uvm_swap.c revision 1.128 1 /* $NetBSD: uvm_swap.c,v 1.128 2007/07/24 19:59:35 ad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.128 2007/07/24 19:59:35 ad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 /*
69 * uvm_swap.c: manage configuration and i/o to swap space.
70 */
71
72 /*
73 * swap space is managed in the following way:
74 *
75 * each swap partition or file is described by a "swapdev" structure.
76 * each "swapdev" structure contains a "swapent" structure which contains
77 * information that is passed up to the user (via system calls).
78 *
79 * each swap partition is assigned a "priority" (int) which controls
80 * swap parition usage.
81 *
82 * the system maintains a global data structure describing all swap
83 * partitions/files. there is a sorted LIST of "swappri" structures
84 * which describe "swapdev"'s at that priority. this LIST is headed
85 * by the "swap_priority" global var. each "swappri" contains a
86 * CIRCLEQ of "swapdev" structures at that priority.
87 *
88 * locking:
89 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
90 * system call and prevents the swap priority list from changing
91 * while we are in the middle of a system call (e.g. SWAP_STATS).
92 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
93 * structures including the priority list, the swapdev structures,
94 * and the swapmap arena.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 *
106 * userland controls and configures swap with the swapctl(2) system call.
107 * the sys_swapctl performs the following operations:
108 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
109 * [2] SWAP_STATS: given a pointer to an array of swapent structures
110 * (passed in via "arg") of a size passed in via "misc" ... we load
111 * the current swap config into the array. The actual work is done
112 * in the uvm_swap_stats(9) function.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * swapdev: describes a single swap partition/file
122 *
123 * note the following should be true:
124 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
125 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
126 */
127 struct swapdev {
128 struct oswapent swd_ose;
129 #define swd_dev swd_ose.ose_dev /* device id */
130 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
131 #define swd_priority swd_ose.ose_priority /* our priority */
132 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
133 char *swd_path; /* saved pathname of device */
134 int swd_pathlen; /* length of pathname */
135 int swd_npages; /* #pages we can use */
136 int swd_npginuse; /* #pages in use */
137 int swd_npgbad; /* #pages bad */
138 int swd_drumoffset; /* page0 offset in drum */
139 int swd_drumsize; /* #pages in drum */
140 blist_t swd_blist; /* blist for this swapdev */
141 struct vnode *swd_vp; /* backing vnode */
142 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
143
144 int swd_bsize; /* blocksize (bytes) */
145 int swd_maxactive; /* max active i/o reqs */
146 struct bufq_state *swd_tab; /* buffer list */
147 int swd_active; /* number of active buffers */
148 };
149
150 /*
151 * swap device priority entry; the list is kept sorted on `spi_priority'.
152 */
153 struct swappri {
154 int spi_priority; /* priority */
155 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
156 /* circleq of swapdevs at this priority */
157 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
158 };
159
160 /*
161 * The following two structures are used to keep track of data transfers
162 * on swap devices associated with regular files.
163 * NOTE: this code is more or less a copy of vnd.c; we use the same
164 * structure names here to ease porting..
165 */
166 struct vndxfer {
167 struct buf *vx_bp; /* Pointer to parent buffer */
168 struct swapdev *vx_sdp;
169 int vx_error;
170 int vx_pending; /* # of pending aux buffers */
171 int vx_flags;
172 #define VX_BUSY 1
173 #define VX_DEAD 2
174 };
175
176 struct vndbuf {
177 struct buf vb_buf;
178 struct vndxfer *vb_xfer;
179 };
180
181
182 /*
183 * We keep a of pool vndbuf's and vndxfer structures.
184 */
185 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
186 IPL_BIO);
187 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
188 IPL_BIO);
189
190 #define getvndxfer(vnx) do { \
191 int sp = splbio(); \
192 vnx = pool_get(&vndxfer_pool, PR_WAITOK); \
193 splx(sp); \
194 } while (/*CONSTCOND*/ 0)
195
196 #define putvndxfer(vnx) { \
197 pool_put(&vndxfer_pool, (void *)(vnx)); \
198 }
199
200 #define getvndbuf(vbp) do { \
201 int sp = splbio(); \
202 vbp = pool_get(&vndbuf_pool, PR_WAITOK); \
203 splx(sp); \
204 } while (/*CONSTCOND*/ 0)
205
206 #define putvndbuf(vbp) { \
207 pool_put(&vndbuf_pool, (void *)(vbp)); \
208 }
209
210 /*
211 * local variables
212 */
213 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
214 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
215
216 /* list of all active swap devices [by priority] */
217 LIST_HEAD(swap_priority, swappri);
218 static struct swap_priority swap_priority;
219
220 /* locks */
221 static krwlock_t swap_syscall_lock;
222
223 /*
224 * prototypes
225 */
226 static struct swapdev *swapdrum_getsdp(int);
227
228 static struct swapdev *swaplist_find(struct vnode *, bool);
229 static void swaplist_insert(struct swapdev *,
230 struct swappri *, int);
231 static void swaplist_trim(void);
232
233 static int swap_on(struct lwp *, struct swapdev *);
234 static int swap_off(struct lwp *, struct swapdev *);
235
236 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
237
238 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
239 static void sw_reg_iodone(struct buf *);
240 static void sw_reg_start(struct swapdev *);
241
242 static int uvm_swap_io(struct vm_page **, int, int, int);
243
244 /*
245 * uvm_swap_init: init the swap system data structures and locks
246 *
247 * => called at boot time from init_main.c after the filesystems
248 * are brought up (which happens after uvm_init())
249 */
250 void
251 uvm_swap_init(void)
252 {
253 UVMHIST_FUNC("uvm_swap_init");
254
255 UVMHIST_CALLED(pdhist);
256 /*
257 * first, init the swap list, its counter, and its lock.
258 * then get a handle on the vnode for /dev/drum by using
259 * the its dev_t number ("swapdev", from MD conf.c).
