Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.122.2.6
      1 /*	$NetBSD: uvm_swap.c,v 1.122.2.6 2007/05/13 17:36:47 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.122.2.6 2007/05/13 17:36:47 ad Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/vmem.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/syscallargs.h>
     60 #include <sys/swap.h>
     61 #include <sys/kauth.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    185     IPL_BIO);
    186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    187     IPL_BIO);
    188 
    189 /*
    190  * local variables
    191  */
    192 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    193 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    194 
    195 /* list of all active swap devices [by priority] */
    196 LIST_HEAD(swap_priority, swappri);
    197 static struct swap_priority swap_priority;
    198 
    199 /* locks */
    200 static krwlock_t swap_syscall_lock;
    201 
    202 /*
    203  * prototypes
    204  */
    205 static struct swapdev	*swapdrum_getsdp(int);
    206 
    207 static struct swapdev	*swaplist_find(struct vnode *, bool);
    208 static void		 swaplist_insert(struct swapdev *,
    209 					 struct swappri *, int);
    210 static void		 swaplist_trim(void);
    211 
    212 static int swap_on(struct lwp *, struct swapdev *);
    213 static int swap_off(struct lwp *, struct swapdev *);
    214 
    215 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    216 
    217 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    218 static void sw_reg_iodone(struct buf *);
    219 static void sw_reg_start(struct swapdev *);
    220 
    221 static int uvm_swap_io(struct vm_page **, int, int, int);
    222 
    223 /*
    224  * uvm_swap_init: init the swap system data structures and locks
    225  *
    226  * => called at boot time from init_main.c after the filesystems
    227  *	are brought up (which happens after uvm_init())
    228  */
    229 void
    230 uvm_swap_init(void)
    231 {
    232 	UVMHIST_FUNC("uvm_swap_init");
    233 
    234 	UVMHIST_CALLED(pdhist);
    235 	/*
    236 	 * first, init the swap list, its counter, and its lock.
    237 	 * then get a handle on the vnode for /dev/drum by using
    238 	 * the its dev_t number ("swapdev", from MD conf.c).
    239 	 */
    240 
    241 	LIST_INIT(&swap_priority);
    242 	uvmexp.nswapdev = 0;
    243 	rw_init(&swap_syscall_lock);
    244 	cv_init(&uvm.scheduler_cv, "schedule");
    245 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    246 
    247 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    248 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    249 
    250 	if (bdevvp(swapdev, &swapdev_vp))
    251 		panic("uvm_swap_init: can't get vnode for swap device");
    252 
    253 	/*
    254 	 * create swap block resource map to map /dev/drum.   the range
    255 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    256 	 * that block 0 is reserved (used to indicate an allocation
    257 	 * failure, or no allocation).
    258 	 */
    259 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    260 	    VM_NOSLEEP, IPL_NONE);
    261 	if (swapmap == 0)
    262 		panic("uvm_swap_init: vmem_create failed");
    263 
    264 	/*
    265 	 * done!
    266 	 */
    267 	uvm.swap_running = true;
    268 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    269 }
    270 
    271 /*
    272  * swaplist functions: functions that operate on the list of swap
    273  * devices on the system.
    274  */
    275 
    276 /*
    277  * swaplist_insert: insert swap device "sdp" into the global list
    278  *
    279  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    280  * => caller must provide a newly malloc'd swappri structure (we will
    281  *	FREE it if we don't need it... this it to prevent malloc blocking
    282  *	here while adding swap)
    283  */
    284 static void
    285 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    286 {
    287 	struct swappri *spp, *pspp;
    288 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    289 
    290 	/*
    291 	 * find entry at or after which to insert the new device.
    292 	 */
    293 	pspp = NULL;
    294 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    295 		if (priority <= spp->spi_priority)
    296 			break;
    297 		pspp = spp;
    298 	}
    299 
    300 	/*
    301 	 * new priority?
    302 	 */
    303 	if (spp == NULL || spp->spi_priority != priority) {
    304 		spp = newspp;  /* use newspp! */
    305 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    306 			    priority, 0, 0, 0);
    307 
    308 		spp->spi_priority = priority;
    309 		CIRCLEQ_INIT(&spp->spi_swapdev);
    310 
    311 		if (pspp)
    312 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    313 		else
    314 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    315 	} else {
    316 	  	/* we don't need a new priority structure, free it */
    317 		FREE(newspp, M_VMSWAP);
    318 	}
    319 
    320 	/*
    321 	 * priority found (or created).   now insert on the priority's
    322 	 * circleq list and bump the total number of swapdevs.
    323 	 */
    324 	sdp->swd_priority = priority;
    325 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    326 	uvmexp.nswapdev++;
    327 }
    328 
    329 /*
    330  * swaplist_find: find and optionally remove a swap device from the
    331  *	global list.
    332  *
    333  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    334  * => we return the swapdev we found (and removed)
    335  */
    336 static struct swapdev *
    337 swaplist_find(struct vnode *vp, bool remove)
    338 {
    339 	struct swapdev *sdp;
    340 	struct swappri *spp;
    341 
    342 	/*
    343 	 * search the lists for the requested vp
    344 	 */
    345 
    346 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    347 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    348 			if (sdp->swd_vp == vp) {
    349 				if (remove) {
    350 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    351 					    sdp, swd_next);
    352 					uvmexp.nswapdev--;
    353 				}
    354 				return(sdp);
    355 			}
    356 		}
    357 	}
    358 	return (NULL);
    359 }
    360 
    361 /*
    362  * swaplist_trim: scan priority list for empty priority entries and kill
    363  *	them.
    364  *
    365  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    366  */
    367 static void
    368 swaplist_trim(void)
    369 {
    370 	struct swappri *spp, *nextspp;
    371 
    372 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    373 		nextspp = LIST_NEXT(spp, spi_swappri);
    374 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    375 		    (void *)&spp->spi_swapdev)
    376 			continue;
    377 		LIST_REMOVE(spp, spi_swappri);
    378 		free(spp, M_VMSWAP);
    379 	}
    380 }
    381 
    382 /*
    383  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    384  *	to the "swapdev" that maps that section of the drum.
