uvm_swap.c revision 1.134 1 /* $NetBSD: uvm_swap.c,v 1.134 2008/01/02 11:49:21 ad Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.134 2008/01/02 11:49:21 ad Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63 #include <sys/workqueue.h>
64
65 #include <uvm/uvm.h>
66
67 #include <miscfs/specfs/specdev.h>
68
69 /*
70 * uvm_swap.c: manage configuration and i/o to swap space.
71 */
72
73 /*
74 * swap space is managed in the following way:
75 *
76 * each swap partition or file is described by a "swapdev" structure.
77 * each "swapdev" structure contains a "swapent" structure which contains
78 * information that is passed up to the user (via system calls).
79 *
80 * each swap partition is assigned a "priority" (int) which controls
81 * swap parition usage.
82 *
83 * the system maintains a global data structure describing all swap
84 * partitions/files. there is a sorted LIST of "swappri" structures
85 * which describe "swapdev"'s at that priority. this LIST is headed
86 * by the "swap_priority" global var. each "swappri" contains a
87 * CIRCLEQ of "swapdev" structures at that priority.
88 *
89 * locking:
90 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
91 * system call and prevents the swap priority list from changing
92 * while we are in the middle of a system call (e.g. SWAP_STATS).
93 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
94 * structures including the priority list, the swapdev structures,
95 * and the swapmap arena.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 *
107 * userland controls and configures swap with the swapctl(2) system call.
108 * the sys_swapctl performs the following operations:
109 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 * (passed in via "arg") of a size passed in via "misc" ... we load
112 * the current swap config into the array. The actual work is done
113 * in the uvm_swap_stats(9) function.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * swapdev: describes a single swap partition/file
123 *
124 * note the following should be true:
125 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
126 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
127 */
128 struct swapdev {
129 struct oswapent swd_ose;
130 #define swd_dev swd_ose.ose_dev /* device id */
131 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
132 #define swd_priority swd_ose.ose_priority /* our priority */
133 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
134 char *swd_path; /* saved pathname of device */
135 int swd_pathlen; /* length of pathname */
136 int swd_npages; /* #pages we can use */
137 int swd_npginuse; /* #pages in use */
138 int swd_npgbad; /* #pages bad */
139 int swd_drumoffset; /* page0 offset in drum */
140 int swd_drumsize; /* #pages in drum */
141 blist_t swd_blist; /* blist for this swapdev */
142 struct vnode *swd_vp; /* backing vnode */
143 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
144
145 int swd_bsize; /* blocksize (bytes) */
146 int swd_maxactive; /* max active i/o reqs */
147 struct bufq_state *swd_tab; /* buffer list */
148 int swd_active; /* number of active buffers */
149 };
150
151 /*
152 * swap device priority entry; the list is kept sorted on `spi_priority'.
153 */
154 struct swappri {
155 int spi_priority; /* priority */
156 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
157 /* circleq of swapdevs at this priority */
158 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
159 };
160
161 /*
162 * The following two structures are used to keep track of data transfers
163 * on swap devices associated with regular files.
164 * NOTE: this code is more or less a copy of vnd.c; we use the same
165 * structure names here to ease porting..
166 */
167 struct vndxfer {
168 struct buf *vx_bp; /* Pointer to parent buffer */
169 struct swapdev *vx_sdp;
170 int vx_error;
171 int vx_pending; /* # of pending aux buffers */
172 int vx_flags;
173 #define VX_BUSY 1
174 #define VX_DEAD 2
175 };
176
177 struct vndbuf {
178 struct buf vb_buf;
179 struct vndxfer *vb_xfer;
180 };
181
182
183 /*
184 * We keep a of pool vndbuf's and vndxfer structures.
185 */
186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
187 IPL_BIO);
188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
189 IPL_BIO);
190
191 /*
192 * local variables
193 */
194 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
195 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
196
197 /* list of all active swap devices [by priority] */
198 LIST_HEAD(swap_priority, swappri);
199 static struct swap_priority swap_priority;
200
201 /* locks */
202 static krwlock_t swap_syscall_lock;
203
204 /* workqueue and use counter for swap to regular files */
205 static int sw_reg_count = 0;
206 static struct workqueue *sw_reg_workqueue;
207
208 /*
209 * prototypes
210 */
211 static struct swapdev *swapdrum_getsdp(int);
212
213 static struct swapdev *swaplist_find(struct vnode *, bool);
214 static void swaplist_insert(struct swapdev *,
215 struct swappri *, int);
216 static void swaplist_trim(void);
217
218 static int swap_on(struct lwp *, struct swapdev *);
219 static int swap_off(struct lwp *, struct swapdev *);
220
221 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
222
223 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
224 static void sw_reg_biodone(struct buf *);
225 static void sw_reg_iodone(struct work *wk, void *dummy);
226 static void sw_reg_start(struct swapdev *);
227
228 static int uvm_swap_io(struct vm_page **, int, int, int);
229
230 /*
231 * uvm_swap_init: init the swap system data structures and locks
232 *
233 * => called at boot time from init_main.c after the filesystems
234 * are brought up (which happens after uvm_init())
235 */
236 void
237 uvm_swap_init(void)
238 {
239 UVMHIST_FUNC("uvm_swap_init");
240
241 UVMHIST_CALLED(pdhist);
242 /*
243 * first, init the swap list, its counter, and its lock.
244 * then get a handle on the vnode for /dev/drum by using
245 * the its dev_t number ("swapdev", from MD conf.c).
246 */
247
248 LIST_INIT(&swap_priority);
249 uvmexp.nswapdev = 0;
250 rw_init(&swap_syscall_lock);
251 cv_init(&uvm.scheduler_cv, "schedule");
252 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
253
254 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
255 mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
256
257 if (bdevvp(swapdev, &swapdev_vp))
258 panic("uvm_swap_init: can't get vnode for swap device");
259
260 /*
261 * create swap block resource map to map /dev/drum. the range
262 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
263 * that block 0 is reserved (used to indicate an allocation
264 * failure, or no allocation).
265 */
266 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
267 VM_NOSLEEP, IPL_NONE);
268 if (swapmap == 0)
269 panic("uvm_swap_init: extent_create failed");
270
271 /*
272 * done!