260 */
261
262 LIST_INIT(&swap_priority);
263 uvmexp.nswapdev = 0;
264 rw_init(&swap_syscall_lock);
265 cv_init(&uvm.scheduler_cv, "schedule");
266 /* XXXSMP should be adaptive, but needs vmobjlock replaced */
267 mutex_init(&uvm_swap_data_lock, MUTEX_SPIN, IPL_NONE);
268
269 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
270 mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
271
272 if (bdevvp(swapdev, &swapdev_vp))
273 panic("uvm_swap_init: can't get vnode for swap device");
274
275 /*
276 * create swap block resource map to map /dev/drum. the range
277 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
278 * that block 0 is reserved (used to indicate an allocation
279 * failure, or no allocation).
280 */
281 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
282 VM_NOSLEEP, IPL_NONE);
283 if (swapmap == 0)
284 panic("uvm_swap_init: extent_create failed");
285
286 /*
287 * done!
288 */
289 uvm.swap_running = true;
290 uvm.swapout_enabled = 1;
291 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
292
293 sysctl_createv(NULL, 0, NULL, NULL,
294 CTLFLAG_READWRITE,
295 CTLTYPE_INT, "swapout",
296 SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
297 NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
298 }
299
300 /*
301 * swaplist functions: functions that operate on the list of swap
302 * devices on the system.
303 */
304
305 /*
306 * swaplist_insert: insert swap device "sdp" into the global list
307 *
308 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
309 * => caller must provide a newly malloc'd swappri structure (we will
310 * FREE it if we don't need it... this it to prevent malloc blocking
311 * here while adding swap)
312 */
313 static void
314 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
315 {
316 struct swappri *spp, *pspp;
317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318
319 /*
320 * find entry at or after which to insert the new device.
321 */
322 pspp = NULL;
323 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
324 if (priority <= spp->spi_priority)
325 break;
326 pspp = spp;
327 }
328
329 /*
330 * new priority?
331 */
332 if (spp == NULL || spp->spi_priority != priority) {
333 spp = newspp; /* use newspp! */
334 UVMHIST_LOG(pdhist, "created new swappri = %d",
335 priority, 0, 0, 0);
336
337 spp->spi_priority = priority;
338 CIRCLEQ_INIT(&spp->spi_swapdev);
339
340 if (pspp)
341 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 else
343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 } else {
345 /* we don't need a new priority structure, free it */
346 FREE(newspp, M_VMSWAP);
347 }
348
349 /*
350 * priority found (or created). now insert on the priority's
351 * circleq list and bump the total number of swapdevs.
352 */
353 sdp->swd_priority = priority;
354 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 uvmexp.nswapdev++;
356 }
357
358 /*
359 * swaplist_find: find and optionally remove a swap device from the
360 * global list.
361 *
362 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
363 * => we return the swapdev we found (and removed)
364 */
365 static struct swapdev *
366 swaplist_find(struct vnode *vp, bool remove)
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390 /*
391 * swaplist_trim: scan priority list for empty priority entries and kill
392 * them.
393 *
394 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
395 */
396 static void
397 swaplist_trim(void)
398 {
399 struct swappri *spp, *nextspp;
400
401 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
402 nextspp = LIST_NEXT(spp, spi_swappri);
403 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
404 (void *)&spp->spi_swapdev)
405 continue;
406 LIST_REMOVE(spp, spi_swappri);
407 free(spp, M_VMSWAP);
408 }
409 }
410
411 /*
412 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
413 * to the "swapdev" that maps that section of the drum.
414 *
415 * => each swapdev takes one big contig chunk of the drum
416 * => caller must hold uvm_swap_data_lock
417 */
418 static struct swapdev *
419 swapdrum_getsdp(int pgno)
420 {
421 struct swapdev *sdp;
422 struct swappri *spp;
423
424 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
425 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
426 if (sdp->swd_flags & SWF_FAKE)
427 continue;
428 if (pgno >= sdp->swd_drumoffset &&
429 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
430 return sdp;
431 }
432 }
433 }
434 return NULL;
435 }
436
437
438 /*
439 * sys_swapctl: main entry point for swapctl(2) system call
440 * [with two helper functions: swap_on and swap_off]
441 */
442 int
443 sys_swapctl(struct lwp *l, void *v, register_t *retval)
444 {
445 struct sys_swapctl_args /* {
446 syscallarg(int) cmd;
447 syscallarg(void *) arg;
448 syscallarg(int) misc;
449 } */ *uap = (struct sys_swapctl_args *)v;
450 struct vnode *vp;
451 struct nameidata nd;
452 struct swappri *spp;
453 struct swapdev *sdp;
454 struct swapent *sep;
455 #define SWAP_PATH_MAX (PATH_MAX + 1)
456 char *userpath;
457 size_t len;
458 int error, misc;
459 int priority;
460 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
461
462 misc = SCARG(uap, misc);
463
464 /*
465 * ensure serialized syscall access by grabbing the swap_syscall_lock
466 */
467 rw_enter(&swap_syscall_lock, RW_WRITER);
468
469 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
470 /*
471 * we handle the non-priv NSWAP and STATS request first.
472 *
473 * SWAP_NSWAP: return number of config'd swap devices
474 * [can also be obtained with uvmexp sysctl]
475 */
476 if (SCARG(uap, cmd) == SWAP_NSWAP) {
477 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
478 0, 0, 0);
479 *retval = uvmexp.nswapdev;
480 error = 0;
481 goto out;
482 }
483
484 /*
485 * SWAP_STATS: get stats on current # of configured swap devs
486 *
487 * note that the swap_priority list can't change as long
488 * as we are holding the swap_syscall_lock. we don't want
489 * to grab the uvm_swap_data_lock because we may fault&sleep during
490 * copyout() and we don't want to be holding that lock then!