    385  *
    386  * => each swapdev takes one big contig chunk of the drum
    387  * => caller must hold uvm_swap_data_lock
    388  */
    389 static struct swapdev *
    390 swapdrum_getsdp(int pgno)
    391 {
    392 	struct swapdev *sdp;
    393 	struct swappri *spp;
    394 
    395 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    396 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    397 			if (sdp->swd_flags & SWF_FAKE)
    398 				continue;
    399 			if (pgno >= sdp->swd_drumoffset &&
    400 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    401 				return sdp;
    402 			}
    403 		}
    404 	}
    405 	return NULL;
    406 }
    407 
    408 
    409 /*
    410  * sys_swapctl: main entry point for swapctl(2) system call
    411  * 	[with two helper functions: swap_on and swap_off]
    412  */
    413 int
    414 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    415 {
    416 	struct sys_swapctl_args /* {
    417 		syscallarg(int) cmd;
    418 		syscallarg(void *) arg;
    419 		syscallarg(int) misc;
    420 	} */ *uap = (struct sys_swapctl_args *)v;
    421 	struct vnode *vp;
    422 	struct nameidata nd;
    423 	struct swappri *spp;
    424 	struct swapdev *sdp;
    425 	struct swapent *sep;
    426 #define SWAP_PATH_MAX (PATH_MAX + 1)
    427 	char	*userpath;
    428 	size_t	len;
    429 	int	error, misc;
    430 	int	priority;
    431 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    432 
    433 	misc = SCARG(uap, misc);
    434 
    435 	/*
    436 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    437 	 */
    438 	rw_enter(&swap_syscall_lock, RW_WRITER);
    439 
    440 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    441 	/*
    442 	 * we handle the non-priv NSWAP and STATS request first.
    443 	 *
    444 	 * SWAP_NSWAP: return number of config'd swap devices
    445 	 * [can also be obtained with uvmexp sysctl]
    446 	 */
    447 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    448 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    449 		    0, 0, 0);
    450 		*retval = uvmexp.nswapdev;
    451 		error = 0;
    452 		goto out;
    453 	}
    454 
    455 	/*
    456 	 * SWAP_STATS: get stats on current # of configured swap devs
    457 	 *
    458 	 * note that the swap_priority list can't change as long
    459 	 * as we are holding the swap_syscall_lock.  we don't want
    460 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    461 	 * copyout() and we don't want to be holding that lock then!
    462 	 */
    463 	if (SCARG(uap, cmd) == SWAP_STATS
    464 #if defined(COMPAT_13)
    465 	    || SCARG(uap, cmd) == SWAP_OSTATS
    466 #endif
    467 	    ) {
    468 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    469 			misc = uvmexp.nswapdev;
    470 #if defined(COMPAT_13)
    471 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    472 			len = sizeof(struct oswapent) * misc;
    473 		else
    474 #endif
    475 			len = sizeof(struct swapent) * misc;
    476 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    477 
    478 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    479 		error = copyout(sep, SCARG(uap, arg), len);
    480 
    481 		free(sep, M_TEMP);
    482 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    483 		goto out;
    484 	}
    485 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    486 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    487 
    488 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    489 		goto out;
    490 	}
    491 
    492 	/*
    493 	 * all other requests require superuser privs.   verify.
    494 	 */
    495 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    496 	    0, NULL, NULL, NULL)))
    497 		goto out;
    498 
    499 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    500 		/* drop the current dump device */
    501 		dumpdev = NODEV;
    502 		cpu_dumpconf();
    503 		goto out;
    504 	}
    505 
    506 	/*
    507 	 * at this point we expect a path name in arg.   we will
    508 	 * use namei() to gain a vnode reference (vref), and lock
    509 	 * the vnode (VOP_LOCK).
    510 	 *
    511 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    512 	 * miniroot)
    513 	 */
    514 	if (SCARG(uap, arg) == NULL) {
    515 		vp = rootvp;		/* miniroot */
    516 		if (vget(vp, LK_EXCLUSIVE)) {
    517 			error = EBUSY;
    518 			goto out;
    519 		}
    520 		if (SCARG(uap, cmd) == SWAP_ON &&
    521 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    522 			panic("swapctl: miniroot copy failed");
    523 	} else {
    524 		int	space;
    525 		char	*where;
    526 
    527 		if (SCARG(uap, cmd) == SWAP_ON) {
    528 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    529 			    SWAP_PATH_MAX, &len)))
    530 				goto out;
    531 			space = UIO_SYSSPACE;
    532 			where = userpath;
    533 		} else {
    534 			space = UIO_USERSPACE;
    535 			where = (char *)SCARG(uap, arg);
    536 		}
    537 		NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, l);
    538 		if ((error = namei(&nd)))
    539 			goto out;
    540 		vp = nd.ni_vp;
    541 	}
    542 	/* note: "vp" is referenced and locked */
    543 
    544 	error = 0;		/* assume no error */
    545 	switch(SCARG(uap, cmd)) {
    546 
    547 	case SWAP_DUMPDEV:
    548 		if (vp->v_type != VBLK) {
    549 			error = ENOTBLK;
    550 			break;
    551 		}
    552 		if (bdevsw_lookup(vp->v_rdev))
    553 			dumpdev = vp->v_rdev;
    554 		else
    555 			dumpdev = NODEV;
    556 		cpu_dumpconf();
    557 		break;
    558 
    559 	case SWAP_CTL:
    560 		/*
    561 		 * get new priority, remove old entry (if any) and then
    562 		 * reinsert it in the correct place.  finally, prune out
    563 		 * any empty priority structures.
    564 		 */
    565 		priority = SCARG(uap, misc);
    566 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    567 		mutex_enter(&uvm_swap_data_lock);
    568 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    569 			error = ENOENT;
    570 		} else {
    571 			swaplist_insert(sdp, spp, priority);
    572 			swaplist_trim();
    573 		}
    574 		mutex_exit(&uvm_swap_data_lock);
    575 		if (error)
    576 			free(spp, M_VMSWAP);
    577 		break;
    578 
    579 	case SWAP_ON:
    580 
    581 		/*
    582 		 * check for duplicates.   if none found, then insert a
    583 		 * dummy entry on the list to prevent someone else from
    584 		 * trying to enable this device while we are working on
    585 		 * it.
