uvm_swap.c revision 1.125 1 /* $NetBSD: uvm_swap.c,v 1.125 2007/06/15 18:28:40 ad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.125 2007/06/15 18:28:40 ad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap arena.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
186 IPL_BIO);
187 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
188 IPL_BIO);
189
190 #define getvndxfer(vnx) do { \
191 int sp = splbio(); \
192 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
193 splx(sp); \
194 } while (/*CONSTCOND*/ 0)
195
196 #define putvndxfer(vnx) { \
197 pool_put(&vndxfer_pool, (void *)(vnx)); \
198 }
199
200 #define getvndbuf(vbp) do { \
201 int sp = splbio(); \
202 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
203 splx(sp); \
204 } while (/*CONSTCOND*/ 0)
205
206 #define putvndbuf(vbp) { \
207 pool_put(&vndbuf_pool, (void *)(vbp)); \
208 }
209
210 /*
211 * local variables
212 */
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
215
216 /* list of all active swap devices [by priority] */
217 LIST_HEAD(swap_priority, swappri);
218 static struct swap_priority swap_priority;
219
220 /* locks */
221 static krwlock_t swap_syscall_lock;
222
223 /*
224 * prototypes
225 */
226 static struct swapdev *swapdrum_getsdp(int);
227
228 static struct swapdev *swaplist_find(struct vnode *, bool);
229 static void swaplist_insert(struct swapdev *,
230 struct swappri *, int);
231 static void swaplist_trim(void);
232
233 static int swap_on(struct lwp *, struct swapdev *);
234 static int swap_off(struct lwp *, struct swapdev *);
235
236 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
237
238 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
239 static void sw_reg_iodone(struct buf *);
240 static void sw_reg_start(struct swapdev *);
241
242 static int uvm_swap_io(struct vm_page **, int, int, int);
243
244 /*
245 * uvm_swap_init: init the swap system data structures and locks
246 *
247 * => called at boot time from init_main.c after the filesystems
248 * are brought up (which happens after uvm_init())
249 */
250 void
251 uvm_swap_init(void)
252 {
253 UVMHIST_FUNC("uvm_swap_init");
254
255 UVMHIST_CALLED(pdhist);
256 /*
257 * first, init the swap list, its counter, and its lock.
258 * then get a handle on the vnode for /dev/drum by using
259 * the its dev_t number ("swapdev", from MD conf.c).
260 */
261
262 LIST_INIT(&swap_priority);
263 uvmexp.nswapdev = 0;
264 rw_init(&swap_syscall_lock);
265 cv_init(&uvm.scheduler_cv, "schedule");
266 simple_lock_init(&uvm.swap_data_lock);
267
268 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
269 mutex_init(&uvm.scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
270
271 if (bdevvp(swapdev, &swapdev_vp))
272 panic("uvm_swap_init: can't get vnode for swap device");
273
274 /*
275 * create swap block resource map to map /dev/drum. the range
276 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
277 * that block 0 is reserved (used to indicate an allocation
278 * failure, or no allocation).
279 */
280 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
281 VM_NOSLEEP);
282 if (swapmap == 0)
283 panic("uvm_swap_init: extent_create failed");
284
285 /*
286 * done!
287 */
288 uvm.swap_running = true;
289 uvm.swapout_enabled = 1;
290 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
291
292 sysctl_createv(NULL, 0, NULL, NULL,
293 CTLFLAG_READWRITE,
294 CTLTYPE_INT, "swapout",
295 SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
296 NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
297 }
298
299 /*
300 * swaplist functions: functions that operate on the list of swap
301 * devices on the system.
302 */
303
304 /*
305 * swaplist_insert: insert swap device "sdp" into the global list
306 *
307 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
308 * => caller must provide a newly malloc'd swappri structure (we will
309 * FREE it if we don't need it... this it to prevent malloc blocking
310 * here while adding swap)
311 */
312 static void
313 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
314 {
315 struct swappri *spp, *pspp;
316 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
317
318 /*
319 * find entry at or after which to insert the new device.
320 */
321 pspp = NULL;
322 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
323 if (priority <= spp->spi_priority)
324 break;
325 pspp = spp;
326 }
327
328 /*
329 * new priority?
330 */
331 if (spp == NULL || spp->spi_priority != priority) {
332 spp = newspp; /* use newspp! */
333 UVMHIST_LOG(pdhist, "created new swappri = %d",
334 priority, 0, 0, 0);
335
336 spp->spi_priority = priority;
337 CIRCLEQ_INIT(&spp->spi_swapdev);
338
339 if (pspp)
340 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
341 else
342 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
343 } else {
344 /* we don't need a new priority structure, free it */
345 FREE(newspp, M_VMSWAP);
346 }
347
348 /*
349 * priority found (or created). now insert on the priority's
350 * circleq list and bump the total number of swapdevs.
351 */
352 sdp->swd_priority = priority;
353 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
354 uvmexp.nswapdev++;
355 }
356
357 /*
358 * swaplist_find: find and optionally remove a swap device from the
359 * global list.
360 *
361 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
362 * => we return the swapdev we found (and removed)
363 */
364 static struct swapdev *
365 swaplist_find(struct vnode *vp, bool remove)
366 {
367 struct swapdev *sdp;
368 struct swappri *spp;
369
370 /*
371 * search the lists for the requested vp
372 */
373
374 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
375 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
376 if (sdp->swd_vp == vp) {
377 if (remove) {
378 CIRCLEQ_REMOVE(&spp->spi_swapdev,
379 sdp, swd_next);
380 uvmexp.nswapdev--;
381 }
382 return(sdp);
383 }
384 }
385 }
386 return (NULL);
387 }
388
389 /*
390 * swaplist_trim: scan priority list for empty priority entries and kill
391 * them.