491 */
492 if (SCARG(uap, cmd) == SWAP_STATS
493 #if defined(COMPAT_13)
494 || SCARG(uap, cmd) == SWAP_OSTATS
495 #endif
496 ) {
497 if ((size_t)misc > (size_t)uvmexp.nswapdev)
498 misc = uvmexp.nswapdev;
499 #if defined(COMPAT_13)
500 if (SCARG(uap, cmd) == SWAP_OSTATS)
501 len = sizeof(struct oswapent) * misc;
502 else
503 #endif
504 len = sizeof(struct swapent) * misc;
505 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
506
507 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
508 error = copyout(sep, SCARG(uap, arg), len);
509
510 free(sep, M_TEMP);
511 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
512 goto out;
513 }
514 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
515 dev_t *devp = (dev_t *)SCARG(uap, arg);
516
517 error = copyout(&dumpdev, devp, sizeof(dumpdev));
518 goto out;
519 }
520
521 /*
522 * all other requests require superuser privs. verify.
523 */
524 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
525 0, NULL, NULL, NULL)))
526 goto out;
527
528 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
529 /* drop the current dump device */
530 dumpdev = NODEV;
531 cpu_dumpconf();
532 goto out;
533 }
534
535 /*
536 * at this point we expect a path name in arg. we will
537 * use namei() to gain a vnode reference (vref), and lock
538 * the vnode (VOP_LOCK).
539 *
540 * XXX: a NULL arg means use the root vnode pointer (e.g. for
541 * miniroot)
542 */
543 if (SCARG(uap, arg) == NULL) {
544 vp = rootvp; /* miniroot */
545 if (vget(vp, LK_EXCLUSIVE)) {
546 error = EBUSY;
547 goto out;
548 }
549 if (SCARG(uap, cmd) == SWAP_ON &&
550 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
551 panic("swapctl: miniroot copy failed");
552 } else {
553 int space;
554 char *where;
555
556 if (SCARG(uap, cmd) == SWAP_ON) {
557 if ((error = copyinstr(SCARG(uap, arg), userpath,
558 SWAP_PATH_MAX, &len)))
559 goto out;
560 space = UIO_SYSSPACE;
561 where = userpath;
562 } else {
563 space = UIO_USERSPACE;
564 where = (char *)SCARG(uap, arg);
565 }
566 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, space, where, l);
567 if ((error = namei(&nd)))
568 goto out;
569 vp = nd.ni_vp;
570 }
571 /* note: "vp" is referenced and locked */
572
573 error = 0; /* assume no error */
574 switch(SCARG(uap, cmd)) {
575
576 case SWAP_DUMPDEV:
577 if (vp->v_type != VBLK) {
578 error = ENOTBLK;
579 break;
580 }
581 if (bdevsw_lookup(vp->v_rdev))
582 dumpdev = vp->v_rdev;
583 else
584 dumpdev = NODEV;
585 cpu_dumpconf();
586 break;
587
588 case SWAP_CTL:
589 /*
590 * get new priority, remove old entry (if any) and then
591 * reinsert it in the correct place. finally, prune out
592 * any empty priority structures.
593 */
594 priority = SCARG(uap, misc);
595 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
596 mutex_enter(&uvm_swap_data_lock);
597 if ((sdp = swaplist_find(vp, true)) == NULL) {
598 error = ENOENT;
599 } else {
600 swaplist_insert(sdp, spp, priority);
601 swaplist_trim();
602 }
603 mutex_exit(&uvm_swap_data_lock);
604 if (error)
605 free(spp, M_VMSWAP);
606 break;
607
608 case SWAP_ON:
609
610 /*
611 * check for duplicates. if none found, then insert a
612 * dummy entry on the list to prevent someone else from
613 * trying to enable this device while we are working on
614 * it.
615 */
616
617 priority = SCARG(uap, misc);
618 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
619 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
620 memset(sdp, 0, sizeof(*sdp));
621 sdp->swd_flags = SWF_FAKE;
622 sdp->swd_vp = vp;
623 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
624 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
625 mutex_enter(&uvm_swap_data_lock);
626 if (swaplist_find(vp, false) != NULL) {
627 error = EBUSY;
628 mutex_exit(&uvm_swap_data_lock);
629 bufq_free(sdp->swd_tab);
630 free(sdp, M_VMSWAP);
631 free(spp, M_VMSWAP);
632 break;
633 }
634 swaplist_insert(sdp, spp, priority);
635 mutex_exit(&uvm_swap_data_lock);
636
637 sdp->swd_pathlen = len;
638 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
639 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
640 panic("swapctl: copystr");
641
642 /*
643 * we've now got a FAKE placeholder in the swap list.
644 * now attempt to enable swap on it. if we fail, undo
645 * what we've done and kill the fake entry we just inserted.
646 * if swap_on is a success, it will clear the SWF_FAKE flag
647 */
648
649 if ((error = swap_on(l, sdp)) != 0) {
650 mutex_enter(&uvm_swap_data_lock);
651 (void) swaplist_find(vp, true); /* kill fake entry */
652 swaplist_trim();
653 mutex_exit(&uvm_swap_data_lock);
654 bufq_free(sdp->swd_tab);
655 free(sdp->swd_path, M_VMSWAP);
656 free(sdp, M_VMSWAP);
657 break;
658 }
659 break;
660
661 case SWAP_OFF:
662 mutex_enter(&uvm_swap_data_lock);
663 if ((sdp = swaplist_find(vp, false)) == NULL) {
664 mutex_exit(&uvm_swap_data_lock);
665 error = ENXIO;
666 break;
667 }
668
669 /*
670 * If a device isn't in use or enabled, we
671 * can't stop swapping from it (again).
672 */
673 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
674 mutex_exit(&uvm_swap_data_lock);
675 error = EBUSY;
676 break;
677 }
678
679 /*
680 * do the real work.
681 */
682 error = swap_off(l, sdp);
683 break;
684
685 default:
686 error = EINVAL;
687 }
688
689 /*
690 * done! release the ref gained by namei() and unlock.
691 */
692 vput(vp);
693
694 out:
695 free(userpath, M_TEMP);
696 rw_exit(&swap_syscall_lock);
697
698 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
699 return (error);
700 }
701
702 /*
703 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
704 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
705 * emulation to use it directly without going through sys_swapctl().