    586 		 */
    587 
    588 		priority = SCARG(uap, misc);
    589 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    590 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    591 		memset(sdp, 0, sizeof(*sdp));
    592 		sdp->swd_flags = SWF_FAKE;
    593 		sdp->swd_vp = vp;
    594 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    595 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    596 		mutex_enter(&uvm_swap_data_lock);
    597 		if (swaplist_find(vp, false) != NULL) {
    598 			error = EBUSY;
    599 			mutex_exit(&uvm_swap_data_lock);
    600 			bufq_free(sdp->swd_tab);
    601 			free(sdp, M_VMSWAP);
    602 			free(spp, M_VMSWAP);
    603 			break;
    604 		}
    605 		swaplist_insert(sdp, spp, priority);
    606 		mutex_exit(&uvm_swap_data_lock);
    607 
    608 		sdp->swd_pathlen = len;
    609 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    610 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    611 			panic("swapctl: copystr");
    612 
    613 		/*
    614 		 * we've now got a FAKE placeholder in the swap list.
    615 		 * now attempt to enable swap on it.  if we fail, undo
    616 		 * what we've done and kill the fake entry we just inserted.
    617 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    618 		 */
    619 
    620 		if ((error = swap_on(l, sdp)) != 0) {
    621 			mutex_enter(&uvm_swap_data_lock);
    622 			(void) swaplist_find(vp, true);  /* kill fake entry */
    623 			swaplist_trim();
    624 			mutex_exit(&uvm_swap_data_lock);
    625 			bufq_free(sdp->swd_tab);
    626 			free(sdp->swd_path, M_VMSWAP);
    627 			free(sdp, M_VMSWAP);
    628 			break;
    629 		}
    630 		break;
    631 
    632 	case SWAP_OFF:
    633 		mutex_enter(&uvm_swap_data_lock);
    634 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    635 			mutex_exit(&uvm_swap_data_lock);
    636 			error = ENXIO;
    637 			break;
    638 		}
    639 
    640 		/*
    641 		 * If a device isn't in use or enabled, we
    642 		 * can't stop swapping from it (again).
    643 		 */
    644 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    645 			mutex_exit(&uvm_swap_data_lock);
    646 			error = EBUSY;
    647 			break;
    648 		}
    649 
    650 		/*
    651 		 * do the real work.
    652 		 */
    653 		error = swap_off(l, sdp);
    654 		break;
    655 
    656 	default:
    657 		error = EINVAL;
    658 	}
    659 
    660 	/*
    661 	 * done!  release the ref gained by namei() and unlock.
    662 	 */
    663 	vput(vp);
    664 
    665 out:
    666 	free(userpath, M_TEMP);
    667 	rw_exit(&swap_syscall_lock);
    668 
    669 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    670 	return (error);
    671 }
    672 
    673 /*
    674  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    675  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    676  * emulation to use it directly without going through sys_swapctl().
    677  * The problem with using sys_swapctl() there is that it involves
    678  * copying the swapent array to the stackgap, and this array's size
    679  * is not known at build time. Hence it would not be possible to
    680  * ensure it would fit in the stackgap in any case.
    681  */
    682 void
    683 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    684 {
    685 
    686 	rw_enter(&swap_syscall_lock, RW_READER);
    687 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    688 	rw_exit(&swap_syscall_lock);
    689 }
    690 
    691 static void
    692 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    693 {
    694 	struct swappri *spp;
    695 	struct swapdev *sdp;
    696 	int count = 0;
    697 
    698 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    699 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    700 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    701 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    702 		  	/*
    703 			 * backwards compatibility for system call.
    704 			 * note that we use 'struct oswapent' as an
    705 			 * overlay into both 'struct swapdev' and
    706 			 * the userland 'struct swapent', as we
    707 			 * want to retain backwards compatibility
    708 			 * with NetBSD 1.3.
    709 			 */
    710 			sdp->swd_ose.ose_inuse =
    711 			    btodb((uint64_t)sdp->swd_npginuse <<
    712 			    PAGE_SHIFT);
    713 			(void)memcpy(sep, &sdp->swd_ose,
    714 			    sizeof(struct oswapent));
    715 
    716 			/* now copy out the path if necessary */
    717 #if !defined(COMPAT_13)
    718 			(void) cmd;
    719 #endif
    720 #if defined(COMPAT_13)
    721 			if (cmd == SWAP_STATS)
    722 #endif
    723 				(void)memcpy(&sep->se_path, sdp->swd_path,
    724 				    sdp->swd_pathlen);
    725 
    726 			count++;
    727 #if defined(COMPAT_13)
    728 			if (cmd == SWAP_OSTATS)
    729 				sep = (struct swapent *)
    730 				    ((struct oswapent *)sep + 1);
    731 			else
    732 #endif
    733 				sep++;
    734 		}
    735 	}
    736 
    737 	*retval = count;
    738 	return;
    739 }
    740 
    741 /*
    742  * swap_on: attempt to enable a swapdev for swapping.   note that the
    743  *	swapdev is already on the global list, but disabled (marked
    744  *	SWF_FAKE).
    745  *
    746  * => we avoid the start of the disk (to protect disk labels)
    747  * => we also avoid the miniroot, if we are swapping to root.
    748  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    749  *	if needed.
    750  */
    751 static int
    752 swap_on(struct lwp *l, struct swapdev *sdp)
    753 {
    754 	struct vnode *vp;
    755 	int error, npages, nblocks, size;
    756 	long addr;
    757 	u_long result;
    758 	struct vattr va;
    759 #ifdef NFS
    760 	extern int (**nfsv2_vnodeop_p)(void *);
    761 #endif /* NFS */
    762 	const struct bdevsw *bdev;
    763 	dev_t dev;
    764 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    765 
    766 	/*
    767 	 * we want to enable swapping on sdp.   the swd_vp contains
    768 	 * the vnode we want (locked and ref'd), and the swd_dev
    769 	 * contains the dev_t of the file, if it a block device.