392 *
393 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
394 */
395 static void
396 swaplist_trim(void)
397 {
398 struct swappri *spp, *nextspp;
399
400 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
401 nextspp = LIST_NEXT(spp, spi_swappri);
402 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
403 (void *)&spp->spi_swapdev)
404 continue;
405 LIST_REMOVE(spp, spi_swappri);
406 free(spp, M_VMSWAP);
407 }
408 }
409
410 /*
411 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
412 * to the "swapdev" that maps that section of the drum.
413 *
414 * => each swapdev takes one big contig chunk of the drum
415 * => caller must hold uvm.swap_data_lock
416 */
417 static struct swapdev *
418 swapdrum_getsdp(int pgno)
419 {
420 struct swapdev *sdp;
421 struct swappri *spp;
422
423 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
424 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
425 if (sdp->swd_flags & SWF_FAKE)
426 continue;
427 if (pgno >= sdp->swd_drumoffset &&
428 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
429 return sdp;
430 }
431 }
432 }
433 return NULL;
434 }
435
436
437 /*
438 * sys_swapctl: main entry point for swapctl(2) system call
439 * [with two helper functions: swap_on and swap_off]
440 */
441 int
442 sys_swapctl(struct lwp *l, void *v, register_t *retval)
443 {
444 struct sys_swapctl_args /* {
445 syscallarg(int) cmd;
446 syscallarg(void *) arg;
447 syscallarg(int) misc;
448 } */ *uap = (struct sys_swapctl_args *)v;
449 struct vnode *vp;
450 struct nameidata nd;
451 struct swappri *spp;
452 struct swapdev *sdp;
453 struct swapent *sep;
454 #define SWAP_PATH_MAX (PATH_MAX + 1)
455 char *userpath;
456 size_t len;
457 int error, misc;
458 int priority;
459 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
460
461 misc = SCARG(uap, misc);
462
463 /*
464 * ensure serialized syscall access by grabbing the swap_syscall_lock
465 */
466 rw_enter(&swap_syscall_lock, RW_WRITER);
467
468 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
469 /*
470 * we handle the non-priv NSWAP and STATS request first.
471 *
472 * SWAP_NSWAP: return number of config'd swap devices
473 * [can also be obtained with uvmexp sysctl]
474 */
475 if (SCARG(uap, cmd) == SWAP_NSWAP) {
476 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
477 0, 0, 0);
478 *retval = uvmexp.nswapdev;
479 error = 0;
480 goto out;
481 }
482
483 /*
484 * SWAP_STATS: get stats on current # of configured swap devs
485 *
486 * note that the swap_priority list can't change as long
487 * as we are holding the swap_syscall_lock. we don't want
488 * to grab the uvm.swap_data_lock because we may fault&sleep during
489 * copyout() and we don't want to be holding that lock then!
490 */
491 if (SCARG(uap, cmd) == SWAP_STATS
492 #if defined(COMPAT_13)
493 || SCARG(uap, cmd) == SWAP_OSTATS
494 #endif
495 ) {
496 if ((size_t)misc > (size_t)uvmexp.nswapdev)
497 misc = uvmexp.nswapdev;
498 #if defined(COMPAT_13)
499 if (SCARG(uap, cmd) == SWAP_OSTATS)
500 len = sizeof(struct oswapent) * misc;
501 else
502 #endif
503 len = sizeof(struct swapent) * misc;
504 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
505
506 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
507 error = copyout(sep, SCARG(uap, arg), len);
508
509 free(sep, M_TEMP);
510 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
511 goto out;
512 }
513 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
514 dev_t *devp = (dev_t *)SCARG(uap, arg);
515
516 error = copyout(&dumpdev, devp, sizeof(dumpdev));
517 goto out;
518 }
519
520 /*
521 * all other requests require superuser privs. verify.
522 */
523 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
524 0, NULL, NULL, NULL)))
525 goto out;
526
527 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
528 /* drop the current dump device */
529 dumpdev = NODEV;
530 cpu_dumpconf();
531 goto out;
532 }
533
534 /*
535 * at this point we expect a path name in arg. we will
536 * use namei() to gain a vnode reference (vref), and lock
537 * the vnode (VOP_LOCK).
538 *
539 * XXX: a NULL arg means use the root vnode pointer (e.g. for
540 * miniroot)
541 */
542 if (SCARG(uap, arg) == NULL) {
543 vp = rootvp; /* miniroot */
544 if (vget(vp, LK_EXCLUSIVE)) {
545 error = EBUSY;
546 goto out;
547 }
548 if (SCARG(uap, cmd) == SWAP_ON &&
549 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
550 panic("swapctl: miniroot copy failed");
551 } else {
552 int space;
553 char *where;
554
555 if (SCARG(uap, cmd) == SWAP_ON) {
556 if ((error = copyinstr(SCARG(uap, arg), userpath,
557 SWAP_PATH_MAX, &len)))
558 goto out;
559 space = UIO_SYSSPACE;
560 where = userpath;
561 } else {
562 space = UIO_USERSPACE;
563 where = (char *)SCARG(uap, arg);
564 }
565 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, space, where, l);
566 if ((error = namei(&nd)))
567 goto out;
568 vp = nd.ni_vp;
569 }
570 /* note: "vp" is referenced and locked */
571
572 error = 0; /* assume no error */
573 switch(SCARG(uap, cmd)) {
574
575 case SWAP_DUMPDEV:
576 if (vp->v_type != VBLK) {
577 error = ENOTBLK;
578 break;
579 }
580 if (bdevsw_lookup(vp->v_rdev))
581 dumpdev = vp->v_rdev;
582 else
583 dumpdev = NODEV;
584 cpu_dumpconf();
585 break;
586
587 case SWAP_CTL:
588 /*
589 * get new priority, remove old entry (if any) and then
590 * reinsert it in the correct place. finally, prune out
591 * any empty priority structures.