706 * The problem with using sys_swapctl() there is that it involves
707 * copying the swapent array to the stackgap, and this array's size
708 * is not known at build time. Hence it would not be possible to
709 * ensure it would fit in the stackgap in any case.
710 */
711 void
712 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
713 {
714
715 rw_enter(&swap_syscall_lock, RW_READER);
716 uvm_swap_stats_locked(cmd, sep, sec, retval);
717 rw_exit(&swap_syscall_lock);
718 }
719
720 static void
721 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
722 {
723 struct swappri *spp;
724 struct swapdev *sdp;
725 int count = 0;
726
727 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
728 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
729 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
730 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
731 /*
732 * backwards compatibility for system call.
733 * note that we use 'struct oswapent' as an
734 * overlay into both 'struct swapdev' and
735 * the userland 'struct swapent', as we
736 * want to retain backwards compatibility
737 * with NetBSD 1.3.
738 */
739 sdp->swd_ose.ose_inuse =
740 btodb((uint64_t)sdp->swd_npginuse <<
741 PAGE_SHIFT);
742 (void)memcpy(sep, &sdp->swd_ose,
743 sizeof(struct oswapent));
744
745 /* now copy out the path if necessary */
746 #if !defined(COMPAT_13)
747 (void) cmd;
748 #endif
749 #if defined(COMPAT_13)
750 if (cmd == SWAP_STATS)
751 #endif
752 (void)memcpy(&sep->se_path, sdp->swd_path,
753 sdp->swd_pathlen);
754
755 count++;
756 #if defined(COMPAT_13)
757 if (cmd == SWAP_OSTATS)
758 sep = (struct swapent *)
759 ((struct oswapent *)sep + 1);
760 else
761 #endif
762 sep++;
763 }
764 }
765
766 *retval = count;
767 return;
768 }
769
770 /*
771 * swap_on: attempt to enable a swapdev for swapping. note that the
772 * swapdev is already on the global list, but disabled (marked
773 * SWF_FAKE).
774 *
775 * => we avoid the start of the disk (to protect disk labels)
776 * => we also avoid the miniroot, if we are swapping to root.
777 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
778 * if needed.
779 */
780 static int
781 swap_on(struct lwp *l, struct swapdev *sdp)
782 {
783 struct vnode *vp;
784 int error, npages, nblocks, size;
785 long addr;
786 u_long result;
787 struct vattr va;
788 #ifdef NFS
789 extern int (**nfsv2_vnodeop_p)(void *);
790 #endif /* NFS */
791 const struct bdevsw *bdev;
792 dev_t dev;
793 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
794
795 /*
796 * we want to enable swapping on sdp. the swd_vp contains
797 * the vnode we want (locked and ref'd), and the swd_dev
798 * contains the dev_t of the file, if it a block device.
799 */
800
801 vp = sdp->swd_vp;
802 dev = sdp->swd_dev;
803
804 /*
805 * open the swap file (mostly useful for block device files to
806 * let device driver know what is up).
807 *
808 * we skip the open/close for root on swap because the root
809 * has already been opened when root was mounted (mountroot).
810 */
811 if (vp != rootvp) {
812 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
813 return (error);
814 }
815
816 /* XXX this only works for block devices */
817 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
818
819 /*
820 * we now need to determine the size of the swap area. for
821 * block specials we can call the d_psize function.
822 * for normal files, we must stat [get attrs].
823 *
824 * we put the result in nblks.
825 * for normal files, we also want the filesystem block size
826 * (which we get with statfs).
827 */
828 switch (vp->v_type) {
829 case VBLK:
830 bdev = bdevsw_lookup(dev);
831 if (bdev == NULL || bdev->d_psize == NULL ||
832 (nblocks = (*bdev->d_psize)(dev)) == -1) {
833 error = ENXIO;
834 goto bad;
835 }
836 break;
837
838 case VREG:
839 if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
840 goto bad;
841 nblocks = (int)btodb(va.va_size);
842 if ((error =
843 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
844 goto bad;
845
846 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
847 /*
848 * limit the max # of outstanding I/O requests we issue
849 * at any one time. take it easy on NFS servers.
850 */
851 #ifdef NFS
852 if (vp->v_op == nfsv2_vnodeop_p)
853 sdp->swd_maxactive = 2; /* XXX */
854 else
855 #endif /* NFS */
856 sdp->swd_maxactive = 8; /* XXX */
857 break;
858
859 default:
860 error = ENXIO;
861 goto bad;
862 }
863
864 /*
865 * save nblocks in a safe place and convert to pages.
866 */
867
868 sdp->swd_ose.ose_nblks = nblocks;
869 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
870
871 /*
872 * for block special files, we want to make sure that leave
873 * the disklabel and bootblocks alone, so we arrange to skip
874 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
875 * note that because of this the "size" can be less than the
876 * actual number of blocks on the device.
877 */
878 if (vp->v_type == VBLK) {
879 /* we use pages 1 to (size - 1) [inclusive] */
880 size = npages - 1;
881 addr = 1;
882 } else {
883 /* we use pages 0 to (size - 1) [inclusive] */
884 size = npages;
885 addr = 0;
886 }
887
888 /*
889 * make sure we have enough blocks for a reasonable sized swap
890 * area. we want at least one page.
891 */
892
893 if (size < 1) {
894 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
895 error = EINVAL;
896 goto bad;
897 }
898
899 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
900
901 /*
902 * now we need to allocate an extent to manage this swap device
903 */
904
905 sdp->swd_blist = blist_create(npages);
906 /* mark all expect the `saved' region free. */
907 blist_free(sdp->swd_blist, addr, size);
908
909 /*
910 * if the vnode we are swapping to is the root vnode
911 * (i.e. we are swapping to the miniroot) then we want
912 * to make sure we don't overwrite it. do a statfs to
913 * find its size and skip over it.