    770 	 */
    771 
    772 	vp = sdp->swd_vp;
    773 	dev = sdp->swd_dev;
    774 
    775 	/*
    776 	 * open the swap file (mostly useful for block device files to
    777 	 * let device driver know what is up).
    778 	 *
    779 	 * we skip the open/close for root on swap because the root
    780 	 * has already been opened when root was mounted (mountroot).
    781 	 */
    782 	if (vp != rootvp) {
    783 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
    784 			return (error);
    785 	}
    786 
    787 	/* XXX this only works for block devices */
    788 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    789 
    790 	/*
    791 	 * we now need to determine the size of the swap area.   for
    792 	 * block specials we can call the d_psize function.
    793 	 * for normal files, we must stat [get attrs].
    794 	 *
    795 	 * we put the result in nblks.
    796 	 * for normal files, we also want the filesystem block size
    797 	 * (which we get with statfs).
    798 	 */
    799 	switch (vp->v_type) {
    800 	case VBLK:
    801 		bdev = bdevsw_lookup(dev);
    802 		if (bdev == NULL || bdev->d_psize == NULL ||
    803 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    804 			error = ENXIO;
    805 			goto bad;
    806 		}
    807 		break;
    808 
    809 	case VREG:
    810 		if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
    811 			goto bad;
    812 		nblocks = (int)btodb(va.va_size);
    813 		if ((error =
    814 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
    815 			goto bad;
    816 
    817 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    818 		/*
    819 		 * limit the max # of outstanding I/O requests we issue
    820 		 * at any one time.   take it easy on NFS servers.
    821 		 */
    822 #ifdef NFS
    823 		if (vp->v_op == nfsv2_vnodeop_p)
    824 			sdp->swd_maxactive = 2; /* XXX */
    825 		else
    826 #endif /* NFS */
    827 			sdp->swd_maxactive = 8; /* XXX */
    828 		break;
    829 
    830 	default:
    831 		error = ENXIO;
    832 		goto bad;
    833 	}
    834 
    835 	/*
    836 	 * save nblocks in a safe place and convert to pages.
    837 	 */
    838 
    839 	sdp->swd_ose.ose_nblks = nblocks;
    840 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    841 
    842 	/*
    843 	 * for block special files, we want to make sure that leave
    844 	 * the disklabel and bootblocks alone, so we arrange to skip
    845 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    846 	 * note that because of this the "size" can be less than the
    847 	 * actual number of blocks on the device.
    848 	 */
    849 	if (vp->v_type == VBLK) {
    850 		/* we use pages 1 to (size - 1) [inclusive] */
    851 		size = npages - 1;
    852 		addr = 1;
    853 	} else {
    854 		/* we use pages 0 to (size - 1) [inclusive] */
    855 		size = npages;
    856 		addr = 0;
    857 	}
    858 
    859 	/*
    860 	 * make sure we have enough blocks for a reasonable sized swap
    861 	 * area.   we want at least one page.
    862 	 */
    863 
    864 	if (size < 1) {
    865 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    866 		error = EINVAL;
    867 		goto bad;
    868 	}
    869 
    870 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    871 
    872 	/*
    873 	 * now we need to allocate an extent to manage this swap device
    874 	 */
    875 
    876 	sdp->swd_blist = blist_create(npages);
    877 	/* mark all expect the `saved' region free. */
    878 	blist_free(sdp->swd_blist, addr, size);
    879 
    880 	/*
    881 	 * if the vnode we are swapping to is the root vnode
    882 	 * (i.e. we are swapping to the miniroot) then we want
    883 	 * to make sure we don't overwrite it.   do a statfs to
    884 	 * find its size and skip over it.
    885 	 */
    886 	if (vp == rootvp) {
    887 		struct mount *mp;
    888 		struct statvfs *sp;
    889 		int rootblocks, rootpages;
    890 
    891 		mp = rootvnode->v_mount;
    892 		sp = &mp->mnt_stat;
    893 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    894 		/*
    895 		 * XXX: sp->f_blocks isn't the total number of
    896 		 * blocks in the filesystem, it's the number of
    897 		 * data blocks.  so, our rootblocks almost
    898 		 * definitely underestimates the total size
    899 		 * of the filesystem - how badly depends on the
    900 		 * details of the filesystem type.  there isn't
    901 		 * an obvious way to deal with this cleanly
    902 		 * and perfectly, so for now we just pad our
    903 		 * rootblocks estimate with an extra 5 percent.
    904 		 */
    905 		rootblocks += (rootblocks >> 5) +
    906 			(rootblocks >> 6) +
    907 			(rootblocks >> 7);
    908 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    909 		if (rootpages > size)
    910 			panic("swap_on: miniroot larger than swap?");
    911 
    912 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    913 			panic("swap_on: unable to preserve miniroot");
    914 		}
    915 
    916 		size -= rootpages;
    917 		printf("Preserved %d pages of miniroot ", rootpages);
    918 		printf("leaving %d pages of swap\n", size);
    919 	}
    920 
    921 	/*
    922 	 * add a ref to vp to reflect usage as a swap device.
    923 	 */
    924 	vref(vp);
    925 
    926 	/*
    927 	 * now add the new swapdev to the drum and enable.
    928 	 */
    929 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    930 	if (result == 0)
    931 		panic("swapdrum_add");
    932 
    933 	sdp->swd_drumoffset = (int)result;
    934 	sdp->swd_drumsize = npages;
    935 	sdp->swd_npages = size;
    936 	mutex_enter(&uvm_swap_data_lock);
    937 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    938 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    939 	uvmexp.swpages += size;
    940 	uvmexp.swpgavail += size;
    941 	mutex_exit(&uvm_swap_data_lock);
    942 	return (0);
    943 
    944 	/*
    945 	 * failure: clean up and return error.
