, sdp);
    672 		break;
    673 
    674 	default:
    675 		error = EINVAL;
    676 	}
    677 
    678 	/*
    679 	 * done!  release the ref gained by namei() and unlock.
    680 	 */
    681 	vput(vp);
    682 
    683 out:
    684 	free(userpath, M_TEMP);
    685 	rw_exit(&swap_syscall_lock);
    686 
    687 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    688 	return (error);
    689 }
    690 
    691 /*
    692  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    693  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    694  * emulation to use it directly without going through sys_swapctl().
    695  * The problem with using sys_swapctl() there is that it involves
    696  * copying the swapent array to the stackgap, and this array's size
    697  * is not known at build time. Hence it would not be possible to
    698  * ensure it would fit in the stackgap in any case.
    699  */
    700 void
    701 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    702 {
    703 
    704 	rw_enter(&swap_syscall_lock, RW_READER);
    705 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    706 	rw_exit(&swap_syscall_lock);
    707 }
    708 
    709 static void
    710 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    711 {
    712 	struct swappri *spp;
    713 	struct swapdev *sdp;
    714 	int count = 0;
    715 
    716 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    717 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    718 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    719 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    720 		  	/*
    721 			 * backwards compatibility for system call.
    722 			 * note that we use 'struct oswapent' as an
    723 			 * overlay into both 'struct swapdev' and
    724 			 * the userland 'struct swapent', as we
    725 			 * want to retain backwards compatibility
    726 			 * with NetBSD 1.3.
    727 			 */
    728 			sdp->swd_ose.ose_inuse =
    729 			    btodb((uint64_t)sdp->swd_npginuse <<
    730 			    PAGE_SHIFT);
    731 			(void)memcpy(sep, &sdp->swd_ose,
    732 			    sizeof(struct oswapent));
    733 
    734 			/* now copy out the path if necessary */
    735 #if !defined(COMPAT_13)
    736 			(void) cmd;
    737 #endif
    738 #if defined(COMPAT_13)
    739 			if (cmd == SWAP_STATS)
    740 #endif
    741 				(void)memcpy(&sep->se_path, sdp->swd_path,
    742 				    sdp->swd_pathlen);
    743 
    744 			count++;
    745 #if defined(COMPAT_13)
    746 			if (cmd == SWAP_OSTATS)
    747 				sep = (struct swapent *)
    748 				    ((struct oswapent *)sep + 1);
    749 			else
    750 #endif
    751 				sep++;
    752 		}
    753 	}
    754 
    755 	*retval = count;
    756 	return;
    757 }
    758 
    759 /*
    760  * swap_on: attempt to enable a swapdev for swapping.   note that the
    761  *	swapdev is already on the global list, but disabled (marked
    762  *	SWF_FAKE).
    763  *
    764  * => we avoid the start of the disk (to protect disk labels)
    765  * => we also avoid the miniroot, if we are swapping to root.
    766  * => caller should leave uvm.swap_data_lock unlocked, we may lock it
    767  *	if needed.
    768  */
    769 static int
    770 swap_on(struct lwp *l, struct swapdev *sdp)
    771 {
    772 	struct vnode *vp;
    773 	int error, npages, nblocks, size;
    774 	long addr;
    775 	u_long result;
    776 	struct vattr va;
    777 #ifdef NFS
    778 	extern int (**nfsv2_vnodeop_p)(void *);
    779 #endif /* NFS */
    780 	const struct bdevsw *bdev;
    781 	dev_t dev;
    782 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    783 
    784 	/*
    785 	 * we want to enable swapping on sdp.   the swd_vp contains
    786 	 * the vnode we want (locked and ref'd), and the swd_dev
    787 	 * contains the dev_t of the file, if it a block device.
    788 	 */
    789 
    790 	vp = sdp->swd_vp;
    791 	dev = sdp->swd_dev;
    792 
    793 	/*
    794 	 * open the swap file (mostly useful for block device files to
    795 	 * let device driver know what is up).
    796 	 *
    797 	 * we skip the open/close for root on swap because the root
    798 	 * has already been opened when root was mounted (mountroot).
    799 	 */
    800 	if (vp != rootvp) {
    801 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
    802 			return (error);
    803 	}
    804 
    805 	/* XXX this only works for block devices */
    806 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    807 
    808 	/*
    809 	 * we now need to determine the size of the swap area.   for
    810 	 * block specials we can call the d_psize function.