592 */
593 priority = SCARG(uap, misc);
594 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
595 simple_lock(&uvm.swap_data_lock);
596 if ((sdp = swaplist_find(vp, true)) == NULL) {
597 error = ENOENT;
598 } else {
599 swaplist_insert(sdp, spp, priority);
600 swaplist_trim();
601 }
602 simple_unlock(&uvm.swap_data_lock);
603 if (error)
604 free(spp, M_VMSWAP);
605 break;
606
607 case SWAP_ON:
608
609 /*
610 * check for duplicates. if none found, then insert a
611 * dummy entry on the list to prevent someone else from
612 * trying to enable this device while we are working on
613 * it.
614 */
615
616 priority = SCARG(uap, misc);
617 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
618 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
619 memset(sdp, 0, sizeof(*sdp));
620 sdp->swd_flags = SWF_FAKE;
621 sdp->swd_vp = vp;
622 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
623 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
624 simple_lock(&uvm.swap_data_lock);
625 if (swaplist_find(vp, false) != NULL) {
626 error = EBUSY;
627 simple_unlock(&uvm.swap_data_lock);
628 bufq_free(sdp->swd_tab);
629 free(sdp, M_VMSWAP);
630 free(spp, M_VMSWAP);
631 break;
632 }
633 swaplist_insert(sdp, spp, priority);
634 simple_unlock(&uvm.swap_data_lock);
635
636 sdp->swd_pathlen = len;
637 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
638 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
639 panic("swapctl: copystr");
640
641 /*
642 * we've now got a FAKE placeholder in the swap list.
643 * now attempt to enable swap on it. if we fail, undo
644 * what we've done and kill the fake entry we just inserted.
645 * if swap_on is a success, it will clear the SWF_FAKE flag
646 */
647
648 if ((error = swap_on(l, sdp)) != 0) {
649 simple_lock(&uvm.swap_data_lock);
650 (void) swaplist_find(vp, true); /* kill fake entry */
651 swaplist_trim();
652 simple_unlock(&uvm.swap_data_lock);
653 bufq_free(sdp->swd_tab);
654 free(sdp->swd_path, M_VMSWAP);
655 free(sdp, M_VMSWAP);
656 break;
657 }
658 break;
659
660 case SWAP_OFF:
661 simple_lock(&uvm.swap_data_lock);
662 if ((sdp = swaplist_find(vp, false)) == NULL) {
663 simple_unlock(&uvm.swap_data_lock);
664 error = ENXIO;
665 break;
666 }
667
668 /*
669 * If a device isn't in use or enabled, we
670 * can't stop swapping from it (again).
671 */
672 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
673 simple_unlock(&uvm.swap_data_lock);
674 error = EBUSY;
675 break;
676 }
677
678 /*
679 * do the real work.
680 */
681 error = swap_off(l, sdp);
682 break;
683
684 default:
685 error = EINVAL;
686 }
687
688 /*
689 * done! release the ref gained by namei() and unlock.
690 */
691 vput(vp);
692
693 out:
694 free(userpath, M_TEMP);
695 rw_exit(&swap_syscall_lock);
696
697 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
698 return (error);
699 }
700
701 /*
702 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
703 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
704 * emulation to use it directly without going through sys_swapctl().
705 * The problem with using sys_swapctl() there is that it involves
706 * copying the swapent array to the stackgap, and this array's size
707 * is not known at build time. Hence it would not be possible to
708 * ensure it would fit in the stackgap in any case.
709 */
710 void
711 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
712 {
713
714 rw_enter(&swap_syscall_lock, RW_READER);
715 uvm_swap_stats_locked(cmd, sep, sec, retval);
716 rw_exit(&swap_syscall_lock);
717 }
718
719 static void
720 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
721 {
722 struct swappri *spp;
723 struct swapdev *sdp;
724 int count = 0;
725
726 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
727 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
728 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
729 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
730 /*
731 * backwards compatibility for system call.
732 * note that we use 'struct oswapent' as an
733 * overlay into both 'struct swapdev' and
734 * the userland 'struct swapent', as we
735 * want to retain backwards compatibility
736 * with NetBSD 1.3.
737 */
738 sdp->swd_ose.ose_inuse =
739 btodb((uint64_t)sdp->swd_npginuse <<
740 PAGE_SHIFT);
741 (void)memcpy(sep, &sdp->swd_ose,
742 sizeof(struct oswapent));
743
744 /* now copy out the path if necessary */
745 #if !defined(COMPAT_13)
746 (void) cmd;
747 #endif
748 #if defined(COMPAT_13)
749 if (cmd == SWAP_STATS)
750 #endif
751 (void)memcpy(&sep->se_path, sdp->swd_path,
752 sdp->swd_pathlen);
753
754 count++;
755 #if defined(COMPAT_13)
756 if (cmd == SWAP_OSTATS)
757 sep = (struct swapent *)
758 ((struct oswapent *)sep + 1);
759 else
760 #endif
761 sep++;
762 }
763 }
764
765 *retval = count;
766 return;
767 }
768
769 /*
770 * swap_on: attempt to enable a swapdev for swapping. note that the
771 * swapdev is already on the global list, but disabled (marked
772 * SWF_FAKE).