273 */
274 uvm.swap_running = true;
275 uvm.swapout_enabled = 1;
276 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
277
278 sysctl_createv(NULL, 0, NULL, NULL,
279 CTLFLAG_READWRITE,
280 CTLTYPE_INT, "swapout",
281 SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
282 NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
283 }
284
285 /*
286 * swaplist functions: functions that operate on the list of swap
287 * devices on the system.
288 */
289
290 /*
291 * swaplist_insert: insert swap device "sdp" into the global list
292 *
293 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
294 * => caller must provide a newly malloc'd swappri structure (we will
295 * FREE it if we don't need it... this it to prevent malloc blocking
296 * here while adding swap)
297 */
298 static void
299 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
300 {
301 struct swappri *spp, *pspp;
302 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
303
304 /*
305 * find entry at or after which to insert the new device.
306 */
307 pspp = NULL;
308 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
309 if (priority <= spp->spi_priority)
310 break;
311 pspp = spp;
312 }
313
314 /*
315 * new priority?
316 */
317 if (spp == NULL || spp->spi_priority != priority) {
318 spp = newspp; /* use newspp! */
319 UVMHIST_LOG(pdhist, "created new swappri = %d",
320 priority, 0, 0, 0);
321
322 spp->spi_priority = priority;
323 CIRCLEQ_INIT(&spp->spi_swapdev);
324
325 if (pspp)
326 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
327 else
328 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
329 } else {
330 /* we don't need a new priority structure, free it */
331 FREE(newspp, M_VMSWAP);
332 }
333
334 /*
335 * priority found (or created). now insert on the priority's
336 * circleq list and bump the total number of swapdevs.
337 */
338 sdp->swd_priority = priority;
339 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
340 uvmexp.nswapdev++;
341 }
342
343 /*
344 * swaplist_find: find and optionally remove a swap device from the
345 * global list.
346 *
347 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
348 * => we return the swapdev we found (and removed)
349 */
350 static struct swapdev *
351 swaplist_find(struct vnode *vp, bool remove)
352 {
353 struct swapdev *sdp;
354 struct swappri *spp;
355
356 /*
357 * search the lists for the requested vp
358 */
359
360 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
361 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
362 if (sdp->swd_vp == vp) {
363 if (remove) {
364 CIRCLEQ_REMOVE(&spp->spi_swapdev,
365 sdp, swd_next);
366 uvmexp.nswapdev--;
367 }
368 return(sdp);
369 }
370 }
371 }
372 return (NULL);
373 }
374
375 /*
376 * swaplist_trim: scan priority list for empty priority entries and kill
377 * them.
378 *
379 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
380 */
381 static void
382 swaplist_trim(void)
383 {
384 struct swappri *spp, *nextspp;
385
386 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
387 nextspp = LIST_NEXT(spp, spi_swappri);
388 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
389 (void *)&spp->spi_swapdev)
390 continue;
391 LIST_REMOVE(spp, spi_swappri);
392 free(spp, M_VMSWAP);
393 }
394 }
395
396 /*
397 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
398 * to the "swapdev" that maps that section of the drum.
399 *
400 * => each swapdev takes one big contig chunk of the drum
401 * => caller must hold uvm_swap_data_lock
402 */
403 static struct swapdev *
404 swapdrum_getsdp(int pgno)
405 {
406 struct swapdev *sdp;
407 struct swappri *spp;
408
409 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
410 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
411 if (sdp->swd_flags & SWF_FAKE)
412 continue;
413 if (pgno >= sdp->swd_drumoffset &&
414 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
415 return sdp;
416 }
417 }
418 }
419 return NULL;
420 }
421
422
423 /*
424 * sys_swapctl: main entry point for swapctl(2) system call
425 * [with two helper functions: swap_on and swap_off]
426 */
427 int
428 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
429 {
430 /* {
431 syscallarg(int) cmd;
432 syscallarg(void *) arg;
433 syscallarg(int) misc;
434 } */
435 struct vnode *vp;
436 struct nameidata nd;
437 struct swappri *spp;
438 struct swapdev *sdp;
439 struct swapent *sep;
440 #define SWAP_PATH_MAX (PATH_MAX + 1)
441 char *userpath;
442 size_t len;
443 int error, misc;
444 int priority;
445 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
446
447 misc = SCARG(uap, misc);
448
449 /*
450 * ensure serialized syscall access by grabbing the swap_syscall_lock
451 */
452 rw_enter(&swap_syscall_lock, RW_WRITER);
453
454 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
455 /*
456 * we handle the non-priv NSWAP and STATS request first.
457 *
458 * SWAP_NSWAP: return number of config'd swap devices
459 * [can also be obtained with uvmexp sysctl]
460 */
461 if (SCARG(uap, cmd) == SWAP_NSWAP) {
462 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
463 0, 0, 0);
464 *retval = uvmexp.nswapdev;
465 error = 0;
466 goto out;
467 }
468
469 /*
470 * SWAP_STATS: get stats on current # of configured swap devs
471 *
472 * note that the swap_priority list can't change as long
473 * as we are holding the swap_syscall_lock. we don't want
474 * to grab the uvm_swap_data_lock because we may fault&sleep during
475 * copyout() and we don't want to be holding that lock then!
476 */
477 if (SCARG(uap, cmd) == SWAP_STATS
478 #if defined(COMPAT_13)
479 || SCARG(uap, cmd) == SWAP_OSTATS
480 #endif
481 ) {
482 if ((size_t)misc > (size_t)uvmexp.nswapdev)
483 misc = uvmexp.nswapdev;
484 #if defined(COMPAT_13)
485 if (SCARG(uap, cmd) == SWAP_OSTATS)
486 len = sizeof(struct oswapent) * misc;
487 else
488 #endif
489 len = sizeof(struct swapent) * misc;
490 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
491
492 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
493 error = copyout(sep, SCARG(uap, arg), len);
494
495 free(sep, M_TEMP);
496 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
497 goto out;
498 }
499 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
500 dev_t *devp = (dev_t *)SCARG(uap, arg);
501
502 error = copyout(&dumpdev, devp, sizeof(dumpdev));
503 goto out;
504 }
505
506 /*
507 * all other requests require superuser privs. verify.
