Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.130
      1 /*	$NetBSD: uvm_swap.c,v 1.130 2007/10/15 08:12:13 hannken Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.130 2007/10/15 08:12:13 hannken Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/vmem.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/syscallargs.h>
     60 #include <sys/swap.h>
     61 #include <sys/kauth.h>
     62 #include <sys/sysctl.h>
     63 #include <sys/workqueue.h>
     64 
     65 #include <uvm/uvm.h>
     66 
     67 #include <miscfs/specfs/specdev.h>
     68 
     69 /*
     70  * uvm_swap.c: manage configuration and i/o to swap space.
     71  */
     72 
     73 /*
     74  * swap space is managed in the following way:
     75  *
     76  * each swap partition or file is described by a "swapdev" structure.
     77  * each "swapdev" structure contains a "swapent" structure which contains
     78  * information that is passed up to the user (via system calls).
     79  *
     80  * each swap partition is assigned a "priority" (int) which controls
     81  * swap parition usage.
     82  *
     83  * the system maintains a global data structure describing all swap
     84  * partitions/files.   there is a sorted LIST of "swappri" structures
     85  * which describe "swapdev"'s at that priority.   this LIST is headed
     86  * by the "swap_priority" global var.    each "swappri" contains a
     87  * CIRCLEQ of "swapdev" structures at that priority.
     88  *
     89  * locking:
     90  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     91  *    system call and prevents the swap priority list from changing
     92  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     93  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     94  *    structures including the priority list, the swapdev structures,
     95  *    and the swapmap arena.
     96  *
     97  * each swap device has the following info:
     98  *  - swap device in use (could be disabled, preventing future use)
     99  *  - swap enabled (allows new allocations on swap)
    100  *  - map info in /dev/drum
    101  *  - vnode pointer
    102  * for swap files only:
    103  *  - block size
    104  *  - max byte count in buffer
    105  *  - buffer
    106  *
    107  * userland controls and configures swap with the swapctl(2) system call.
    108  * the sys_swapctl performs the following operations:
    109  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    110  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    111  *	(passed in via "arg") of a size passed in via "misc" ... we load
    112  *	the current swap config into the array. The actual work is done
    113  *	in the uvm_swap_stats(9) function.
    114  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    115  *	priority in "misc", start swapping on it.
    116  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    117  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    118  *	"misc")
    119  */
    120 
    121 /*
    122  * swapdev: describes a single swap partition/file
    123  *
    124  * note the following should be true:
    125  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    126  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    127  */
    128 struct swapdev {
    129 	struct oswapent swd_ose;
    130 #define	swd_dev		swd_ose.ose_dev		/* device id */
    131 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    132 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    133 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    134 	char			*swd_path;	/* saved pathname of device */
    135 	int			swd_pathlen;	/* length of pathname */
    136 	int			swd_npages;	/* #pages we can use */
    137 	int			swd_npginuse;	/* #pages in use */
    138 	int			swd_npgbad;	/* #pages bad */
    139 	int			swd_drumoffset;	/* page0 offset in drum */
    140 	int			swd_drumsize;	/* #pages in drum */
    141 	blist_t			swd_blist;	/* blist for this swapdev */
    142 	struct vnode		*swd_vp;	/* backing vnode */
    143 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    144 
    145 	int			swd_bsize;	/* blocksize (bytes) */
    146 	int			swd_maxactive;	/* max active i/o reqs */
    147 	struct bufq_state	*swd_tab;	/* buffer list */
    148 	int			swd_active;	/* number of active buffers */
    149 };
    150 
    151 /*
    152  * swap device priority entry; the list is kept sorted on `spi_priority'.
    153  */
    154 struct swappri {
    155 	int			spi_priority;     /* priority */
    156 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    157 	/* circleq of swapdevs at this priority */
    158 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    159 };
    160 
    161 /*
    162  * The following two structures are used to keep track of data transfers
    163  * on swap devices associated with regular files.
    164  * NOTE: this code is more or less a copy of vnd.c; we use the same
    165  * structure names here to ease porting..
    166  */
    167 struct vndxfer {
    168 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    169 	struct swapdev	*vx_sdp;
    170 	int		vx_error;
    171 	int		vx_pending;	/* # of pending aux buffers */
    172 	int		vx_flags;
    173 #define VX_BUSY		1
    174 #define VX_DEAD		2
    175 };
    176 
    177 struct vndbuf {
    178 	struct buf	vb_buf;
    179 	struct vndxfer	*vb_xfer;
    180 };
    181 
    182 
    183 /*
    184  * We keep a of pool vndbuf's and vndxfer structures.
    185  */
    186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    187     IPL_BIO);
    188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    189     IPL_BIO);
    190 
    191 #define	getvndxfer(vnx)	do {						\
    192 	int sp = splbio();						\
    193 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);			\
    194 	splx(sp);							\
    195 } while (/*CONSTCOND*/ 0)
    196 
    197 #define putvndxfer(vnx) {						\
    198 	pool_put(&vndxfer_pool, (void *)(vnx));				\
    199 }
    200 
    201 #define	getvndbuf(vbp)	do {						\
    202 	int sp = splbio();						\
    203 	vbp = pool_get(&vndbuf_pool, PR_WAITOK);			\
    204 	splx(sp);							\
    205 } while (/*CONSTCOND*/ 0)
    206 
    207 #define putvndbuf(vbp) {						\
    208 	pool_put(&vndbuf_pool, (void *)(vbp));				\
    209 }
    210 
    211 /*
    212  * local variables
    213  */
    214 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    215 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    216 
    217 /* list of all active swap devices [by priority] */
    218 LIST_HEAD(swap_priority, swappri);
    219 static struct swap_priority swap_priority;
    220 
    221 /* locks */
    222 static krwlock_t swap_syscall_lock;
    223 
    224 /* workqueue and use counter for swap to regular files */
    225 static int sw_reg_count = 0;
    226 static struct workqueue *sw_reg_workqueue;
    227 
    228 /*
    229  * prototypes
    230  */
    231 static struct swapdev	*swapdrum_getsdp(int);
    232 
    233 static struct swapdev	*swaplist_find(struct vnode *, bool);
    234 static void		 swaplist_insert(struct swapdev *,
    235 					 struct swappri *, int);
    236 static void		 swaplist_trim(void);
    237 
    238 static int swap_on(struct lwp *, struct swapdev *);
    239 static int swap_off(struct lwp *, struct swapdev *);
    240 
    241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    242 
    243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    244 static void sw_reg_biodone(struct buf *);
    245 static void sw_reg_iodone(struct work *wk, void *dummy);
    246 static void sw_reg_start(struct swapdev *);
    247 
    248 static int uvm_swap_io(struct vm_page **, int, int, int);
    249 
    250 /*
    251  * uvm_swap_init: init the swap system data structures and locks
    252  *
    253  * => called at boot time from init_main.c after the filesystems
    254  *	are brought up (which happens after uvm_init())
    255  */
    256 void
    257 uvm_swap_init(void)
    258 {
    259 	UVMHIST_FUNC("uvm_swap_init");
    260 
    261 	UVMHIST_CALLED(pdhist);
    262 	/*
    263 	 * first, init the swap list, its counter, and its lock.