773 *
774 * => we avoid the start of the disk (to protect disk labels)
775 * => we also avoid the miniroot, if we are swapping to root.
776 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
777 * if needed.
778 */
779 static int
780 swap_on(struct lwp *l, struct swapdev *sdp)
781 {
782 struct vnode *vp;
783 int error, npages, nblocks, size;
784 long addr;
785 u_long result;
786 struct vattr va;
787 #ifdef NFS
788 extern int (**nfsv2_vnodeop_p)(void *);
789 #endif /* NFS */
790 const struct bdevsw *bdev;
791 dev_t dev;
792 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
793
794 /*
795 * we want to enable swapping on sdp. the swd_vp contains
796 * the vnode we want (locked and ref'd), and the swd_dev
797 * contains the dev_t of the file, if it a block device.
798 */
799
800 vp = sdp->swd_vp;
801 dev = sdp->swd_dev;
802
803 /*
804 * open the swap file (mostly useful for block device files to
805 * let device driver know what is up).
806 *
807 * we skip the open/close for root on swap because the root
808 * has already been opened when root was mounted (mountroot).
809 */
810 if (vp != rootvp) {
811 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
812 return (error);
813 }
814
815 /* XXX this only works for block devices */
816 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
817
818 /*
819 * we now need to determine the size of the swap area. for
820 * block specials we can call the d_psize function.
821 * for normal files, we must stat [get attrs].
822 *
823 * we put the result in nblks.
824 * for normal files, we also want the filesystem block size
825 * (which we get with statfs).
826 */
827 switch (vp->v_type) {
828 case VBLK:
829 bdev = bdevsw_lookup(dev);
830 if (bdev == NULL || bdev->d_psize == NULL ||
831 (nblocks = (*bdev->d_psize)(dev)) == -1) {
832 error = ENXIO;
833 goto bad;
834 }
835 break;
836
837 case VREG:
838 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
839 goto bad;
840 nblocks = (int)btodb(va.va_size);
841 if ((error =
842 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
843 goto bad;
844
845 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
846 /*
847 * limit the max # of outstanding I/O requests we issue
848 * at any one time. take it easy on NFS servers.
849 */
850 #ifdef NFS
851 if (vp->v_op == nfsv2_vnodeop_p)
852 sdp->swd_maxactive = 2; /* XXX */
853 else
854 #endif /* NFS */
855 sdp->swd_maxactive = 8; /* XXX */
856 break;
857
858 default:
859 error = ENXIO;
860 goto bad;
861 }
862
863 /*
864 * save nblocks in a safe place and convert to pages.
865 */
866
867 sdp->swd_ose.ose_nblks = nblocks;
868 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
869
870 /*
871 * for block special files, we want to make sure that leave
872 * the disklabel and bootblocks alone, so we arrange to skip
873 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
874 * note that because of this the "size" can be less than the
875 * actual number of blocks on the device.
876 */
877 if (vp->v_type == VBLK) {
878 /* we use pages 1 to (size - 1) [inclusive] */
879 size = npages - 1;
880 addr = 1;
881 } else {
882 /* we use pages 0 to (size - 1) [inclusive] */
883 size = npages;
884 addr = 0;
885 }
886
887 /*
888 * make sure we have enough blocks for a reasonable sized swap
889 * area. we want at least one page.
890 */
891
892 if (size < 1) {
893 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
894 error = EINVAL;
895 goto bad;
896 }
897
898 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
899
900 /*
901 * now we need to allocate an extent to manage this swap device
902 */
903
904 sdp->swd_blist = blist_create(npages);
905 /* mark all expect the `saved' region free. */
906 blist_free(sdp->swd_blist, addr, size);
907
908 /*
909 * if the vnode we are swapping to is the root vnode
910 * (i.e. we are swapping to the miniroot) then we want
911 * to make sure we don't overwrite it. do a statfs to
912 * find its size and skip over it.
913 */
914 if (vp == rootvp) {
915 struct mount *mp;
916 struct statvfs *sp;
917 int rootblocks, rootpages;
918
919 mp = rootvnode->v_mount;
920 sp = &mp->mnt_stat;
921 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
922 /*
923 * XXX: sp->f_blocks isn't the total number of
924 * blocks in the filesystem, it's the number of
925 * data blocks. so, our rootblocks almost
926 * definitely underestimates the total size
927 * of the filesystem - how badly depends on the
928 * details of the filesystem type. there isn't
929 * an obvious way to deal with this cleanly
930 * and perfectly, so for now we just pad our
931 * rootblocks estimate with an extra 5 percent.
932 */
933 rootblocks += (rootblocks >> 5) +
934 (rootblocks >> 6) +
935 (rootblocks >> 7);
936 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
937 if (rootpages > size)
938 panic("swap_on: miniroot larger than swap?");
939
940 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
941 panic("swap_on: unable to preserve miniroot");
942 }
943
944 size -= rootpages;
945 printf("Preserved %d pages of miniroot ", rootpages);
946 printf("leaving %d pages of swap\n", size);
947 }
948
949 /*
950 * add a ref to vp to reflect usage as a swap device.
951 */
952 vref(vp);
953
954 /*
955 * now add the new swapdev to the drum and enable.
956 */
957 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
958 if (result == 0)
959 panic("swapdrum_add");
960
961 sdp->swd_drumoffset = (int)result;
962 sdp->swd_drumsize = npages;
963 sdp->swd_npages = size;
964 simple_lock(&uvm.swap_data_lock);
965 sdp->swd_flags &= ~SWF_FAKE; /* going live */
966 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
967 uvmexp.swpages += size;
968 uvmexp.swpgavail += size;
969 simple_unlock(&uvm.swap_data_lock);
970 return (0);
971
972 /*
973 * failure: clean up and return error.