508 */
509 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
510 0, NULL, NULL, NULL)))
511 goto out;
512
513 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
514 /* drop the current dump device */
515 dumpdev = NODEV;
516 cpu_dumpconf();
517 goto out;
518 }
519
520 /*
521 * at this point we expect a path name in arg. we will
522 * use namei() to gain a vnode reference (vref), and lock
523 * the vnode (VOP_LOCK).
524 *
525 * XXX: a NULL arg means use the root vnode pointer (e.g. for
526 * miniroot)
527 */
528 if (SCARG(uap, arg) == NULL) {
529 vp = rootvp; /* miniroot */
530 if (vget(vp, LK_EXCLUSIVE)) {
531 error = EBUSY;
532 goto out;
533 }
534 if (SCARG(uap, cmd) == SWAP_ON &&
535 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
536 panic("swapctl: miniroot copy failed");
537 } else {
538 int space;
539 char *where;
540
541 if (SCARG(uap, cmd) == SWAP_ON) {
542 if ((error = copyinstr(SCARG(uap, arg), userpath,
543 SWAP_PATH_MAX, &len)))
544 goto out;
545 space = UIO_SYSSPACE;
546 where = userpath;
547 } else {
548 space = UIO_USERSPACE;
549 where = (char *)SCARG(uap, arg);
550 }
551 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
552 space, where);
553 if ((error = namei(&nd)))
554 goto out;
555 vp = nd.ni_vp;
556 }
557 /* note: "vp" is referenced and locked */
558
559 error = 0; /* assume no error */
560 switch(SCARG(uap, cmd)) {
561
562 case SWAP_DUMPDEV:
563 if (vp->v_type != VBLK) {
564 error = ENOTBLK;
565 break;
566 }
567 if (bdevsw_lookup(vp->v_rdev))
568 dumpdev = vp->v_rdev;
569 else
570 dumpdev = NODEV;
571 cpu_dumpconf();
572 break;
573
574 case SWAP_CTL:
575 /*
576 * get new priority, remove old entry (if any) and then
577 * reinsert it in the correct place. finally, prune out
578 * any empty priority structures.
579 */
580 priority = SCARG(uap, misc);
581 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
582 mutex_enter(&uvm_swap_data_lock);
583 if ((sdp = swaplist_find(vp, true)) == NULL) {
584 error = ENOENT;
585 } else {
586 swaplist_insert(sdp, spp, priority);
587 swaplist_trim();
588 }
589 mutex_exit(&uvm_swap_data_lock);
590 if (error)
591 free(spp, M_VMSWAP);
592 break;
593
594 case SWAP_ON:
595
596 /*
597 * check for duplicates. if none found, then insert a
598 * dummy entry on the list to prevent someone else from
599 * trying to enable this device while we are working on
600 * it.
601 */
602
603 priority = SCARG(uap, misc);
604 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
605 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
606 memset(sdp, 0, sizeof(*sdp));
607 sdp->swd_flags = SWF_FAKE;
608 sdp->swd_vp = vp;
609 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
610 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
611 mutex_enter(&uvm_swap_data_lock);
612 if (swaplist_find(vp, false) != NULL) {
613 error = EBUSY;
614 mutex_exit(&uvm_swap_data_lock);
615 bufq_free(sdp->swd_tab);
616 free(sdp, M_VMSWAP);
617 free(spp, M_VMSWAP);
618 break;
619 }
620 swaplist_insert(sdp, spp, priority);
621 mutex_exit(&uvm_swap_data_lock);
622
623 sdp->swd_pathlen = len;
624 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
625 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
626 panic("swapctl: copystr");
627
628 /*
629 * we've now got a FAKE placeholder in the swap list.
630 * now attempt to enable swap on it. if we fail, undo
631 * what we've done and kill the fake entry we just inserted.
632 * if swap_on is a success, it will clear the SWF_FAKE flag
633 */
634
635 if ((error = swap_on(l, sdp)) != 0) {
636 mutex_enter(&uvm_swap_data_lock);
637 (void) swaplist_find(vp, true); /* kill fake entry */
638 swaplist_trim();
639 mutex_exit(&uvm_swap_data_lock);
640 bufq_free(sdp->swd_tab);
641 free(sdp->swd_path, M_VMSWAP);
642 free(sdp, M_VMSWAP);
643 break;
644 }
645 break;
646
647 case SWAP_OFF:
648 mutex_enter(&uvm_swap_data_lock);
649 if ((sdp = swaplist_find(vp, false)) == NULL) {
650 mutex_exit(&uvm_swap_data_lock);
651 error = ENXIO;
652 break;
653 }
654
655 /*
656 * If a device isn't in use or enabled, we
657 * can't stop swapping from it (again).
658 */
659 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
660 mutex_exit(&uvm_swap_data_lock);
661 error = EBUSY;
662 break;
663 }
664
665 /*
666 * do the real work.
667 */
668 error = swap_off(l, sdp);
669 break;
670
671 default:
672 error = EINVAL;
673 }
674
675 /*
676 * done! release the ref gained by namei() and unlock.
677 */
678 vput(vp);
679
680 out:
681 free(userpath, M_TEMP);
682 rw_exit(&swap_syscall_lock);
683
684 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
685 return (error);
686 }
687
688 /*
689 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
690 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
691 * emulation to use it directly without going through sys_swapctl().
692 * The problem with using sys_swapctl() there is that it involves
693 * copying the swapent array to the stackgap, and this array's size
694 * is not known at build time. Hence it would not be possible to
695 * ensure it would fit in the stackgap in any case.
696 */
697 void
698 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
699 {
700
701 rw_enter(&swap_syscall_lock, RW_READER);
702 uvm_swap_stats_locked(cmd, sep, sec, retval);
703 rw_exit(&swap_syscall_lock);
704 }
705
706 static void
707 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
708 {
709 struct swappri *spp;
710 struct swapdev *sdp;
711 int count = 0;
712
713 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
714 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
715 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
716 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
717 /*
718 * backwards compatibility for system call.
719 * note that we use 'struct oswapent' as an
720 * overlay into both 'struct swapdev' and
721 * the userland 'struct swapent', as we
722 * want to retain backwards compatibility
723 * with NetBSD 1.3.