    264 	 * then get a handle on the vnode for /dev/drum by using
    265 	 * the its dev_t number ("swapdev", from MD conf.c).
    266 	 */
    267 
    268 	LIST_INIT(&swap_priority);
    269 	uvmexp.nswapdev = 0;
    270 	rw_init(&swap_syscall_lock);
    271 	cv_init(&uvm.scheduler_cv, "schedule");
    272 	/* XXXSMP should be adaptive, but needs vmobjlock replaced */
    273 	mutex_init(&uvm_swap_data_lock, MUTEX_SPIN, IPL_NONE);
    274 
    275 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    276 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    277 
    278 	if (bdevvp(swapdev, &swapdev_vp))
    279 		panic("uvm_swap_init: can't get vnode for swap device");
    280 
    281 	/*
    282 	 * create swap block resource map to map /dev/drum.   the range
    283 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    284 	 * that block 0 is reserved (used to indicate an allocation
    285 	 * failure, or no allocation).
    286 	 */
    287 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    288 	    VM_NOSLEEP, IPL_NONE);
    289 	if (swapmap == 0)
    290 		panic("uvm_swap_init: extent_create failed");
    291 
    292 	/*
    293 	 * done!
    294 	 */
    295 	uvm.swap_running = true;
    296 	uvm.swapout_enabled = 1;
    297 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    298 
    299         sysctl_createv(NULL, 0, NULL, NULL,
    300             CTLFLAG_READWRITE,
    301             CTLTYPE_INT, "swapout",
    302             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    303             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    304 }
    305 
    306 /*
    307  * swaplist functions: functions that operate on the list of swap
    308  * devices on the system.
    309  */
    310 
    311 /*
    312  * swaplist_insert: insert swap device "sdp" into the global list
    313  *
    314  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    315  * => caller must provide a newly malloc'd swappri structure (we will
    316  *	FREE it if we don't need it... this it to prevent malloc blocking
    317  *	here while adding swap)
    318  */
    319 static void
    320 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    321 {
    322 	struct swappri *spp, *pspp;
    323 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    324 
    325 	/*
    326 	 * find entry at or after which to insert the new device.
    327 	 */
    328 	pspp = NULL;
    329 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    330 		if (priority <= spp->spi_priority)
    331 			break;
    332 		pspp = spp;
    333 	}
    334 
    335 	/*
    336 	 * new priority?
    337 	 */
    338 	if (spp == NULL || spp->spi_priority != priority) {
    339 		spp = newspp;  /* use newspp! */
    340 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    341 			    priority, 0, 0, 0);
    342 
    343 		spp->spi_priority = priority;
    344 		CIRCLEQ_INIT(&spp->spi_swapdev);
    345 
    346 		if (pspp)
    347 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    348 		else
    349 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    350 	} else {
    351 	  	/* we don't need a new priority structure, free it */
    352 		FREE(newspp, M_VMSWAP);
    353 	}
    354 
    355 	/*
    356 	 * priority found (or created).   now insert on the priority's
    357 	 * circleq list and bump the total number of swapdevs.
    358 	 */
    359 	sdp->swd_priority = priority;
    360 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    361 	uvmexp.nswapdev++;
    362 }
    363 
    364 /*
    365  * swaplist_find: find and optionally remove a swap device from the
    366  *	global list.
    367  *
    368  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    369  * => we return the swapdev we found (and removed)
    370  */
    371 static struct swapdev *
    372 swaplist_find(struct vnode *vp, bool remove)
    373 {
    374 	struct swapdev *sdp;
    375 	struct swappri *spp;
    376 
    377 	/*
    378 	 * search the lists for the requested vp
    379 	 */
    380 
    381 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    382 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    383 			if (sdp->swd_vp == vp) {
    384 				if (remove) {
    385 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    386 					    sdp, swd_next);
    387 					uvmexp.nswapdev--;
    388 				}
    389 				return(sdp);
    390 			}
    391 		}
    392 	}
    393 	return (NULL);
    394 }
    395 
    396 /*
    397  * swaplist_trim: scan priority list for empty priority entries and kill
    398  *	them.
    399  *
    400  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    401  */
    402 static void
    403 swaplist_trim(void)
    404 {
    405 	struct swappri *spp, *nextspp;
    406 
    407 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    408 		nextspp = LIST_NEXT(spp, spi_swappri);
    409 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    410 		    (void *)&spp->spi_swapdev)
    411 			continue;
    412 		LIST_REMOVE(spp, spi_swappri);
    413 		free(spp, M_VMSWAP);
    414 	}
    415 }
    416 
    417 /*
    418  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    419  *	to the "swapdev" that maps that section of the drum.
    420  *
    421  * => each swapdev takes one big contig chunk of the drum
    422  * => caller must hold uvm_swap_data_lock
    423  */
    424 static struct swapdev *
    425 swapdrum_getsdp(int pgno)
    426 {
    427 	struct swapdev *sdp;
    428 	struct swappri *spp;
    429 
    430 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    431 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    432 			if (sdp->swd_flags & SWF_FAKE)
    433 				continue;
    434 			if (pgno >= sdp->swd_drumoffset &&
    435 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    436 				return sdp;
    437 			}
    438 		}
    439 	}
    440 	return NULL;
    441 }
    442 
    443 
    444 /*
    445  * sys_swapctl: main entry point for swapctl(2) system call
    446  * 	[with two helper functions: swap_on and swap_off]
    447  */
    448 int
    449 sys_swapctl(struct lwp *l, void *v, register_t *retval)
    450 {
    451 	struct sys_swapctl_args /* {
    452 		syscallarg(int) cmd;
    453 		syscallarg(void *) arg;
    454 		syscallarg(int) misc;
    455 	} */ *uap = (struct sys_swapctl_args *)v;
    456 	struct vnode *vp;
    457 	struct nameidata nd;
    458 	struct swappri *spp;
    459 	struct swapdev *sdp;
    460 	struct swapent *sep;
    461 #define SWAP_PATH_MAX (PATH_MAX + 1)
    462 	char	*userpath;
    463 	size_t	len;
    464 	int	error, misc;
    465 	int	priority;
    466 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    467 
    468 	misc = SCARG(uap, misc);
    469 
    470 	/*
    471 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    472 	 */
    473 	rw_enter(&swap_syscall_lock, RW_WRITER);
    474 
    475 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    476 	/*
    477 	 * we handle the non-priv NSWAP and STATS request first.
    478 	 *
    479 	 * SWAP_NSWAP: return number of config'd swap devices
    480 	 * [can also be obtained with uvmexp sysctl]
    481 	 */
    482 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    483 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    484 		    0, 0, 0);
    485 		*retval = uvmexp.nswapdev;
    486 		error = 0;
    487 		goto out;
    488 	}
    489 
    490 	/*
    491 	 * SWAP_STATS: get stats on current # of configured swap devs
    492 	 *
    493 	 * note that the swap_priority list can't change as long
    494 	 * as we are holding the swap_syscall_lock.  we don't want
    495 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    496 	 * copyout() and we don't want to be holding that lock then!