914 */
915 if (vp == rootvp) {
916 struct mount *mp;
917 struct statvfs *sp;
918 int rootblocks, rootpages;
919
920 mp = rootvnode->v_mount;
921 sp = &mp->mnt_stat;
922 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
923 /*
924 * XXX: sp->f_blocks isn't the total number of
925 * blocks in the filesystem, it's the number of
926 * data blocks. so, our rootblocks almost
927 * definitely underestimates the total size
928 * of the filesystem - how badly depends on the
929 * details of the filesystem type. there isn't
930 * an obvious way to deal with this cleanly
931 * and perfectly, so for now we just pad our
932 * rootblocks estimate with an extra 5 percent.
933 */
934 rootblocks += (rootblocks >> 5) +
935 (rootblocks >> 6) +
936 (rootblocks >> 7);
937 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
938 if (rootpages > size)
939 panic("swap_on: miniroot larger than swap?");
940
941 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
942 panic("swap_on: unable to preserve miniroot");
943 }
944
945 size -= rootpages;
946 printf("Preserved %d pages of miniroot ", rootpages);
947 printf("leaving %d pages of swap\n", size);
948 }
949
950 /*
951 * add a ref to vp to reflect usage as a swap device.
952 */
953 vref(vp);
954
955 /*
956 * now add the new swapdev to the drum and enable.
957 */
958 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
959 if (result == 0)
960 panic("swapdrum_add");
961
962 sdp->swd_drumoffset = (int)result;
963 sdp->swd_drumsize = npages;
964 sdp->swd_npages = size;
965 mutex_enter(&uvm_swap_data_lock);
966 sdp->swd_flags &= ~SWF_FAKE; /* going live */
967 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
968 uvmexp.swpages += size;
969 uvmexp.swpgavail += size;
970 mutex_exit(&uvm_swap_data_lock);
971 return (0);
972
973 /*
974 * failure: clean up and return error.
975 */
976
977 bad:
978 if (sdp->swd_blist) {
979 blist_destroy(sdp->swd_blist);
980 }
981 if (vp != rootvp) {
982 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
983 }
984 return (error);
985 }
986
987 /*
988 * swap_off: stop swapping on swapdev
989 *
990 * => swap data should be locked, we will unlock.
991 */
992 static int
993 swap_off(struct lwp *l, struct swapdev *sdp)
994 {
995 int npages = sdp->swd_npages;
996 int error = 0;
997
998 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
999 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1000
1001 /* disable the swap area being removed */
1002 sdp->swd_flags &= ~SWF_ENABLE;
1003 uvmexp.swpgavail -= npages;
1004 mutex_exit(&uvm_swap_data_lock);
1005
1006 /*
1007 * the idea is to find all the pages that are paged out to this
1008 * device, and page them all in. in uvm, swap-backed pageable
1009 * memory can take two forms: aobjs and anons. call the
1010 * swapoff hook for each subsystem to bring in pages.
1011 */
1012
1013 if (uao_swap_off(sdp->swd_drumoffset,
1014 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1015 amap_swap_off(sdp->swd_drumoffset,
1016 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1017 error = ENOMEM;
1018 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1019 error = EBUSY;
1020 }
1021
1022 if (error) {
1023 mutex_enter(&uvm_swap_data_lock);
1024 sdp->swd_flags |= SWF_ENABLE;
1025 uvmexp.swpgavail += npages;
1026 mutex_exit(&uvm_swap_data_lock);
1027
1028 return error;
1029 }
1030
1031 /*
1032 * done with the vnode.
1033 * drop our ref on the vnode before calling VOP_CLOSE()
1034 * so that spec_close() can tell if this is the last close.
1035 */
1036 vrele(sdp->swd_vp);
1037 if (sdp->swd_vp != rootvp) {
1038 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
1039 }
1040
1041 mutex_enter(&uvm_swap_data_lock);
1042 uvmexp.swpages -= npages;
1043 uvmexp.swpginuse -= sdp->swd_npgbad;
1044
1045 if (swaplist_find(sdp->swd_vp, true) == NULL)
1046 panic("swap_off: swapdev not in list");
1047 swaplist_trim();
1048 mutex_exit(&uvm_swap_data_lock);
1049
1050 /*
1051 * free all resources!
1052 */
1053 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1054 blist_destroy(sdp->swd_blist);
1055 bufq_free(sdp->swd_tab);
1056 free(sdp, M_VMSWAP);
1057 return (0);
1058 }
1059
1060 /*
1061 * /dev/drum interface and i/o functions
1062 */
1063
1064 /*
1065 * swstrategy: perform I/O on the drum
1066 *
1067 * => we must map the i/o request from the drum to the correct swapdev.
1068 */
1069 static void
1070 swstrategy(struct buf *bp)
1071 {
1072 struct swapdev *sdp;
1073 struct vnode *vp;
1074 int s, pageno, bn;
1075 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1076
1077 /*
1078 * convert block number to swapdev. note that swapdev can't
1079 * be yanked out from under us because we are holding resources
1080 * in it (i.e. the blocks we are doing I/O on).
1081 */
1082 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1083 mutex_enter(&uvm_swap_data_lock);
1084 sdp = swapdrum_getsdp(pageno);
1085 mutex_exit(&uvm_swap_data_lock);
1086 if (sdp == NULL) {
1087 bp->b_error = EINVAL;
1088 bp->b_flags |= B_ERROR;
1089 biodone(bp);
1090 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1091 return;
1092 }
1093
1094 /*
1095 * convert drum page number to block number on this swapdev.
1096 */
1097
1098 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1099 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1100
1101 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1102 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1103 sdp->swd_drumoffset, bn, bp->b_bcount);
1104
1105 /*
1106 * for block devices we finish up here.
1107 * for regular files we have to do more work which we delegate
1108 * to sw_reg_strategy().
1109 */
1110
1111 switch (sdp->swd_vp->v_type) {
1112 default:
1113 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1114
1115 case VBLK:
1116
1117 /*
1118 * must convert "bp" from an I/O on /dev/drum to an I/O
1119 * on the swapdev (sdp).
