uvm_swap.c revision 1.12 1 /* $NetBSD: uvm_swap.c,v 1.12 1998/07/23 20:51:09 pk Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/disklabel.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/vnode.h>
47 #include <sys/file.h>
48 #include <sys/extent.h>
49 #include <sys/mount.h>
50 #include <sys/pool.h>
51 #include <sys/syscallargs.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_swap.h>
55 #include <vm/vm_conf.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * the system maintains a fixed pool of "swapbuf" structures for use
82 * at swap i/o time. a swapbuf includes a "buf" structure and an
83 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
84 * since memory may be low].
85 *
86 * locking:
87 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - swap_data_lock (simple_lock): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap extent.
93 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
94 * pool.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 * - credentials to use when doing i/o to file
106 *
107 * userland controls and configures swap with the swapctl(2) system call.
108 * the sys_swapctl performs the following operations:
109 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 * (passed in via "arg") of a size passed in via "misc" ... we load
112 * the current swap config into the array.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * SWAP_TO_FILES: allows swapping to plain files.
122 */
123
124 #define SWAP_TO_FILES
125
126 /*
127 * swapdev: describes a single swap partition/file
128 *
129 * note the following should be true:
130 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
131 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
132 */
133 struct swapdev {
134 struct swapent swd_se; /* swap entry struct */
135 #define swd_dev swd_se.se_dev /* dev_t for this dev */
136 #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake*/
137 #define swd_priority swd_se.se_priority /* our priority */
138 /* also: swd_se.se_nblks, swd_se.se_inuse */
139 int swd_npages; /* #pages we can use */
140 int swd_npginuse; /* #pages in use */
141 int swd_drumoffset; /* page0 offset in drum */
142 int swd_drumsize; /* #pages in drum */
143 struct extent *swd_ex; /* extent for this swapdev*/
144 struct vnode *swd_vp; /* backing vnode */
145 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
146
147 #ifdef SWAP_TO_FILES
148 int swd_bsize; /* blocksize (bytes) */
149 int swd_maxactive; /* max active i/o reqs */
150 struct buf swd_tab; /* buffer list */
151 struct ucred *swd_cred; /* cred for file access */
152 #endif
153 };
154
155 /*
156 * swap device priority entry; the list is kept sorted on `spi_priority'.
157 */
158 struct swappri {
159 int spi_priority; /* priority */
160 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
161 /* circleq of swapdevs at this priority */
162 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
163 };
164
165 /*
166 * swapbuf, swapbuffer plus async i/o info
167 */
168 struct swapbuf {
169 struct buf sw_buf; /* a buffer structure */
170 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
171 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
172 };
173
174 /*
175 * The following two structures are used to keep track of data transfers
176 * on swap devices associated with regular files.
177 * NOTE: this code is more or less a copy of vnd.c; we use the same
178 * structure names here to ease porting..
179 */
180 struct vndxfer {
181 struct buf *vx_bp; /* Pointer to parent buffer */
182 struct swapdev *vx_sdp;
183 int vx_error;
184 int vx_pending; /* # of pending aux buffers */
185 int vx_flags;
186 #define VX_BUSY 1
187 #define VX_DEAD 2
188 };
189
190 struct vndbuf {
191 struct buf vb_buf;
192 struct vndxfer *vb_xfer;
193 };
194
195
196 /*
197 * We keep a of pool vndbuf's and vndxfer structures.
198 */
199 struct pool *vndxfer_pool;
200 struct pool *vndbuf_pool;
201
202 #define getvndxfer(vnx) do { \
203 int s = splbio(); \
204 vnx = (struct vndxfer *) \
205 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
206 splx(s); \
207 } while (0)
208
209 #define putvndxfer(vnx) { \
210 pool_put(vndxfer_pool, (void *)(vnx)); \
211 }
212
213 #define getvndbuf(vbp) do { \
214 int s = splbio(); \
215 vbp = (struct vndbuf *) \
216 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
217 splx(s); \
218 } while (0)
219
220 #define putvndbuf(vbp) { \
221 pool_put(vndbuf_pool, (void *)(vbp)); \
222 }
223
224
225 /*
226 * local variables
227 */
228 static struct extent *swapmap; /* controls the mapping of /dev/drum */
229 SIMPLEQ_HEAD(swapbufhead, swapbuf);
230 struct pool *swapbuf_pool;
231
232 /* list of all active swap devices [by priority] */
233 LIST_HEAD(swap_priority, swappri);
234 static struct swap_priority swap_priority;
235
236 /* locks */
237 lock_data_t swap_syscall_lock;
238
239 /*
240 * prototypes
241 */
242 static void swapdrum_add __P((struct swapdev *, int));
243 static struct swapdev *swapdrum_getsdp __P((int));
244
245 static struct swapdev *swaplist_find __P((struct vnode *, int));
246 static void swaplist_insert __P((struct swapdev *,
247 struct swappri *, int));
248 static void swaplist_trim __P((void));
249
250 static int swap_on __P((struct proc *, struct swapdev *));
251 #ifdef SWAP_OFF_WORKS
252 static int swap_off __P((struct proc *, struct swapdev *));
253 #endif
254
255 #ifdef SWAP_TO_FILES
256 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
257 static void sw_reg_iodone __P((struct buf *));
258 static void sw_reg_start __P((struct swapdev *));
259 #endif
260
261 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
262 static void uvm_swap_bufdone __P((struct buf *));
263 static int uvm_swap_io __P((struct vm_page **, int, int, int));
264
265 /*
266 * uvm_swap_init: init the swap system data structures and locks
267 *
268 * => called at boot time from init_main.c after the filesystems
269 * are brought up (which happens after uvm_init())
270 */
271 void
272 uvm_swap_init()
273 {
274 UVMHIST_FUNC("uvm_swap_init");
275
276 UVMHIST_CALLED(pdhist);
277 /*
278 * first, init the swap list, its counter, and its lock.
279 * then get a handle on the vnode for /dev/drum by using
280 * the its dev_t number ("swapdev", from MD conf.c).
281 */
282
283 LIST_INIT(&swap_priority);
284 uvmexp.nswapdev = 0;
285 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
286
287 if (bdevvp(swapdev, &swapdev_vp))
288 panic("uvm_swap_init: can't get vnode for swap device");
289
290 /*
291 * create swap block resource map to map /dev/drum. the range
292 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
293 * that block 0 is reserved (used to indicate an allocation
294 * failure, or no allocation).
295 */
296 swapmap = extent_create("swapmap", 1, INT_MAX,
297 M_VMSWAP, 0, 0, EX_NOWAIT);
298 if (swapmap == 0)
299 panic("uvm_swap_init: extent_create failed");
300
301 /*
302 * allocate our private pool of "swapbuf" structures (includes
303 * a "buf" structure). ["nswbuf" comes from param.c and can
304 * be adjusted by MD code before we get here].