    811 	 * for normal files, we must stat [get attrs].
    812 	 *
    813 	 * we put the result in nblks.
    814 	 * for normal files, we also want the filesystem block size
    815 	 * (which we get with statfs).
    816 	 */
    817 	switch (vp->v_type) {
    818 	case VBLK:
    819 		bdev = bdevsw_lookup(dev);
    820 		if (bdev == NULL || bdev->d_psize == NULL ||
    821 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    822 			error = ENXIO;
    823 			goto bad;
    824 		}
    825 		break;
    826 
    827 	case VREG:
    828 		if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
    829 			goto bad;
    830 		nblocks = (int)btodb(va.va_size);
    831 		if ((error =
    832 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
    833 			goto bad;
    834 
    835 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    836 		/*
    837 		 * limit the max # of outstanding I/O requests we issue
    838 		 * at any one time.   take it easy on NFS servers.
    839 		 */
    840 #ifdef NFS
    841 		if (vp->v_op == nfsv2_vnodeop_p)
    842 			sdp->swd_maxactive = 2; /* XXX */
    843 		else
    844 #endif /* NFS */
    845 			sdp->swd_maxactive = 8; /* XXX */
    846 		break;
    847 
    848 	default:
    849 		error = ENXIO;
    850 		goto bad;
    851 	}
    852 
    853 	/*
    854 	 * save nblocks in a safe place and convert to pages.
    855 	 */
    856 
    857 	sdp->swd_ose.ose_nblks = nblocks;
    858 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    859 
    860 	/*
    861 	 * for block special files, we want to make sure that leave
    862 	 * the disklabel and bootblocks alone, so we arrange to skip
    863 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    864 	 * note that because of this the "size" can be less than the
    865 	 * actual number of blocks on the device.
    866 	 */
    867 	if (vp->v_type == VBLK) {
    868 		/* we use pages 1 to (size - 1) [inclusive] */
    869 		size = npages - 1;
    870 		addr = 1;
    871 	} else {
    872 		/* we use pages 0 to (size - 1) [inclusive] */
    873 		size = npages;
    874 		addr = 0;
    875 	}
    876 
    877 	/*
    878 	 * make sure we have enough blocks for a reasonable sized swap
    879 	 * area.   we want at least one page.
    880 	 */
    881 
    882 	if (size < 1) {
    883 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    884 		error = EINVAL;
    885 		goto bad;
    886 	}
    887 
    888 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    889 
    890 	/*
    891 	 * now we need to allocate an extent to manage this swap device
    892 	 */
    893 
    894 	sdp->swd_blist = blist_create(npages);
    895 	/* mark all expect the `saved' region free. */
    896 	blist_free(sdp->swd_blist, addr, size);
    897 
    898 	/*
    899 	 * if the vnode we are swapping to is the root vnode
    900 	 * (i.e. we are swapping to the miniroot) then we want
    901 	 * to make sure we don't overwrite it.   do a statfs to
    902 	 * find its size and skip over it.
    903 	 */
    904 	if (vp == rootvp) {
    905 		struct mount *mp;
    906 		struct statvfs *sp;
    907 		int rootblocks, rootpages;
    908 
    909 		mp = rootvnode->v_mount;
    910 		sp = &mp->mnt_stat;
    911 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    912 		/*
    913 		 * XXX: sp->f_blocks isn't the total number of
    914 		 * blocks in the filesystem, it's the number of
    915 		 * data blocks.  so, our rootblocks almost
    916 		 * definitely underestimates the total size
    917 		 * of the filesystem - how badly depends on the
    918 		 * details of the filesystem type.  there isn't
    919 		 * an obvious way to deal with this cleanly
    920 		 * and perfectly, so for now we just pad our
    921 		 * rootblocks estimate with an extra 5 percent.
    922 		 */
    923 		rootblocks += (rootblocks >> 5) +
    924 			(rootblocks >> 6) +
    925 			(rootblocks >> 7);
    926 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    927 		if (rootpages > size)
    928 			panic("swap_on: miniroot larger than swap?");
    929 
    930 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    931 			panic("swap_on: unable to preserve miniroot");
    932 		}
    933 
    934 		size -= rootpages;
    935 		printf("Preserved %d pages of miniroot ", rootpages);
    936 		printf("leaving %d pages of swap\n", size);
    937 	}
    938 
    939 	/*
    940 	 * add a ref to vp to reflect usage as a swap device.