974 */
975
976 bad:
977 if (sdp->swd_blist) {
978 blist_destroy(sdp->swd_blist);
979 }
980 if (vp != rootvp) {
981 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
982 }
983 return (error);
984 }
985
986 /*
987 * swap_off: stop swapping on swapdev
988 *
989 * => swap data should be locked, we will unlock.
990 */
991 static int
992 swap_off(struct lwp *l, struct swapdev *sdp)
993 {
994 int npages = sdp->swd_npages;
995 int error = 0;
996
997 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
998 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
999
1000 /* disable the swap area being removed */
1001 sdp->swd_flags &= ~SWF_ENABLE;
1002 uvmexp.swpgavail -= npages;
1003 simple_unlock(&uvm.swap_data_lock);
1004
1005 /*
1006 * the idea is to find all the pages that are paged out to this
1007 * device, and page them all in. in uvm, swap-backed pageable
1008 * memory can take two forms: aobjs and anons. call the
1009 * swapoff hook for each subsystem to bring in pages.
1010 */
1011
1012 if (uao_swap_off(sdp->swd_drumoffset,
1013 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1014 amap_swap_off(sdp->swd_drumoffset,
1015 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1016 error = ENOMEM;
1017 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1018 error = EBUSY;
1019 }
1020
1021 if (error) {
1022 simple_lock(&uvm.swap_data_lock);
1023 sdp->swd_flags |= SWF_ENABLE;
1024 uvmexp.swpgavail += npages;
1025 simple_unlock(&uvm.swap_data_lock);
1026
1027 return error;
1028 }
1029
1030 /*
1031 * done with the vnode.
1032 * drop our ref on the vnode before calling VOP_CLOSE()
1033 * so that spec_close() can tell if this is the last close.
1034 */
1035 vrele(sdp->swd_vp);
1036 if (sdp->swd_vp != rootvp) {
1037 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1038 }
1039
1040 simple_lock(&uvm.swap_data_lock);
1041 uvmexp.swpages -= npages;
1042 uvmexp.swpginuse -= sdp->swd_npgbad;
1043
1044 if (swaplist_find(sdp->swd_vp, true) == NULL)
1045 panic("swap_off: swapdev not in list");
1046 swaplist_trim();
1047 simple_unlock(&uvm.swap_data_lock);
1048
1049 /*
1050 * free all resources!
1051 */
1052 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1053 blist_destroy(sdp->swd_blist);
1054 bufq_free(sdp->swd_tab);
1055 free(sdp, M_VMSWAP);
1056 return (0);
1057 }
1058
1059 /*
1060 * /dev/drum interface and i/o functions
1061 */
1062
1063 /*
1064 * swstrategy: perform I/O on the drum
1065 *
1066 * => we must map the i/o request from the drum to the correct swapdev.
1067 */
1068 static void
1069 swstrategy(struct buf *bp)
1070 {
1071 struct swapdev *sdp;
1072 struct vnode *vp;
1073 int s, pageno, bn;
1074 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1075
1076 /*
1077 * convert block number to swapdev. note that swapdev can't
1078 * be yanked out from under us because we are holding resources
1079 * in it (i.e. the blocks we are doing I/O on).
1080 */
1081 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1082 simple_lock(&uvm.swap_data_lock);
1083 sdp = swapdrum_getsdp(pageno);
1084 simple_unlock(&uvm.swap_data_lock);
1085 if (sdp == NULL) {
1086 bp->b_error = EINVAL;
1087 bp->b_flags |= B_ERROR;
1088 biodone(bp);
1089 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1090 return;
1091 }
1092
1093 /*
1094 * convert drum page number to block number on this swapdev.
1095 */
1096
1097 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1098 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1099
1100 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1101 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1102 sdp->swd_drumoffset, bn, bp->b_bcount);
1103
1104 /*
1105 * for block devices we finish up here.
1106 * for regular files we have to do more work which we delegate
1107 * to sw_reg_strategy().
1108 */
1109
1110 switch (sdp->swd_vp->v_type) {
1111 default:
1112 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1113
1114 case VBLK:
1115
1116 /*
1117 * must convert "bp" from an I/O on /dev/drum to an I/O
1118 * on the swapdev (sdp).
1119 */
1120 s = splbio();
1121 bp->b_blkno = bn; /* swapdev block number */
1122 vp = sdp->swd_vp; /* swapdev vnode pointer */
1123 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1124
1125 /*
1126 * if we are doing a write, we have to redirect the i/o on
1127 * drum's v_numoutput counter to the swapdevs.
1128 */
1129 if ((bp->b_flags & B_READ) == 0) {
1130 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1131 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1132 }
1133
1134 /*
1135 * finally plug in swapdev vnode and start I/O
1136 */
1137 bp->b_vp = vp;
1138 splx(s);
1139 VOP_STRATEGY(vp, bp);
1140 return;
1141
1142 case VREG:
1143 /*
1144 * delegate to sw_reg_strategy function.