305 */
306
307 swapbuf_pool =
308 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
309 NULL, NULL, 0);
310 if (swapbuf_pool == NULL)
311 panic("swapinit: pool_create failed");
312 /* XXX - set a maximum on swapbuf_pool? */
313
314 vndxfer_pool =
315 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
316 NULL, NULL, 0);
317 if (vndxfer_pool == NULL)
318 panic("swapinit: pool_create failed");
319
320 vndbuf_pool =
321 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
322 NULL, NULL, 0);
323 if (vndbuf_pool == NULL)
324 panic("swapinit: pool_create failed");
325 /*
326 * done!
327 */
328 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
329 }
330
331 /*
332 * swaplist functions: functions that operate on the list of swap
333 * devices on the system.
334 */
335
336 /*
337 * swaplist_insert: insert swap device "sdp" into the global list
338 *
339 * => caller must hold both swap_syscall_lock and swap_data_lock
340 * => caller must provide a newly malloc'd swappri structure (we will
341 * FREE it if we don't need it... this it to prevent malloc blocking
342 * here while adding swap)
343 */
344 static void
345 swaplist_insert(sdp, newspp, priority)
346 struct swapdev *sdp;
347 struct swappri *newspp;
348 int priority;
349 {
350 struct swappri *spp, *pspp;
351 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
352
353 /*
354 * find entry at or after which to insert the new device.
355 */
356 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
357 spp = spp->spi_swappri.le_next) {
358 if (priority <= spp->spi_priority)
359 break;
360 pspp = spp;
361 }
362
363 /*
364 * new priority?
365 */
366 if (spp == NULL || spp->spi_priority != priority) {
367 spp = newspp; /* use newspp! */
368 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
369
370 spp->spi_priority = priority;
371 CIRCLEQ_INIT(&spp->spi_swapdev);
372
373 if (pspp)
374 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
375 else
376 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
377 } else {
378 /* we don't need a new priority structure, free it */
379 FREE(newspp, M_VMSWAP);
380 }
381
382 /*
383 * priority found (or created). now insert on the priority's
384 * circleq list and bump the total number of swapdevs.
385 */
386 sdp->swd_priority = priority;
387 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
388 uvmexp.nswapdev++;
389
390 /*
391 * done!
392 */
393 }
394
395 /*
396 * swaplist_find: find and optionally remove a swap device from the
397 * global list.
398 *
399 * => caller must hold both swap_syscall_lock and swap_data_lock
400 * => we return the swapdev we found (and removed)
401 */
402 static struct swapdev *
403 swaplist_find(vp, remove)
404 struct vnode *vp;
405 boolean_t remove;
406 {
407 struct swapdev *sdp;
408 struct swappri *spp;
409
410 /*
411 * search the lists for the requested vp
412 */
413 for (spp = swap_priority.lh_first; spp != NULL;
414 spp = spp->spi_swappri.le_next) {
415 for (sdp = spp->spi_swapdev.cqh_first;
416 sdp != (void *)&spp->spi_swapdev;
417 sdp = sdp->swd_next.cqe_next)
418 if (sdp->swd_vp == vp) {
419 if (remove) {
420 CIRCLEQ_REMOVE(&spp->spi_swapdev,
421 sdp, swd_next);
422 uvmexp.nswapdev--;
423 }
424 return(sdp);
425 }
426 }
427 return (NULL);
428 }
429
430
431 /*
432 * swaplist_trim: scan priority list for empty priority entries and kill
433 * them.
434 *
435 * => caller must hold both swap_syscall_lock and swap_data_lock
436 */
437 static void
438 swaplist_trim()
439 {
440 struct swappri *spp, *nextspp;
441
442 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
443 nextspp = spp->spi_swappri.le_next;
444 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
445 continue;
446 LIST_REMOVE(spp, spi_swappri);
447 free((caddr_t)spp, M_VMSWAP);
448 }
449 }
450
451 /*
452 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
453 *
454 * => caller must hold swap_syscall_lock
455 * => swap_data_lock should be unlocked (we may sleep)
456 */
457 static void
458 swapdrum_add(sdp, npages)
459 struct swapdev *sdp;
460 int npages;
461 {
462 u_long result;
463
464 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
465 EX_WAITOK, &result))
466 panic("swapdrum_add");
467
468 sdp->swd_drumoffset = result;
469 sdp->swd_drumsize = npages;
470 }
471
472 /*
473 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
474 * to the "swapdev" that maps that section of the drum.
475 *
476 * => each swapdev takes one big contig chunk of the drum
477 * => caller must hold swap_data_lock
478 */
479 static struct swapdev *
480 swapdrum_getsdp(pgno)
481 int pgno;
482 {
483 struct swapdev *sdp;
484 struct swappri *spp;
485
486 for (spp = swap_priority.lh_first; spp != NULL;
487 spp = spp->spi_swappri.le_next)
488 for (sdp = spp->spi_swapdev.cqh_first;
489 sdp != (void *)&spp->spi_swapdev;
490 sdp = sdp->swd_next.cqe_next)
491 if (pgno >= sdp->swd_drumoffset &&
492 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
493 return sdp;
494 }
495 return NULL;
496 }
497
498
499 /*
500 * sys_swapctl: main entry point for swapctl(2) system call
501 * [with two helper functions: swap_on and swap_off]
502 */
503 int
504 sys_swapctl(p, v, retval)
505 struct proc *p;
506 void *v;
507 register_t *retval;
508 {
509 struct sys_swapctl_args /* {
510 syscallarg(int) cmd;
511 syscallarg(void *) arg;
512 syscallarg(int) misc;
513 } */ *uap = (struct sys_swapctl_args *)v;
514 struct vnode *vp;
515 struct nameidata nd;
516 struct swappri *spp;
517 struct swapdev *sdp;
518 struct swapent *sep;
519 int count, error, misc;
520 int priority;
521 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
522
523 misc = SCARG(uap, misc);
524
525 /*
526 * ensure serialized syscall access by grabbing the swap_syscall_lock
527 */
528 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
529
530 /*
531 * we handle the non-priv NSWAP and STATS request first.
532 *
533 * SWAP_NSWAP: return number of config'd swap devices
534 * [can also be obtained with uvmexp sysctl]
535 */
536 if (SCARG(uap, cmd) == SWAP_NSWAP) {
537 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
538 0, 0, 0);
539 *retval = uvmexp.nswapdev;
540 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
541 return (0);
542 }
543
544 /*
545 * SWAP_STATS: get stats on current # of configured swap devs
546 *
547 * note that the swap_priority list can't change as long
548 * as we are holding the swap_syscall_lock. we don't want
549 * to grab the swap_data_lock because we may fault&sleep during
550 * copyout() and we don't want to be holding that lock then!