    497 	 */
    498 	if (SCARG(uap, cmd) == SWAP_STATS
    499 #if defined(COMPAT_13)
    500 	    || SCARG(uap, cmd) == SWAP_OSTATS
    501 #endif
    502 	    ) {
    503 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    504 			misc = uvmexp.nswapdev;
    505 #if defined(COMPAT_13)
    506 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    507 			len = sizeof(struct oswapent) * misc;
    508 		else
    509 #endif
    510 			len = sizeof(struct swapent) * misc;
    511 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    512 
    513 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    514 		error = copyout(sep, SCARG(uap, arg), len);
    515 
    516 		free(sep, M_TEMP);
    517 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    518 		goto out;
    519 	}
    520 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    521 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    522 
    523 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    524 		goto out;
    525 	}
    526 
    527 	/*
    528 	 * all other requests require superuser privs.   verify.
    529 	 */
    530 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    531 	    0, NULL, NULL, NULL)))
    532 		goto out;
    533 
    534 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    535 		/* drop the current dump device */
    536 		dumpdev = NODEV;
    537 		cpu_dumpconf();
    538 		goto out;
    539 	}
    540 
    541 	/*
    542 	 * at this point we expect a path name in arg.   we will
    543 	 * use namei() to gain a vnode reference (vref), and lock
    544 	 * the vnode (VOP_LOCK).
    545 	 *
    546 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    547 	 * miniroot)
    548 	 */
    549 	if (SCARG(uap, arg) == NULL) {
    550 		vp = rootvp;		/* miniroot */
    551 		if (vget(vp, LK_EXCLUSIVE)) {
    552 			error = EBUSY;
    553 			goto out;
    554 		}
    555 		if (SCARG(uap, cmd) == SWAP_ON &&
    556 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    557 			panic("swapctl: miniroot copy failed");
    558 	} else {
    559 		int	space;
    560 		char	*where;
    561 
    562 		if (SCARG(uap, cmd) == SWAP_ON) {
    563 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    564 			    SWAP_PATH_MAX, &len)))
    565 				goto out;
    566 			space = UIO_SYSSPACE;
    567 			where = userpath;
    568 		} else {
    569 			space = UIO_USERSPACE;
    570 			where = (char *)SCARG(uap, arg);
    571 		}
    572 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, space, where, l);
    573 		if ((error = namei(&nd)))
    574 			goto out;
    575 		vp = nd.ni_vp;
    576 	}
    577 	/* note: "vp" is referenced and locked */
    578 
    579 	error = 0;		/* assume no error */
    580 	switch(SCARG(uap, cmd)) {
    581 
    582 	case SWAP_DUMPDEV:
    583 		if (vp->v_type != VBLK) {
    584 			error = ENOTBLK;
    585 			break;
    586 		}
    587 		if (bdevsw_lookup(vp->v_rdev))
    588 			dumpdev = vp->v_rdev;
    589 		else
    590 			dumpdev = NODEV;
    591 		cpu_dumpconf();
    592 		break;
    593 
    594 	case SWAP_CTL:
    595 		/*
    596 		 * get new priority, remove old entry (if any) and then
    597 		 * reinsert it in the correct place.  finally, prune out
    598 		 * any empty priority structures.
    599 		 */
    600 		priority = SCARG(uap, misc);
    601 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    602 		mutex_enter(&uvm_swap_data_lock);
    603 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    604 			error = ENOENT;
    605 		} else {
    606 			swaplist_insert(sdp, spp, priority);
    607 			swaplist_trim();
    608 		}
    609 		mutex_exit(&uvm_swap_data_lock);
    610 		if (error)
    611 			free(spp, M_VMSWAP);
    612 		break;
    613 
    614 	case SWAP_ON:
    615 
    616 		/*
    617 		 * check for duplicates.   if none found, then insert a
    618 		 * dummy entry on the list to prevent someone else from
    619 		 * trying to enable this device while we are working on
    620 		 * it.
    621 		 */
    622 
    623 		priority = SCARG(uap, misc);
    624 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    625 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    626 		memset(sdp, 0, sizeof(*sdp));
    627 		sdp->swd_flags = SWF_FAKE;
    628 		sdp->swd_vp = vp;
    629 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    630 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    631 		mutex_enter(&uvm_swap_data_lock);
    632 		if (swaplist_find(vp, false) != NULL) {
    633 			error = EBUSY;
    634 			mutex_exit(&uvm_swap_data_lock);
    635 			bufq_free(sdp->swd_tab);
    636 			free(sdp, M_VMSWAP);
    637 			free(spp, M_VMSWAP);
    638 			break;
    639 		}
    640 		swaplist_insert(sdp, spp, priority);
    641 		mutex_exit(&uvm_swap_data_lock);
    642 
    643 		sdp->swd_pathlen = len;
    644 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    645 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    646 			panic("swapctl: copystr");
    647 
    648 		/*
    649 		 * we've now got a FAKE placeholder in the swap list.
    650 		 * now attempt to enable swap on it.  if we fail, undo
    651 		 * what we've done and kill the fake entry we just inserted.
    652 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    653 		 */
    654 
    655 		if ((error = swap_on(l, sdp)) != 0) {
    656 			mutex_enter(&uvm_swap_data_lock);
    657 			(void) swaplist_find(vp, true);  /* kill fake entry */
    658 			swaplist_trim();
    659 			mutex_exit(&uvm_swap_data_lock);
    660 			bufq_free(sdp->swd_tab);
    661 			free(sdp->swd_path, M_VMSWAP);
    662 			free(sdp, M_VMSWAP);
    663 			break;
    664 		}
    665 		break;
    666 
    667 	case SWAP_OFF:
    668 		mutex_enter(&uvm_swap_data_lock);
    669 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    670 			mutex_exit(&uvm_swap_data_lock);
    671 			error = ENXIO;
    672 			break;
    673 		}
    674 
    675 		/*
    676 		 * If a device isn't in use or enabled, we
    677 		 * can't stop swapping from it (again).
    678 		 */
    679 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    680 			mutex_exit(&uvm_swap_data_lock);
    681 			error = EBUSY;
    682 			break;
    683 		}
    684 
    685 		/*
    686 		 * do the real work.
    687 		 */
    688 		error = swap_off(l, sdp);
    689 		break;
    690 
    691 	default:
    692 		error = EINVAL;
    693 	}
    694 
    695 	/*
    696 	 * done!  release the ref gained by namei() and unlock.
    697 	 */
    698 	vput(vp);
    699 
    700 out:
    701 	free(userpath, M_TEMP);
    702 	rw_exit(&swap_syscall_lock);
    703 
    704 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    705 	return (error);
    706 }
    707 
    708 /*
    709  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    710  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    711  * emulation to use it directly without going through sys_swapctl().