1120 */
1121 s = splbio();
1122 bp->b_blkno = bn; /* swapdev block number */
1123 vp = sdp->swd_vp; /* swapdev vnode pointer */
1124 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1125
1126 /*
1127 * if we are doing a write, we have to redirect the i/o on
1128 * drum's v_numoutput counter to the swapdevs.
1129 */
1130 if ((bp->b_flags & B_READ) == 0) {
1131 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1132 V_INCR_NUMOUTPUT(vp); /* put it on swapdev */
1133 }
1134
1135 /*
1136 * finally plug in swapdev vnode and start I/O
1137 */
1138 bp->b_vp = vp;
1139 splx(s);
1140 VOP_STRATEGY(vp, bp);
1141 return;
1142
1143 case VREG:
1144 /*
1145 * delegate to sw_reg_strategy function.
1146 */
1147 sw_reg_strategy(sdp, bp, bn);
1148 return;
1149 }
1150 /* NOTREACHED */
1151 }
1152
1153 /*
1154 * swread: the read function for the drum (just a call to physio)
1155 */
1156 /*ARGSUSED*/
1157 static int
1158 swread(dev_t dev, struct uio *uio, int ioflag)
1159 {
1160 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1161
1162 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1163 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1164 }
1165
1166 /*
1167 * swwrite: the write function for the drum (just a call to physio)
1168 */
1169 /*ARGSUSED*/
1170 static int
1171 swwrite(dev_t dev, struct uio *uio, int ioflag)
1172 {
1173 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1174
1175 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1176 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1177 }
1178
1179 const struct bdevsw swap_bdevsw = {
1180 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1181 };
1182
1183 const struct cdevsw swap_cdevsw = {
1184 nullopen, nullclose, swread, swwrite, noioctl,
1185 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1186 };
1187
1188 /*
1189 * sw_reg_strategy: handle swap i/o to regular files
1190 */
1191 static void
1192 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1193 {
1194 struct vnode *vp;
1195 struct vndxfer *vnx;
1196 daddr_t nbn;
1197 char *addr;
1198 off_t byteoff;
1199 int s, off, nra, error, sz, resid;
1200 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1201
1202 /*
1203 * allocate a vndxfer head for this transfer and point it to
1204 * our buffer.
1205 */
1206 getvndxfer(vnx);
1207 vnx->vx_flags = VX_BUSY;
1208 vnx->vx_error = 0;
1209 vnx->vx_pending = 0;
1210 vnx->vx_bp = bp;
1211 vnx->vx_sdp = sdp;
1212
1213 /*
1214 * setup for main loop where we read filesystem blocks into
1215 * our buffer.
1216 */
1217 error = 0;
1218 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1219 addr = bp->b_data; /* current position in buffer */
1220 byteoff = dbtob((uint64_t)bn);
1221
1222 for (resid = bp->b_resid; resid; resid -= sz) {
1223 struct vndbuf *nbp;
1224
1225 /*
1226 * translate byteoffset into block number. return values:
1227 * vp = vnode of underlying device
1228 * nbn = new block number (on underlying vnode dev)
1229 * nra = num blocks we can read-ahead (excludes requested
1230 * block)
1231 */
1232 nra = 0;
1233 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1234 &vp, &nbn, &nra);
1235
1236 if (error == 0 && nbn == (daddr_t)-1) {
1237 /*
1238 * this used to just set error, but that doesn't
1239 * do the right thing. Instead, it causes random
1240 * memory errors. The panic() should remain until
1241 * this condition doesn't destabilize the system.
1242 */
1243 #if 1
1244 panic("sw_reg_strategy: swap to sparse file");
1245 #else
1246 error = EIO; /* failure */
1247 #endif
1248 }
1249
1250 /*
1251 * punt if there was an error or a hole in the file.
1252 * we must wait for any i/o ops we have already started
1253 * to finish before returning.
1254 *
1255 * XXX we could deal with holes here but it would be
1256 * a hassle (in the write case).
1257 */
1258 if (error) {
1259 s = splbio();
1260 vnx->vx_error = error; /* pass error up */
1261 goto out;
1262 }
1263
1264 /*
1265 * compute the size ("sz") of this transfer (in bytes).
1266 */
1267 off = byteoff % sdp->swd_bsize;
1268 sz = (1 + nra) * sdp->swd_bsize - off;
1269 if (sz > resid)
1270 sz = resid;
1271
1272 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1273 "vp %p/%p offset 0x%x/0x%x",
1274 sdp->swd_vp, vp, byteoff, nbn);
1275
1276 /*
1277 * now get a buf structure. note that the vb_buf is
1278 * at the front of the nbp structure so that you can
1279 * cast pointers between the two structure easily.