551 */
552 if (SCARG(uap, cmd) == SWAP_STATS) {
553 sep = (struct swapent *)SCARG(uap, arg);
554 count = 0;
555
556 for (spp = swap_priority.lh_first; spp != NULL;
557 spp = spp->spi_swappri.le_next) {
558 for (sdp = spp->spi_swapdev.cqh_first;
559 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
560 sdp = sdp->swd_next.cqe_next) {
561 /* backwards compatibility for system call */
562 sdp->swd_se.se_inuse =
563 btodb(sdp->swd_npginuse * PAGE_SIZE);
564 error = copyout((caddr_t)&sdp->swd_se,
565 (caddr_t)sep, sizeof(struct swapent));
566 if (error) {
567 lockmgr(&swap_syscall_lock,
568 LK_RELEASE, (void *)0);
569 return (error);
570 }
571 count++;
572 sep++;
573 }
574 }
575
576 UVMHIST_LOG(pdhist, "<-done SWAP_STATS", 0, 0, 0, 0);
577
578 *retval = count;
579 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
580 return (0);
581 }
582
583 /*
584 * all other requests require superuser privs. verify.
585 */
586 if ((error = suser(p->p_ucred, &p->p_acflag))) {
587 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
588 return (error);
589 }
590
591 /*
592 * at this point we expect a path name in arg. we will
593 * use namei() to gain a vnode reference (vref), and lock
594 * the vnode (VOP_LOCK).
595 *
596 * XXX: a NULL arg means use the root vnode pointer (e.g. for
597 * miniroot
598 */
599 if (SCARG(uap, arg) == NULL) {
600 vp = rootvp; /* miniroot */
601 if (vget(vp, LK_EXCLUSIVE)) {
602 lockmgr(&swap_syscall_lock, LK_RELEASE,
603 (void *)0);
604 return (EBUSY);
605 }
606 } else {
607 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_USERSPACE,
608 SCARG(uap, arg), p);
609 if ((error = namei(&nd))) {
610 lockmgr(&swap_syscall_lock, LK_RELEASE,
611 (void *)0);
612 return (error);
613 }
614 vp = nd.ni_vp;
615 }
616 /* note: "vp" is referenced and locked */
617
618 error = 0; /* assume no error */
619 switch(SCARG(uap, cmd)) {
620 case SWAP_CTL:
621 /*
622 * get new priority, remove old entry (if any) and then
623 * reinsert it in the correct place. finally, prune out
624 * any empty priority structures.
625 */
626 priority = SCARG(uap, misc);
627 spp = (struct swappri *)
628 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
629 simple_lock(&swap_data_lock);
630 if ((sdp = swaplist_find(vp, 1)) == NULL) {
631 error = ENOENT;
632 } else {
633 swaplist_insert(sdp, spp, priority);
634 swaplist_trim();
635 }
636 simple_unlock(&swap_data_lock);
637 if (error)
638 free(spp, M_VMSWAP);
639 break;
640
641 case SWAP_ON:
642 /*
643 * check for duplicates. if none found, then insert a
644 * dummy entry on the list to prevent someone else from
645 * trying to enable this device while we are working on
646 * it.
647 */
648 priority = SCARG(uap, misc);
649 simple_lock(&swap_data_lock);
650 if ((sdp = swaplist_find(vp, 0)) != NULL) {
651 error = EBUSY;
652 simple_unlock(&swap_data_lock);
653 goto bad;
654 }
655 sdp = (struct swapdev *)
656 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
657 spp = (struct swappri *)
658 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
659 bzero(sdp, sizeof(*sdp));
660 sdp->swd_flags = SWF_FAKE; /* placeholder only */
661 sdp->swd_vp = vp;
662 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
663 #ifdef SWAP_TO_FILES
664 /*
665 * XXX Is NFS elaboration necessary?
666 */
667 if (vp->v_type == VREG)
668 sdp->swd_cred = crdup(p->p_ucred);
669 #endif
670 swaplist_insert(sdp, spp, priority);
671 simple_unlock(&swap_data_lock);
672
673 /*
674 * we've now got a FAKE placeholder in the swap list.
675 * now attempt to enable swap on it. if we fail, undo
676 * what we've done and kill the fake entry we just inserted.
677 * if swap_on is a success, it will clear the SWF_FAKE flag
678 */
679 if ((error = swap_on(p, sdp)) != 0) {
680 simple_lock(&swap_data_lock);
681 (void) swaplist_find(vp, 1); /* kill fake entry */
682 swaplist_trim();
683 simple_unlock(&swap_data_lock);
684 #ifdef SWAP_TO_FILES
685 if (vp->v_type == VREG)
686 crfree(sdp->swd_cred);
687 #endif
688 free((caddr_t)sdp, M_VMSWAP);
689 break;
690 }
691
692 /*
693 * got it! now add a second reference to vp so that
694 * we keep a reference to the vnode after we return.
695 */
696 vref(vp);
697 break;
698
699 case SWAP_OFF:
700 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
701 #ifdef SWAP_OFF_WORKS
702 /*
703 * find the entry of interest and ensure it is enabled.
704 */
705 simple_lock(&swap_data_lock);
706 if ((sdp = swaplist_find(vp, 0)) == NULL) {
707 simple_unlock(&swap_data_lock);
708 error = ENXIO;
709 break;
710 }
711 /*
712 * If a device isn't in use or enabled, we
713 * can't stop swapping from it (again).
714 */
715 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
716 simple_unlock(&swap_data_lock);
717 error = EBUSY;
718 goto bad;
719 }
720 /* XXXCDC: should we call with list locked or unlocked? */
721 if ((error = swap_off(p, sdp)) != 0)
722 goto bad;
723 /* XXXCDC: might need relock here */
724
725 /*
726 * now we can kill the entry.
727 */
728 if ((sdp = swaplist_find(vp, 1)) == NULL) {
729 error = ENXIO;
730 break;
731 }
732 simple_unlock(&swap_data_lock);
733 free((caddr_t)sdp, M_VMSWAP);
734 #else
735 error = EINVAL;
736 #endif
737 break;
738
739 default:
740 UVMHIST_LOG(pdhist, "unhandled command: %#x",
741 SCARG(uap, cmd), 0, 0, 0);
742 error = EINVAL;
743 }
744
745 bad:
746 /*
747 * done! use vput to drop our reference and unlock
748 */
749 vput(vp);
750 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
751
752 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
753 return (error);
754 }
755
756 /*
757 * swap_on: attempt to enable a swapdev for swapping. note that the
758 * swapdev is already on the global list, but disabled (marked
759 * SWF_FAKE).