    712  * The problem with using sys_swapctl() there is that it involves
    713  * copying the swapent array to the stackgap, and this array's size
    714  * is not known at build time. Hence it would not be possible to
    715  * ensure it would fit in the stackgap in any case.
    716  */
    717 void
    718 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    719 {
    720 
    721 	rw_enter(&swap_syscall_lock, RW_READER);
    722 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    723 	rw_exit(&swap_syscall_lock);
    724 }
    725 
    726 static void
    727 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    728 {
    729 	struct swappri *spp;
    730 	struct swapdev *sdp;
    731 	int count = 0;
    732 
    733 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    734 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    735 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    736 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    737 		  	/*
    738 			 * backwards compatibility for system call.
    739 			 * note that we use 'struct oswapent' as an
    740 			 * overlay into both 'struct swapdev' and
    741 			 * the userland 'struct swapent', as we
    742 			 * want to retain backwards compatibility
    743 			 * with NetBSD 1.3.
    744 			 */
    745 			sdp->swd_ose.ose_inuse =
    746 			    btodb((uint64_t)sdp->swd_npginuse <<
    747 			    PAGE_SHIFT);
    748 			(void)memcpy(sep, &sdp->swd_ose,
    749 			    sizeof(struct oswapent));
    750 
    751 			/* now copy out the path if necessary */
    752 #if !defined(COMPAT_13)
    753 			(void) cmd;
    754 #endif
    755 #if defined(COMPAT_13)
    756 			if (cmd == SWAP_STATS)
    757 #endif
    758 				(void)memcpy(&sep->se_path, sdp->swd_path,
    759 				    sdp->swd_pathlen);
    760 
    761 			count++;
    762 #if defined(COMPAT_13)
    763 			if (cmd == SWAP_OSTATS)
    764 				sep = (struct swapent *)
    765 				    ((struct oswapent *)sep + 1);
    766 			else
    767 #endif
    768 				sep++;
    769 		}
    770 	}
    771 
    772 	*retval = count;
    773 	return;
    774 }
    775 
    776 /*
    777  * swap_on: attempt to enable a swapdev for swapping.   note that the
    778  *	swapdev is already on the global list, but disabled (marked
    779  *	SWF_FAKE).
    780  *
    781  * => we avoid the start of the disk (to protect disk labels)
    782  * => we also avoid the miniroot, if we are swapping to root.
    783  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    784  *	if needed.
    785  */
    786 static int
    787 swap_on(struct lwp *l, struct swapdev *sdp)
    788 {
    789 	struct vnode *vp;
    790 	int error, npages, nblocks, size;
    791 	long addr;
    792 	u_long result;
    793 	struct vattr va;
    794 #ifdef NFS
    795 	extern int (**nfsv2_vnodeop_p)(void *);
    796 #endif /* NFS */
    797 	const struct bdevsw *bdev;
    798 	dev_t dev;
    799 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    800 
    801 	/*
    802 	 * we want to enable swapping on sdp.   the swd_vp contains
    803 	 * the vnode we want (locked and ref'd), and the swd_dev
    804 	 * contains the dev_t of the file, if it a block device.
    805 	 */
    806 
    807 	vp = sdp->swd_vp;
    808 	dev = sdp->swd_dev;
    809 
    810 	/*
    811 	 * open the swap file (mostly useful for block device files to
    812 	 * let device driver know what is up).
    813 	 *
    814 	 * we skip the open/close for root on swap because the root
    815 	 * has already been opened when root was mounted (mountroot).
    816 	 */
    817 	if (vp != rootvp) {
    818 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred, l)))
    819 			return (error);
    820 	}
    821 
    822 	/* XXX this only works for block devices */
    823 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    824 
    825 	/*
    826 	 * we now need to determine the size of the swap area.   for
    827 	 * block specials we can call the d_psize function.
    828 	 * for normal files, we must stat [get attrs].
    829 	 *
    830 	 * we put the result in nblks.
    831 	 * for normal files, we also want the filesystem block size
    832 	 * (which we get with statfs).
    833 	 */
    834 	switch (vp->v_type) {
    835 	case VBLK:
    836 		bdev = bdevsw_lookup(dev);
    837 		if (bdev == NULL || bdev->d_psize == NULL ||
    838 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    839 			error = ENXIO;
    840 			goto bad;
    841 		}
    842 		break;
    843 
    844 	case VREG:
    845 		if ((error = VOP_GETATTR(vp, &va, l->l_cred, l)))
    846 			goto bad;
    847 		nblocks = (int)btodb(va.va_size);
    848 		if ((error =
    849 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat, l)) != 0)
    850 			goto bad;
    851 
    852 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    853 		/*
    854 		 * limit the max # of outstanding I/O requests we issue
    855 		 * at any one time.   take it easy on NFS servers.
    856 		 */
    857 #ifdef NFS
    858 		if (vp->v_op == nfsv2_vnodeop_p)
    859 			sdp->swd_maxactive = 2; /* XXX */
    860 		else
    861 #endif /* NFS */
    862 			sdp->swd_maxactive = 8; /* XXX */
    863 		break;
    864 
    865 	default:
    866 		error = ENXIO;
    867 		goto bad;
    868 	}
    869 
    870 	/*
    871 	 * save nblocks in a safe place and convert to pages.
    872 	 */
    873 
    874 	sdp->swd_ose.ose_nblks = nblocks;
    875 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    876 
    877 	/*
    878 	 * for block special files, we want to make sure that leave
    879 	 * the disklabel and bootblocks alone, so we arrange to skip
    880 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    881 	 * note that because of this the "size" can be less than the
    882 	 * actual number of blocks on the device.
    883 	 */
    884 	if (vp->v_type == VBLK) {
    885 		/* we use pages 1 to (size - 1) [inclusive] */
    886 		size = npages - 1;
    887 		addr = 1;
    888 	} else {
    889 		/* we use pages 0 to (size - 1) [inclusive] */
    890 		size = npages;
    891 		addr = 0;
    892 	}
    893 
    894 	/*
    895 	 * make sure we have enough blocks for a reasonable sized swap
    896 	 * area.   we want at least one page.
    897 	 */
    898 
    899 	if (size < 1) {
    900 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    901 		error = EINVAL;
    902 		goto bad;
    903 	}
    904 
    905 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    906 
    907 	/*
    908 	 * now we need to allocate an extent to manage this swap device
    909 	 */
    910 
    911 	sdp->swd_blist = blist_create(npages);
    912 	/* mark all expect the `saved' region free. */
    913 	blist_free(sdp->swd_blist, addr, size);
    914 
    915 	/*
    916 	 * if the vnode we are swapping to is the root vnode
    917 	 * (i.e. we are swapping to the miniroot) then we want
    918 	 * to make sure we don't overwrite it.   do a statfs to
    919 	 * find its size and skip over it.
