uvm_swap.c revision 1.137 1 /* $NetBSD: uvm_swap.c,v 1.137 2008/02/29 20:35:23 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.137 2008/02/29 20:35:23 yamt Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63 #include <sys/workqueue.h>
64
65 #include <uvm/uvm.h>
66
67 #include <miscfs/specfs/specdev.h>
68
69 /*
70 * uvm_swap.c: manage configuration and i/o to swap space.
71 */
72
73 /*
74 * swap space is managed in the following way:
75 *
76 * each swap partition or file is described by a "swapdev" structure.
77 * each "swapdev" structure contains a "swapent" structure which contains
78 * information that is passed up to the user (via system calls).
79 *
80 * each swap partition is assigned a "priority" (int) which controls
81 * swap parition usage.
82 *
83 * the system maintains a global data structure describing all swap
84 * partitions/files. there is a sorted LIST of "swappri" structures
85 * which describe "swapdev"'s at that priority. this LIST is headed
86 * by the "swap_priority" global var. each "swappri" contains a
87 * CIRCLEQ of "swapdev" structures at that priority.
88 *
89 * locking:
90 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
91 * system call and prevents the swap priority list from changing
92 * while we are in the middle of a system call (e.g. SWAP_STATS).
93 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
94 * structures including the priority list, the swapdev structures,
95 * and the swapmap arena.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 *
107 * userland controls and configures swap with the swapctl(2) system call.
108 * the sys_swapctl performs the following operations:
109 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 * (passed in via "arg") of a size passed in via "misc" ... we load
112 * the current swap config into the array. The actual work is done
113 * in the uvm_swap_stats(9) function.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * swapdev: describes a single swap partition/file
123 *
124 * note the following should be true:
125 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
126 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
127 */
128 struct swapdev {
129 struct oswapent swd_ose;
130 #define swd_dev swd_ose.ose_dev /* device id */
131 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
132 #define swd_priority swd_ose.ose_priority /* our priority */
133 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
134 char *swd_path; /* saved pathname of device */
135 int swd_pathlen; /* length of pathname */
136 int swd_npages; /* #pages we can use */
137 int swd_npginuse; /* #pages in use */
138 int swd_npgbad; /* #pages bad */
139 int swd_drumoffset; /* page0 offset in drum */
140 int swd_drumsize; /* #pages in drum */
141 blist_t swd_blist; /* blist for this swapdev */
142 struct vnode *swd_vp; /* backing vnode */
143 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
144
145 int swd_bsize; /* blocksize (bytes) */
146 int swd_maxactive; /* max active i/o reqs */
147 struct bufq_state *swd_tab; /* buffer list */
148 int swd_active; /* number of active buffers */
149 };
150
151 /*
152 * swap device priority entry; the list is kept sorted on `spi_priority'.
153 */
154 struct swappri {
155 int spi_priority; /* priority */
156 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
157 /* circleq of swapdevs at this priority */
158 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
159 };
160
161 /*
162 * The following two structures are used to keep track of data transfers
163 * on swap devices associated with regular files.
164 * NOTE: this code is more or less a copy of vnd.c; we use the same
165 * structure names here to ease porting..
166 */
167 struct vndxfer {
168 struct buf *vx_bp; /* Pointer to parent buffer */
169 struct swapdev *vx_sdp;
170 int vx_error;
171 int vx_pending; /* # of pending aux buffers */
172 int vx_flags;
173 #define VX_BUSY 1
174 #define VX_DEAD 2
175 };
176
177 struct vndbuf {
178 struct buf vb_buf;
179 struct vndxfer *vb_xfer;
180 };
181
182
183 /*
184 * We keep a of pool vndbuf's and vndxfer structures.
185 */
186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
187 IPL_BIO);
188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
189 IPL_BIO);
190
191 /*
192 * local variables
193 */
194 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
195 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
196
197 /* list of all active swap devices [by priority] */
198 LIST_HEAD(swap_priority, swappri);
199 static struct swap_priority swap_priority;
200
201 /* locks */
202 static krwlock_t swap_syscall_lock;
203
204 /* workqueue and use counter for swap to regular files */
205 static int sw_reg_count = 0;
206 static struct workqueue *sw_reg_workqueue;
207
208 /*
209 * prototypes
210 */
211 static struct swapdev *swapdrum_getsdp(int);
212
213 static struct swapdev *swaplist_find(struct vnode *, bool);
214 static void swaplist_insert(struct swapdev *,
215 struct swappri *, int);
216 static void swaplist_trim(void);
217
218 static int swap_on(struct lwp *, struct swapdev *);
219 static int swap_off(struct lwp *, struct swapdev *);
220
221 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
222
223 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
224 static void sw_reg_biodone(struct buf *);
225 static void sw_reg_iodone(struct work *wk, void *dummy);
226 static void sw_reg_start(struct swapdev *);
227
228 static int uvm_swap_io(struct vm_page **, int, int, int);
229
230 /*
231 * uvm_swap_init: init the swap system data structures and locks
232 *
233 * => called at boot time from init_main.c after the filesystems
234 * are brought up (which happens after uvm_init())
235 */
236 void
237 uvm_swap_init(void)
238 {
239 UVMHIST_FUNC("uvm_swap_init");
240
241 UVMHIST_CALLED(pdhist);
242 /*
243 * first, init the swap list, its counter, and its lock.
244 * then get a handle on the vnode for /dev/drum by using
245 * the its dev_t number ("swapdev", from MD conf.c).