724 */
725 sdp->swd_ose.ose_inuse =
726 btodb((uint64_t)sdp->swd_npginuse <<
727 PAGE_SHIFT);
728 (void)memcpy(sep, &sdp->swd_ose,
729 sizeof(struct oswapent));
730
731 /* now copy out the path if necessary */
732 #if !defined(COMPAT_13)
733 (void) cmd;
734 #endif
735 #if defined(COMPAT_13)
736 if (cmd == SWAP_STATS)
737 #endif
738 (void)memcpy(&sep->se_path, sdp->swd_path,
739 sdp->swd_pathlen);
740
741 count++;
742 #if defined(COMPAT_13)
743 if (cmd == SWAP_OSTATS)
744 sep = (struct swapent *)
745 ((struct oswapent *)sep + 1);
746 else
747 #endif
748 sep++;
749 }
750 }
751
752 *retval = count;
753 return;
754 }
755
756 /*
757 * swap_on: attempt to enable a swapdev for swapping. note that the
758 * swapdev is already on the global list, but disabled (marked
759 * SWF_FAKE).
760 *
761 * => we avoid the start of the disk (to protect disk labels)
762 * => we also avoid the miniroot, if we are swapping to root.
763 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
764 * if needed.
765 */
766 static int
767 swap_on(struct lwp *l, struct swapdev *sdp)
768 {
769 struct vnode *vp;
770 int error, npages, nblocks, size;
771 long addr;
772 u_long result;
773 struct vattr va;
774 #ifdef NFS
775 extern int (**nfsv2_vnodeop_p)(void *);
776 #endif /* NFS */
777 const struct bdevsw *bdev;
778 dev_t dev;
779 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
780
781 /*
782 * we want to enable swapping on sdp. the swd_vp contains
783 * the vnode we want (locked and ref'd), and the swd_dev
784 * contains the dev_t of the file, if it a block device.
785 */
786
787 vp = sdp->swd_vp;
788 dev = sdp->swd_dev;
789
790 /*
791 * open the swap file (mostly useful for block device files to
792 * let device driver know what is up).
793 *
794 * we skip the open/close for root on swap because the root
795 * has already been opened when root was mounted (mountroot).
796 */
797 if (vp != rootvp) {
798 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
799 return (error);
800 }
801
802 /* XXX this only works for block devices */
803 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
804
805 /*
806 * we now need to determine the size of the swap area. for
807 * block specials we can call the d_psize function.
808 * for normal files, we must stat [get attrs].
809 *
810 * we put the result in nblks.
811 * for normal files, we also want the filesystem block size
812 * (which we get with statfs).
813 */
814 switch (vp->v_type) {
815 case VBLK:
816 bdev = bdevsw_lookup(dev);
817 if (bdev == NULL || bdev->d_psize == NULL ||
818 (nblocks = (*bdev->d_psize)(dev)) == -1) {
819 error = ENXIO;
820 goto bad;
821 }
822 break;
823
824 case VREG:
825 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
826 goto bad;
827 nblocks = (int)btodb(va.va_size);
828 if ((error =
829 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
830 goto bad;
831
832 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
833 /*
834 * limit the max # of outstanding I/O requests we issue
835 * at any one time. take it easy on NFS servers.
836 */
837 #ifdef NFS
838 if (vp->v_op == nfsv2_vnodeop_p)
839 sdp->swd_maxactive = 2; /* XXX */
840 else
841 #endif /* NFS */
842 sdp->swd_maxactive = 8; /* XXX */
843 break;
844
845 default:
846 error = ENXIO;
847 goto bad;
848 }
849
850 /*
851 * save nblocks in a safe place and convert to pages.
852 */
853
854 sdp->swd_ose.ose_nblks = nblocks;
855 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
856
857 /*
858 * for block special files, we want to make sure that leave
859 * the disklabel and bootblocks alone, so we arrange to skip
860 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
861 * note that because of this the "size" can be less than the
862 * actual number of blocks on the device.
863 */
864 if (vp->v_type == VBLK) {
865 /* we use pages 1 to (size - 1) [inclusive] */
866 size = npages - 1;
867 addr = 1;
868 } else {
869 /* we use pages 0 to (size - 1) [inclusive] */
870 size = npages;
871 addr = 0;
872 }
873
874 /*
875 * make sure we have enough blocks for a reasonable sized swap
876 * area. we want at least one page.
877 */
878
879 if (size < 1) {
880 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
881 error = EINVAL;
882 goto bad;
883 }
884
885 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
886
887 /*
888 * now we need to allocate an extent to manage this swap device
889 */
890
891 sdp->swd_blist = blist_create(npages);
892 /* mark all expect the `saved' region free. */
893 blist_free(sdp->swd_blist, addr, size);
894
895 /*
896 * if the vnode we are swapping to is the root vnode
897 * (i.e. we are swapping to the miniroot) then we want
898 * to make sure we don't overwrite it. do a statfs to
899 * find its size and skip over it.
900 */
901 if (vp == rootvp) {
902 struct mount *mp;
903 struct statvfs *sp;
904 int rootblocks, rootpages;
905
906 mp = rootvnode->v_mount;
907 sp = &mp->mnt_stat;
908 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
909 /*
910 * XXX: sp->f_blocks isn't the total number of
911 * blocks in the filesystem, it's the number of
912 * data blocks. so, our rootblocks almost
913 * definitely underestimates the total size
914 * of the filesystem - how badly depends on the
915 * details of the filesystem type. there isn't
916 * an obvious way to deal with this cleanly
917 * and perfectly, so for now we just pad our
918 * rootblocks estimate with an extra 5 percent.
919 */
920 rootblocks += (rootblocks >> 5) +
921 (rootblocks >> 6) +
922 (rootblocks >> 7);
923 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
924 if (rootpages > size)
925 panic("swap_on: miniroot larger than swap?");
926
927 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
928 panic("swap_on: unable to preserve miniroot");
929 }
930
931 size -= rootpages;
932 printf("Preserved %d pages of miniroot ", rootpages);
933 printf("leaving %d pages of swap\n", size);
934 }
935
936 /*
937 * add a ref to vp to reflect usage as a swap device.
938 */
939 vref(vp);
940
941 /*
942 * now add the new swapdev to the drum and enable.