1280 */
1281 getvndbuf(nbp);
1282 BUF_INIT(&nbp->vb_buf);
1283 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1284 nbp->vb_buf.b_bcount = sz;
1285 nbp->vb_buf.b_bufsize = sz;
1286 nbp->vb_buf.b_error = 0;
1287 nbp->vb_buf.b_data = addr;
1288 nbp->vb_buf.b_lblkno = 0;
1289 nbp->vb_buf.b_blkno = nbn + btodb(off);
1290 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1291 nbp->vb_buf.b_iodone = sw_reg_iodone;
1292 nbp->vb_buf.b_vp = vp;
1293 if (vp->v_type == VBLK) {
1294 nbp->vb_buf.b_dev = vp->v_rdev;
1295 }
1296
1297 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1298
1299 /*
1300 * Just sort by block number
1301 */
1302 s = splbio();
1303 if (vnx->vx_error != 0) {
1304 putvndbuf(nbp);
1305 goto out;
1306 }
1307 vnx->vx_pending++;
1308
1309 /* sort it in and start I/O if we are not over our limit */
1310 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1311 sw_reg_start(sdp);
1312 splx(s);
1313
1314 /*
1315 * advance to the next I/O
1316 */
1317 byteoff += sz;
1318 addr += sz;
1319 }
1320
1321 s = splbio();
1322
1323 out: /* Arrive here at splbio */
1324 vnx->vx_flags &= ~VX_BUSY;
1325 if (vnx->vx_pending == 0) {
1326 if (vnx->vx_error != 0) {
1327 bp->b_error = vnx->vx_error;
1328 bp->b_flags |= B_ERROR;
1329 }
1330 putvndxfer(vnx);
1331 biodone(bp);
1332 }
1333 splx(s);
1334 }
1335
1336 /*
1337 * sw_reg_start: start an I/O request on the requested swapdev
1338 *
1339 * => reqs are sorted by b_rawblkno (above)
1340 */
1341 static void
1342 sw_reg_start(struct swapdev *sdp)
1343 {
1344 struct buf *bp;
1345 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1346
1347 /* recursion control */
1348 if ((sdp->swd_flags & SWF_BUSY) != 0)
1349 return;
1350
1351 sdp->swd_flags |= SWF_BUSY;
1352
1353 while (sdp->swd_active < sdp->swd_maxactive) {
1354 bp = BUFQ_GET(sdp->swd_tab);
1355 if (bp == NULL)
1356 break;
1357 sdp->swd_active++;
1358
1359 UVMHIST_LOG(pdhist,
1360 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1361 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1362 if ((bp->b_flags & B_READ) == 0)
1363 V_INCR_NUMOUTPUT(bp->b_vp);
1364
1365 VOP_STRATEGY(bp->b_vp, bp);
1366 }
1367 sdp->swd_flags &= ~SWF_BUSY;
1368 }
1369
1370 /*
1371 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1372 *
1373 * => note that we can recover the vndbuf struct by casting the buf ptr
1374 */
1375 static void
1376 sw_reg_iodone(struct buf *bp)
1377 {
1378 struct vndbuf *vbp = (struct vndbuf *) bp;
1379 struct vndxfer *vnx = vbp->vb_xfer;
1380 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1381 struct swapdev *sdp = vnx->vx_sdp;
1382 int s, resid, error;
1383 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1384
1385 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1386 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1387 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1388 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1389
1390 /*
1391 * protect vbp at splbio and update.
1392 */
1393
1394 s = splbio();
1395 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1396 pbp->b_resid -= resid;
1397 vnx->vx_pending--;
1398
1399 if (vbp->vb_buf.b_flags & B_ERROR) {
1400 /* pass error upward */
1401 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1402 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1403 vnx->vx_error = error;
1404 }
1405
1406 /*
1407 * kill vbp structure
1408 */
1409 putvndbuf(vbp);
1410
1411 /*
1412 * wrap up this transaction if it has run to completion or, in
1413 * case of an error, when all auxiliary buffers have returned.
1414 */
1415 if (vnx->vx_error != 0) {
1416 /* pass error upward */
1417 pbp->b_flags |= B_ERROR;
1418 pbp->b_error = vnx->vx_error;
1419 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1420 putvndxfer(vnx);
1421 biodone(pbp);
1422 }
1423 } else if (pbp->b_resid == 0) {
1424 KASSERT(vnx->vx_pending == 0);
1425 if ((vnx->vx_flags & VX_BUSY) == 0) {
1426 UVMHIST_LOG(pdhist, " iodone error=%d !",
1427 pbp, vnx->vx_error, 0, 0);
1428 putvndxfer(vnx);
1429 biodone(pbp);
1430 }
1431 }
1432
1433 /*
1434 * done! start next swapdev I/O if one is pending
1435 */
1436 sdp->swd_active--;
1437 sw_reg_start(sdp);
1438 splx(s);
1439 }
1440
1441
1442 /*
1443 * uvm_swap_alloc: allocate space on swap
1444 *
1445 * => allocation is done "round robin" down the priority list, as we
1446 * allocate in a priority we "rotate" the circle queue.
1447 * => space can be freed with uvm_swap_free
1448 * => we return the page slot number in /dev/drum (0 == invalid slot)
1449 * => we lock uvm_swap_data_lock
1450 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1451 */
1452 int
1453 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1454 {
1455 struct swapdev *sdp;
1456 struct swappri *spp;
1457 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1458
1459 /*
1460 * no swap devices configured yet? definite failure.
1461 */
1462 if (uvmexp.nswapdev < 1)
1463 return 0;
1464
1465 /*
1466 * lock data lock, convert slots into blocks, and enter loop
1467 */
1468 mutex_enter(&uvm_swap_data_lock);
1469
1470 ReTry: /* XXXMRG */
1471 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1472 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1473 uint64_t result;
1474
1475 /* if it's not enabled, then we can't swap from it */
1476 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1477 continue;
1478 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1479 continue;
1480 result = blist_alloc(sdp->swd_blist, *nslots);
1481 if (result == BLIST_NONE) {
1482 continue;
1483 }
1484 KASSERT(result < sdp->swd_drumsize);
1485
1486 /*
1487 * successful allocation! now rotate the circleq.
1488 */
1489 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1490 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1491 sdp->swd_npginuse += *nslots;
1492 uvmexp.swpginuse += *nslots;
1493 mutex_exit(&uvm_swap_data_lock);
1494 /* done! return drum slot number */
1495 UVMHIST_LOG(pdhist,
1496 "success! returning %d slots starting at %d",
1497 *nslots, result + sdp->swd_drumoffset, 0, 0);
1498 return (result + sdp->swd_drumoffset);
1499 }
1500 }
1501
1502 /* XXXMRG: BEGIN HACK */
1503 if (*nslots > 1 && lessok) {
1504 *nslots = 1;
1505 /* XXXMRG: ugh! blist should support this for us */
1506 goto ReTry;
1507 }
1508 /* XXXMRG: END HACK */
1509
1510 mutex_exit(&uvm_swap_data_lock);
1511 return 0;
1512 }
1513
1514 bool
1515 uvm_swapisfull(void)
1516 {
1517 bool rv;
1518
1519 mutex_enter(&uvm_swap_data_lock);
1520 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1521 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1522 mutex_exit(&uvm_swap_data_lock);
1523
1524 return (rv);
1525 }
1526
1527 /*
1528 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1529 *
1530 * => we lock uvm_swap_data_lock
1531 */
1532 void
1533 uvm_swap_markbad(int startslot, int nslots)
1534 {
1535 struct swapdev *sdp;
1536 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1537
1538 mutex_enter(&uvm_swap_data_lock);
1539 sdp = swapdrum_getsdp(startslot);
1540 KASSERT(sdp != NULL);
1541
1542 /*
1543 * we just keep track of how many pages have been marked bad
1544 * in this device, to make everything add up in swap_off().