    920 	 */
    921 	if (vp == rootvp) {
    922 		struct mount *mp;
    923 		struct statvfs *sp;
    924 		int rootblocks, rootpages;
    925 
    926 		mp = rootvnode->v_mount;
    927 		sp = &mp->mnt_stat;
    928 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    929 		/*
    930 		 * XXX: sp->f_blocks isn't the total number of
    931 		 * blocks in the filesystem, it's the number of
    932 		 * data blocks.  so, our rootblocks almost
    933 		 * definitely underestimates the total size
    934 		 * of the filesystem - how badly depends on the
    935 		 * details of the filesystem type.  there isn't
    936 		 * an obvious way to deal with this cleanly
    937 		 * and perfectly, so for now we just pad our
    938 		 * rootblocks estimate with an extra 5 percent.
    939 		 */
    940 		rootblocks += (rootblocks >> 5) +
    941 			(rootblocks >> 6) +
    942 			(rootblocks >> 7);
    943 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    944 		if (rootpages > size)
    945 			panic("swap_on: miniroot larger than swap?");
    946 
    947 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    948 			panic("swap_on: unable to preserve miniroot");
    949 		}
    950 
    951 		size -= rootpages;
    952 		printf("Preserved %d pages of miniroot ", rootpages);
    953 		printf("leaving %d pages of swap\n", size);
    954 	}
    955 
    956 	/*
    957 	 * add a ref to vp to reflect usage as a swap device.
    958 	 */
    959 	vref(vp);
    960 
    961 	/*
    962 	 * now add the new swapdev to the drum and enable.
    963 	 */
    964 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    965 	if (result == 0)
    966 		panic("swapdrum_add");
    967 	/*
    968 	 * If this is the first regular swap create the workqueue.
    969 	 * => Protected by swap_syscall_lock.
    970 	 */
    971 	if (vp->v_type != VBLK) {
    972 		if (sw_reg_count++ == 0) {
    973 			KASSERT(sw_reg_workqueue == NULL);
    974 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    975 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    976 				panic("swap_add: workqueue_create failed");
    977 		}
    978 	}
    979 
    980 	sdp->swd_drumoffset = (int)result;
    981 	sdp->swd_drumsize = npages;
    982 	sdp->swd_npages = size;
    983 	mutex_enter(&uvm_swap_data_lock);
    984 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    985 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    986 	uvmexp.swpages += size;
    987 	uvmexp.swpgavail += size;
    988 	mutex_exit(&uvm_swap_data_lock);
    989 	return (0);
    990 
    991 	/*
    992 	 * failure: clean up and return error.
    993 	 */
    994 
    995 bad:
    996 	if (sdp->swd_blist) {
    997 		blist_destroy(sdp->swd_blist);
    998 	}
    999 	if (vp != rootvp) {
   1000 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred, l);
   1001 	}
   1002 	return (error);
   1003 }
   1004 
   1005 /*
   1006  * swap_off: stop swapping on swapdev
   1007  *
   1008  * => swap data should be locked, we will unlock.
   1009  */
   1010 static int
   1011 swap_off(struct lwp *l, struct swapdev *sdp)
   1012 {
   1013 	int npages = sdp->swd_npages;
   1014 	int error = 0;
   1015 
   1016 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1017 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1018 
   1019 	/* disable the swap area being removed */
   1020 	sdp->swd_flags &= ~SWF_ENABLE;
   1021 	uvmexp.swpgavail -= npages;
   1022 	mutex_exit(&uvm_swap_data_lock);
   1023 
   1024 	/*
   1025 	 * the idea is to find all the pages that are paged out to this
   1026 	 * device, and page them all in.  in uvm, swap-backed pageable
   1027 	 * memory can take two forms: aobjs and anons.  call the
   1028 	 * swapoff hook for each subsystem to bring in pages.
   1029 	 */
   1030 
   1031 	if (uao_swap_off(sdp->swd_drumoffset,
   1032 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1033 	    amap_swap_off(sdp->swd_drumoffset,
   1034 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1035 		error = ENOMEM;
   1036 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1037 		error = EBUSY;
   1038 	}
   1039 
   1040 	if (error) {
   1041 		mutex_enter(&uvm_swap_data_lock);
   1042 		sdp->swd_flags |= SWF_ENABLE;
   1043 		uvmexp.swpgavail += npages;
   1044 		mutex_exit(&uvm_swap_data_lock);
   1045 
   1046 		return error;
   1047 	}
   1048 
   1049 	/*
   1050 	 * If this is the last regular swap destroy the workqueue.
   1051 	 * => Protected by swap_syscall_lock.
   1052 	 */
   1053 	if (sdp->swd_vp->v_type != VBLK) {
   1054 		KASSERT(sw_reg_count > 0);
   1055 		KASSERT(sw_reg_workqueue != NULL);
   1056 		if (--sw_reg_count == 0) {
   1057 			workqueue_destroy(sw_reg_workqueue);
   1058 			sw_reg_workqueue = NULL;
   1059 		}
   1060 	}
   1061 
   1062 	/*
   1063 	 * done with the vnode.
   1064 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1065 	 * so that spec_close() can tell if this is the last close.
   1066 	 */
   1067 	vrele(sdp->swd_vp);
   1068 	if (sdp->swd_vp != rootvp) {
   1069 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred, l);
   1070 	}
   1071 
   1072 	mutex_enter(&uvm_swap_data_lock);
   1073 	uvmexp.swpages -= npages;
   1074 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1075 
   1076 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1077 		panic("swap_off: swapdev not in list");
   1078 	swaplist_trim();
   1079 	mutex_exit(&uvm_swap_data_lock);
   1080 
   1081 	/*
   1082 	 * free all resources!
   1083 	 */
   1084 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1085 	blist_destroy(sdp->swd_blist);
   1086 	bufq_free(sdp->swd_tab);
   1087 	free(sdp, M_VMSWAP);
   1088 	return (0);
   1089 }
   1090 
   1091 /*
   1092  * /dev/drum interface and i/o functions
   1093  */
   1094 
   1095 /*
   1096  * swstrategy: perform I/O on the drum
   1097  *
   1098  * => we must map the i/o request from the drum to the correct swapdev.
   1099  */
   1100 static void
   1101 swstrategy(struct buf *bp)
   1102 {
   1103 	struct swapdev *sdp;
   1104 	struct vnode *vp;
   1105 	int s, pageno, bn;
   1106 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1107 
   1108 	/*
   1109 	 * convert block number to swapdev.   note that swapdev can't
   1110 	 * be yanked out from under us because we are holding resources
   1111 	 * in it (i.e. the blocks we are doing I/O on).
   1112 	 */
   1113 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1114 	mutex_enter(&uvm_swap_data_lock);
   1115 	sdp = swapdrum_getsdp(pageno);
   1116 	mutex_exit(&uvm_swap_data_lock);
   1117 	if (sdp == NULL) {
   1118 		bp->b_error = EINVAL;
   1119 		biodone(bp);
   1120 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1121 		return;
   1122 	}
   1123 
   1124 	/*
   1125 	 * convert drum page number to block number on this swapdev.