943 */
944 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
945 if (result == 0)
946 panic("swapdrum_add");
947 /*
948 * If this is the first regular swap create the workqueue.
949 * => Protected by swap_syscall_lock.
950 */
951 if (vp->v_type != VBLK) {
952 if (sw_reg_count++ == 0) {
953 KASSERT(sw_reg_workqueue == NULL);
954 if (workqueue_create(&sw_reg_workqueue, "swapiod",
955 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
956 panic("swap_add: workqueue_create failed");
957 }
958 }
959
960 sdp->swd_drumoffset = (int)result;
961 sdp->swd_drumsize = npages;
962 sdp->swd_npages = size;
963 mutex_enter(&uvm_swap_data_lock);
964 sdp->swd_flags &= ~SWF_FAKE; /* going live */
965 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
966 uvmexp.swpages += size;
967 uvmexp.swpgavail += size;
968 mutex_exit(&uvm_swap_data_lock);
969 return (0);
970
971 /*
972 * failure: clean up and return error.
973 */
974
975 bad:
976 if (sdp->swd_blist) {
977 blist_destroy(sdp->swd_blist);
978 }
979 if (vp != rootvp) {
980 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
981 }
982 return (error);
983 }
984
985 /*
986 * swap_off: stop swapping on swapdev
987 *
988 * => swap data should be locked, we will unlock.
989 */
990 static int
991 swap_off(struct lwp *l, struct swapdev *sdp)
992 {
993 int npages = sdp->swd_npages;
994 int error = 0;
995
996 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
997 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
998
999 /* disable the swap area being removed */
1000 sdp->swd_flags &= ~SWF_ENABLE;
1001 uvmexp.swpgavail -= npages;
1002 mutex_exit(&uvm_swap_data_lock);
1003
1004 /*
1005 * the idea is to find all the pages that are paged out to this
1006 * device, and page them all in. in uvm, swap-backed pageable
1007 * memory can take two forms: aobjs and anons. call the
1008 * swapoff hook for each subsystem to bring in pages.
1009 */
1010
1011 if (uao_swap_off(sdp->swd_drumoffset,
1012 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1013 amap_swap_off(sdp->swd_drumoffset,
1014 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1015 error = ENOMEM;
1016 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1017 error = EBUSY;
1018 }
1019
1020 if (error) {
1021 mutex_enter(&uvm_swap_data_lock);
1022 sdp->swd_flags |= SWF_ENABLE;
1023 uvmexp.swpgavail += npages;
1024 mutex_exit(&uvm_swap_data_lock);
1025
1026 return error;
1027 }
1028
1029 /*
1030 * If this is the last regular swap destroy the workqueue.
1031 * => Protected by swap_syscall_lock.
1032 */
1033 if (sdp->swd_vp->v_type != VBLK) {
1034 KASSERT(sw_reg_count > 0);
1035 KASSERT(sw_reg_workqueue != NULL);
1036 if (--sw_reg_count == 0) {
1037 workqueue_destroy(sw_reg_workqueue);
1038 sw_reg_workqueue = NULL;
1039 }
1040 }
1041
1042 /*
1043 * done with the vnode.
1044 * drop our ref on the vnode before calling VOP_CLOSE()
1045 * so that spec_close() can tell if this is the last close.
1046 */
1047 vrele(sdp->swd_vp);
1048 if (sdp->swd_vp != rootvp) {
1049 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1050 }
1051
1052 mutex_enter(&uvm_swap_data_lock);
1053 uvmexp.swpages -= npages;
1054 uvmexp.swpginuse -= sdp->swd_npgbad;
1055
1056 if (swaplist_find(sdp->swd_vp, true) == NULL)
1057 panic("swap_off: swapdev not in list");
1058 swaplist_trim();
1059 mutex_exit(&uvm_swap_data_lock);
1060
1061 /*
1062 * free all resources!
1063 */
1064 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1065 blist_destroy(sdp->swd_blist);
1066 bufq_free(sdp->swd_tab);
1067 free(sdp, M_VMSWAP);
1068 return (0);
1069 }
1070
1071 /*
1072 * /dev/drum interface and i/o functions
1073 */
1074
1075 /*
1076 * swstrategy: perform I/O on the drum
1077 *
1078 * => we must map the i/o request from the drum to the correct swapdev.
1079 */
1080 static void
1081 swstrategy(struct buf *bp)
1082 {
1083 struct swapdev *sdp;
1084 struct vnode *vp;
1085 int pageno, bn;
1086 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1087
1088 /*
1089 * convert block number to swapdev. note that swapdev can't
1090 * be yanked out from under us because we are holding resources
1091 * in it (i.e. the blocks we are doing I/O on).
1092 */
1093 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1094 mutex_enter(&uvm_swap_data_lock);
1095 sdp = swapdrum_getsdp(pageno);
1096 mutex_exit(&uvm_swap_data_lock);
1097 if (sdp == NULL) {
1098 bp->b_error = EINVAL;
1099 biodone(bp);
1100 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1101 return;
1102 }
1103
1104 /*
1105 * convert drum page number to block number on this swapdev.
1106 */
1107
1108 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1109 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1110
1111 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1112 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1113 sdp->swd_drumoffset, bn, bp->b_bcount);
1114
1115 /*
1116 * for block devices we finish up here.
1117 * for regular files we have to do more work which we delegate
1118 * to sw_reg_strategy().
1119 */
1120
1121 vp = sdp->swd_vp; /* swapdev vnode pointer */
1122 switch (vp->v_type) {
1123 default:
1124 panic("swstrategy: vnode type 0x%x", vp->v_type);
1125
1126 case VBLK:
1127
1128 /*
1129 * must convert "bp" from an I/O on /dev/drum to an I/O
1130 * on the swapdev (sdp).
1131 */
1132 bp->b_blkno = bn; /* swapdev block number */
1133 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1134
1135 /*
1136 * if we are doing a write, we have to redirect the i/o on
1137 * drum's v_numoutput counter to the swapdevs.