760 *
761 * => we avoid the start of the disk (to protect disk labels)
762 * => we also avoid the miniroot, if we are swapping to root.
763 * => caller should leave swap_data_lock unlocked, we may lock it
764 * if needed.
765 */
766 static int
767 swap_on(p, sdp)
768 struct proc *p;
769 struct swapdev *sdp;
770 {
771 static int count = 0; /* static */
772 struct vnode *vp;
773 int error, npages, nblocks, size;
774 long addr;
775 #ifdef SWAP_TO_FILES
776 struct vattr va;
777 #endif
778 #ifdef NFS
779 extern int (**nfsv2_vnodeop_p) __P((void *));
780 #endif /* NFS */
781 dev_t dev;
782 char *name;
783 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
784
785 /*
786 * we want to enable swapping on sdp. the swd_vp contains
787 * the vnode we want (locked and ref'd), and the swd_dev
788 * contains the dev_t of the file, if it a block device.
789 */
790
791 vp = sdp->swd_vp;
792 dev = sdp->swd_dev;
793
794 /*
795 * open the swap file (mostly useful for block device files to
796 * let device driver know what is up).
797 *
798 * we skip the open/close for root on swap because the root
799 * has already been opened when root was mounted (mountroot).
800 */
801 if (vp != rootvp) {
802 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
803 return (error);
804 }
805
806 /* XXX this only works for block devices */
807 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
808
809 /*
810 * we now need to determine the size of the swap area. for
811 * block specials we can call the d_psize function.
812 * for normal files, we must stat [get attrs].
813 *
814 * we put the result in nblks.
815 * for normal files, we also want the filesystem block size
816 * (which we get with statfs).
817 */
818 switch (vp->v_type) {
819 case VBLK:
820 if (bdevsw[major(dev)].d_psize == 0 ||
821 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
822 error = ENXIO;
823 goto bad;
824 }
825 break;
826
827 #ifdef SWAP_TO_FILES
828 case VREG:
829 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
830 goto bad;
831 nblocks = (int)btodb(va.va_size);
832 if ((error =
833 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
834 goto bad;
835
836 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
837 /*
838 * limit the max # of outstanding I/O requests we issue
839 * at any one time. take it easy on NFS servers.
840 */
841 #ifdef NFS
842 if (vp->v_op == nfsv2_vnodeop_p)
843 sdp->swd_maxactive = 2; /* XXX */
844 else
845 #endif /* NFS */
846 sdp->swd_maxactive = 8; /* XXX */
847 break;
848 #endif
849
850 default:
851 error = ENXIO;
852 goto bad;
853 }
854
855 /*
856 * save nblocks in a safe place and convert to pages.
857 */
858
859 sdp->swd_se.se_nblks = nblocks;
860 npages = dbtob((u_int64_t)nblocks) / PAGE_SIZE;
861
862 /*
863 * for block special files, we want to make sure that leave
864 * the disklabel and bootblocks alone, so we arrange to skip
865 * over them (randomly choosing to skip PAGE_SIZE bytes).
866 * note that because of this the "size" can be less than the
867 * actual number of blocks on the device.
868 */
869 if (vp->v_type == VBLK) {
870 /* we use pages 1 to (size - 1) [inclusive] */
871 size = npages - 1;
872 addr = 1;
873 } else {
874 /* we use pages 0 to (size - 1) [inclusive] */
875 size = npages;
876 addr = 0;
877 }
878
879 /*
880 * make sure we have enough blocks for a reasonable sized swap
881 * area. we want at least one page.
882 */
883
884 if (size < 1) {
885 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
886 error = EINVAL;
887 goto bad;
888 }
889
890 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
891
892 /*
893 * now we need to allocate an extent to manage this swap device
894 */
895 name = malloc(12, M_VMSWAP, M_WAITOK);
896 sprintf(name, "swap0x%04x", count++);
897
898 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
899 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
900 0, 0, EX_WAITOK);
901 /* allocate the `saved' region from the extent so it won't be used */
902 if (addr) {
903 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
904 panic("disklabel region");
905 sdp->swd_npginuse += addr;
906 uvmexp.swpginuse += addr;
907 }
908
909
910 /*
911 * if the vnode we are swapping to is the root vnode
912 * (i.e. we are swapping to the miniroot) then we want
913 * to make sure we don't overwrite it. do a statfs to
914 * find its size and skip over it.
915 */
916 if (vp == rootvp) {
917 struct mount *mp;
918 struct statfs *sp;
919 int rootblocks, rootpages;
920
921 mp = rootvnode->v_mount;
922 sp = &mp->mnt_stat;
923 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
924 rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
925 if (rootpages > npages)
926 panic("swap_on: miniroot larger than swap?");
927
928 if (extent_alloc_region(sdp->swd_ex, addr,
929 rootpages, EX_WAITOK))
930 panic("swap_on: unable to preserve miniroot");
931
932 sdp->swd_npginuse += (rootpages - addr);
933 uvmexp.swpginuse += (rootpages - addr);
934
935 printf("Preserved %d pages of miniroot ", rootpages);
936 printf("leaving %d pages of swap\n", size - rootpages);
937 }
938
939 /*
940 * now add the new swapdev to the drum and enable.
941 */
942 simple_lock(&swap_data_lock);
943 swapdrum_add(sdp, npages);
944 sdp->swd_npages = npages;
945 sdp->swd_flags &= ~SWF_FAKE; /* going live */
946 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
947 simple_unlock(&swap_data_lock);
948 uvmexp.swpages += npages;
949
950 /*
951 * add anon's to reflect the swap space we added
952 */
953 uvm_anon_add(size);
954
955 #if 0
956 /*
957 * At this point we could arrange to reserve memory for the
958 * swap buffer pools.
959 *
960 * I don't think this is necessary, since swapping starts well
961 * ahead of serious memory deprivation and the memory resource
962 * pools hold on to actively used memory. This should ensure
963 * we always have some resources to continue operation.
964 */
965
966 int s = splbio();
967 int n = 8 * sdp->swd_maxactive;
968
969 (void)pool_prime(swapbuf_pool, n, 0);
970
971 if (vp->v_type == VREG) {
972 /* Allocate additional vnx and vnd buffers */
973 /*
974 * Allocation Policy:
975 * (8 * swd_maxactive) vnx headers per swap dev
976 * (16 * swd_maxactive) vnd buffers per swap dev
977 */
978
979 n = 8 * sdp->swd_maxactive;
980 (void)pool_prime(vndxfer_pool, n, 0);
981
982 n = 16 * sdp->swd_maxactive;
983 (void)pool_prime(vndbuf_pool, n, 0);
984 }
985 splx(s);
986 #endif
987
988 return (0);
989
990 bad:
991 /*
992 * failure: close device if necessary and return error.