    941 	 */
    942 	vref(vp);
    943 
    944 	/*
    945 	 * now add the new swapdev to the drum and enable.
    946 	 */
    947 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    948 	if (result == 0)
    949 		panic("swapdrum_add");
    950 
    951 	sdp->swd_drumoffset = (int)result;
    952 	sdp->swd_drumsize = npages;
    953 	sdp->swd_npages = size;
    954 	simple_lock(&uvm.swap_data_lock);
    955 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    956 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    957 	uvmexp.swpages += size;
    958 	uvmexp.swpgavail += size;
    959 	simple_unlock(&uvm.swap_data_lock);
    960 	return (0);
    961 
    962 	/*
    963 	 * failure: clean up and return error.
    964 	 */
    965 
    966 bad:
    967 	if (sdp->swd_blist) {
    968 		blist_destroy(sdp->swd_blist);
    969 	}
    970 	if (vp != rootvp) {
    971 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
    972 	}
    973 	return (error);
    974 }
    975 
    976 /*
    977  * swap_off: stop swapping on swapdev
    978  *
    979  * => swap data should be locked, we will unlock.
    980  */
    981 static int
    982 swap_off(struct lwp *l, struct swapdev *sdp)
    983 {
    984 	int npages = sdp->swd_npages;
    985 	int error = 0;
    986 
    987 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    988 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    989 
    990 	/* disable the swap area being removed */
    991 	sdp->swd_flags &= ~SWF_ENABLE;
    992 	uvmexp.swpgavail -= npages;
    993 	simple_unlock(&uvm.swap_data_lock);
    994 
    995 	/*
    996 	 * the idea is to find all the pages that are paged out to this
    997 	 * device, and page them all in.  in uvm, swap-backed pageable
    998 	 * memory can take two forms: aobjs and anons.  call the
    999 	 * swapoff hook for each subsystem to bring in pages.
   1000 	 */
   1001 
   1002 	if (uao_swap_off(sdp->swd_drumoffset,
   1003 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1004 	    amap_swap_off(sdp->swd_drumoffset,
   1005 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1006 		error = ENOMEM;
   1007 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1008 		error = EBUSY;
   1009 	}
   1010 
   1011 	if (error) {
   1012 		simple_lock(&uvm.swap_data_lock);
   1013 		sdp->swd_flags |= SWF_ENABLE;
   1014 		uvmexp.swpgavail += npages;
   1015 		simple_unlock(&uvm.swap_data_lock);
   1016 
   1017 		return error;
   1018 	}
   1019 
   1020 	/*
   1021 	 * done with the vnode.
   1022 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1023 	 * so that spec_close() can tell if this is the last close.
   1024 	 */
   1025 	vrele(sdp->swd_vp);
   1026 	if (sdp->swd_vp != rootvp) {
   1027 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
   1028 	}
   1029 
   1030 	simple_lock(&uvm.swap_data_lock);
   1031 	uvmexp.swpages -= npages;
   1032 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1033 
   1034 	if (swaplist_find(sdp->swd_vp, 1) == NULL)
   1035 		panic("swap_off: swapdev not in list");
   1036 	swaplist_trim();
   1037 	simple_unlock(&uvm.swap_data_lock);
   1038 
   1039 	/*
   1040 	 * free all resources!
   1041 	 */
   1042 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1043 	blist_destroy(sdp->swd_blist);
   1044 	bufq_free(sdp->swd_tab);
   1045 	free(sdp, M_VMSWAP);
   1046 	return (0);
   1047 }
   1048 
   1049 /*
   1050  * /dev/drum interface and i/o functions
   1051  */
   1052 
   1053 /*
   1054  * swstrategy: perform I/O on the drum
   1055  *
   1056  * => we must map the i/o request from the drum to the correct swapdev.
   1057  */
   1058 static void
   1059 swstrategy(struct buf *bp)
   1060 {
   1061 	struct swapdev *sdp;
   1062 	struct vnode *vp;
   1063 	int s, pageno, bn;
   1064 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1065 
   1066 	/*
   1067 	 * convert block number to swapdev.   note that swapdev can't
   1068 	 * be yanked out from under us because we are holding resources
   1069 	 * in it (i.e. the blocks we are doing I/O on).