   1126 	 */
   1127 
   1128 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1129 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1130 
   1131 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1132 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1133 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1134 
   1135 	/*
   1136 	 * for block devices we finish up here.
   1137 	 * for regular files we have to do more work which we delegate
   1138 	 * to sw_reg_strategy().
   1139 	 */
   1140 
   1141 	switch (sdp->swd_vp->v_type) {
   1142 	default:
   1143 		panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
   1144 
   1145 	case VBLK:
   1146 
   1147 		/*
   1148 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1149 		 * on the swapdev (sdp).
   1150 		 */
   1151 		s = splbio();
   1152 		bp->b_blkno = bn;		/* swapdev block number */
   1153 		vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1154 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1155 
   1156 		/*
   1157 		 * if we are doing a write, we have to redirect the i/o on
   1158 		 * drum's v_numoutput counter to the swapdevs.
   1159 		 */
   1160 		if ((bp->b_flags & B_READ) == 0) {
   1161 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1162 			V_INCR_NUMOUTPUT(vp);	/* put it on swapdev */
   1163 		}
   1164 
   1165 		/*
   1166 		 * finally plug in swapdev vnode and start I/O
   1167 		 */
   1168 		bp->b_vp = vp;
   1169 		splx(s);
   1170 		VOP_STRATEGY(vp, bp);
   1171 		return;
   1172 
   1173 	case VREG:
   1174 		/*
   1175 		 * delegate to sw_reg_strategy function.
   1176 		 */
   1177 		sw_reg_strategy(sdp, bp, bn);
   1178 		return;
   1179 	}
   1180 	/* NOTREACHED */
   1181 }
   1182 
   1183 /*
   1184  * swread: the read function for the drum (just a call to physio)
   1185  */
   1186 /*ARGSUSED*/
   1187 static int
   1188 swread(dev_t dev, struct uio *uio, int ioflag)
   1189 {
   1190 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1191 
   1192 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1193 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1194 }
   1195 
   1196 /*
   1197  * swwrite: the write function for the drum (just a call to physio)
   1198  */
   1199 /*ARGSUSED*/
   1200 static int
   1201 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1202 {
   1203 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1204 
   1205 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1206 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1207 }
   1208 
   1209 const struct bdevsw swap_bdevsw = {
   1210 	noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1211 };
   1212 
   1213 const struct cdevsw swap_cdevsw = {
   1214 	nullopen, nullclose, swread, swwrite, noioctl,
   1215 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1216 };
   1217 
   1218 /*
   1219  * sw_reg_strategy: handle swap i/o to regular files
   1220  */
   1221 static void
   1222 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1223 {
   1224 	struct vnode	*vp;
   1225 	struct vndxfer	*vnx;
   1226 	daddr_t		nbn;
   1227 	char 		*addr;
   1228 	off_t		byteoff;
   1229 	int		s, off, nra, error, sz, resid;
   1230 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1231 
   1232 	/*
   1233 	 * allocate a vndxfer head for this transfer and point it to
   1234 	 * our buffer.
   1235 	 */
   1236 	getvndxfer(vnx);
   1237 	vnx->vx_flags = VX_BUSY;
   1238 	vnx->vx_error = 0;
   1239 	vnx->vx_pending = 0;
   1240 	vnx->vx_bp = bp;
   1241 	vnx->vx_sdp = sdp;
   1242 
   1243 	/*
   1244 	 * setup for main loop where we read filesystem blocks into
   1245 	 * our buffer.
   1246 	 */
   1247 	error = 0;
   1248 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1249 	addr = bp->b_data;		/* current position in buffer */
   1250 	byteoff = dbtob((uint64_t)bn);
   1251 
   1252 	for (resid = bp->b_resid; resid; resid -= sz) {
   1253 		struct vndbuf	*nbp;
   1254 
   1255 		/*
   1256 		 * translate byteoffset into block number.  return values:
   1257 		 *   vp = vnode of underlying device
   1258 		 *  nbn = new block number (on underlying vnode dev)
   1259 		 *  nra = num blocks we can read-ahead (excludes requested
   1260 		 *	block)
   1261 		 */
   1262 		nra = 0;
   1263 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1264 				 	&vp, &nbn, &nra);
   1265 
   1266 		if (error == 0 && nbn == (daddr_t)-1) {
   1267 			/*
   1268 			 * this used to just set error, but that doesn't
   1269 			 * do the right thing.  Instead, it causes random
   1270 			 * memory errors.  The panic() should remain until
   1271 			 * this condition doesn't destabilize the system.
   1272 			 */
   1273 #if 1
   1274 			panic("sw_reg_strategy: swap to sparse file");
   1275 #else
   1276 			error = EIO;	/* failure */
   1277 #endif
   1278 		}
   1279 
   1280 		/*
   1281 		 * punt if there was an error or a hole in the file.
   1282 		 * we must wait for any i/o ops we have already started
   1283 		 * to finish before returning.
   1284 		 *
   1285 		 * XXX we could deal with holes here but it would be
   1286 		 * a hassle (in the write case).
   1287 		 */
   1288 		if (error) {
   1289 			s = splbio();
   1290 			vnx->vx_error = error;	/* pass error up */
   1291 			goto out;
   1292 		}
   1293 
   1294 		/*
   1295 		 * compute the size ("sz") of this transfer (in bytes).
   1296 		 */
   1297 		off = byteoff % sdp->swd_bsize;
   1298 		sz = (1 + nra) * sdp->swd_bsize - off;
   1299 		if (sz > resid)
   1300 			sz = resid;
   1301 
   1302 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1303 			    "vp %p/%p offset 0x%x/0x%x",
   1304 			    sdp->swd_vp, vp, byteoff, nbn);
   1305 
   1306 		/*
   1307 		 * now get a buf structure.   note that the vb_buf is
   1308 		 * at the front of the nbp structure so that you can
   1309 		 * cast pointers between the two structure easily.