993 */
994 if (vp != rootvp)
995 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
996 return (error);
997 }
998
999 #ifdef SWAP_OFF_WORKS
1000 /*
1001 * swap_off: stop swapping on swapdev
1002 *
1003 * XXXCDC: what conditions go here?
1004 */
1005 static int
1006 swap_off(p, sdp)
1007 struct proc *p;
1008 struct swapdev *sdp;
1009 {
1010 char *name;
1011 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1012
1013 /* turn off the enable flag */
1014 sdp->swd_flags &= ~SWF_ENABLE;
1015
1016 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1017
1018 /*
1019 * XXX write me
1020 *
1021 * the idea is to find out which processes are using this swap
1022 * device, and page them all in.
1023 *
1024 * eventually, we should try to move them out to other swap areas
1025 * if available.
1026 *
1027 * The alternative is to create a redirection map for this swap
1028 * device. This should work by moving all the pages of data from
1029 * the ex-swap device to another one, and making an entry in the
1030 * redirection map for it. locking is going to be important for
1031 * this!
1032 *
1033 * XXXCDC: also need to shrink anon pool
1034 */
1035
1036 /* until the above code is written, we must ENODEV */
1037 return ENODEV;
1038
1039 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1040 name = sdp->swd_ex->ex_name;
1041 extent_destroy(sdp->swd_ex);
1042 free(name, M_VMSWAP);
1043 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1044 if (sdp->swp_vp != rootvp)
1045 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1046 if (sdp->swd_vp)
1047 vrele(sdp->swd_vp);
1048 free((caddr_t)sdp, M_VMSWAP);
1049 return (0);
1050 }
1051 #endif
1052
1053 /*
1054 * /dev/drum interface and i/o functions
1055 */
1056
1057 /*
1058 * swread: the read function for the drum (just a call to physio)
1059 */
1060 /*ARGSUSED*/
1061 int
1062 swread(dev, uio, ioflag)
1063 dev_t dev;
1064 struct uio *uio;
1065 int ioflag;
1066 {
1067 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1068
1069 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1070 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1071 }
1072
1073 /*
1074 * swwrite: the write function for the drum (just a call to physio)
1075 */
1076 /*ARGSUSED*/
1077 int
1078 swwrite(dev, uio, ioflag)
1079 dev_t dev;
1080 struct uio *uio;
1081 int ioflag;
1082 {
1083 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1084
1085 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1086 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1087 }
1088
1089 /*
1090 * swstrategy: perform I/O on the drum
1091 *
1092 * => we must map the i/o request from the drum to the correct swapdev.
1093 */
1094 void
1095 swstrategy(bp)
1096 struct buf *bp;
1097 {
1098 struct swapdev *sdp;
1099 struct vnode *vp;
1100 int pageno;
1101 int bn;
1102 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1103
1104 /*
1105 * convert block number to swapdev. note that swapdev can't
1106 * be yanked out from under us because we are holding resources
1107 * in it (i.e. the blocks we are doing I/O on).
1108 */
1109 pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1110 simple_lock(&swap_data_lock);
1111 sdp = swapdrum_getsdp(pageno);
1112 simple_unlock(&swap_data_lock);
1113 if (sdp == NULL) {
1114 bp->b_error = EINVAL;
1115 bp->b_flags |= B_ERROR;
1116 biodone(bp);
1117 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1118 return;
1119 }
1120
1121 /*
1122 * convert drum page number to block number on this swapdev.
1123 */
1124
1125 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1126 bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1127
1128 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1129 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1130 sdp->swd_drumoffset, bn, bp->b_bcount);
1131
1132
1133 /*
1134 * for block devices we finish up here.
1135 * for regular files we have to do more work which we deligate
1136 * to sw_reg_strategy().
1137 */
1138
1139 switch (sdp->swd_vp->v_type) {
1140 default:
1141 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1142 case VBLK:
1143
1144 /*
1145 * must convert "bp" from an I/O on /dev/drum to an I/O
1146 * on the swapdev (sdp).
1147 */
1148 bp->b_blkno = bn; /* swapdev block number */
1149 vp = sdp->swd_vp; /* swapdev vnode pointer */
1150 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1151 VHOLD(vp); /* "hold" swapdev vp for i/o */
1152
1153 /*
1154 * if we are doing a write, we have to redirect the i/o on
1155 * drum's v_numoutput counter to the swapdevs.
1156 */
1157 if ((bp->b_flags & B_READ) == 0) {
1158 int s = splbio();
1159 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1160 vp->v_numoutput++; /* put it on swapdev */
1161 splx(s);
1162 }
1163
1164 /*
1165 * dissassocate buffer with /dev/drum vnode
1166 * [could be null if buf was from physio]
1167 */
1168 if (bp->b_vp != NULLVP)
1169 brelvp(bp);
1170
1171 /*
1172 * finally plug in swapdev vnode and start I/O
1173 */
1174 bp->b_vp = vp;
1175 VOP_STRATEGY(bp);
1176 return;
1177 #ifdef SWAP_TO_FILES
1178 case VREG:
1179 /*
1180 * deligate to sw_reg_strategy function.
1181 */
1182 sw_reg_strategy(sdp, bp, bn);
1183 return;
1184 #endif
1185 }
1186 /* NOTREACHED */
1187 }
1188
1189 #ifdef SWAP_TO_FILES
1190 /*
1191 * sw_reg_strategy: handle swap i/o to regular files
1192 */
1193 static void
1194 sw_reg_strategy(sdp, bp, bn)
1195 struct swapdev *sdp;
1196 struct buf *bp;
1197 int bn;
1198 {
1199 struct vnode *vp;
1200 struct vndxfer *vnx;
1201 daddr_t nbn, byteoff;
1202 caddr_t addr;
1203 int s, off, nra, error, sz, resid;
1204 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1205
1206 /*
1207 * allocate a vndxfer head for this transfer and point it to
1208 * our buffer.
1209 */
1210 getvndxfer(vnx);
1211 vnx->vx_flags = VX_BUSY;
1212 vnx->vx_error = 0;
1213 vnx->vx_pending = 0;
1214 vnx->vx_bp = bp;
1215 vnx->vx_sdp = sdp;
1216
1217 /*
1218 * setup for main loop where we read filesystem blocks into
1219 * our buffer.
1220 */
1221 error = 0;
1222 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1223 addr = bp->b_data; /* current position in buffer */
1224 byteoff = dbtob(bn);
1225
1226 for (resid = bp->b_resid; resid; resid -= sz) {
1227 struct vndbuf *nbp;
1228
1229 /*
1230 * translate byteoffset into block number. return values:
1231 * vp = vnode of underlying device
1232 * nbn = new block number (on underlying vnode dev)
1233 * nra = num blocks we can read-ahead (excludes requested
1234 * block)
1235 */
1236 nra = 0;
1237 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1238 &vp, &nbn, &nra);
1239
1240 if (error == 0 && (long)nbn == -1)
1241 error = EIO; /* failure */
1242
1243 /*
1244 * punt if there was an error or a hole in the file.