   1070 	 */
   1071 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1072 	simple_lock(&uvm.swap_data_lock);
   1073 	sdp = swapdrum_getsdp(pageno);
   1074 	simple_unlock(&uvm.swap_data_lock);
   1075 	if (sdp == NULL) {
   1076 		bp->b_error = EINVAL;
   1077 		bp->b_flags |= B_ERROR;
   1078 		biodone(bp);
   1079 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1080 		return;
   1081 	}
   1082 
   1083 	/*
   1084 	 * convert drum page number to block number on this swapdev.
   1085 	 */
   1086 
   1087 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1088 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1089 
   1090 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1091 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1092 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1093 
   1094 	/*
   1095 	 * for block devices we finish up here.
   1096 	 * for regular files we have to do more work which we delegate
   1097 	 * to sw_reg_strategy().
   1098 	 */
   1099 
   1100 	switch (sdp->swd_vp->v_type) {
   1101 	default:
   1102 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1103 
   1104 	case VBLK:
   1105 
   1106 		/*
   1107 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1108 		 * on the swapdev (sdp).
   1109 		 */
   1110 		s = splbio();
   1111 		bp->b_blkno = bn;		/* swapdev block number */
   1112 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1113 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1114 
   1115 		/*
   1116 		 * if we are doing a write, we have to redirect the i/o on
   1117 		 * drum's v_numoutput counter to the swapdevs.
   1118 		 */
   1119 		if ((bp->b_flags & B_READ) == 0) {
   1120 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1121 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1122 		}
   1123 
   1124 		/*
   1125 		 * finally plug in swapdev vnode and start I/O
   1126 		 */
   1127 		bp->b_vp = vp;
   1128 		splx(s);
   1129 		VOP_STRATEGY(vp, bp);
   1130 		return;
   1131 
   1132 	case VREG:
   1133 		/*
   1134 		 * delegate to sw_reg_strategy function.
   1135 		 */
   1136 		sw_reg_strategy(sdp, bp, bn);
   1137 		return;
   1138 	}
   1139 	/* NOTREACHED */
   1140 }
   1141 
   1142 /*
   1143  * swread: the read function for the drum (just a call to physio)
   1144  */
   1145 /*ARGSUSED*/
   1146 static int
   1147 swread(dev_t dev, struct uio *uio, int ioflag)
   1148 {
   1149 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1150 
   1151 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1152 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1153 }
   1154 
   1155 /*
   1156  * swwrite: the write function for the drum (just a call to physio)
   1157  */
   1158 /*ARGSUSED*/
   1159 static int
   1160 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1161 {
   1162 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1163 
   1164 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1165 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1166 }
   1167 
   1168 const struct bdevsw swap_bdevsw = {
   1169 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1170 };
   1171 
   1172 const struct cdevsw swap_cdevsw = {
   1173 	nullopen, nullclose, swread, swwrite, noioctl,
   1174 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1175 };
   1176 
   1177 /*
   1178  * sw_reg_strategy: handle swap i/o to regular files
   1179  */
   1180 static void
   1181 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1182 {
   1183 	struct vnode	*vp;
   1184 	struct vndxfer	*vnx;
   1185 	daddr_t		nbn;
   1186 	caddr_t		addr;
   1187 	off_t		byteoff;
   1188 	int		s, off, nra, error, sz, resid;
   1189 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1190 
   1191 	/*
   1192 	 * allocate a vndxfer head for this transfer and point it to
   1193 	 * our buffer.
   1194 	 */
   1195 	getvndxfer(vnx);
   1196 	vnx->vx_flags = VX_BUSY;
   1197 	vnx->vx_error = 0;
   1198 	vnx->vx_pending = 0;
   1199 	vnx->vx_bp = bp;
   1200 	vnx->vx_sdp = sdp;
   1201 
   1202 	/*
   1203 	 * setup for main loop where we read filesystem blocks into
   1204 	 * our buffer.