1138 */
1139 if ((bp->b_flags & B_READ) == 0) {
1140 mutex_enter(bp->b_objlock);
1141 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1142 mutex_exit(bp->b_objlock);
1143 mutex_enter(&vp->v_interlock);
1144 vp->v_numoutput++; /* put it on swapdev */
1145 mutex_exit(&vp->v_interlock);
1146 }
1147
1148 /*
1149 * finally plug in swapdev vnode and start I/O
1150 */
1151 bp->b_vp = vp;
1152 bp->b_objlock = &vp->v_interlock;
1153 VOP_STRATEGY(vp, bp);
1154 return;
1155
1156 case VREG:
1157 /*
1158 * delegate to sw_reg_strategy function.
1159 */
1160 sw_reg_strategy(sdp, bp, bn);
1161 return;
1162 }
1163 /* NOTREACHED */
1164 }
1165
1166 /*
1167 * swread: the read function for the drum (just a call to physio)
1168 */
1169 /*ARGSUSED*/
1170 static int
1171 swread(dev_t dev, struct uio *uio, int ioflag)
1172 {
1173 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1174
1175 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1176 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1177 }
1178
1179 /*
1180 * swwrite: the write function for the drum (just a call to physio)
1181 */
1182 /*ARGSUSED*/
1183 static int
1184 swwrite(dev_t dev, struct uio *uio, int ioflag)
1185 {
1186 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1187
1188 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1189 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1190 }
1191
1192 const struct bdevsw swap_bdevsw = {
1193 noopen, noclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1194 };
1195
1196 const struct cdevsw swap_cdevsw = {
1197 nullopen, nullclose, swread, swwrite, noioctl,
1198 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1199 };
1200
1201 /*
1202 * sw_reg_strategy: handle swap i/o to regular files
1203 */
1204 static void
1205 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1206 {
1207 struct vnode *vp;
1208 struct vndxfer *vnx;
1209 daddr_t nbn;
1210 char *addr;
1211 off_t byteoff;
1212 int s, off, nra, error, sz, resid;
1213 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1214
1215 /*
1216 * allocate a vndxfer head for this transfer and point it to
1217 * our buffer.
1218 */
1219 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1220 vnx->vx_flags = VX_BUSY;
1221 vnx->vx_error = 0;
1222 vnx->vx_pending = 0;
1223 vnx->vx_bp = bp;
1224 vnx->vx_sdp = sdp;
1225
1226 /*
1227 * setup for main loop where we read filesystem blocks into
1228 * our buffer.
1229 */
1230 error = 0;
1231 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1232 addr = bp->b_data; /* current position in buffer */
1233 byteoff = dbtob((uint64_t)bn);
1234
1235 for (resid = bp->b_resid; resid; resid -= sz) {
1236 struct vndbuf *nbp;
1237
1238 /*
1239 * translate byteoffset into block number. return values:
1240 * vp = vnode of underlying device
1241 * nbn = new block number (on underlying vnode dev)
1242 * nra = num blocks we can read-ahead (excludes requested
1243 * block)
1244 */
1245 nra = 0;
1246 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1247 &vp, &nbn, &nra);
1248
1249 if (error == 0 && nbn == (daddr_t)-1) {
1250 /*
1251 * this used to just set error, but that doesn't
1252 * do the right thing. Instead, it causes random
1253 * memory errors. The panic() should remain until
1254 * this condition doesn't destabilize the system.
1255 */
1256 #if 1
1257 panic("sw_reg_strategy: swap to sparse file");
1258 #else
1259 error = EIO; /* failure */
1260 #endif
1261 }
1262
1263 /*
1264 * punt if there was an error or a hole in the file.
1265 * we must wait for any i/o ops we have already started
1266 * to finish before returning.
1267 *
1268 * XXX we could deal with holes here but it would be
1269 * a hassle (in the write case).
1270 */
1271 if (error) {
1272 s = splbio();
1273 vnx->vx_error = error; /* pass error up */
1274 goto out;
1275 }
1276
1277 /*
1278 * compute the size ("sz") of this transfer (in bytes).
1279 */
1280 off = byteoff % sdp->swd_bsize;
1281 sz = (1 + nra) * sdp->swd_bsize - off;
1282 if (sz > resid)
1283 sz = resid;
1284
1285 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1286 "vp %p/%p offset 0x%x/0x%x",
1287 sdp->swd_vp, vp, byteoff, nbn);
1288
1289 /*
1290 * now get a buf structure. note that the vb_buf is
1291 * at the front of the nbp structure so that you can
1292 * cast pointers between the two structure easily.
1293 */
1294 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1295 buf_init(&nbp->vb_buf);
1296 nbp->vb_buf.b_flags = bp->b_flags;
1297 nbp->vb_buf.b_cflags = bp->b_cflags;
1298 nbp->vb_buf.b_oflags = bp->b_oflags;
1299 nbp->vb_buf.b_bcount = sz;
1300 nbp->vb_buf.b_bufsize = sz;
1301 nbp->vb_buf.b_error = 0;
1302 nbp->vb_buf.b_data = addr;
1303 nbp->vb_buf.b_lblkno = 0;
1304 nbp->vb_buf.b_blkno = nbn + btodb(off);
1305 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1306 nbp->vb_buf.b_iodone = sw_reg_biodone;
1307 nbp->vb_buf.b_vp = vp;
1308 nbp->vb_buf.b_objlock = &vp->v_interlock;
1309 if (vp->v_type == VBLK) {
1310 nbp->vb_buf.b_dev = vp->v_rdev;
1311 }
1312
1313 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1314
1315 /*
1316 * Just sort by block number
1317 */
1318 s = splbio();
1319 if (vnx->vx_error != 0) {
1320 buf_destroy(&nbp->vb_buf);
1321 pool_put(&vndbuf_pool, nbp);
1322 goto out;
1323 }
1324 vnx->vx_pending++;
1325
1326 /* sort it in and start I/O if we are not over our limit */
1327 /* XXXAD locking */
1328 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1329 sw_reg_start(sdp);
1330 splx(s);
1331
1332 /*
1333 * advance to the next I/O
1334 */
1335 byteoff += sz;
1336 addr += sz;
1337 }
1338
1339 s = splbio();
1340
1341 out: /* Arrive here at splbio */
1342 vnx->vx_flags &= ~VX_BUSY;
1343 if (vnx->vx_pending == 0) {
1344 error = vnx->vx_error;
1345 pool_put(&vndxfer_pool, vnx);
1346 bp->b_error = error;
1347 biodone(bp);
1348 }
1349 splx(s);
1350 }
1351
1352 /*
1353 * sw_reg_start: start an I/O request on the requested swapdev
1354 *
1355 * => reqs are sorted by b_rawblkno (above)
1356 */
1357 static void
1358 sw_reg_start(struct swapdev *sdp)
1359 {
1360 struct buf *bp;
1361 struct vnode *vp;