1245 * we must wait for any i/o ops we have already started
1246 * to finish before returning.
1247 *
1248 * XXX we could deal with holes here but it would be
1249 * a hassle (in the write case).
1250 */
1251 if (error) {
1252 s = splbio();
1253 vnx->vx_error = error; /* pass error up */
1254 goto out;
1255 }
1256
1257 /*
1258 * compute the size ("sz") of this transfer (in bytes).
1259 * XXXCDC: ignores read-ahead for non-zero offset
1260 */
1261 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1262 sz = sdp->swd_bsize - off;
1263 else
1264 sz = (1 + nra) * sdp->swd_bsize;
1265
1266 if (resid < sz)
1267 sz = resid;
1268
1269 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1270 sdp->swd_vp, vp, byteoff, nbn);
1271
1272 /*
1273 * now get a buf structure. note that the vb_buf is
1274 * at the front of the nbp structure so that you can
1275 * cast pointers between the two structure easily.
1276 */
1277 getvndbuf(nbp);
1278 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1279 nbp->vb_buf.b_bcount = sz;
1280 #if 0
1281 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1282 #endif
1283 nbp->vb_buf.b_bufsize = sz;
1284 nbp->vb_buf.b_error = 0;
1285 nbp->vb_buf.b_data = addr;
1286 nbp->vb_buf.b_blkno = nbn + btodb(off);
1287 nbp->vb_buf.b_proc = bp->b_proc;
1288 nbp->vb_buf.b_iodone = sw_reg_iodone;
1289 nbp->vb_buf.b_vp = NULLVP;
1290 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1291 nbp->vb_buf.b_rcred = sdp->swd_cred;
1292 nbp->vb_buf.b_wcred = sdp->swd_cred;
1293
1294 /*
1295 * set b_dirtyoff/end and b_validoff/end. this is
1296 * required by the NFS client code (otherwise it will
1297 * just discard our I/O request).
1298 */
1299 if (bp->b_dirtyend == 0) {
1300 nbp->vb_buf.b_dirtyoff = 0;
1301 nbp->vb_buf.b_dirtyend = sz;
1302 } else {
1303 nbp->vb_buf.b_dirtyoff =
1304 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1305 nbp->vb_buf.b_dirtyend =
1306 min(sz,
1307 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1308 }
1309 if (bp->b_validend == 0) {
1310 nbp->vb_buf.b_validoff = 0;
1311 nbp->vb_buf.b_validend = sz;
1312 } else {
1313 nbp->vb_buf.b_validoff =
1314 max(0, bp->b_validoff - (bp->b_bcount-resid));
1315 nbp->vb_buf.b_validend =
1316 min(sz,
1317 max(0, bp->b_validend - (bp->b_bcount-resid)));
1318 }
1319
1320 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1321
1322 /*
1323 * Just sort by block number
1324 */
1325 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1326 s = splbio();
1327 if (vnx->vx_error != 0) {
1328 putvndbuf(nbp);
1329 goto out;
1330 }
1331 vnx->vx_pending++;
1332
1333 /* assoc new buffer with underlying vnode */
1334 bgetvp(vp, &nbp->vb_buf);
1335
1336 /* sort it in and start I/O if we are not over our limit */
1337 disksort(&sdp->swd_tab, &nbp->vb_buf);
1338 sw_reg_start(sdp);
1339 splx(s);
1340
1341 /*
1342 * advance to the next I/O
1343 */
1344 byteoff += sz;
1345 addr += sz;
1346 }
1347
1348 s = splbio();
1349
1350 out: /* Arrive here at splbio */
1351 vnx->vx_flags &= ~VX_BUSY;
1352 if (vnx->vx_pending == 0) {
1353 if (vnx->vx_error != 0) {
1354 bp->b_error = vnx->vx_error;
1355 bp->b_flags |= B_ERROR;
1356 }
1357 putvndxfer(vnx);
1358 biodone(bp);
1359 }
1360 splx(s);
1361 }
1362
1363 /*
1364 * sw_reg_start: start an I/O request on the requested swapdev
1365 *
1366 * => reqs are sorted by disksort (above)
1367 */
1368 static void
1369 sw_reg_start(sdp)
1370 struct swapdev *sdp;
1371 {
1372 struct buf *bp;
1373 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1374
1375 /* recursion control */
1376 if ((sdp->swd_flags & SWF_BUSY) != 0)
1377 return;
1378
1379 sdp->swd_flags |= SWF_BUSY;
1380
1381 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1382 bp = sdp->swd_tab.b_actf;
1383 if (bp == NULL)
1384 break;
1385 sdp->swd_tab.b_actf = bp->b_actf;
1386 sdp->swd_tab.b_active++;
1387
1388 UVMHIST_LOG(pdhist,
1389 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1390 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1391 if ((bp->b_flags & B_READ) == 0)
1392 bp->b_vp->v_numoutput++;
1393 VOP_STRATEGY(bp);
1394 }
1395 sdp->swd_flags &= ~SWF_BUSY;
1396 }
1397
1398 /*
1399 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1400 *
1401 * => note that we can recover the vndbuf struct by casting the buf ptr
1402 */
1403 static void
1404 sw_reg_iodone(bp)
1405 struct buf *bp;
1406 {
1407 struct vndbuf *vbp = (struct vndbuf *) bp;
1408 struct vndxfer *vnx = vbp->vb_xfer;
1409 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1410 struct swapdev *sdp = vnx->vx_sdp;
1411 int s, resid;
1412 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1413
1414 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1415 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1416 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1417 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1418
1419 /*
1420 * protect vbp at splbio and update.
1421 */
1422
1423 s = splbio();
1424 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1425 pbp->b_resid -= resid;
1426 vnx->vx_pending--;
1427
1428 if (vbp->vb_buf.b_error) {
1429 UVMHIST_LOG(pdhist, " got error=%d !",
1430 vbp->vb_buf.b_error, 0, 0, 0);
1431
1432 /* pass error upward */
1433 vnx->vx_error = vbp->vb_buf.b_error;
1434 }
1435
1436 /*
1437 * drop "hold" reference to vnode (if one)
1438 * XXXCDC: always set to NULLVP, this is useless, right?
1439 */
1440 if (vbp->vb_buf.b_vp != NULLVP)
1441 brelvp(&vbp->vb_buf);
1442
1443 /*
1444 * kill vbp structure
1445 */
1446 putvndbuf(vbp);
1447
1448 /*
1449 * wrap up this transaction if it has run to completion or, in
1450 * case of an error, when all auxiliary buffers have returned.