246 */
247
248 LIST_INIT(&swap_priority);
249 uvmexp.nswapdev = 0;
250 rw_init(&swap_syscall_lock);
251 cv_init(&uvm.scheduler_cv, "schedule");
252 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
253
254 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
255 mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
256
257 if (bdevvp(swapdev, &swapdev_vp))
258 panic("uvm_swap_init: can't get vnode for swap device");
259 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
260 panic("uvm_swap_init: can't lock swap device");
261 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
262 panic("uvm_swap_init: can't open swap device");
263 VOP_UNLOCK(swapdev_vp, 0);
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
272 VM_NOSLEEP, IPL_NONE);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * done!
278 */
279 uvm.swap_running = true;
280 uvm.swapout_enabled = 1;
281 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
282
283 sysctl_createv(NULL, 0, NULL, NULL,
284 CTLFLAG_READWRITE,
285 CTLTYPE_INT, "swapout",
286 SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
287 NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
288 }
289
290 /*
291 * swaplist functions: functions that operate on the list of swap
292 * devices on the system.
293 */
294
295 /*
296 * swaplist_insert: insert swap device "sdp" into the global list
297 *
298 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
299 * => caller must provide a newly malloc'd swappri structure (we will
300 * FREE it if we don't need it... this it to prevent malloc blocking
301 * here while adding swap)
302 */
303 static void
304 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
305 {
306 struct swappri *spp, *pspp;
307 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
308
309 /*
310 * find entry at or after which to insert the new device.
311 */
312 pspp = NULL;
313 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
314 if (priority <= spp->spi_priority)
315 break;
316 pspp = spp;
317 }
318
319 /*
320 * new priority?
321 */
322 if (spp == NULL || spp->spi_priority != priority) {
323 spp = newspp; /* use newspp! */
324 UVMHIST_LOG(pdhist, "created new swappri = %d",
325 priority, 0, 0, 0);
326
327 spp->spi_priority = priority;
328 CIRCLEQ_INIT(&spp->spi_swapdev);
329
330 if (pspp)
331 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
332 else
333 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
334 } else {
335 /* we don't need a new priority structure, free it */
336 FREE(newspp, M_VMSWAP);
337 }
338
339 /*
340 * priority found (or created). now insert on the priority's
341 * circleq list and bump the total number of swapdevs.
342 */
343 sdp->swd_priority = priority;
344 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
345 uvmexp.nswapdev++;
346 }
347
348 /*
349 * swaplist_find: find and optionally remove a swap device from the
350 * global list.
351 *
352 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
353 * => we return the swapdev we found (and removed)
354 */
355 static struct swapdev *
356 swaplist_find(struct vnode *vp, bool remove)
357 {
358 struct swapdev *sdp;
359 struct swappri *spp;
360
361 /*
362 * search the lists for the requested vp
363 */
364
365 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
366 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
367 if (sdp->swd_vp == vp) {
368 if (remove) {
369 CIRCLEQ_REMOVE(&spp->spi_swapdev,
370 sdp, swd_next);
371 uvmexp.nswapdev--;
372 }
373 return(sdp);
374 }
375 }
376 }
377 return (NULL);
378 }
379
380 /*
381 * swaplist_trim: scan priority list for empty priority entries and kill
382 * them.
383 *
384 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
385 */
386 static void
387 swaplist_trim(void)
388 {
389 struct swappri *spp, *nextspp;
390
391 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
392 nextspp = LIST_NEXT(spp, spi_swappri);
393 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
394 (void *)&spp->spi_swapdev)
395 continue;
396 LIST_REMOVE(spp, spi_swappri);
397 free(spp, M_VMSWAP);
398 }
399 }
400
401 /*
402 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
403 * to the "swapdev" that maps that section of the drum.
404 *
405 * => each swapdev takes one big contig chunk of the drum
406 * => caller must hold uvm_swap_data_lock
407 */
408 static struct swapdev *
409 swapdrum_getsdp(int pgno)
410 {
411 struct swapdev *sdp;
412 struct swappri *spp;
413
414 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
415 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
416 if (sdp->swd_flags & SWF_FAKE)
417 continue;
418 if (pgno >= sdp->swd_drumoffset &&
419 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
420 return sdp;
421 }
422 }
423 }
424 return NULL;
425 }
426
427
428 /*
429 * sys_swapctl: main entry point for swapctl(2) system call
430 * [with two helper functions: swap_on and swap_off]
431 */
432 int
433 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
434 {
435 /* {
436 syscallarg(int) cmd;
437 syscallarg(void *) arg;
438 syscallarg(int) misc;
439 } */
440 struct vnode *vp;
441 struct nameidata nd;
442 struct swappri *spp;
443 struct swapdev *sdp;
444 struct swapent *sep;
445 #define SWAP_PATH_MAX (PATH_MAX + 1)
446 char *userpath;
447 size_t len;
448 int error, misc;
449 int priority;
450 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
451
452 misc = SCARG(uap, misc);
453
454 /*
455 * ensure serialized syscall access by grabbing the swap_syscall_lock
456 */
457 rw_enter(&swap_syscall_lock, RW_WRITER);
458
459 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
460 /*
461 * we handle the non-priv NSWAP and STATS request first.
462 *
463 * SWAP_NSWAP: return number of config'd swap devices
464 * [can also be obtained with uvmexp sysctl]
465 */
466 if (SCARG(uap, cmd) == SWAP_NSWAP) {
467 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
468 0, 0, 0);
469 *retval = uvmexp.nswapdev;
470 error = 0;
471 goto out;
472 }
473
474 /*
475 * SWAP_STATS: get stats on current # of configured swap devs
476 *
477 * note that the swap_priority list can't change as long
478 * as we are holding the swap_syscall_lock. we don't want
479 * to grab the uvm_swap_data_lock because we may fault&sleep during
480 * copyout() and we don't want to be holding that lock then!
481 */
482 if (SCARG(uap, cmd) == SWAP_STATS
483 #if defined(COMPAT_13)
484 || SCARG(uap, cmd) == SWAP_OSTATS
485 #endif
486 ) {
487 if ((size_t)misc > (size_t)uvmexp.nswapdev)
488 misc = uvmexp.nswapdev;
489 #if defined(COMPAT_13)
490 if (SCARG(uap, cmd) == SWAP_OSTATS)
491 len = sizeof(struct oswapent) * misc;
492 else
493 #endif
494 len = sizeof(struct swapent) * misc;
495 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
496
497 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
498 error = copyout(sep, SCARG(uap, arg), len);
499
500 free(sep, M_TEMP);
501 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
502 goto out;
503 }
504 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
505 dev_t *devp = (dev_t *)SCARG(uap, arg);
506
507 error = copyout(&dumpdev, devp, sizeof(dumpdev));
508 goto out;
509 }
510
511 /*
512 * all other requests require superuser privs. verify.