   1205 	 */
   1206 	error = 0;
   1207 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1208 	addr = bp->b_data;		/* current position in buffer */
   1209 	byteoff = dbtob((uint64_t)bn);
   1210 
   1211 	for (resid = bp->b_resid; resid; resid -= sz) {
   1212 		struct vndbuf	*nbp;
   1213 
   1214 		/*
   1215 		 * translate byteoffset into block number.  return values:
   1216 		 *   vp = vnode of underlying device
   1217 		 *  nbn = new block number (on underlying vnode dev)
   1218 		 *  nra = num blocks we can read-ahead (excludes requested
   1219 		 *	block)
   1220 		 */
   1221 		nra = 0;
   1222 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1223 				 	&vp, &nbn, &nra);
   1224 
   1225 		if (error == 0 && nbn == (daddr_t)-1) {
   1226 			/*
   1227 			 * this used to just set error, but that doesn't
   1228 			 * do the right thing.  Instead, it causes random
   1229 			 * memory errors.  The panic() should remain until
   1230 			 * this condition doesn't destabilize the system.
   1231 			 */
   1232 #if 1
   1233 			panic("sw_reg_strategy: swap to sparse file");
   1234 #else
   1235 			error = EIO;	/* failure */
   1236 #endif
   1237 		}
   1238 
   1239 		/*
   1240 		 * punt if there was an error or a hole in the file.
   1241 		 * we must wait for any i/o ops we have already started
   1242 		 * to finish before returning.
   1243 		 *
   1244 		 * XXX we could deal with holes here but it would be
   1245 		 * a hassle (in the write case).
   1246 		 */
   1247 		if (error) {
   1248 			s = splbio();
   1249 			vnx->vx_error = error;	/* pass error up */
   1250 			goto out;
   1251 		}
   1252 
   1253 		/*
   1254 		 * compute the size ("sz") of this transfer (in bytes).
   1255 		 */
   1256 		off = byteoff % sdp->swd_bsize;
   1257 		sz = (1 + nra) * sdp->swd_bsize - off;
   1258 		if (sz > resid)
   1259 			sz = resid;
   1260 
   1261 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1262 			    "vp %p/%p offset 0x%x/0x%x",
   1263 			    sdp->swd_vp, vp, byteoff, nbn);
   1264 
   1265 		/*
   1266 		 * now get a buf structure.   note that the vb_buf is
   1267 		 * at the front of the nbp structure so that you can
   1268 		 * cast pointers between the two structure easily.
   1269 		 */
   1270 		getvndbuf(nbp);
   1271 		BUF_INIT(&nbp->vb_buf);
   1272 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1273 		nbp->vb_buf.b_bcount   = sz;
   1274 		nbp->vb_buf.b_bufsize  = sz;
   1275 		nbp->vb_buf.b_error    = 0;
   1276 		nbp->vb_buf.b_data     = addr;
   1277 		nbp->vb_buf.b_lblkno   = 0;
   1278 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1279 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1280 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1281 		nbp->vb_buf.b_vp       = vp;
   1282 		if (vp->v_type == VBLK) {
   1283 			nbp->vb_buf.b_dev = vp->v_rdev;
   1284 		}
   1285 
   1286 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1287 
   1288 		/*
   1289 		 * Just sort by block number
   1290 		 */
   1291 		s = splbio();
   1292 		if (vnx->vx_error != 0) {
   1293 			putvndbuf(nbp);
   1294 			goto out;
   1295 		}
   1296 		vnx->vx_pending++;
   1297 
   1298 		/* sort it in and start I/O if we are not over our limit */
   1299 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1300 		sw_reg_start(sdp);
   1301 		splx(s);
   1302 
   1303 		/*
   1304 		 * advance to the next I/O
   1305 		 */
   1306 		byteoff += sz;
   1307 		addr += sz;
   1308 	}
   1309 
   1310 	s = splbio();
   1311 
   1312 out: /* Arrive here at splbio */
   1313 	vnx->vx_flags &= ~VX_BUSY;
   1314 	if (vnx->vx_pending == 0) {
   1315 		if (vnx->vx_error != 0) {
   1316 			bp->b_error = vnx->vx_error;
   1317 			bp->b_flags |= B_ERROR;
   1318 		}
   1319 		putvndxfer(vnx);
   1320 		biodone(bp);
   1321 	}
   1322 	splx(s);
   1323 }
   1324 
   1325 /*
   1326  * sw_reg_start: start an I/O request on the requested swapdev
   1327  *
   1328  * => reqs are sorted by b_rawblkno (above)
   1329  */
   1330 static void
   1331 sw_reg_start(struct swapdev *sdp)
   1332 {
   1333 	struct buf	*bp;
   1334 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1335 
   1336 	/* recursion control */
   1337 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1338 		return;
   1339 
   1340 	sdp->swd_flags |= SWF_BUSY;
   1341 
   1342 	while (sdp->swd_active < sdp->swd_maxactive) {