1362 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1363
1364 /* recursion control */
1365 if ((sdp->swd_flags & SWF_BUSY) != 0)
1366 return;
1367
1368 sdp->swd_flags |= SWF_BUSY;
1369
1370 while (sdp->swd_active < sdp->swd_maxactive) {
1371 bp = BUFQ_GET(sdp->swd_tab);
1372 if (bp == NULL)
1373 break;
1374 sdp->swd_active++;
1375
1376 UVMHIST_LOG(pdhist,
1377 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1378 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1379 vp = bp->b_vp;
1380 KASSERT(bp->b_objlock == &vp->v_interlock);
1381 if ((bp->b_flags & B_READ) == 0) {
1382 mutex_enter(&vp->v_interlock);
1383 vp->v_numoutput++;
1384 mutex_exit(&vp->v_interlock);
1385 }
1386 VOP_STRATEGY(vp, bp);
1387 }
1388 sdp->swd_flags &= ~SWF_BUSY;
1389 }
1390
1391 /*
1392 * sw_reg_biodone: one of our i/o's has completed
1393 */
1394 static void
1395 sw_reg_biodone(struct buf *bp)
1396 {
1397 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1398 }
1399
1400 /*
1401 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1402 *
1403 * => note that we can recover the vndbuf struct by casting the buf ptr
1404 */
1405 static void
1406 sw_reg_iodone(struct work *wk, void *dummy)
1407 {
1408 struct vndbuf *vbp = (void *)wk;
1409 struct vndxfer *vnx = vbp->vb_xfer;
1410 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1411 struct swapdev *sdp = vnx->vx_sdp;
1412 int s, resid, error;
1413 KASSERT(&vbp->vb_buf.b_work == wk);
1414 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1415
1416 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1417 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1418 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1419 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1420
1421 /*
1422 * protect vbp at splbio and update.
1423 */
1424
1425 s = splbio();
1426 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1427 pbp->b_resid -= resid;
1428 vnx->vx_pending--;
1429
1430 if (vbp->vb_buf.b_error != 0) {
1431 /* pass error upward */
1432 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1433 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1434 vnx->vx_error = error;
1435 }
1436
1437 /*
1438 * kill vbp structure
1439 */
1440 buf_destroy(&vbp->vb_buf);
1441 pool_put(&vndbuf_pool, vbp);
1442
1443 /*
1444 * wrap up this transaction if it has run to completion or, in
1445 * case of an error, when all auxiliary buffers have returned.
1446 */
1447 if (vnx->vx_error != 0) {
1448 /* pass error upward */
1449 error = vnx->vx_error;
1450 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1451 pbp->b_error = error;
1452 biodone(pbp);
1453 pool_put(&vndxfer_pool, vnx);
1454 }
1455 } else if (pbp->b_resid == 0) {
1456 KASSERT(vnx->vx_pending == 0);
1457 if ((vnx->vx_flags & VX_BUSY) == 0) {
1458 UVMHIST_LOG(pdhist, " iodone error=%d !",
1459 pbp, vnx->vx_error, 0, 0);
1460 biodone(pbp);
1461 pool_put(&vndxfer_pool, vnx);
1462 }
1463 }
1464
1465 /*
1466 * done! start next swapdev I/O if one is pending
1467 */
1468 sdp->swd_active--;
1469 sw_reg_start(sdp);
1470 splx(s);
1471 }
1472
1473
1474 /*
1475 * uvm_swap_alloc: allocate space on swap
1476 *
1477 * => allocation is done "round robin" down the priority list, as we
1478 * allocate in a priority we "rotate" the circle queue.
1479 * => space can be freed with uvm_swap_free
1480 * => we return the page slot number in /dev/drum (0 == invalid slot)
1481 * => we lock uvm_swap_data_lock
1482 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1483 */
1484 int
1485 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1486 {
1487 struct swapdev *sdp;
1488 struct swappri *spp;
1489 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1490
1491 /*
1492 * no swap devices configured yet? definite failure.
1493 */
1494 if (uvmexp.nswapdev < 1)
1495 return 0;
1496
1497 /*
1498 * lock data lock, convert slots into blocks, and enter loop
1499 */
1500 mutex_enter(&uvm_swap_data_lock);
1501
1502 ReTry: /* XXXMRG */
1503 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1504 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1505 uint64_t result;
1506
1507 /* if it's not enabled, then we can't swap from it */
1508 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1509 continue;
1510 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1511 continue;
1512 result = blist_alloc(sdp->swd_blist, *nslots);
1513 if (result == BLIST_NONE) {
1514 continue;
1515 }
1516 KASSERT(result < sdp->swd_drumsize);
1517
1518 /*
1519 * successful allocation! now rotate the circleq.
1520 */
1521 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1522 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1523 sdp->swd_npginuse += *nslots;
1524 uvmexp.swpginuse += *nslots;
1525 mutex_exit(&uvm_swap_data_lock);
1526 /* done! return drum slot number */
1527 UVMHIST_LOG(pdhist,
1528 "success! returning %d slots starting at %d",
1529 *nslots, result + sdp->swd_drumoffset, 0, 0);
1530 return (result + sdp->swd_drumoffset);
1531 }
1532 }
1533
1534 /* XXXMRG: BEGIN HACK */
1535 if (*nslots > 1 && lessok) {
1536 *nslots = 1;
1537 /* XXXMRG: ugh! blist should support this for us */
1538 goto ReTry;
1539 }
1540 /* XXXMRG: END HACK */
1541
1542 mutex_exit(&uvm_swap_data_lock);
1543 return 0;
1544 }
1545
1546 bool
1547 uvm_swapisfull(void)
1548 {
1549 bool rv;
1550
1551 mutex_enter(&uvm_swap_data_lock);
1552 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1553 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1554 mutex_exit(&uvm_swap_data_lock);
1555
1556 return (rv);
1557 }
1558
1559 /*
1560 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1561 *
1562 * => we lock uvm_swap_data_lock
1563 */
1564 void
1565 uvm_swap_markbad(int startslot, int nslots)
1566 {
1567 struct swapdev *sdp;
1568 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1569
1570 mutex_enter(&uvm_swap_data_lock);
1571 sdp = swapdrum_getsdp(startslot);
1572 KASSERT(sdp != NULL);
1573
1574 /*
1575 * we just keep track of how many pages have been marked bad
1576 * in this device, to make everything add up in swap_off().