1545 * we assume here that the range of slots will all be within
1546 * one swap device.
1547 */
1548
1549 KASSERT(uvmexp.swpgonly >= nslots);
1550 uvmexp.swpgonly -= nslots;
1551 sdp->swd_npgbad += nslots;
1552 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1553 mutex_exit(&uvm_swap_data_lock);
1554 }
1555
1556 /*
1557 * uvm_swap_free: free swap slots
1558 *
1559 * => this can be all or part of an allocation made by uvm_swap_alloc
1560 * => we lock uvm_swap_data_lock
1561 */
1562 void
1563 uvm_swap_free(int startslot, int nslots)
1564 {
1565 struct swapdev *sdp;
1566 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1567
1568 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1569 startslot, 0, 0);
1570
1571 /*
1572 * ignore attempts to free the "bad" slot.
1573 */
1574
1575 if (startslot == SWSLOT_BAD) {
1576 return;
1577 }
1578
1579 /*
1580 * convert drum slot offset back to sdp, free the blocks
1581 * in the extent, and return. must hold pri lock to do
1582 * lookup and access the extent.
1583 */
1584
1585 mutex_enter(&uvm_swap_data_lock);
1586 sdp = swapdrum_getsdp(startslot);
1587 KASSERT(uvmexp.nswapdev >= 1);
1588 KASSERT(sdp != NULL);
1589 KASSERT(sdp->swd_npginuse >= nslots);
1590 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1591 sdp->swd_npginuse -= nslots;
1592 uvmexp.swpginuse -= nslots;
1593 mutex_exit(&uvm_swap_data_lock);
1594 }
1595
1596 /*
1597 * uvm_swap_put: put any number of pages into a contig place on swap
1598 *
1599 * => can be sync or async
1600 */
1601
1602 int
1603 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1604 {
1605 int error;
1606
1607 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1608 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1609 return error;
1610 }
1611
1612 /*
1613 * uvm_swap_get: get a single page from swap
1614 *
1615 * => usually a sync op (from fault)
1616 */
1617
1618 int
1619 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1620 {
1621 int error;
1622
1623 uvmexp.nswget++;
1624 KASSERT(flags & PGO_SYNCIO);
1625 if (swslot == SWSLOT_BAD) {
1626 return EIO;
1627 }
1628
1629 error = uvm_swap_io(&page, swslot, 1, B_READ |
1630 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1631 if (error == 0) {
1632
1633 /*
1634 * this page is no longer only in swap.
1635 */
1636
1637 mutex_enter(&uvm_swap_data_lock);
1638 KASSERT(uvmexp.swpgonly > 0);
1639 uvmexp.swpgonly--;
1640 mutex_exit(&uvm_swap_data_lock);
1641 }
1642 return error;
1643 }
1644
1645 /*
1646 * uvm_swap_io: do an i/o operation to swap
1647 */
1648
1649 static int
1650 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1651 {
1652 daddr_t startblk;
1653 struct buf *bp;
1654 vaddr_t kva;
1655 int error, s, mapinflags;
1656 bool write, async;
1657 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1658
1659 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1660 startslot, npages, flags, 0);
1661
1662 write = (flags & B_READ) == 0;
1663 async = (flags & B_ASYNC) != 0;
1664
1665 /*
1666 * convert starting drum slot to block number
1667 */
1668
1669 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1670
1671 /*
1672 * first, map the pages into the kernel.
1673 */
1674
1675 mapinflags = !write ?
1676 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1677 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1678 kva = uvm_pagermapin(pps, npages, mapinflags);
1679
1680 /*
1681 * now allocate a buf for the i/o.
1682 */
1683
1684 bp = getiobuf();
1685
1686 /*
1687 * fill in the bp/sbp. we currently route our i/o through
1688 * /dev/drum's vnode [swapdev_vp].
1689 */
1690
1691 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1692 bp->b_proc = &proc0; /* XXX */
1693 bp->b_vnbufs.le_next = NOLIST;
1694 bp->b_data = (void *)kva;
1695 bp->b_blkno = startblk;
1696 bp->b_vp = swapdev_vp;
1697 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1698
1699 /*
1700 * bump v_numoutput (counter of number of active outputs).
1701 */
1702
1703 if (write) {
1704 s = splbio();
1705 V_INCR_NUMOUTPUT(swapdev_vp);
1706 splx(s);
1707 }
1708
1709 /*
1710 * for async ops we must set up the iodone handler.
1711 */
1712
1713 if (async) {
1714 bp->b_flags |= B_CALL;
1715 bp->b_iodone = uvm_aio_biodone;
1716 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1717 if (curlwp == uvm.pagedaemon_lwp)
1718 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1719 else
1720 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1721 } else {
1722 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1723 }
1724 UVMHIST_LOG(pdhist,
1725 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1726 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1727
1728 /*
1729 * now we start the I/O, and if async, return.
1730 */
1731
1732 VOP_STRATEGY(swapdev_vp, bp);
1733 if (async)
1734 return 0;
1735
1736 /*
1737 * must be sync i/o. wait for it to finish
1738 */
1739
1740 error = biowait(bp);
1741
1742 /*
1743 * kill the pager mapping
1744 */
1745
1746 uvm_pagermapout(kva, npages);
1747
1748 /*
1749 * now dispose of the buf and we're done.
1750 */
1751
1752 s = splbio();
1753 if (write)
1754 vwakeup(bp);
1755 putiobuf(bp);
1756 splx(s);
1757 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1758 return (error);
1759 }
1760