513 */
514 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
515 0, NULL, NULL, NULL)))
516 goto out;
517
518 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
519 /* drop the current dump device */
520 dumpdev = NODEV;
521 cpu_dumpconf();
522 goto out;
523 }
524
525 /*
526 * at this point we expect a path name in arg. we will
527 * use namei() to gain a vnode reference (vref), and lock
528 * the vnode (VOP_LOCK).
529 *
530 * XXX: a NULL arg means use the root vnode pointer (e.g. for
531 * miniroot)
532 */
533 if (SCARG(uap, arg) == NULL) {
534 vp = rootvp; /* miniroot */
535 if (vget(vp, LK_EXCLUSIVE)) {
536 error = EBUSY;
537 goto out;
538 }
539 if (SCARG(uap, cmd) == SWAP_ON &&
540 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
541 panic("swapctl: miniroot copy failed");
542 } else {
543 int space;
544 char *where;
545
546 if (SCARG(uap, cmd) == SWAP_ON) {
547 if ((error = copyinstr(SCARG(uap, arg), userpath,
548 SWAP_PATH_MAX, &len)))
549 goto out;
550 space = UIO_SYSSPACE;
551 where = userpath;
552 } else {
553 space = UIO_USERSPACE;
554 where = (char *)SCARG(uap, arg);
555 }
556 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
557 space, where);
558 if ((error = namei(&nd)))
559 goto out;
560 vp = nd.ni_vp;
561 }
562 /* note: "vp" is referenced and locked */
563
564 error = 0; /* assume no error */
565 switch(SCARG(uap, cmd)) {
566
567 case SWAP_DUMPDEV:
568 if (vp->v_type != VBLK) {
569 error = ENOTBLK;
570 break;
571 }
572 if (bdevsw_lookup(vp->v_rdev))
573 dumpdev = vp->v_rdev;
574 else
575 dumpdev = NODEV;
576 cpu_dumpconf();
577 break;
578
579 case SWAP_CTL:
580 /*
581 * get new priority, remove old entry (if any) and then
582 * reinsert it in the correct place. finally, prune out
583 * any empty priority structures.
584 */
585 priority = SCARG(uap, misc);
586 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
587 mutex_enter(&uvm_swap_data_lock);
588 if ((sdp = swaplist_find(vp, true)) == NULL) {
589 error = ENOENT;
590 } else {
591 swaplist_insert(sdp, spp, priority);
592 swaplist_trim();
593 }
594 mutex_exit(&uvm_swap_data_lock);
595 if (error)
596 free(spp, M_VMSWAP);
597 break;
598
599 case SWAP_ON:
600
601 /*
602 * check for duplicates. if none found, then insert a
603 * dummy entry on the list to prevent someone else from
604 * trying to enable this device while we are working on
605 * it.
606 */
607
608 priority = SCARG(uap, misc);
609 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
610 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
611 memset(sdp, 0, sizeof(*sdp));
612 sdp->swd_flags = SWF_FAKE;
613 sdp->swd_vp = vp;
614 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
615 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
616 mutex_enter(&uvm_swap_data_lock);
617 if (swaplist_find(vp, false) != NULL) {
618 error = EBUSY;
619 mutex_exit(&uvm_swap_data_lock);
620 bufq_free(sdp->swd_tab);
621 free(sdp, M_VMSWAP);
622 free(spp, M_VMSWAP);
623 break;
624 }
625 swaplist_insert(sdp, spp, priority);
626 mutex_exit(&uvm_swap_data_lock);
627
628 sdp->swd_pathlen = len;
629 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
630 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
631 panic("swapctl: copystr");
632
633 /*
634 * we've now got a FAKE placeholder in the swap list.
635 * now attempt to enable swap on it. if we fail, undo
636 * what we've done and kill the fake entry we just inserted.
637 * if swap_on is a success, it will clear the SWF_FAKE flag
638 */
639
640 if ((error = swap_on(l, sdp)) != 0) {
641 mutex_enter(&uvm_swap_data_lock);
642 (void) swaplist_find(vp, true); /* kill fake entry */
643 swaplist_trim();
644 mutex_exit(&uvm_swap_data_lock);
645 bufq_free(sdp->swd_tab);
646 free(sdp->swd_path, M_VMSWAP);
647 free(sdp, M_VMSWAP);
648 break;
649 }
650 break;
651
652 case SWAP_OFF:
653 mutex_enter(&uvm_swap_data_lock);
654 if ((sdp = swaplist_find(vp, false)) == NULL) {
655 mutex_exit(&uvm_swap_data_lock);
656 error = ENXIO;
657 break;
658 }
659
660 /*
661 * If a device isn't in use or enabled, we
662 * can't stop swapping from it (again).
663 */
664 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
665 mutex_exit(&uvm_swap_data_lock);
666 error = EBUSY;
667 break;
668 }
669
670 /*
671 * do the real work.
672 */
673 error = swap_off(l, sdp);
674 break;
675
676 default:
677 error = EINVAL;
678 }
679
680 /*
681 * done! release the ref gained by namei() and unlock.
682 */
683 vput(vp);
684
685 out:
686 free(userpath, M_TEMP);
687 rw_exit(&swap_syscall_lock);
688
689 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
690 return (error);
691 }
692
693 /*
694 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
695 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
696 * emulation to use it directly without going through sys_swapctl().
697 * The problem with using sys_swapctl() there is that it involves
698 * copying the swapent array to the stackgap, and this array's size
699 * is not known at build time. Hence it would not be possible to
700 * ensure it would fit in the stackgap in any case.