1577 * we assume here that the range of slots will all be within
1578 * one swap device.
1579 */
1580
1581 KASSERT(uvmexp.swpgonly >= nslots);
1582 uvmexp.swpgonly -= nslots;
1583 sdp->swd_npgbad += nslots;
1584 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1585 mutex_exit(&uvm_swap_data_lock);
1586 }
1587
1588 /*
1589 * uvm_swap_free: free swap slots
1590 *
1591 * => this can be all or part of an allocation made by uvm_swap_alloc
1592 * => we lock uvm_swap_data_lock
1593 */
1594 void
1595 uvm_swap_free(int startslot, int nslots)
1596 {
1597 struct swapdev *sdp;
1598 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1599
1600 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1601 startslot, 0, 0);
1602
1603 /*
1604 * ignore attempts to free the "bad" slot.
1605 */
1606
1607 if (startslot == SWSLOT_BAD) {
1608 return;
1609 }
1610
1611 /*
1612 * convert drum slot offset back to sdp, free the blocks
1613 * in the extent, and return. must hold pri lock to do
1614 * lookup and access the extent.
1615 */
1616
1617 mutex_enter(&uvm_swap_data_lock);
1618 sdp = swapdrum_getsdp(startslot);
1619 KASSERT(uvmexp.nswapdev >= 1);
1620 KASSERT(sdp != NULL);
1621 KASSERT(sdp->swd_npginuse >= nslots);
1622 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1623 sdp->swd_npginuse -= nslots;
1624 uvmexp.swpginuse -= nslots;
1625 mutex_exit(&uvm_swap_data_lock);
1626 }
1627
1628 /*
1629 * uvm_swap_put: put any number of pages into a contig place on swap
1630 *
1631 * => can be sync or async
1632 */
1633
1634 int
1635 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1636 {
1637 int error;
1638
1639 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1640 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1641 return error;
1642 }
1643
1644 /*
1645 * uvm_swap_get: get a single page from swap
1646 *
1647 * => usually a sync op (from fault)
1648 */
1649
1650 int
1651 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1652 {
1653 int error;
1654
1655 uvmexp.nswget++;
1656 KASSERT(flags & PGO_SYNCIO);
1657 if (swslot == SWSLOT_BAD) {
1658 return EIO;
1659 }
1660
1661 error = uvm_swap_io(&page, swslot, 1, B_READ |
1662 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1663 if (error == 0) {
1664
1665 /*
1666 * this page is no longer only in swap.
1667 */
1668
1669 mutex_enter(&uvm_swap_data_lock);
1670 KASSERT(uvmexp.swpgonly > 0);
1671 uvmexp.swpgonly--;
1672 mutex_exit(&uvm_swap_data_lock);
1673 }
1674 return error;
1675 }
1676
1677 /*
1678 * uvm_swap_io: do an i/o operation to swap
1679 */
1680
1681 static int
1682 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1683 {
1684 daddr_t startblk;
1685 struct buf *bp;
1686 vaddr_t kva;
1687 int error, mapinflags;
1688 bool write, async;
1689 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1690
1691 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1692 startslot, npages, flags, 0);
1693
1694 write = (flags & B_READ) == 0;
1695 async = (flags & B_ASYNC) != 0;
1696
1697 /*
1698 * convert starting drum slot to block number
1699 */
1700
1701 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1702
1703 /*
1704 * first, map the pages into the kernel.
1705 */
1706
1707 mapinflags = !write ?
1708 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1709 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1710 kva = uvm_pagermapin(pps, npages, mapinflags);
1711
1712 /*
1713 * now allocate a buf for the i/o.
1714 */
1715
1716 bp = getiobuf(swapdev_vp, true);
1717
1718 /*
1719 * fill in the bp/sbp. we currently route our i/o through
1720 * /dev/drum's vnode [swapdev_vp].
1721 */
1722
1723 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1724 bp->b_flags = (flags & (B_READ|B_ASYNC));
1725 bp->b_proc = &proc0; /* XXX */
1726 bp->b_vnbufs.le_next = NOLIST;
1727 bp->b_data = (void *)kva;
1728 bp->b_blkno = startblk;
1729 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1730
1731 /*
1732 * bump v_numoutput (counter of number of active outputs).
1733 */
1734
1735 if (write) {
1736 mutex_enter(&swapdev_vp->v_interlock);
1737 swapdev_vp->v_numoutput++;
1738 mutex_exit(&swapdev_vp->v_interlock);
1739 }
1740
1741 /*
1742 * for async ops we must set up the iodone handler.
1743 */
1744
1745 if (async) {
1746 bp->b_iodone = uvm_aio_biodone;
1747 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1748 if (curlwp == uvm.pagedaemon_lwp)
1749 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1750 else
1751 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1752 } else {
1753 bp->b_iodone = NULL;
1754 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1755 }
1756 UVMHIST_LOG(pdhist,
1757 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1758 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1759
1760 /*
1761 * now we start the I/O, and if async, return.
1762 */
1763
1764 VOP_STRATEGY(swapdev_vp, bp);
1765 if (async)
1766 return 0;
1767
1768 /*
1769 * must be sync i/o. wait for it to finish
1770 */
1771
1772 error = biowait(bp);
1773
1774 /*
1775 * kill the pager mapping
1776 */
1777
1778 uvm_pagermapout(kva, npages);
1779
1780 /*
1781 * now dispose of the buf and we're done.
1782 */
1783
1784 if (write) {
1785 mutex_enter(&swapdev_vp->v_interlock);
1786 vwakeup(bp);
1787 mutex_exit(&swapdev_vp->v_interlock);
1788 }
1789 putiobuf(bp);
1790 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1791
1792 return (error);
1793 }
1794