1145 */
1146 sw_reg_strategy(sdp, bp, bn);
1147 return;
1148 }
1149 /* NOTREACHED */
1150 }
1151
1152 /*
1153 * swread: the read function for the drum (just a call to physio)
1154 */
1155 /*ARGSUSED*/
1156 static int
1157 swread(dev_t dev, struct uio *uio, int ioflag)
1158 {
1159 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1160
1161 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1162 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1163 }
1164
1165 /*
1166 * swwrite: the write function for the drum (just a call to physio)
1167 */
1168 /*ARGSUSED*/
1169 static int
1170 swwrite(dev_t dev, struct uio *uio, int ioflag)
1171 {
1172 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1173
1174 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1175 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1176 }
1177
1178 const struct bdevsw swap_bdevsw = {
1179 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1180 };
1181
1182 const struct cdevsw swap_cdevsw = {
1183 nullopen, nullclose, swread, swwrite, noioctl,
1184 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1185 };
1186
1187 /*
1188 * sw_reg_strategy: handle swap i/o to regular files
1189 */
1190 static void
1191 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1192 {
1193 struct vnode *vp;
1194 struct vndxfer *vnx;
1195 daddr_t nbn;
1196 char *addr;
1197 off_t byteoff;
1198 int s, off, nra, error, sz, resid;
1199 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1200
1201 /*
1202 * allocate a vndxfer head for this transfer and point it to
1203 * our buffer.
1204 */
1205 getvndxfer(vnx);
1206 vnx->vx_flags = VX_BUSY;
1207 vnx->vx_error = 0;
1208 vnx->vx_pending = 0;
1209 vnx->vx_bp = bp;
1210 vnx->vx_sdp = sdp;
1211
1212 /*
1213 * setup for main loop where we read filesystem blocks into
1214 * our buffer.
1215 */
1216 error = 0;
1217 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1218 addr = bp->b_data; /* current position in buffer */
1219 byteoff = dbtob((uint64_t)bn);
1220
1221 for (resid = bp->b_resid; resid; resid -= sz) {
1222 struct vndbuf *nbp;
1223
1224 /*
1225 * translate byteoffset into block number. return values:
1226 * vp = vnode of underlying device
1227 * nbn = new block number (on underlying vnode dev)
1228 * nra = num blocks we can read-ahead (excludes requested
1229 * block)
1230 */
1231 nra = 0;
1232 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1233 &vp, &nbn, &nra);
1234
1235 if (error == 0 && nbn == (daddr_t)-1) {
1236 /*
1237 * this used to just set error, but that doesn't
1238 * do the right thing. Instead, it causes random
1239 * memory errors. The panic() should remain until
1240 * this condition doesn't destabilize the system.
1241 */
1242 #if 1
1243 panic("sw_reg_strategy: swap to sparse file");
1244 #else
1245 error = EIO; /* failure */
1246 #endif
1247 }
1248
1249 /*
1250 * punt if there was an error or a hole in the file.
1251 * we must wait for any i/o ops we have already started
1252 * to finish before returning.
1253 *
1254 * XXX we could deal with holes here but it would be
1255 * a hassle (in the write case).
1256 */
1257 if (error) {
1258 s = splbio();
1259 vnx->vx_error = error; /* pass error up */
1260 goto out;
1261 }
1262
1263 /*
1264 * compute the size ("sz") of this transfer (in bytes).
1265 */
1266 off = byteoff % sdp->swd_bsize;
1267 sz = (1 + nra) * sdp->swd_bsize - off;
1268 if (sz > resid)
1269 sz = resid;
1270
1271 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1272 "vp %p/%p offset 0x%x/0x%x",
1273 sdp->swd_vp, vp, byteoff, nbn);
1274
1275 /*
1276 * now get a buf structure. note that the vb_buf is
1277 * at the front of the nbp structure so that you can
1278 * cast pointers between the two structure easily.
1279 */
1280 getvndbuf(nbp);
1281 BUF_INIT(&nbp->vb_buf);
1282 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1283 nbp->vb_buf.b_bcount = sz;
1284 nbp->vb_buf.b_bufsize = sz;
1285 nbp->vb_buf.b_error = 0;
1286 nbp->vb_buf.b_data = addr;
1287 nbp->vb_buf.b_lblkno = 0;
1288 nbp->vb_buf.b_blkno = nbn + btodb(off);
1289 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1290 nbp->vb_buf.b_iodone = sw_reg_iodone;
1291 nbp->vb_buf.b_vp = vp;
1292 if (vp->v_type == VBLK) {
1293 nbp->vb_buf.b_dev = vp->v_rdev;
1294 }
1295
1296 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1297
1298 /*
1299 * Just sort by block number
1300 */
1301 s = splbio();
1302 if (vnx->vx_error != 0) {
1303 putvndbuf(nbp);
1304 goto out;
1305 }
1306 vnx->vx_pending++;
1307
1308 /* sort it in and start I/O if we are not over our limit */
1309 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1310 sw_reg_start(sdp);
1311 splx(s);
1312
1313 /*
1314 * advance to the next I/O
1315 */
1316 byteoff += sz;
1317 addr += sz;
1318 }
1319
1320 s = splbio();
1321
1322 out: /* Arrive here at splbio */
1323 vnx->vx_flags &= ~VX_BUSY;
1324 if (vnx->vx_pending == 0) {
1325 if (vnx->vx_error != 0) {
1326 bp->b_error = vnx->vx_error;
1327 bp->b_flags |= B_ERROR;
1328 }
1329 putvndxfer(vnx);
1330 biodone(bp);
1331 }
1332 splx(s);
1333 }
1334
1335 /*
1336 * sw_reg_start: start an I/O request on the requested swapdev
1337 *
1338 * => reqs are sorted by b_rawblkno (above)
1339 */
1340 static void
1341 sw_reg_start(struct swapdev *sdp)
1342 {
1343 struct buf *bp;
1344 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1345
1346 /* recursion control */
1347 if ((sdp->swd_flags & SWF_BUSY) != 0)
1348 return;
1349
1350 sdp->swd_flags |= SWF_BUSY;
1351
1352 while (sdp->swd_active < sdp->swd_maxactive) {
1353 bp = BUFQ_GET(sdp->swd_tab);
1354 if (bp == NULL)
1355 break;
1356 sdp->swd_active++;
1357
1358 UVMHIST_LOG(pdhist,
1359 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1360 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1361 if ((bp->b_flags & B_READ) == 0)
1362 V_INCR_NUMOUTPUT(bp->b_vp);
1363
1364 VOP_STRATEGY(bp->b_vp, bp);
1365 }
1366 sdp->swd_flags &= ~SWF_BUSY;
1367 }
1368
1369 /*
1370 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1371 *
1372 * => note that we can recover the vndbuf struct by casting the buf ptr
1373 */
1374 static void
1375 sw_reg_iodone(struct buf *bp)
1376 {
1377 struct vndbuf *vbp = (struct vndbuf *) bp;
1378 struct vndxfer *vnx = vbp->vb_xfer;
1379 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1380 struct swapdev *sdp = vnx->vx_sdp;
1381 int s, resid, error;
1382 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1383
1384 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1385 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1386 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1387 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1388
1389 /*
1390 * protect vbp at splbio and update.