701 */
702 void
703 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
704 {
705
706 rw_enter(&swap_syscall_lock, RW_READER);
707 uvm_swap_stats_locked(cmd, sep, sec, retval);
708 rw_exit(&swap_syscall_lock);
709 }
710
711 static void
712 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
713 {
714 struct swappri *spp;
715 struct swapdev *sdp;
716 int count = 0;
717
718 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
719 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
720 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
721 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
722 /*
723 * backwards compatibility for system call.
724 * note that we use 'struct oswapent' as an
725 * overlay into both 'struct swapdev' and
726 * the userland 'struct swapent', as we
727 * want to retain backwards compatibility
728 * with NetBSD 1.3.
729 */
730 sdp->swd_ose.ose_inuse =
731 btodb((uint64_t)sdp->swd_npginuse <<
732 PAGE_SHIFT);
733 (void)memcpy(sep, &sdp->swd_ose,
734 sizeof(struct oswapent));
735
736 /* now copy out the path if necessary */
737 #if !defined(COMPAT_13)
738 (void) cmd;
739 #endif
740 #if defined(COMPAT_13)
741 if (cmd == SWAP_STATS)
742 #endif
743 (void)memcpy(&sep->se_path, sdp->swd_path,
744 sdp->swd_pathlen);
745
746 count++;
747 #if defined(COMPAT_13)
748 if (cmd == SWAP_OSTATS)
749 sep = (struct swapent *)
750 ((struct oswapent *)sep + 1);
751 else
752 #endif
753 sep++;
754 }
755 }
756
757 *retval = count;
758 return;
759 }
760
761 /*
762 * swap_on: attempt to enable a swapdev for swapping. note that the
763 * swapdev is already on the global list, but disabled (marked
764 * SWF_FAKE).
765 *
766 * => we avoid the start of the disk (to protect disk labels)
767 * => we also avoid the miniroot, if we are swapping to root.
768 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
769 * if needed.
770 */
771 static int
772 swap_on(struct lwp *l, struct swapdev *sdp)
773 {
774 struct vnode *vp;
775 int error, npages, nblocks, size;
776 long addr;
777 u_long result;
778 struct vattr va;
779 #ifdef NFS
780 extern int (**nfsv2_vnodeop_p)(void *);
781 #endif /* NFS */
782 const struct bdevsw *bdev;
783 dev_t dev;
784 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
785
786 /*
787 * we want to enable swapping on sdp. the swd_vp contains
788 * the vnode we want (locked and ref'd), and the swd_dev
789 * contains the dev_t of the file, if it a block device.
790 */
791
792 vp = sdp->swd_vp;
793 dev = sdp->swd_dev;
794
795 /*
796 * open the swap file (mostly useful for block device files to
797 * let device driver know what is up).
798 *
799 * we skip the open/close for root on swap because the root
800 * has already been opened when root was mounted (mountroot).
801 */
802 if (vp != rootvp) {
803 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
804 return (error);
805 }
806
807 /* XXX this only works for block devices */
808 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
809
810 /*
811 * we now need to determine the size of the swap area. for
812 * block specials we can call the d_psize function.
813 * for normal files, we must stat [get attrs].
814 *
815 * we put the result in nblks.
816 * for normal files, we also want the filesystem block size
817 * (which we get with statfs).
818 */
819 switch (vp->v_type) {
820 case VBLK:
821 bdev = bdevsw_lookup(dev);
822 if (bdev == NULL || bdev->d_psize == NULL ||
823 (nblocks = (*bdev->d_psize)(dev)) == -1) {
824 error = ENXIO;
825 goto bad;
826 }
827 break;
828
829 case VREG:
830 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
831 goto bad;
832 nblocks = (int)btodb(va.va_size);
833 if ((error =
834 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
835 goto bad;
836
837 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
838 /*
839 * limit the max # of outstanding I/O requests we issue
840 * at any one time. take it easy on NFS servers.
841 */
842 #ifdef NFS
843 if (vp->v_op == nfsv2_vnodeop_p)
844 sdp->swd_maxactive = 2; /* XXX */
845 else
846 #endif /* NFS */
847 sdp->swd_maxactive = 8; /* XXX */
848 break;
849
850 default:
851 error = ENXIO;
852 goto bad;
853 }
854
855 /*
856 * save nblocks in a safe place and convert to pages.
857 */
858
859 sdp->swd_ose.ose_nblks = nblocks;
860 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
861
862 /*
863 * for block special files, we want to make sure that leave
864 * the disklabel and bootblocks alone, so we arrange to skip
865 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
866 * note that because of this the "size" can be less than the
867 * actual number of blocks on the device.
868 */
869 if (vp->v_type == VBLK) {
870 /* we use pages 1 to (size - 1) [inclusive] */
871 size = npages - 1;
872 addr = 1;
873 } else {
874 /* we use pages 0 to (size - 1) [inclusive] */
875 size = npages;
876 addr = 0;
877 }
878
879 /*
880 * make sure we have enough blocks for a reasonable sized swap
881 * area. we want at least one page.
882 */
883
884 if (size < 1) {
885 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
886 error = EINVAL;
887 goto bad;
888 }
889
890 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
891
892 /*
893 * now we need to allocate an extent to manage this swap device
894 */
895
896 sdp->swd_blist = blist_create(npages);
897 /* mark all expect the `saved' region free. */
898 blist_free(sdp->swd_blist, addr, size);
899
900 /*
901 * if the vnode we are swapping to is the root vnode
902 * (i.e. we are swapping to the miniroot) then we want
903 * to make sure we don't overwrite it. do a statfs to
904 * find its size and skip over it.
905 */
906 if (vp == rootvp) {
907 struct mount *mp;
908 struct statvfs *sp;
909 int rootblocks, rootpages;
910
911 mp = rootvnode->v_mount;
912 sp = &mp->mnt_stat;
913 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
914 /*
915 * XXX: sp->f_blocks isn't the total number of
916 * blocks in the filesystem, it's the number of
917 * data blocks. so, our rootblocks almost
918 * definitely underestimates the total size
919 * of the filesystem - how badly depends on the
920 * details of the filesystem type. there isn't
921 * an obvious way to deal with this cleanly
922 * and perfectly, so for now we just pad our
923 * rootblocks estimate with an extra 5 percent.