    946 	 */
    947 
    948 bad:
    949 	if (sdp->swd_blist) {
    950 		blist_destroy(sdp->swd_blist);
    951 	}
    952 	if (vp != rootvp) {
    953 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
    954 	}
    955 	return (error);
    956 }
    957 
    958 /*
    959  * swap_off: stop swapping on swapdev
    960  *
    961  * => swap data should be locked, we will unlock.
    962  */
    963 static int
    964 swap_off(struct lwp *l, struct swapdev *sdp)
    965 {
    966 	int npages = sdp->swd_npages;
    967 	int error = 0;
    968 
    969 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    970 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
    971 
    972 	/* disable the swap area being removed */
    973 	sdp->swd_flags &= ~SWF_ENABLE;
    974 	uvmexp.swpgavail -= npages;
    975 	mutex_exit(&uvm_swap_data_lock);
    976 
    977 	/*
    978 	 * the idea is to find all the pages that are paged out to this
    979 	 * device, and page them all in.  in uvm, swap-backed pageable
    980 	 * memory can take two forms: aobjs and anons.  call the
    981 	 * swapoff hook for each subsystem to bring in pages.
    982 	 */
    983 
    984 	if (uao_swap_off(sdp->swd_drumoffset,
    985 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
    986 	    amap_swap_off(sdp->swd_drumoffset,
    987 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
    988 		error = ENOMEM;
    989 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
    990 		error = EBUSY;
    991 	}
    992 
    993 	if (error) {
    994 		mutex_enter(&uvm_swap_data_lock);
    995 		sdp->swd_flags |= SWF_ENABLE;
    996 		uvmexp.swpgavail += npages;
    997 		mutex_exit(&uvm_swap_data_lock);
    998 
    999 		return error;
   1000 	}
   1001 
   1002 	/*
   1003 	 * done with the vnode.
   1004 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1005 	 * so that spec_close() can tell if this is the last close.
   1006 	 */
   1007 	vrele(sdp->swd_vp);
   1008 	if (sdp->swd_vp != rootvp) {
   1009 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
   1010 	}
   1011 
   1012 	mutex_enter(&uvm_swap_data_lock);
   1013 	uvmexp.swpages -= npages;
   1014 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1015 
   1016 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1017 		panic("swap_off: swapdev not in list");
   1018 	swaplist_trim();
   1019 	mutex_exit(&uvm_swap_data_lock);
   1020 
   1021 	/*
   1022 	 * free all resources!
   1023 	 */
   1024 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1025 	blist_destroy(sdp->swd_blist);
   1026 	bufq_free(sdp->swd_tab);
   1027 	free(sdp, M_VMSWAP);
   1028 	return (0);
   1029 }
   1030 
   1031 /*
   1032  * /dev/drum interface and i/o functions
   1033  */
   1034 
   1035 /*
   1036  * swstrategy: perform I/O on the drum
   1037  *
   1038  * => we must map the i/o request from the drum to the correct swapdev.
   1039  */
   1040 static void
   1041 swstrategy(struct buf *bp)
   1042 {
   1043 	struct swapdev *sdp;
   1044 	struct vnode *vp;
   1045 	int s, pageno, bn;
   1046 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1047 
   1048 	/*
   1049 	 * convert block number to swapdev.   note that swapdev can't
   1050 	 * be yanked out from under us because we are holding resources
   1051 	 * in it (i.e. the blocks we are doing I/O on).
   1052 	 */
   1053 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1054 	mutex_enter(&uvm_swap_data_lock);
   1055 	sdp = swapdrum_getsdp(pageno);
   1056 	mutex_exit(&uvm_swap_data_lock);
   1057 	if (sdp == NULL) {
   1058 		biodone(bp, EINVAL, 0);
   1059 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1060 		return;
   1061 	}
   1062 
   1063 	/*
   1064 	 * convert drum page number to block number on this swapdev.
   1065 	 */
   1066 
   1067 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1068 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1069 
   1070 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1071 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1072 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1073 
   1074 	/*
   1075 	 * for block devices we finish up here.
   1076 	 * for regular files we have to do more work which we delegate
   1077 	 * to sw_reg_strategy().
   1078 	 */
   1079 
   1080 	switch (sdp->swd_vp->v_type) {
   1081 	default:
   1082 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1083 
   1084 	case VBLK:
   1085 
   1086 		/*
   1087 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1088 		 * on the swapdev (sdp).
   1089 		 */
   1090 		s = splbio();
   1091 		bp->b_blkno = bn;		/* swapdev block number */
   1092 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1093 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1094 
   1095 		/*
   1096 		 * if we are doing a write, we have to redirect the i/o on
   1097 		 * drum's v_numoutput counter to the swapdevs.
   1098 		 */
   1099 		if ((bp->b_flags & B_READ) == 0) {
   1100 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1101 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1102 		}
   1103 
   1104 		/*
   1105 		 * finally plug in swapdev vnode and start I/O
   1106 		 */
   1107 		bp->b_vp = vp;
   1108 		splx(s);
   1109 		VOP_STRATEGY(vp, bp);
   1110 		return;
   1111 
   1112 	case VREG:
   1113 		/*
   1114 		 * delegate to sw_reg_strategy function.
   1115 		 */
   1116 		sw_reg_strategy(sdp, bp, bn);
   1117 		return;
   1118 	}
   1119 	/* NOTREACHED */
   1120 }
   1121 
   1122 /*
   1123  * swread: the read function for the drum (just a call to physio)
   1124  */
   1125 /*ARGSUSED*/
   1126 static int
   1127 swread(dev_t dev, struct uio *uio, int ioflag)
   1128 {
   1129 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1130 
   1131 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1132 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1133 }
   1134 
   1135 /*
   1136  * swwrite: the write function for the drum (just a call to physio)
   1137  */
   1138 /*ARGSUSED*/
   1139 static int
   1140 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1141 {
   1142 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1143 
   1144 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1145 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1146 }
   1147 
   1148 const struct bdevsw swap_bdevsw = {
   1149 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1150 };
   1151 
   1152 const struct cdevsw swap_cdevsw = {
   1153 	nullopen, nullclose, swread, swwrite, noioctl,
   1154 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1155 };
   1156 
   1157 /*
   1158  * sw_reg_strategy: handle swap i/o to regular files
   1159  */
   1160 static void
   1161 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1162 {
   1163 	struct vnode	*vp;
   1164 	struct vndxfer	*vnx;
   1165 	daddr_t		nbn;
   1166 	char 		*addr;
   1167 	off_t		byteoff;
   1168 	int		s, off, nra, error, sz, resid;
   1169 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1170 
   1171 	/*
   1172 	 * allocate a vndxfer head for this transfer and point it to
   1173 	 * our buffer.