1391 */
1392
1393 s = splbio();
1394 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1395 pbp->b_resid -= resid;
1396 vnx->vx_pending--;
1397
1398 if (vbp->vb_buf.b_flags & B_ERROR) {
1399 /* pass error upward */
1400 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1401 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1402 vnx->vx_error = error;
1403 }
1404
1405 /*
1406 * kill vbp structure
1407 */
1408 putvndbuf(vbp);
1409
1410 /*
1411 * wrap up this transaction if it has run to completion or, in
1412 * case of an error, when all auxiliary buffers have returned.
1413 */
1414 if (vnx->vx_error != 0) {
1415 /* pass error upward */
1416 pbp->b_flags |= B_ERROR;
1417 pbp->b_error = vnx->vx_error;
1418 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1419 putvndxfer(vnx);
1420 biodone(pbp);
1421 }
1422 } else if (pbp->b_resid == 0) {
1423 KASSERT(vnx->vx_pending == 0);
1424 if ((vnx->vx_flags & VX_BUSY) == 0) {
1425 UVMHIST_LOG(pdhist, " iodone error=%d !",
1426 pbp, vnx->vx_error, 0, 0);
1427 putvndxfer(vnx);
1428 biodone(pbp);
1429 }
1430 }
1431
1432 /*
1433 * done! start next swapdev I/O if one is pending
1434 */
1435 sdp->swd_active--;
1436 sw_reg_start(sdp);
1437 splx(s);
1438 }
1439
1440
1441 /*
1442 * uvm_swap_alloc: allocate space on swap
1443 *
1444 * => allocation is done "round robin" down the priority list, as we
1445 * allocate in a priority we "rotate" the circle queue.
1446 * => space can be freed with uvm_swap_free
1447 * => we return the page slot number in /dev/drum (0 == invalid slot)
1448 * => we lock uvm.swap_data_lock
1449 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1450 */
1451 int
1452 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1453 {
1454 struct swapdev *sdp;
1455 struct swappri *spp;
1456 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1457
1458 /*
1459 * no swap devices configured yet? definite failure.
1460 */
1461 if (uvmexp.nswapdev < 1)
1462 return 0;
1463
1464 /*
1465 * lock data lock, convert slots into blocks, and enter loop
1466 */
1467 simple_lock(&uvm.swap_data_lock);
1468
1469 ReTry: /* XXXMRG */
1470 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1471 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1472 uint64_t result;
1473
1474 /* if it's not enabled, then we can't swap from it */
1475 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1476 continue;
1477 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1478 continue;
1479 result = blist_alloc(sdp->swd_blist, *nslots);
1480 if (result == BLIST_NONE) {
1481 continue;
1482 }
1483 KASSERT(result < sdp->swd_drumsize);
1484
1485 /*
1486 * successful allocation! now rotate the circleq.
1487 */
1488 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1489 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1490 sdp->swd_npginuse += *nslots;
1491 uvmexp.swpginuse += *nslots;
1492 simple_unlock(&uvm.swap_data_lock);
1493 /* done! return drum slot number */
1494 UVMHIST_LOG(pdhist,
1495 "success! returning %d slots starting at %d",
1496 *nslots, result + sdp->swd_drumoffset, 0, 0);
1497 return (result + sdp->swd_drumoffset);
1498 }
1499 }
1500
1501 /* XXXMRG: BEGIN HACK */
1502 if (*nslots > 1 && lessok) {
1503 *nslots = 1;
1504 /* XXXMRG: ugh! blist should support this for us */
1505 goto ReTry;
1506 }
1507 /* XXXMRG: END HACK */
1508
1509 simple_unlock(&uvm.swap_data_lock);
1510 return 0;
1511 }
1512
1513 bool
1514 uvm_swapisfull(void)
1515 {
1516 bool rv;
1517
1518 simple_lock(&uvm.swap_data_lock);
1519 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1520 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1521 simple_unlock(&uvm.swap_data_lock);
1522
1523 return (rv);
1524 }
1525
1526 /*
1527 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1528 *
1529 * => we lock uvm.swap_data_lock
1530 */
1531 void
1532 uvm_swap_markbad(int startslot, int nslots)
1533 {
1534 struct swapdev *sdp;
1535 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1536
1537 simple_lock(&uvm.swap_data_lock);
1538 sdp = swapdrum_getsdp(startslot);
1539 KASSERT(sdp != NULL);
1540
1541 /*
1542 * we just keep track of how many pages have been marked bad
1543 * in this device, to make everything add up in swap_off().