   1343 		bp = BUFQ_GET(sdp->swd_tab);
   1344 		if (bp == NULL)
   1345 			break;
   1346 		sdp->swd_active++;
   1347 
   1348 		UVMHIST_LOG(pdhist,
   1349 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1350 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1351 		if ((bp->b_flags & B_READ) == 0)
   1352 			V_INCR_NUMOUTPUT(bp->b_vp);
   1353 
   1354 		VOP_STRATEGY(bp->b_vp, bp);
   1355 	}
   1356 	sdp->swd_flags &= ~SWF_BUSY;
   1357 }
   1358 
   1359 /*
   1360  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1361  *
   1362  * => note that we can recover the vndbuf struct by casting the buf ptr
   1363  */
   1364 static void
   1365 sw_reg_iodone(struct buf *bp)
   1366 {
   1367 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1368 	struct vndxfer *vnx = vbp->vb_xfer;
   1369 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1370 	struct swapdev	*sdp = vnx->vx_sdp;
   1371 	int s, resid, error;
   1372 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1373 
   1374 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1375 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1376 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1377 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1378 
   1379 	/*
   1380 	 * protect vbp at splbio and update.
   1381 	 */
   1382 
   1383 	s = splbio();
   1384 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1385 	pbp->b_resid -= resid;
   1386 	vnx->vx_pending--;
   1387 
   1388 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1389 		/* pass error upward */
   1390 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1391 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1392 		vnx->vx_error = error;
   1393 	}
   1394 
   1395 	/*
   1396 	 * kill vbp structure
   1397 	 */
   1398 	putvndbuf(vbp);
   1399 
   1400 	/*
   1401 	 * wrap up this transaction if it has run to completion or, in
   1402 	 * case of an error, when all auxiliary buffers have returned.
   1403 	 */
   1404 	if (vnx->vx_error != 0) {
   1405 		/* pass error upward */
   1406 		pbp->b_flags |= B_ERROR;
   1407 		pbp->b_error = vnx->vx_error;
   1408 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1409 			putvndxfer(vnx);
   1410 			biodone(pbp);
   1411 		}
   1412 	} else if (pbp->b_resid == 0) {
   1413 		KASSERT(vnx->vx_pending == 0);
   1414 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1415 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1416 			    pbp, vnx->vx_error, 0, 0);
   1417 			putvndxfer(vnx);
   1418 			biodone(pbp);
   1419 		}
   1420 	}
   1421 
   1422 	/*
   1423 	 * done!   start next swapdev I/O if one is pending
   1424 	 */
   1425 	sdp->swd_active--;
   1426 	sw_reg_start(sdp);
   1427 	splx(s);
   1428 }
   1429 
   1430 
   1431 /*
   1432  * uvm_swap_alloc: allocate space on swap
   1433  *
   1434  * => allocation is done "round robin" down the priority list, as we
   1435  *	allocate in a priority we "rotate" the circle queue.
   1436  * => space can be freed with uvm_swap_free
   1437  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1438  * => we lock uvm.swap_data_lock
   1439  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1440  */
   1441 int
   1442 uvm_swap_alloc(int *nslots /* IN/OUT */, boolean_t lessok)
   1443 {
   1444 	struct swapdev *sdp;
   1445 	struct swappri *spp;
   1446 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1447 
   1448 	/*
   1449 	 * no swap devices configured yet?   definite failure.
   1450 	 */
   1451 	if (uvmexp.nswapdev < 1)
   1452 		return 0;
   1453 
   1454 	/*
   1455 	 * lock data lock, convert slots into blocks, and enter loop
   1456 	 */
   1457 	simple_lock(&uvm.swap_data_lock);
   1458 
   1459 ReTry:	/* XXXMRG */
   1460 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1461 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1462 			uint64_t result;
   1463 
   1464 			/* if it's not enabled, then we can't swap from it */
   1465 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1466 				continue;
   1467 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1468 				continue;
   1469 			result = blist_alloc(sdp->swd_blist, *nslots);
   1470 			if (result == BLIST_NONE) {
   1471 				continue;
   1472 			}
   1473 			KASSERT(result < sdp->swd_drumsize);
   1474 
   1475 			/*
   1476 			 * successful allocation!  now rotate the circleq.