1451 */
1452 if (vnx->vx_error != 0) {
1453 /* pass error upward */
1454 pbp->b_flags |= B_ERROR;
1455 pbp->b_error = vnx->vx_error;
1456 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1457 putvndxfer(vnx);
1458 biodone(pbp);
1459 }
1460 } else if (pbp->b_resid == 0) {
1461 #ifdef DIAGNOSTIC
1462 if (vnx->vx_pending != 0)
1463 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1464 #endif
1465
1466 if ((vnx->vx_flags & VX_BUSY) == 0) {
1467 UVMHIST_LOG(pdhist, " iodone error=%d !",
1468 pbp, vnx->vx_error, 0, 0);
1469 putvndxfer(vnx);
1470 biodone(pbp);
1471 }
1472 }
1473
1474 /*
1475 * done! start next swapdev I/O if one is pending
1476 */
1477 sdp->swd_tab.b_active--;
1478 sw_reg_start(sdp);
1479
1480 splx(s);
1481 }
1482 #endif /* SWAP_TO_FILES */
1483
1484
1485 /*
1486 * uvm_swap_alloc: allocate space on swap
1487 *
1488 * => allocation is done "round robin" down the priority list, as we
1489 * allocate in a priority we "rotate" the circle queue.
1490 * => space can be freed with uvm_swap_free
1491 * => we return the page slot number in /dev/drum (0 == invalid slot)
1492 * => we lock swap_data_lock
1493 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1494 */
1495 int
1496 uvm_swap_alloc(nslots, lessok)
1497 int *nslots; /* IN/OUT */
1498 boolean_t lessok;
1499 {
1500 struct swapdev *sdp;
1501 struct swappri *spp;
1502 u_long result;
1503 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1504
1505 /*
1506 * no swap devices configured yet? definite failure.
1507 */
1508 if (uvmexp.nswapdev < 1)
1509 return 0;
1510
1511 /*
1512 * lock data lock, convert slots into blocks, and enter loop
1513 */
1514 simple_lock(&swap_data_lock);
1515
1516 ReTry: /* XXXMRG */
1517 for (spp = swap_priority.lh_first; spp != NULL;
1518 spp = spp->spi_swappri.le_next) {
1519 for (sdp = spp->spi_swapdev.cqh_first;
1520 sdp != (void *)&spp->spi_swapdev;
1521 sdp = sdp->swd_next.cqe_next) {
1522 /* if it's not enabled, then we can't swap from it */
1523 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1524 continue;
1525 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1526 continue;
1527 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1528 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1529 &result) != 0) {
1530 continue;
1531 }
1532
1533 /*
1534 * successful allocation! now rotate the circleq.
1535 */
1536 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1537 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1538 sdp->swd_npginuse += *nslots;
1539 uvmexp.swpginuse += *nslots;
1540 simple_unlock(&swap_data_lock);
1541 /* done! return drum slot number */
1542 UVMHIST_LOG(pdhist,
1543 "success! returning %d slots starting at %d",
1544 *nslots, result + sdp->swd_drumoffset, 0, 0);
1545 #if 0
1546 {
1547 struct swapdev *sdp2;
1548
1549 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1550 if (sdp2 == NULL) {
1551 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1552 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1553 panic("uvm_swap_alloc: allocating unmapped swap block!");
1554 }
1555 }
1556 #endif
1557 return(result + sdp->swd_drumoffset);
1558 }
1559 }
1560
1561 /* XXXMRG: BEGIN HACK */
1562 if (*nslots > 1 && lessok) {
1563 *nslots = 1;
1564 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1565 }
1566 /* XXXMRG: END HACK */
1567
1568 simple_unlock(&swap_data_lock);
1569 return 0; /* failed */
1570 }
1571
1572 /*
1573 * uvm_swap_free: free swap slots
1574 *
1575 * => this can be all or part of an allocation made by uvm_swap_alloc
1576 * => we lock swap_data_lock
1577 */
1578 void
1579 uvm_swap_free(startslot, nslots)
1580 int startslot;
1581 int nslots;
1582 {
1583 struct swapdev *sdp;
1584 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1585
1586 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1587 startslot, 0, 0);
1588 /*
1589 * convert drum slot offset back to sdp, free the blocks
1590 * in the extent, and return. must hold pri lock to do
1591 * lookup and access the extent.
1592 */
1593 simple_lock(&swap_data_lock);
1594 sdp = swapdrum_getsdp(startslot);
1595
1596 #ifdef DIAGNOSTIC
1597 if (uvmexp.nswapdev < 1)
1598 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1599 if (sdp == NULL) {
1600 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1601 nslots);
1602 panic("uvm_swap_free: unmapped address\n");
1603 }
1604 #endif
1605 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1606 EX_MALLOCOK|EX_NOWAIT) != 0)
1607 printf("warning: resource shortage: %d slots of swap lost\n",
1608 nslots);
1609
1610 sdp->swd_npginuse -= nslots;
1611 uvmexp.swpginuse -= nslots;
1612 #ifdef DIAGNOSTIC
1613 if (sdp->swd_npginuse < 0)
1614 panic("uvm_swap_free: inuse < 0");
1615 #endif
1616 simple_unlock(&swap_data_lock);
1617 }
1618
1619 /*
1620 * uvm_swap_put: put any number of pages into a contig place on swap
1621 *
1622 * => can be sync or async
1623 * => XXXMRG: consider making it an inline or macro
1624 */
1625 int
1626 uvm_swap_put(swslot, ppsp, npages, flags)
1627 int swslot;
1628 struct vm_page **ppsp;
1629 int npages;
1630 int flags;
1631 {
1632 int result;
1633
1634 #if 0
1635 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1636 #endif
1637
1638 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1639 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1640
1641 return (result);
1642 }
1643
1644 /*
1645 * uvm_swap_get: get a single page from swap
1646 *
1647 * => usually a sync op (from fault)
1648 * => XXXMRG: consider making it an inline or macro
1649 */
1650 int
1651 uvm_swap_get(page, swslot, flags)
1652 struct vm_page *page;
1653 int swslot, flags;
1654 {
1655 int result;
1656
1657 uvmexp.nswget++;
1658 #ifdef DIAGNOSTIC
1659 if ((flags & PGO_SYNCIO) == 0)
1660 printf("uvm_swap_get: ASYNC get requested?\n");
1661 #endif
1662
1663 result = uvm_swap_io(&page, swslot, 1, B_READ |
1664 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1665
1666 return (result);
1667 }
1668
1669 /*
1670 * uvm_swap_io: do an i/o operation to swap
1671 */
1672
1673 static int
1674 uvm_swap_io(pps, startslot, npages, flags)
1675 struct vm_page **pps;
1676 int startslot, npages, flags;
1677 {
1678 daddr_t startblk;
1679 struct swapbuf *sbp;
1680 struct buf *bp;
1681 vm_offset_t kva;
1682 int result, s, waitf, pflag;
1683 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1684
1685 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1686 startslot, npages, flags, 0);
1687 /*
1688 * convert starting drum slot to block number
1689 */
1690 startblk = btodb(startslot * PAGE_SIZE);
1691
1692 /*
1693 * first, map the pages into the kernel (XXX: currently required
1694 * by buffer system). note that we don't let pagermapin alloc
1695 * an aiodesc structure because we don't want to chance a malloc.