1544 * we assume here that the range of slots will all be within
1545 * one swap device.
1546 */
1547
1548 KASSERT(uvmexp.swpgonly >= nslots);
1549 uvmexp.swpgonly -= nslots;
1550 sdp->swd_npgbad += nslots;
1551 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1552 simple_unlock(&uvm.swap_data_lock);
1553 }
1554
1555 /*
1556 * uvm_swap_free: free swap slots
1557 *
1558 * => this can be all or part of an allocation made by uvm_swap_alloc
1559 * => we lock uvm.swap_data_lock
1560 */
1561 void
1562 uvm_swap_free(int startslot, int nslots)
1563 {
1564 struct swapdev *sdp;
1565 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1566
1567 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1568 startslot, 0, 0);
1569
1570 /*
1571 * ignore attempts to free the "bad" slot.
1572 */
1573
1574 if (startslot == SWSLOT_BAD) {
1575 return;
1576 }
1577
1578 /*
1579 * convert drum slot offset back to sdp, free the blocks
1580 * in the extent, and return. must hold pri lock to do
1581 * lookup and access the extent.
1582 */
1583
1584 simple_lock(&uvm.swap_data_lock);
1585 sdp = swapdrum_getsdp(startslot);
1586 KASSERT(uvmexp.nswapdev >= 1);
1587 KASSERT(sdp != NULL);
1588 KASSERT(sdp->swd_npginuse >= nslots);
1589 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1590 sdp->swd_npginuse -= nslots;
1591 uvmexp.swpginuse -= nslots;
1592 simple_unlock(&uvm.swap_data_lock);
1593 }
1594
1595 /*
1596 * uvm_swap_put: put any number of pages into a contig place on swap
1597 *
1598 * => can be sync or async
1599 */
1600
1601 int
1602 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1603 {
1604 int error;
1605
1606 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1607 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1608 return error;
1609 }
1610
1611 /*
1612 * uvm_swap_get: get a single page from swap
1613 *
1614 * => usually a sync op (from fault)
1615 */
1616
1617 int
1618 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1619 {
1620 int error;
1621
1622 uvmexp.nswget++;
1623 KASSERT(flags & PGO_SYNCIO);
1624 if (swslot == SWSLOT_BAD) {
1625 return EIO;
1626 }
1627
1628 error = uvm_swap_io(&page, swslot, 1, B_READ |
1629 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1630 if (error == 0) {
1631
1632 /*
1633 * this page is no longer only in swap.
1634 */
1635
1636 simple_lock(&uvm.swap_data_lock);
1637 KASSERT(uvmexp.swpgonly > 0);
1638 uvmexp.swpgonly--;
1639 simple_unlock(&uvm.swap_data_lock);
1640 }
1641 return error;
1642 }
1643
1644 /*
1645 * uvm_swap_io: do an i/o operation to swap
1646 */
1647
1648 static int
1649 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1650 {
1651 daddr_t startblk;
1652 struct buf *bp;
1653 vaddr_t kva;
1654 int error, s, mapinflags;
1655 bool write, async;
1656 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1657
1658 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1659 startslot, npages, flags, 0);
1660
1661 write = (flags & B_READ) == 0;
1662 async = (flags & B_ASYNC) != 0;
1663
1664 /*
1665 * convert starting drum slot to block number
1666 */
1667
1668 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1669
1670 /*
1671 * first, map the pages into the kernel.
1672 */
1673
1674 mapinflags = !write ?
1675 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1676 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1677 kva = uvm_pagermapin(pps, npages, mapinflags);
1678
1679 /*
1680 * now allocate a buf for the i/o.
1681 */
1682
1683 bp = getiobuf();
1684
1685 /*
1686 * fill in the bp/sbp. we currently route our i/o through
1687 * /dev/drum's vnode [swapdev_vp].
1688 */
1689
1690 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1691 bp->b_proc = &proc0; /* XXX */
1692 bp->b_vnbufs.le_next = NOLIST;
1693 bp->b_data = (void *)kva;
1694 bp->b_blkno = startblk;
1695 bp->b_vp = swapdev_vp;
1696 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1697
1698 /*
1699 * bump v_numoutput (counter of number of active outputs).
1700 */
1701
1702 if (write) {
1703 s = splbio();
1704 V_INCR_NUMOUTPUT(swapdev_vp);
1705 splx(s);
1706 }
1707
1708 /*
1709 * for async ops we must set up the iodone handler.
1710 */
1711
1712 if (async) {
1713 bp->b_flags |= B_CALL;
1714 bp->b_iodone = uvm_aio_biodone;
1715 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1716 if (curproc == uvm.pagedaemon_proc)
1717 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1718 else
1719 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1720 } else {
1721 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1722 }
1723 UVMHIST_LOG(pdhist,
1724 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1725 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1726
1727 /*
1728 * now we start the I/O, and if async, return.
1729 */
1730
1731 VOP_STRATEGY(swapdev_vp, bp);
1732 if (async)
1733 return 0;
1734
1735 /*
1736 * must be sync i/o. wait for it to finish
1737 */
1738
1739 error = biowait(bp);
1740
1741 /*
1742 * kill the pager mapping
1743 */
1744
1745 uvm_pagermapout(kva, npages);
1746
1747 /*
1748 * now dispose of the buf and we're done.
1749 */
1750
1751 s = splbio();
1752 if (write)
1753 vwakeup(bp);
1754 putiobuf(bp);
1755 splx(s);
1756 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1757 return (error);
1758 }
1759