   1477 			 */
   1478 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1479 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1480 			sdp->swd_npginuse += *nslots;
   1481 			uvmexp.swpginuse += *nslots;
   1482 			simple_unlock(&uvm.swap_data_lock);
   1483 			/* done!  return drum slot number */
   1484 			UVMHIST_LOG(pdhist,
   1485 			    "success!  returning %d slots starting at %d",
   1486 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1487 			return (result + sdp->swd_drumoffset);
   1488 		}
   1489 	}
   1490 
   1491 	/* XXXMRG: BEGIN HACK */
   1492 	if (*nslots > 1 && lessok) {
   1493 		*nslots = 1;
   1494 		/* XXXMRG: ugh!  blist should support this for us */
   1495 		goto ReTry;
   1496 	}
   1497 	/* XXXMRG: END HACK */
   1498 
   1499 	simple_unlock(&uvm.swap_data_lock);
   1500 	return 0;
   1501 }
   1502 
   1503 boolean_t
   1504 uvm_swapisfull(void)
   1505 {
   1506 	boolean_t rv;
   1507 
   1508 	simple_lock(&uvm.swap_data_lock);
   1509 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1510 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1511 	simple_unlock(&uvm.swap_data_lock);
   1512 
   1513 	return (rv);
   1514 }
   1515 
   1516 /*
   1517  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1518  *
   1519  * => we lock uvm.swap_data_lock
   1520  */
   1521 void
   1522 uvm_swap_markbad(int startslot, int nslots)
   1523 {
   1524 	struct swapdev *sdp;
   1525 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1526 
   1527 	simple_lock(&uvm.swap_data_lock);
   1528 	sdp = swapdrum_getsdp(startslot);
   1529 	KASSERT(sdp != NULL);
   1530 
   1531 	/*
   1532 	 * we just keep track of how many pages have been marked bad
   1533 	 * in this device, to make everything add up in swap_off().
   1534 	 * we assume here that the range of slots will all be within
   1535 	 * one swap device.
   1536 	 */
   1537 
   1538 	KASSERT(uvmexp.swpgonly >= nslots);
   1539 	uvmexp.swpgonly -= nslots;
   1540 	sdp->swd_npgbad += nslots;
   1541 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1542 	simple_unlock(&uvm.swap_data_lock);
   1543 }
   1544 
   1545 /*
   1546  * uvm_swap_free: free swap slots
   1547  *
   1548  * => this can be all or part of an allocation made by uvm_swap_alloc
   1549  * => we lock uvm.swap_data_lock
   1550  */
   1551 void
   1552 uvm_swap_free(int startslot, int nslots)
   1553 {
   1554 	struct swapdev *sdp;
   1555 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1556 
   1557 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1558 	    startslot, 0, 0);
   1559 
   1560 	/*
   1561 	 * ignore attempts to free the "bad" slot.
   1562 	 */
   1563 
   1564 	if (startslot == SWSLOT_BAD) {
   1565 		return;
   1566 	}
   1567 
   1568 	/*
   1569 	 * convert drum slot offset back to sdp, free the blocks
   1570 	 * in the extent, and return.   must hold pri lock to do
   1571 	 * lookup and access the extent.
   1572 	 */
   1573 
   1574 	simple_lock(&uvm.swap_data_lock);
   1575 	sdp = swapdrum_getsdp(startslot);
   1576 	KASSERT(uvmexp.nswapdev >= 1);
   1577 	KASSERT(sdp != NULL);
   1578 	KASSERT(sdp->swd_npginuse >= nslots);
   1579 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1580 	sdp->swd_npginuse -= nslots;
   1581 	uvmexp.swpginuse -= nslots;
   1582 	simple_unlock(&uvm.swap_data_lock);
   1583 }
   1584 
   1585 /*
   1586  * uvm_swap_put: put any number of pages into a contig place on swap
   1587  *
   1588  * => can be sync or async
   1589  */
   1590 
   1591 int
   1592 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1593 {
   1594 	int error;
   1595 
   1596 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1597 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1598 	return error;
   1599 }
   1600 
   1601 /*
   1602  * uvm_swap_get: get a single page from swap
   1603  *
   1604  * => usually a sync op (from fault)
   1605  */
   1606 
   1607 int
   1608 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1609 {
   1610 	int error;
   1611 
   1612 	uvmexp.nswget++;
   1613 	KASSERT(flags & PGO_SYNCIO);
   1614 	if (swslot == SWSLOT_BAD) {
   1615 		return EIO;
   1616 	}
   1617 
   1618 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1619 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1620 	if (error == 0) {
   1621 
   1622 		/*
   1623 		 * this page is no longer only in swap.