   1174 	 */
   1175 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1176 	vnx->vx_flags = VX_BUSY;
   1177 	vnx->vx_error = 0;
   1178 	vnx->vx_pending = 0;
   1179 	vnx->vx_bp = bp;
   1180 	vnx->vx_sdp = sdp;
   1181 
   1182 	/*
   1183 	 * setup for main loop where we read filesystem blocks into
   1184 	 * our buffer.
   1185 	 */
   1186 	error = 0;
   1187 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1188 	addr = bp->b_data;		/* current position in buffer */
   1189 	byteoff = dbtob((uint64_t)bn);
   1190 
   1191 	for (resid = bp->b_resid; resid; resid -= sz) {
   1192 		struct vndbuf	*nbp;
   1193 
   1194 		/*
   1195 		 * translate byteoffset into block number.  return values:
   1196 		 *   vp = vnode of underlying device
   1197 		 *  nbn = new block number (on underlying vnode dev)
   1198 		 *  nra = num blocks we can read-ahead (excludes requested
   1199 		 *	block)
   1200 		 */
   1201 		nra = 0;
   1202 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1203 				 	&vp, &nbn, &nra);
   1204 
   1205 		if (error == 0 && nbn == (daddr_t)-1) {
   1206 			/*
   1207 			 * this used to just set error, but that doesn't
   1208 			 * do the right thing.  Instead, it causes random
   1209 			 * memory errors.  The panic() should remain until
   1210 			 * this condition doesn't destabilize the system.
   1211 			 */
   1212 #if 1
   1213 			panic("sw_reg_strategy: swap to sparse file");
   1214 #else
   1215 			error = EIO;	/* failure */
   1216 #endif
   1217 		}
   1218 
   1219 		/*
   1220 		 * punt if there was an error or a hole in the file.
   1221 		 * we must wait for any i/o ops we have already started
   1222 		 * to finish before returning.
   1223 		 *
   1224 		 * XXX we could deal with holes here but it would be
   1225 		 * a hassle (in the write case).
   1226 		 */
   1227 		if (error) {
   1228 			s = splbio();
   1229 			vnx->vx_error = error;	/* pass error up */
   1230 			goto out;
   1231 		}
   1232 
   1233 		/*
   1234 		 * compute the size ("sz") of this transfer (in bytes).
   1235 		 */
   1236 		off = byteoff % sdp->swd_bsize;
   1237 		sz = (1 + nra) * sdp->swd_bsize - off;
   1238 		if (sz > resid)
   1239 			sz = resid;
   1240 
   1241 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1242 			    "vp %p/%p offset 0x%x/0x%x",
   1243 			    sdp->swd_vp, vp, byteoff, nbn);
   1244 
   1245 		/*
   1246 		 * now get a buf structure.   note that the vb_buf is
   1247 		 * at the front of the nbp structure so that you can
   1248 		 * cast pointers between the two structure easily.
   1249 		 */
   1250 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1251 		BUF_INIT(&nbp->vb_buf);
   1252 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1253 		nbp->vb_buf.b_bcount   = sz;
   1254 		nbp->vb_buf.b_bufsize  = sz;
   1255 		nbp->vb_buf.b_error    = 0;
   1256 		nbp->vb_buf.b_data     = addr;
   1257 		nbp->vb_buf.b_lblkno   = 0;
   1258 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1259 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1260 		nbp->vb_buf.b_iodone   = sw_reg_iodone;
   1261 		nbp->vb_buf.b_vp       = vp;
   1262 		if (vp->v_type == VBLK) {
   1263 			nbp->vb_buf.b_dev = vp->v_rdev;
   1264 		}
   1265 
   1266 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1267 
   1268 		/*
   1269 		 * Just sort by block number
   1270 		 */
   1271 		s = splbio();
   1272 		if (vnx->vx_error != 0) {
   1273 			BUF_DESTROY(&nbp->vb_buf);
   1274 			pool_put(&vndbuf_pool, nbp);
   1275 			goto out;
   1276 		}
   1277 		vnx->vx_pending++;
   1278 
   1279 		/* sort it in and start I/O if we are not over our limit */
   1280 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1281 		sw_reg_start(sdp);
   1282 		splx(s);
   1283 
   1284 		/*
   1285 		 * advance to the next I/O
   1286 		 */
   1287 		byteoff += sz;
   1288 		addr += sz;
   1289 	}
   1290 
   1291 	s = splbio();
   1292 
   1293 out: /* Arrive here at splbio */
   1294 	vnx->vx_flags &= ~VX_BUSY;
   1295 	if (vnx->vx_pending == 0) {
   1296 		error = vnx->vx_error;
   1297 		pool_put(&vndxfer_pool, vnx);
   1298 		biodone(bp, error, bp->b_resid);
   1299 	}
   1300 	splx(s);
   1301 }
   1302 
   1303 /*
   1304  * sw_reg_start: start an I/O request on the requested swapdev
   1305  *
   1306  * => reqs are sorted by b_rawblkno (above)
   1307  */
   1308 static void
   1309 sw_reg_start(struct swapdev *sdp)
   1310 {
   1311 	struct buf	*bp;
   1312 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1313 
   1314 	/* recursion control */
   1315 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1316 		return;
   1317 
   1318 	sdp->swd_flags |= SWF_BUSY;
   1319 
   1320 	while (sdp->swd_active < sdp->swd_maxactive) {
   1321 		bp = BUFQ_GET(sdp->swd_tab);
   1322 		if (bp == NULL)
   1323 			break;
   1324 		sdp->swd_active++;
   1325 
   1326 		UVMHIST_LOG(pdhist,
   1327 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1328 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1329 		if ((bp->b_flags & B_READ) == 0)
   1330 			V_INCR_NUMOUTPUT(bp->b_vp);
   1331 
   1332 		VOP_STRATEGY(bp->b_vp, bp);
   1333 	}
   1334 	sdp->swd_flags &= ~SWF_BUSY;
   1335 }
   1336 
   1337 /*
   1338  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1339  *
   1340  * => note that we can recover the vndbuf struct by casting the buf ptr
   1341  */
   1342 static void
   1343 sw_reg_iodone(struct buf *bp)
   1344 {
   1345 	struct vndbuf *vbp = (struct vndbuf *) bp;
   1346 	struct vndxfer *vnx = vbp->vb_xfer;
   1347 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1348 	struct swapdev	*sdp = vnx->vx_sdp;
   1349 	int s, resid, error;
   1350 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1351 
   1352 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1353 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1354 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1355 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1356 
   1357 	/*
   1358 	 * protect vbp at splbio and update.