924 */
925 rootblocks += (rootblocks >> 5) +
926 (rootblocks >> 6) +
927 (rootblocks >> 7);
928 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
929 if (rootpages > size)
930 panic("swap_on: miniroot larger than swap?");
931
932 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
933 panic("swap_on: unable to preserve miniroot");
934 }
935
936 size -= rootpages;
937 printf("Preserved %d pages of miniroot ", rootpages);
938 printf("leaving %d pages of swap\n", size);
939 }
940
941 /*
942 * add a ref to vp to reflect usage as a swap device.
943 */
944 vref(vp);
945
946 /*
947 * now add the new swapdev to the drum and enable.
948 */
949 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
950 if (result == 0)
951 panic("swapdrum_add");
952 /*
953 * If this is the first regular swap create the workqueue.
954 * => Protected by swap_syscall_lock.
955 */
956 if (vp->v_type != VBLK) {
957 if (sw_reg_count++ == 0) {
958 KASSERT(sw_reg_workqueue == NULL);
959 if (workqueue_create(&sw_reg_workqueue, "swapiod",
960 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
961 panic("swap_add: workqueue_create failed");
962 }
963 }
964
965 sdp->swd_drumoffset = (int)result;
966 sdp->swd_drumsize = npages;
967 sdp->swd_npages = size;
968 mutex_enter(&uvm_swap_data_lock);
969 sdp->swd_flags &= ~SWF_FAKE; /* going live */
970 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
971 uvmexp.swpages += size;
972 uvmexp.swpgavail += size;
973 mutex_exit(&uvm_swap_data_lock);
974 return (0);
975
976 /*
977 * failure: clean up and return error.
978 */
979
980 bad:
981 if (sdp->swd_blist) {
982 blist_destroy(sdp->swd_blist);
983 }
984 if (vp != rootvp) {
985 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
986 }
987 return (error);
988 }
989
990 /*
991 * swap_off: stop swapping on swapdev
992 *
993 * => swap data should be locked, we will unlock.
994 */
995 static int
996 swap_off(struct lwp *l, struct swapdev *sdp)
997 {
998 int npages = sdp->swd_npages;
999 int error = 0;
1000
1001 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1002 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1003
1004 /* disable the swap area being removed */
1005 sdp->swd_flags &= ~SWF_ENABLE;
1006 uvmexp.swpgavail -= npages;
1007 mutex_exit(&uvm_swap_data_lock);
1008
1009 /*
1010 * the idea is to find all the pages that are paged out to this
1011 * device, and page them all in. in uvm, swap-backed pageable
1012 * memory can take two forms: aobjs and anons. call the
1013 * swapoff hook for each subsystem to bring in pages.
1014 */
1015
1016 if (uao_swap_off(sdp->swd_drumoffset,
1017 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1018 amap_swap_off(sdp->swd_drumoffset,
1019 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1020 error = ENOMEM;
1021 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1022 error = EBUSY;
1023 }
1024
1025 if (error) {
1026 mutex_enter(&uvm_swap_data_lock);
1027 sdp->swd_flags |= SWF_ENABLE;
1028 uvmexp.swpgavail += npages;
1029 mutex_exit(&uvm_swap_data_lock);
1030
1031 return error;
1032 }
1033
1034 /*
1035 * If this is the last regular swap destroy the workqueue.
1036 * => Protected by swap_syscall_lock.
1037 */
1038 if (sdp->swd_vp->v_type != VBLK) {
1039 KASSERT(sw_reg_count > 0);
1040 KASSERT(sw_reg_workqueue != NULL);
1041 if (--sw_reg_count == 0) {
1042 workqueue_destroy(sw_reg_workqueue);
1043 sw_reg_workqueue = NULL;
1044 }
1045 }
1046
1047 /*
1048 * done with the vnode.
1049 * drop our ref on the vnode before calling VOP_CLOSE()
1050 * so that spec_close() can tell if this is the last close.
1051 */
1052 vrele(sdp->swd_vp);
1053 if (sdp->swd_vp != rootvp) {
1054 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1055 }
1056
1057 mutex_enter(&uvm_swap_data_lock);
1058 uvmexp.swpages -= npages;
1059 uvmexp.swpginuse -= sdp->swd_npgbad;
1060
1061 if (swaplist_find(sdp->swd_vp, true) == NULL)
1062 panic("swap_off: swapdev not in list");
1063 swaplist_trim();
1064 mutex_exit(&uvm_swap_data_lock);
1065
1066 /*
1067 * free all resources!
1068 */
1069 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1070 blist_destroy(sdp->swd_blist);
1071 bufq_free(sdp->swd_tab);
1072 free(sdp, M_VMSWAP);
1073 return (0);
1074 }
1075
1076 /*
1077 * /dev/drum interface and i/o functions
1078 */
1079
1080 /*
1081 * swstrategy: perform I/O on the drum
1082 *
1083 * => we must map the i/o request from the drum to the correct swapdev.
1084 */
1085 static void
1086 swstrategy(struct buf *bp)
1087 {
1088 struct swapdev *sdp;
1089 struct vnode *vp;
1090 int pageno, bn;
1091 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1092
1093 /*
1094 * convert block number to swapdev. note that swapdev can't
1095 * be yanked out from under us because we are holding resources
1096 * in it (i.e. the blocks we are doing I/O on).
1097 */
1098 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1099 mutex_enter(&uvm_swap_data_lock);
1100 sdp = swapdrum_getsdp(pageno);
1101 mutex_exit(&uvm_swap_data_lock);
1102 if (sdp == NULL) {
1103 bp->b_error = EINVAL;
1104 biodone(bp);
1105 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1106 return;
1107 }
1108
1109 /*
1110 * convert drum page number to block number on this swapdev.