   1624 		 */
   1625 
   1626 		simple_lock(&uvm.swap_data_lock);
   1627 		KASSERT(uvmexp.swpgonly > 0);
   1628 		uvmexp.swpgonly--;
   1629 		simple_unlock(&uvm.swap_data_lock);
   1630 	}
   1631 	return error;
   1632 }
   1633 
   1634 /*
   1635  * uvm_swap_io: do an i/o operation to swap
   1636  */
   1637 
   1638 static int
   1639 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1640 {
   1641 	daddr_t startblk;
   1642 	struct	buf *bp;
   1643 	vaddr_t kva;
   1644 	int	error, s, mapinflags;
   1645 	boolean_t write, async;
   1646 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1647 
   1648 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1649 	    startslot, npages, flags, 0);
   1650 
   1651 	write = (flags & B_READ) == 0;
   1652 	async = (flags & B_ASYNC) != 0;
   1653 
   1654 	/*
   1655 	 * convert starting drum slot to block number
   1656 	 */
   1657 
   1658 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1659 
   1660 	/*
   1661 	 * first, map the pages into the kernel.
   1662 	 */
   1663 
   1664 	mapinflags = !write ?
   1665 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1666 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1667 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1668 
   1669 	/*
   1670 	 * now allocate a buf for the i/o.
   1671 	 */
   1672 
   1673 	bp = getiobuf();
   1674 
   1675 	/*
   1676 	 * fill in the bp/sbp.   we currently route our i/o through
   1677 	 * /dev/drum's vnode [swapdev_vp].
   1678 	 */
   1679 
   1680 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1681 	bp->b_proc = &proc0;	/* XXX */
   1682 	bp->b_vnbufs.le_next = NOLIST;
   1683 	bp->b_data = (caddr_t)kva;
   1684 	bp->b_blkno = startblk;
   1685 	bp->b_vp = swapdev_vp;
   1686 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1687 
   1688 	/*
   1689 	 * bump v_numoutput (counter of number of active outputs).
   1690 	 */
   1691 
   1692 	if (write) {
   1693 		s = splbio();
   1694 		V_INCR_NUMOUTPUT(swapdev_vp);
   1695 		splx(s);
   1696 	}
   1697 
   1698 	/*
   1699 	 * for async ops we must set up the iodone handler.
   1700 	 */
   1701 
   1702 	if (async) {
   1703 		bp->b_flags |= B_CALL;
   1704 		bp->b_iodone = uvm_aio_biodone;
   1705 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1706 		if (curproc == uvm.pagedaemon_proc)
   1707 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1708 		else
   1709 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1710 	} else {
   1711 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1712 	}
   1713 	UVMHIST_LOG(pdhist,
   1714 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1715 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1716 
   1717 	/*
   1718 	 * now we start the I/O, and if async, return.
   1719 	 */
   1720 
   1721 	VOP_STRATEGY(swapdev_vp, bp);
   1722 	if (async)
   1723 		return 0;
   1724 
   1725 	/*
   1726 	 * must be sync i/o.   wait for it to finish
   1727 	 */
   1728 
   1729 	error = biowait(bp);
   1730 
   1731 	/*
   1732 	 * kill the pager mapping
   1733 	 */
   1734 
   1735 	uvm_pagermapout(kva, npages);
   1736 
   1737 	/*
   1738 	 * now dispose of the buf and we're done.
   1739 	 */
   1740 
   1741 	s = splbio();
   1742 	if (write)
   1743 		vwakeup(bp);
   1744 	putiobuf(bp);
   1745 	splx(s);
   1746 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1747 	return (error);
   1748 }
   1749