   1359 	 */
   1360 
   1361 	s = splbio();
   1362 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1363 	pbp->b_resid -= resid;
   1364 	vnx->vx_pending--;
   1365 
   1366 	if (vbp->vb_buf.b_flags & B_ERROR) {
   1367 		/* pass error upward */
   1368 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1369 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1370 		vnx->vx_error = error;
   1371 	}
   1372 
   1373 	/*
   1374 	 * kill vbp structure
   1375 	 */
   1376 	BUF_DESTROY(&vbp->vb_buf);
   1377 	pool_put(&vndbuf_pool, vbp);
   1378 
   1379 	/*
   1380 	 * wrap up this transaction if it has run to completion or, in
   1381 	 * case of an error, when all auxiliary buffers have returned.
   1382 	 */
   1383 	if (vnx->vx_error != 0) {
   1384 		/* pass error upward */
   1385 		error = vnx->vx_error;
   1386 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1387 			pool_put(&vndxfer_pool, vnx);
   1388 			biodone(pbp, error, 0);
   1389 		}
   1390 	} else if (pbp->b_resid == 0) {
   1391 		KASSERT(vnx->vx_pending == 0);
   1392 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1393 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1394 			    pbp, vnx->vx_error, 0, 0);
   1395 			pool_put(&vndxfer_pool, vnx);
   1396 			biodone(pbp, 0, 0);
   1397 		}
   1398 	}
   1399 
   1400 	/*
   1401 	 * done!   start next swapdev I/O if one is pending
   1402 	 */
   1403 	sdp->swd_active--;
   1404 	sw_reg_start(sdp);
   1405 	splx(s);
   1406 }
   1407 
   1408 
   1409 /*
   1410  * uvm_swap_alloc: allocate space on swap
   1411  *
   1412  * => allocation is done "round robin" down the priority list, as we
   1413  *	allocate in a priority we "rotate" the circle queue.
   1414  * => space can be freed with uvm_swap_free
   1415  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1416  * => we lock uvm_swap_data_lock
   1417  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1418  */
   1419 int
   1420 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1421 {
   1422 	struct swapdev *sdp;
   1423 	struct swappri *spp;
   1424 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1425 
   1426 	/*
   1427 	 * no swap devices configured yet?   definite failure.
   1428 	 */
   1429 	if (uvmexp.nswapdev < 1)
   1430 		return 0;
   1431 
   1432 	/*
   1433 	 * lock data lock, convert slots into blocks, and enter loop
   1434 	 */
   1435 	mutex_enter(&uvm_swap_data_lock);
   1436 
   1437 ReTry:	/* XXXMRG */
   1438 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1439 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1440 			uint64_t result;
   1441 
   1442 			/* if it's not enabled, then we can't swap from it */
   1443 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1444 				continue;
   1445 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1446 				continue;
   1447 			result = blist_alloc(sdp->swd_blist, *nslots);
   1448 			if (result == BLIST_NONE) {
   1449 				continue;
   1450 			}
   1451 			KASSERT(result < sdp->swd_drumsize);
   1452 
   1453 			/*
   1454 			 * successful allocation!  now rotate the circleq.
   1455 			 */
   1456 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1457 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1458 			sdp->swd_npginuse += *nslots;
   1459 			uvmexp.swpginuse += *nslots;
   1460 			mutex_exit(&uvm_swap_data_lock);
   1461 			/* done!  return drum slot number */
   1462 			UVMHIST_LOG(pdhist,
   1463 			    "success!  returning %d slots starting at %d",
   1464 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1465 			return (result + sdp->swd_drumoffset);
   1466 		}
   1467 	}
   1468 
   1469 	/* XXXMRG: BEGIN HACK */
   1470 	if (*nslots > 1 && lessok) {
   1471 		*nslots = 1;
   1472 		/* XXXMRG: ugh!  blist should support this for us */
   1473 		goto ReTry;
   1474 	}
   1475 	/* XXXMRG: END HACK */
   1476 
   1477 	mutex_exit(&uvm_swap_data_lock);
   1478 	return 0;
   1479 }
   1480 
   1481 bool
   1482 uvm_swapisfull(void)
   1483 {
   1484 	bool rv;
   1485 
   1486 	mutex_enter(&uvm_swap_data_lock);
   1487 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1488 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1489 	mutex_exit(&uvm_swap_data_lock);
   1490 
   1491 	return (rv);
   1492 }
   1493 
   1494 /*
   1495  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1496  *
   1497  * => we lock uvm_swap_data_lock
   1498  */
   1499 void
   1500 uvm_swap_markbad(int startslot, int nslots)
   1501 {
   1502 	struct swapdev *sdp;
   1503 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1504 
   1505 	mutex_enter(&uvm_swap_data_lock);
   1506 	sdp = swapdrum_getsdp(startslot);
   1507 	KASSERT(sdp != NULL);
   1508 
   1509 	/*
   1510 	 * we just keep track of how many pages have been marked bad
   1511 	 * in this device, to make everything add up in swap_off().
   1512 	 * we assume here that the range of slots will all be within
   1513 	 * one swap device.