1111 */
1112
1113 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1114 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1115
1116 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1117 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1118 sdp->swd_drumoffset, bn, bp->b_bcount);
1119
1120 /*
1121 * for block devices we finish up here.
1122 * for regular files we have to do more work which we delegate
1123 * to sw_reg_strategy().
1124 */
1125
1126 vp = sdp->swd_vp; /* swapdev vnode pointer */
1127 switch (vp->v_type) {
1128 default:
1129 panic("swstrategy: vnode type 0x%x", vp->v_type);
1130
1131 case VBLK:
1132
1133 /*
1134 * must convert "bp" from an I/O on /dev/drum to an I/O
1135 * on the swapdev (sdp).
1136 */
1137 bp->b_blkno = bn; /* swapdev block number */
1138 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1139
1140 /*
1141 * if we are doing a write, we have to redirect the i/o on
1142 * drum's v_numoutput counter to the swapdevs.
1143 */
1144 if ((bp->b_flags & B_READ) == 0) {
1145 mutex_enter(bp->b_objlock);
1146 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1147 mutex_exit(bp->b_objlock);
1148 mutex_enter(&vp->v_interlock);
1149 vp->v_numoutput++; /* put it on swapdev */
1150 mutex_exit(&vp->v_interlock);
1151 }
1152
1153 /*
1154 * finally plug in swapdev vnode and start I/O
1155 */
1156 bp->b_vp = vp;
1157 bp->b_objlock = &vp->v_interlock;
1158 VOP_STRATEGY(vp, bp);
1159 return;
1160
1161 case VREG:
1162 /*
1163 * delegate to sw_reg_strategy function.
1164 */
1165 sw_reg_strategy(sdp, bp, bn);
1166 return;
1167 }
1168 /* NOTREACHED */
1169 }
1170
1171 /*
1172 * swread: the read function for the drum (just a call to physio)
1173 */
1174 /*ARGSUSED*/
1175 static int
1176 swread(dev_t dev, struct uio *uio, int ioflag)
1177 {
1178 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1179
1180 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1181 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1182 }
1183
1184 /*
1185 * swwrite: the write function for the drum (just a call to physio)
1186 */
1187 /*ARGSUSED*/
1188 static int
1189 swwrite(dev_t dev, struct uio *uio, int ioflag)
1190 {
1191 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1192
1193 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1194 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1195 }
1196
1197 const struct bdevsw swap_bdevsw = {
1198 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1199 };
1200
1201 const struct cdevsw swap_cdevsw = {
1202 nullopen, nullclose, swread, swwrite, noioctl,
1203 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1204 };
1205
1206 /*
1207 * sw_reg_strategy: handle swap i/o to regular files
1208 */
1209 static void
1210 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1211 {
1212 struct vnode *vp;
1213 struct vndxfer *vnx;
1214 daddr_t nbn;
1215 char *addr;
1216 off_t byteoff;
1217 int s, off, nra, error, sz, resid;
1218 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1219
1220 /*
1221 * allocate a vndxfer head for this transfer and point it to
1222 * our buffer.
1223 */
1224 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1225 vnx->vx_flags = VX_BUSY;
1226 vnx->vx_error = 0;
1227 vnx->vx_pending = 0;
1228 vnx->vx_bp = bp;
1229 vnx->vx_sdp = sdp;
1230
1231 /*
1232 * setup for main loop where we read filesystem blocks into
1233 * our buffer.
1234 */
1235 error = 0;
1236 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1237 addr = bp->b_data; /* current position in buffer */
1238 byteoff = dbtob((uint64_t)bn);
1239
1240 for (resid = bp->b_resid; resid; resid -= sz) {
1241 struct vndbuf *nbp;
1242
1243 /*
1244 * translate byteoffset into block number. return values:
1245 * vp = vnode of underlying device
1246 * nbn = new block number (on underlying vnode dev)
1247 * nra = num blocks we can read-ahead (excludes requested
1248 * block)
1249 */
1250 nra = 0;
1251 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1252 &vp, &nbn, &nra);
1253
1254 if (error == 0 && nbn == (daddr_t)-1) {
1255 /*
1256 * this used to just set error, but that doesn't
1257 * do the right thing. Instead, it causes random
1258 * memory errors. The panic() should remain until
1259 * this condition doesn't destabilize the system.
1260 */
1261 #if 1
1262 panic("sw_reg_strategy: swap to sparse file");
1263 #else
1264 error = EIO; /* failure */
1265 #endif
1266 }
1267
1268 /*
1269 * punt if there was an error or a hole in the file.
1270 * we must wait for any i/o ops we have already started
1271 * to finish before returning.
1272 *
1273 * XXX we could deal with holes here but it would be
1274 * a hassle (in the write case).
1275 */
1276 if (error) {
1277 s = splbio();
1278 vnx->vx_error = error; /* pass error up */
1279 goto out;
1280 }
1281
1282 /*
1283 * compute the size ("sz") of this transfer (in bytes).
1284 */
1285 off = byteoff % sdp->swd_bsize;
1286 sz = (1 + nra) * sdp->swd_bsize - off;
1287 if (sz > resid)
1288 sz = resid;
1289
1290 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1291 "vp %p/%p offset 0x%x/0x%x",
1292 sdp->swd_vp, vp, byteoff, nbn);
1293
1294 /*
1295 * now get a buf structure. note that the vb_buf is
1296 * at the front of the nbp structure so that you can
1297 * cast pointers between the two structure easily.