1696 * we've got our own pool of aiodesc structures (in swapbuf).
1697 */
1698 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1699 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1700 if (kva == NULL)
1701 return (VM_PAGER_AGAIN);
1702
1703 /*
1704 * now allocate a swap buffer off of freesbufs
1705 * [make sure we don't put the pagedaemon to sleep...]
1706 */
1707 s = splbio();
1708 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1709 ? 0
1710 : PR_WAITOK;
1711 sbp = pool_get(swapbuf_pool, pflag);
1712 splx(s); /* drop splbio */
1713
1714 /*
1715 * if we failed to get a swapbuf, return "try again"
1716 */
1717 if (sbp == NULL)
1718 return (VM_PAGER_AGAIN);
1719
1720 /*
1721 * fill in the bp/sbp. we currently route our i/o through
1722 * /dev/drum's vnode [swapdev_vp].
1723 */
1724 bp = &sbp->sw_buf;
1725 bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1726 bp->b_proc = &proc0; /* XXX */
1727 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1728 bp->b_vnbufs.le_next = NOLIST;
1729 bp->b_data = (caddr_t)kva;
1730 bp->b_blkno = startblk;
1731 VHOLD(swapdev_vp);
1732 bp->b_vp = swapdev_vp;
1733 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1734 /* XXXMRG: probably -- this is obviously something inherited... */
1735 if (swapdev_vp->v_type == VBLK)
1736 bp->b_dev = swapdev_vp->v_rdev;
1737 bp->b_bcount = npages * PAGE_SIZE;
1738
1739 /*
1740 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1741 * and we bump v_numoutput (counter of number of active outputs).
1742 */
1743 if ((bp->b_flags & B_READ) == 0) {
1744 bp->b_dirtyoff = 0;
1745 bp->b_dirtyend = npages * PAGE_SIZE;
1746 s = splbio();
1747 swapdev_vp->v_numoutput++;
1748 splx(s);
1749 }
1750
1751 /*
1752 * for async ops we must set up the aiodesc and setup the callback
1753 * XXX: we expect no async-reads, but we don't prevent it here.
1754 */
1755 if (flags & B_ASYNC) {
1756 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1757 sbp->sw_aio.kva = kva;
1758 sbp->sw_aio.npages = npages;
1759 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1760 bp->b_flags |= B_CALL; /* set callback */
1761 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1762 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1763 }
1764 UVMHIST_LOG(pdhist,
1765 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1766 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1767
1768 /*
1769 * now we start the I/O, and if async, return.
1770 */
1771 VOP_STRATEGY(bp);
1772 if (flags & B_ASYNC)
1773 return (VM_PAGER_PEND);
1774
1775 /*
1776 * must be sync i/o. wait for it to finish
1777 */
1778 bp->b_error = biowait(bp);
1779 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1780
1781 /*
1782 * kill the pager mapping
1783 */
1784 uvm_pagermapout(kva, npages);
1785
1786 /*
1787 * now dispose of the swap buffer
1788 */
1789 s = splbio();
1790 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1791 if (bp->b_vp)
1792 brelvp(bp);
1793
1794 pool_put(swapbuf_pool, sbp);
1795 splx(s);
1796
1797 /*
1798 * finally return.
1799 */
1800 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1801 return (result);
1802 }
1803
1804 /*
1805 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1806 */
1807 static void
1808 uvm_swap_bufdone(bp)
1809 struct buf *bp;
1810 {
1811 struct swapbuf *sbp = (struct swapbuf *) bp;
1812 int s = splbio();
1813 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1814
1815 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1816 #ifdef DIAGNOSTIC
1817 /*
1818 * sanity check: swapbufs are private, so they shouldn't be wanted
1819 */
1820 if (bp->b_flags & B_WANTED)
1821 panic("uvm_swap_bufdone: private buf wanted");
1822 #endif
1823
1824 /*
1825 * drop buffers reference to the vnode and its flags.
1826 */
1827 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1828 if (bp->b_vp)
1829 brelvp(bp);
1830
1831 /*
1832 * now put the aio on the uvm.aio_done list and wake the
1833 * pagedaemon (which will finish up our job in its context).
1834 */
1835 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1836 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1837 simple_unlock(&uvm.pagedaemon_lock);
1838
1839 thread_wakeup(&uvm.pagedaemon);
1840 splx(s);
1841 }
1842
1843 /*
1844 * uvm_swap_aiodone: aiodone function for anonymous memory
1845 *
1846 * => this is called in the context of the pagedaemon (but with the
1847 * page queues unlocked!)
1848 * => our "aio" structure must be part of a "swapbuf"
1849 */
1850 static void
1851 uvm_swap_aiodone(aio)
1852 struct uvm_aiodesc *aio;
1853 {
1854 struct swapbuf *sbp = aio->pd_ptr;
1855 /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1856 /* XXX it does with GCC */
1857 struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1858 int lcv, s;
1859 vm_offset_t addr;
1860 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1861
1862 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1863 #ifdef DIAGNOSTIC
1864 /*
1865 * sanity check
1866 */
1867 if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1868 panic("uvm_swap_aiodone: aio too big!");
1869 #endif
1870
1871 /*
1872 * first, we have to recover the page pointers (pps) by poking in the
1873 * kernel pmap (XXX: should be saved in the buf structure).
1874 */
1875 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1876 addr += PAGE_SIZE, lcv++) {
1877 pps[lcv] = uvm_pageratop(addr);
1878 }
1879
1880 /*
1881 * now we can dispose of the kernel mappings of the buffer
1882 */
1883 uvm_pagermapout(aio->kva, aio->npages);
1884
1885 /*
1886 * now we can dispose of the pages by using the dropcluster function
1887 * [note that we have no "page of interest" so we pass in null]
1888 */
1889 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1890 PGO_PDFREECLUST, 0);
1891
1892 /*
1893 * finally, we can dispose of the swapbuf
1894 */
1895 s = splbio();
1896 pool_put(swapbuf_pool, sbp);
1897 splx(s);
1898
1899 /*
1900 * done!
1901 */
1902 }
1903