   1514 	 */
   1515 
   1516 	KASSERT(uvmexp.swpgonly >= nslots);
   1517 	uvmexp.swpgonly -= nslots;
   1518 	sdp->swd_npgbad += nslots;
   1519 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1520 	mutex_exit(&uvm_swap_data_lock);
   1521 }
   1522 
   1523 /*
   1524  * uvm_swap_free: free swap slots
   1525  *
   1526  * => this can be all or part of an allocation made by uvm_swap_alloc
   1527  * => we lock uvm_swap_data_lock
   1528  */
   1529 void
   1530 uvm_swap_free(int startslot, int nslots)
   1531 {
   1532 	struct swapdev *sdp;
   1533 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1534 
   1535 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1536 	    startslot, 0, 0);
   1537 
   1538 	/*
   1539 	 * ignore attempts to free the "bad" slot.
   1540 	 */
   1541 
   1542 	if (startslot == SWSLOT_BAD) {
   1543 		return;
   1544 	}
   1545 
   1546 	/*
   1547 	 * convert drum slot offset back to sdp, free the blocks
   1548 	 * in the extent, and return.   must hold pri lock to do
   1549 	 * lookup and access the extent.
   1550 	 */
   1551 
   1552 	mutex_enter(&uvm_swap_data_lock);
   1553 	sdp = swapdrum_getsdp(startslot);
   1554 	KASSERT(uvmexp.nswapdev >= 1);
   1555 	KASSERT(sdp != NULL);
   1556 	KASSERT(sdp->swd_npginuse >= nslots);
   1557 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1558 	sdp->swd_npginuse -= nslots;
   1559 	uvmexp.swpginuse -= nslots;
   1560 	mutex_exit(&uvm_swap_data_lock);
   1561 }
   1562 
   1563 /*
   1564  * uvm_swap_put: put any number of pages into a contig place on swap
   1565  *
   1566  * => can be sync or async
   1567  */
   1568 
   1569 int
   1570 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1571 {
   1572 	int error;
   1573 
   1574 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1575 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1576 	return error;
   1577 }
   1578 
   1579 /*
   1580  * uvm_swap_get: get a single page from swap
   1581  *
   1582  * => usually a sync op (from fault)
   1583  */
   1584 
   1585 int
   1586 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1587 {
   1588 	int error;
   1589 
   1590 	uvmexp.nswget++;
   1591 	KASSERT(flags & PGO_SYNCIO);
   1592 	if (swslot == SWSLOT_BAD) {
   1593 		return EIO;
   1594 	}
   1595 
   1596 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1597 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1598 	if (error == 0) {
   1599 
   1600 		/*
   1601 		 * this page is no longer only in swap.
   1602 		 */
   1603 
   1604 		mutex_enter(&uvm_swap_data_lock);
   1605 		KASSERT(uvmexp.swpgonly > 0);
   1606 		uvmexp.swpgonly--;
   1607 		mutex_exit(&uvm_swap_data_lock);
   1608 	}
   1609 	return error;
   1610 }
   1611 
   1612 /*
   1613  * uvm_swap_io: do an i/o operation to swap
   1614  */
   1615 
   1616 static int
   1617 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1618 {
   1619 	daddr_t startblk;
   1620 	struct	buf *bp;
   1621 	vaddr_t kva;
   1622 	int	error, mapinflags;
   1623 	bool write, async;
   1624 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1625 
   1626 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1627 	    startslot, npages, flags, 0);
   1628 
   1629 	write = (flags & B_READ) == 0;
   1630 	async = (flags & B_ASYNC) != 0;
   1631 
   1632 	/*
   1633 	 * convert starting drum slot to block number
   1634 	 */
   1635 
   1636 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1637 
   1638 	/*
   1639 	 * first, map the pages into the kernel.
   1640 	 */
   1641 
   1642 	mapinflags = !write ?
   1643 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1644 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1645 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1646 
   1647 	/*
   1648 	 * now allocate a buf for the i/o.
   1649 	 */
   1650 
   1651 	bp = getiobuf();
   1652 
   1653 	/*
   1654 	 * fill in the bp/sbp.   we currently route our i/o through
   1655 	 * /dev/drum's vnode [swapdev_vp].
   1656 	 */
   1657 
   1658 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1659 	bp->b_proc = &proc0;	/* XXX */
   1660 	bp->b_vnbufs.le_next = NOLIST;
   1661 	bp->b_data = (void *)kva;
   1662 	bp->b_blkno = startblk;
   1663 	bp->b_vp = swapdev_vp;
   1664 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1665 
   1666 	/*
   1667 	 * bump v_numoutput (counter of number of active outputs).
   1668 	 */
   1669 
   1670 	if (write) {
   1671 		V_INCR_NUMOUTPUT(swapdev_vp);
   1672 	}
   1673 
   1674 	/*
   1675 	 * for async ops we must set up the iodone handler.
   1676 	 */
   1677 
   1678 	if (async) {
   1679 		bp->b_flags |= B_CALL;
   1680 		bp->b_iodone = uvm_aio_biodone;
   1681 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1682 		if (curlwp == uvm.pagedaemon_lwp)
   1683 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1684 		else
   1685 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1686 	} else {
   1687 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1688 	}
   1689 	UVMHIST_LOG(pdhist,
   1690 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1691 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1692 
   1693 	/*
   1694 	 * now we start the I/O, and if async, return.
   1695 	 */
   1696 
   1697 	VOP_STRATEGY(swapdev_vp, bp);
   1698 	if (async)
   1699 		return 0;
   1700 
   1701 	/*
   1702 	 * must be sync i/o.   wait for it to finish
   1703 	 */
   1704 
   1705 	error = biowait(bp);
   1706 
   1707 	/*
   1708 	 * kill the pager mapping
   1709 	 */
   1710 
   1711 	uvm_pagermapout(kva, npages);
   1712 
   1713 	/*
   1714 	 * now dispose of the buf and we're done.
   1715 	 */
   1716 
   1717 	if (write)
   1718 		vwakeup(bp);
   1719 	putiobuf(bp);
   1720 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1721 
   1722 	return (error);
   1723 }
   1724