1298 */
1299 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1300 buf_init(&nbp->vb_buf);
1301 nbp->vb_buf.b_flags = bp->b_flags;
1302 nbp->vb_buf.b_cflags = bp->b_cflags;
1303 nbp->vb_buf.b_oflags = bp->b_oflags;
1304 nbp->vb_buf.b_bcount = sz;
1305 nbp->vb_buf.b_bufsize = sz;
1306 nbp->vb_buf.b_error = 0;
1307 nbp->vb_buf.b_data = addr;
1308 nbp->vb_buf.b_lblkno = 0;
1309 nbp->vb_buf.b_blkno = nbn + btodb(off);
1310 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1311 nbp->vb_buf.b_iodone = sw_reg_biodone;
1312 nbp->vb_buf.b_vp = vp;
1313 nbp->vb_buf.b_objlock = &vp->v_interlock;
1314 if (vp->v_type == VBLK) {
1315 nbp->vb_buf.b_dev = vp->v_rdev;
1316 }
1317
1318 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1319
1320 /*
1321 * Just sort by block number
1322 */
1323 s = splbio();
1324 if (vnx->vx_error != 0) {
1325 buf_destroy(&nbp->vb_buf);
1326 pool_put(&vndbuf_pool, nbp);
1327 goto out;
1328 }
1329 vnx->vx_pending++;
1330
1331 /* sort it in and start I/O if we are not over our limit */
1332 /* XXXAD locking */
1333 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1334 sw_reg_start(sdp);
1335 splx(s);
1336
1337 /*
1338 * advance to the next I/O
1339 */
1340 byteoff += sz;
1341 addr += sz;
1342 }
1343
1344 s = splbio();
1345
1346 out: /* Arrive here at splbio */
1347 vnx->vx_flags &= ~VX_BUSY;
1348 if (vnx->vx_pending == 0) {
1349 error = vnx->vx_error;
1350 pool_put(&vndxfer_pool, vnx);
1351 bp->b_error = error;
1352 biodone(bp);
1353 }
1354 splx(s);
1355 }
1356
1357 /*
1358 * sw_reg_start: start an I/O request on the requested swapdev
1359 *
1360 * => reqs are sorted by b_rawblkno (above)
1361 */
1362 static void
1363 sw_reg_start(struct swapdev *sdp)
1364 {
1365 struct buf *bp;
1366 struct vnode *vp;
1367 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1368
1369 /* recursion control */
1370 if ((sdp->swd_flags & SWF_BUSY) != 0)
1371 return;
1372
1373 sdp->swd_flags |= SWF_BUSY;
1374
1375 while (sdp->swd_active < sdp->swd_maxactive) {
1376 bp = BUFQ_GET(sdp->swd_tab);
1377 if (bp == NULL)
1378 break;
1379 sdp->swd_active++;
1380
1381 UVMHIST_LOG(pdhist,
1382 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1383 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1384 vp = bp->b_vp;
1385 KASSERT(bp->b_objlock == &vp->v_interlock);
1386 if ((bp->b_flags & B_READ) == 0) {
1387 mutex_enter(&vp->v_interlock);
1388 vp->v_numoutput++;
1389 mutex_exit(&vp->v_interlock);
1390 }
1391 VOP_STRATEGY(vp, bp);
1392 }
1393 sdp->swd_flags &= ~SWF_BUSY;
1394 }
1395
1396 /*
1397 * sw_reg_biodone: one of our i/o's has completed
1398 */
1399 static void
1400 sw_reg_biodone(struct buf *bp)
1401 {
1402 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1403 }
1404
1405 /*
1406 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1407 *
1408 * => note that we can recover the vndbuf struct by casting the buf ptr
1409 */
1410 static void
1411 sw_reg_iodone(struct work *wk, void *dummy)
1412 {
1413 struct vndbuf *vbp = (void *)wk;
1414 struct vndxfer *vnx = vbp->vb_xfer;
1415 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1416 struct swapdev *sdp = vnx->vx_sdp;
1417 int s, resid, error;
1418 KASSERT(&vbp->vb_buf.b_work == wk);
1419 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1420
1421 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1422 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1423 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1424 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1425
1426 /*
1427 * protect vbp at splbio and update.
1428 */
1429
1430 s = splbio();
1431 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1432 pbp->b_resid -= resid;
1433 vnx->vx_pending--;
1434
1435 if (vbp->vb_buf.b_error != 0) {
1436 /* pass error upward */
1437 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1438 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1439 vnx->vx_error = error;
1440 }
1441
1442 /*
1443 * kill vbp structure
1444 */
1445 buf_destroy(&vbp->vb_buf);
1446 pool_put(&vndbuf_pool, vbp);
1447
1448 /*
1449 * wrap up this transaction if it has run to completion or, in
1450 * case of an error, when all auxiliary buffers have returned.
1451 */
1452 if (vnx->vx_error != 0) {
1453 /* pass error upward */
1454 error = vnx->vx_error;
1455 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1456 pbp->b_error = error;
1457 biodone(pbp);
1458 pool_put(&vndxfer_pool, vnx);
1459 }
1460 } else if (pbp->b_resid == 0) {
1461 KASSERT(vnx->vx_pending == 0);
1462 if ((vnx->vx_flags & VX_BUSY) == 0) {
1463 UVMHIST_LOG(pdhist, " iodone error=%d !",
1464 pbp, vnx->vx_error, 0, 0);
1465 biodone(pbp);
1466 pool_put(&vndxfer_pool, vnx);
1467 }
1468 }
1469
1470 /*
1471 * done! start next swapdev I/O if one is pending
1472 */
1473 sdp->swd_active--;
1474 sw_reg_start(sdp);
1475 splx(s);
1476 }
1477
1478
1479 /*
1480 * uvm_swap_alloc: allocate space on swap
1481 *
1482 * => allocation is done "round robin" down the priority list, as we
1483 * allocate in a priority we "rotate" the circle queue.
1484 * => space can be freed with uvm_swap_free
1485 * => we return the page slot number in /dev/drum (0 == invalid slot)
1486 * => we lock uvm_swap_data_lock
1487 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1488 */
1489 int
1490 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1491 {
1492 struct swapdev *sdp;
1493 struct swappri *spp;
1494 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1495
1496 /*
1497 * no swap devices configured yet? definite failure.