   1310 		 */
   1311 		getvndbuf(nbp);
   1312 		BUF_INIT(&nbp->vb_buf);
   1313 		nbp->vb_buf.b_flags    = bp->b_flags | B_CALL;
   1314 		nbp->vb_buf.b_bcount   = sz;
   1315 		nbp->vb_buf.b_bufsize  = sz;
   1316 		nbp->vb_buf.b_error    = 0;
   1317 		nbp->vb_buf.b_data     = addr;
   1318 		nbp->vb_buf.b_lblkno   = 0;
   1319 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1320 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1321 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1322 		nbp->vb_buf.b_vp       = vp;
   1323 		if (vp->v_type == VBLK) {
   1324 			nbp->vb_buf.b_dev = vp->v_rdev;
   1325 		}
   1326 
   1327 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1328 
   1329 		/*
   1330 		 * Just sort by block number
   1331 		 */
   1332 		s = splbio();
   1333 		if (vnx->vx_error != 0) {
   1334 			putvndbuf(nbp);
   1335 			goto out;
   1336 		}
   1337 		vnx->vx_pending++;
   1338 
   1339 		/* sort it in and start I/O if we are not over our limit */
   1340 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1341 		sw_reg_start(sdp);
   1342 		splx(s);
   1343 
   1344 		/*
   1345 		 * advance to the next I/O
   1346 		 */
   1347 		byteoff += sz;
   1348 		addr += sz;
   1349 	}
   1350 
   1351 	s = splbio();
   1352 
   1353 out: /* Arrive here at splbio */
   1354 	vnx->vx_flags &= ~VX_BUSY;
   1355 	if (vnx->vx_pending == 0) {
   1356 		if (vnx->vx_error != 0)
   1357 			bp->b_error = vnx->vx_error;
   1358 		putvndxfer(vnx);
   1359 		biodone(bp);
   1360 	}
   1361 	splx(s);
   1362 }
   1363 
   1364 /*
   1365  * sw_reg_start: start an I/O request on the requested swapdev
   1366  *
   1367  * => reqs are sorted by b_rawblkno (above)
   1368  */
   1369 static void
   1370 sw_reg_start(struct swapdev *sdp)
   1371 {
   1372 	struct buf	*bp;
   1373 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1374 
   1375 	/* recursion control */
   1376 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1377 		return;
   1378 
   1379 	sdp->swd_flags |= SWF_BUSY;
   1380 
   1381 	while (sdp->swd_active < sdp->swd_maxactive) {
   1382 		bp = BUFQ_GET(sdp->swd_tab);
   1383 		if (bp == NULL)
   1384 			break;
   1385 		sdp->swd_active++;
   1386 
   1387 		UVMHIST_LOG(pdhist,
   1388 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1389 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1390 		if ((bp->b_flags & B_READ) == 0)
   1391 			V_INCR_NUMOUTPUT(bp->b_vp);
   1392 
   1393 		VOP_STRATEGY(bp->b_vp, bp);
   1394 	}
   1395 	sdp->swd_flags &= ~SWF_BUSY;
   1396 }
   1397 
   1398 /*
   1399  * sw_reg_biodone: one of our i/o's has completed
   1400  */
   1401 static void
   1402 sw_reg_biodone(struct buf *bp)
   1403 {
   1404 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1405 }
   1406 
   1407 /*
   1408  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1409  *
   1410  * => note that we can recover the vndbuf struct by casting the buf ptr
   1411  */
   1412 static void
   1413 sw_reg_iodone(struct work *wk, void *dummy)
   1414 {
   1415 	struct vndbuf *vbp = (void *)wk;
   1416 	struct vndxfer *vnx = vbp->vb_xfer;
   1417 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1418 	struct swapdev	*sdp = vnx->vx_sdp;
   1419 	int s, resid, error;
   1420 	KASSERT(&vbp->vb_buf.b_work == wk);
   1421 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1422 
   1423 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1424 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1425 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1426 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1427 
   1428 	/*
   1429 	 * protect vbp at splbio and update.
   1430 	 */
   1431 
   1432 	s = splbio();
   1433 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1434 	pbp->b_resid -= resid;
   1435 	vnx->vx_pending--;
   1436 
   1437 	if (vbp->vb_buf.b_error != 0) {
   1438 		/* pass error upward */
   1439 		error = vbp->vb_buf.b_error;
   1440 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1441 		vnx->vx_error = error;
   1442 	}
   1443 
   1444 	/*
   1445 	 * kill vbp structure
   1446 	 */
   1447 	putvndbuf(vbp);
   1448 
   1449 	/*
   1450 	 * wrap up this transaction if it has run to completion or, in
   1451 	 * case of an error, when all auxiliary buffers have returned.
   1452 	 */
   1453 	if (vnx->vx_error != 0) {
   1454 		/* pass error upward */
   1455 		pbp->b_error = vnx->vx_error;
   1456 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1457 			putvndxfer(vnx);
   1458 			biodone(pbp);
   1459 		}
   1460 	} else if (pbp->b_resid == 0) {
   1461 		KASSERT(vnx->vx_pending == 0);
   1462 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1463 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1464 			    pbp, vnx->vx_error, 0, 0);
   1465 			putvndxfer(vnx);
   1466 			biodone(pbp);
   1467 		}
   1468 	}
   1469 
   1470 	/*
   1471 	 * done!   start next swapdev I/O if one is pending
   1472 	 */
   1473 	sdp->swd_active--;
   1474 	sw_reg_start(sdp);
   1475 	splx(s);
   1476 }
   1477 
   1478 
   1479 /*
   1480  * uvm_swap_alloc: allocate space on swap
   1481  *
   1482  * => allocation is done "round robin" down the priority list, as we
   1483  *	allocate in a priority we "rotate" the circle queue.
   1484  * => space can be freed with uvm_swap_free
   1485  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1486  * => we lock uvm_swap_data_lock
   1487  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1488  */
   1489 int
   1490 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1491 {
   1492 	struct swapdev *sdp;
   1493 	struct swappri *spp;
   1494 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1495 
   1496 	/*
   1497 	 * no swap devices configured yet?   definite failure.
   1498 	 */
   1499 	if (uvmexp.nswapdev < 1)
   1500 		return 0;
   1501 
   1502 	/*
   1503 	 * lock data lock, convert slots into blocks, and enter loop
   1504 	 */
   1505 	mutex_enter(&uvm_swap_data_lock);
   1506 
   1507 ReTry:	/* XXXMRG */
   1508 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1509 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1510 			uint64_t result;
   1511 
   1512 			/* if it's not enabled, then we can't swap from it */
   1513 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1514 				continue;
   1515 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1516 				continue;
   1517 			result = blist_alloc(sdp->swd_blist, *nslots);
   1518 			if (result == BLIST_NONE) {
   1519 				continue;
   1520 			}
   1521 			KASSERT(result < sdp->swd_drumsize);
   1522 
   1523 			/*
   1524 			 * successful allocation!  now rotate the circleq.
   1525 			 */
   1526 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1527 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1528 			sdp->swd_npginuse += *nslots;
   1529 			uvmexp.swpginuse += *nslots;
   1530 			mutex_exit(&uvm_swap_data_lock);
   1531 			/* done!  return drum slot number */
   1532 			UVMHIST_LOG(pdhist,
   1533 			    "success!  returning %d slots starting at %d",
   1534 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1535 			return (result + sdp->swd_drumoffset);
   1536 		}
   1537 	}
   1538 
   1539 	/* XXXMRG: BEGIN HACK */
   1540 	if (*nslots > 1 && lessok) {
   1541 		*nslots = 1;
   1542 		/* XXXMRG: ugh!  blist should support this for us */
   1543 		goto ReTry;
   1544 	}
   1545 	/* XXXMRG: END HACK */
   1546 
   1547 	mutex_exit(&uvm_swap_data_lock);
   1548 	return 0;
   1549 }
   1550 
   1551 bool
   1552 uvm_swapisfull(void)
   1553 {
   1554 	bool rv;
   1555 
   1556 	mutex_enter(&uvm_swap_data_lock);
   1557 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1558 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1559 	mutex_exit(&uvm_swap_data_lock);
   1560 
   1561 	return (rv);
   1562 }
   1563 
   1564 /*
   1565  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1566  *
   1567  * => we lock uvm_swap_data_lock
   1568  */
   1569 void
   1570 uvm_swap_markbad(int startslot, int nslots)
   1571 {
   1572 	struct swapdev *sdp;
   1573 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1574 
   1575 	mutex_enter(&uvm_swap_data_lock);
   1576 	sdp = swapdrum_getsdp(startslot);
   1577 	KASSERT(sdp != NULL);
   1578 
   1579 	/*
   1580 	 * we just keep track of how many pages have been marked bad
   1581 	 * in this device, to make everything add up in swap_off().
   1582 	 * we assume here that the range of slots will all be within
   1583 	 * one swap device.
   1584 	 */
   1585 
   1586 	KASSERT(uvmexp.swpgonly >= nslots);
   1587 	uvmexp.swpgonly -= nslots;
   1588 	sdp->swd_npgbad += nslots;
   1589 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1590 	mutex_exit(&uvm_swap_data_lock);
   1591 }
   1592 
   1593 /*
   1594  * uvm_swap_free: free swap slots
   1595  *
   1596  * => this can be all or part of an allocation made by uvm_swap_alloc
   1597  * => we lock uvm_swap_data_lock
   1598  */
   1599 void
   1600 uvm_swap_free(int startslot, int nslots)
   1601 {
   1602 	struct swapdev *sdp;
   1603 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1604 
   1605 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1606 	    startslot, 0, 0);
   1607 
   1608 	/*
   1609 	 * ignore attempts to free the "bad" slot.
   1610 	 */
   1611 
   1612 	if (startslot == SWSLOT_BAD) {
   1613 		return;
   1614 	}
   1615 
   1616 	/*
   1617 	 * convert drum slot offset back to sdp, free the blocks
   1618 	 * in the extent, and return.   must hold pri lock to do
   1619 	 * lookup and access the extent.
   1620 	 */
   1621 
   1622 	mutex_enter(&uvm_swap_data_lock);
   1623 	sdp = swapdrum_getsdp(startslot);
   1624 	KASSERT(uvmexp.nswapdev >= 1);
   1625 	KASSERT(sdp != NULL);
   1626 	KASSERT(sdp->swd_npginuse >= nslots);
   1627 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1628 	sdp->swd_npginuse -= nslots;
   1629 	uvmexp.swpginuse -= nslots;
   1630 	mutex_exit(&uvm_swap_data_lock);
   1631 }
   1632 
   1633 /*
   1634  * uvm_swap_put: put any number of pages into a contig place on swap
   1635  *
   1636  * => can be sync or async
   1637  */
   1638 
   1639 int
   1640 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1641 {
   1642 	int error;
   1643 
   1644 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1645 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1646 	return error;
   1647 }
   1648 
   1649 /*
   1650  * uvm_swap_get: get a single page from swap
   1651  *
   1652  * => usually a sync op (from fault)
   1653  */
   1654 
   1655 int
   1656 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1657 {
   1658 	int error;
   1659 
   1660 	uvmexp.nswget++;
   1661 	KASSERT(flags & PGO_SYNCIO);
   1662 	if (swslot == SWSLOT_BAD) {
   1663 		return EIO;
   1664 	}
   1665 
   1666 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1667 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1668 	if (error == 0) {
   1669 
   1670 		/*
   1671 		 * this page is no longer only in swap.
   1672 		 */
   1673 
   1674 		mutex_enter(&uvm_swap_data_lock);
   1675 		KASSERT(uvmexp.swpgonly > 0);
   1676 		uvmexp.swpgonly--;
   1677 		mutex_exit(&uvm_swap_data_lock);
   1678 	}
   1679 	return error;
   1680 }
   1681 
   1682 /*
   1683  * uvm_swap_io: do an i/o operation to swap
   1684  */
   1685 
   1686 static int
   1687 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1688 {
   1689 	daddr_t startblk;
   1690 	struct	buf *bp;
   1691 	vaddr_t kva;
   1692 	int	error, s, mapinflags;
   1693 	bool write, async;
   1694 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1695 
   1696 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1697 	    startslot, npages, flags, 0);
   1698 
   1699 	write = (flags & B_READ) == 0;
   1700 	async = (flags & B_ASYNC) != 0;
   1701 
   1702 	/*
   1703 	 * convert starting drum slot to block number
   1704 	 */
   1705 
   1706 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1707 
   1708 	/*
   1709 	 * first, map the pages into the kernel.
   1710 	 */
   1711 
   1712 	mapinflags = !write ?
   1713 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1714 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1715 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1716 
   1717 	/*
   1718 	 * now allocate a buf for the i/o.
   1719 	 */
   1720 
   1721 	bp = getiobuf();
   1722 
   1723 	/*
   1724 	 * fill in the bp/sbp.   we currently route our i/o through
   1725 	 * /dev/drum's vnode [swapdev_vp].
   1726 	 */
   1727 
   1728 	bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
   1729 	bp->b_proc = &proc0;	/* XXX */
   1730 	bp->b_vnbufs.le_next = NOLIST;
   1731 	bp->b_data = (void *)kva;
   1732 	bp->b_blkno = startblk;
   1733 	bp->b_vp = swapdev_vp;
   1734 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1735 
   1736 	/*
   1737 	 * bump v_numoutput (counter of number of active outputs).
   1738 	 */
   1739 
   1740 	if (write) {
   1741 		s = splbio();
   1742 		V_INCR_NUMOUTPUT(swapdev_vp);
   1743 		splx(s);
   1744 	}
   1745 
   1746 	/*
   1747 	 * for async ops we must set up the iodone handler.
   1748 	 */
   1749 
   1750 	if (async) {
   1751 		bp->b_flags |= B_CALL;
   1752 		bp->b_iodone = uvm_aio_biodone;
   1753 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1754 		if (curlwp == uvm.pagedaemon_lwp)
   1755 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1756 		else
   1757 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1758 	} else {
   1759 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1760 	}
   1761 	UVMHIST_LOG(pdhist,
   1762 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1763 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1764 
   1765 	/*
   1766 	 * now we start the I/O, and if async, return.
   1767 	 */
   1768 
   1769 	VOP_STRATEGY(swapdev_vp, bp);
   1770 	if (async)
   1771 		return 0;
   1772 
   1773 	/*
   1774 	 * must be sync i/o.   wait for it to finish
   1775 	 */
   1776 
   1777 	error = biowait(bp);
   1778 
   1779 	/*
   1780 	 * kill the pager mapping
   1781 	 */
   1782 
   1783 	uvm_pagermapout(kva, npages);
   1784 
   1785 	/*
   1786 	 * now dispose of the buf and we're done.
   1787 	 */
   1788 
   1789 	s = splbio();
   1790 	if (write)
   1791 		vwakeup(bp);
   1792 	putiobuf(bp);
   1793 	splx(s);
   1794 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1795 	return (error);
   1796 }
   1797