1498 */
1499 if (uvmexp.nswapdev < 1)
1500 return 0;
1501
1502 /*
1503 * lock data lock, convert slots into blocks, and enter loop
1504 */
1505 mutex_enter(&uvm_swap_data_lock);
1506
1507 ReTry: /* XXXMRG */
1508 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1509 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1510 uint64_t result;
1511
1512 /* if it's not enabled, then we can't swap from it */
1513 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1514 continue;
1515 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1516 continue;
1517 result = blist_alloc(sdp->swd_blist, *nslots);
1518 if (result == BLIST_NONE) {
1519 continue;
1520 }
1521 KASSERT(result < sdp->swd_drumsize);
1522
1523 /*
1524 * successful allocation! now rotate the circleq.
1525 */
1526 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1527 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1528 sdp->swd_npginuse += *nslots;
1529 uvmexp.swpginuse += *nslots;
1530 mutex_exit(&uvm_swap_data_lock);
1531 /* done! return drum slot number */
1532 UVMHIST_LOG(pdhist,
1533 "success! returning %d slots starting at %d",
1534 *nslots, result + sdp->swd_drumoffset, 0, 0);
1535 return (result + sdp->swd_drumoffset);
1536 }
1537 }
1538
1539 /* XXXMRG: BEGIN HACK */
1540 if (*nslots > 1 && lessok) {
1541 *nslots = 1;
1542 /* XXXMRG: ugh! blist should support this for us */
1543 goto ReTry;
1544 }
1545 /* XXXMRG: END HACK */
1546
1547 mutex_exit(&uvm_swap_data_lock);
1548 return 0;
1549 }
1550
1551 bool
1552 uvm_swapisfull(void)
1553 {
1554 bool rv;
1555
1556 mutex_enter(&uvm_swap_data_lock);
1557 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1558 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1559 mutex_exit(&uvm_swap_data_lock);
1560
1561 return (rv);
1562 }
1563
1564 /*
1565 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1566 *
1567 * => we lock uvm_swap_data_lock
1568 */
1569 void
1570 uvm_swap_markbad(int startslot, int nslots)
1571 {
1572 struct swapdev *sdp;
1573 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1574
1575 mutex_enter(&uvm_swap_data_lock);
1576 sdp = swapdrum_getsdp(startslot);
1577 KASSERT(sdp != NULL);
1578
1579 /*
1580 * we just keep track of how many pages have been marked bad
1581 * in this device, to make everything add up in swap_off().
1582 * we assume here that the range of slots will all be within
1583 * one swap device.
1584 */
1585
1586 KASSERT(uvmexp.swpgonly >= nslots);
1587 uvmexp.swpgonly -= nslots;
1588 sdp->swd_npgbad += nslots;
1589 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1590 mutex_exit(&uvm_swap_data_lock);
1591 }
1592
1593 /*
1594 * uvm_swap_free: free swap slots
1595 *
1596 * => this can be all or part of an allocation made by uvm_swap_alloc
1597 * => we lock uvm_swap_data_lock
1598 */
1599 void
1600 uvm_swap_free(int startslot, int nslots)
1601 {
1602 struct swapdev *sdp;
1603 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1604
1605 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1606 startslot, 0, 0);
1607
1608 /*
1609 * ignore attempts to free the "bad" slot.
1610 */
1611
1612 if (startslot == SWSLOT_BAD) {
1613 return;
1614 }
1615
1616 /*
1617 * convert drum slot offset back to sdp, free the blocks
1618 * in the extent, and return. must hold pri lock to do
1619 * lookup and access the extent.
1620 */
1621
1622 mutex_enter(&uvm_swap_data_lock);
1623 sdp = swapdrum_getsdp(startslot);
1624 KASSERT(uvmexp.nswapdev >= 1);
1625 KASSERT(sdp != NULL);
1626 KASSERT(sdp->swd_npginuse >= nslots);
1627 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1628 sdp->swd_npginuse -= nslots;
1629 uvmexp.swpginuse -= nslots;
1630 mutex_exit(&uvm_swap_data_lock);
1631 }
1632
1633 /*
1634 * uvm_swap_put: put any number of pages into a contig place on swap
1635 *
1636 * => can be sync or async
1637 */
1638
1639 int
1640 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1641 {
1642 int error;
1643
1644 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1645 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1646 return error;
1647 }
1648
1649 /*
1650 * uvm_swap_get: get a single page from swap
1651 *
1652 * => usually a sync op (from fault)
1653 */
1654
1655 int
1656 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1657 {
1658 int error;
1659
1660 uvmexp.nswget++;
1661 KASSERT(flags & PGO_SYNCIO);
1662 if (swslot == SWSLOT_BAD) {
1663 return EIO;
1664 }
1665
1666 error = uvm_swap_io(&page, swslot, 1, B_READ |
1667 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1668 if (error == 0) {
1669
1670 /*
1671 * this page is no longer only in swap.
1672 */
1673
1674 mutex_enter(&uvm_swap_data_lock);
1675 KASSERT(uvmexp.swpgonly > 0);
1676 uvmexp.swpgonly--;
1677 mutex_exit(&uvm_swap_data_lock);
1678 }
1679 return error;
1680 }
1681
1682 /*
1683 * uvm_swap_io: do an i/o operation to swap
1684 */
1685
1686 static int
1687 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1688 {
1689 daddr_t startblk;
1690 struct buf *bp;
1691 vaddr_t kva;
1692 int error, mapinflags;
1693 bool write, async;
1694 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1695
1696 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1697 startslot, npages, flags, 0);
1698
1699 write = (flags & B_READ) == 0;
1700 async = (flags & B_ASYNC) != 0;
1701
1702 /*
1703 * allocate a buf for the i/o.
1704 */
1705
1706 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1707 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1708 if (bp == NULL) {
1709 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1710 return ENOMEM;
1711 }
1712
1713 /*
1714 * convert starting drum slot to block number
1715 */
1716
1717 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1718
1719 /*
1720 * first, map the pages into the kernel.
1721 */
1722
1723 mapinflags = !write ?
1724 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1725 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1726 kva = uvm_pagermapin(pps, npages, mapinflags);
1727
1728 /*
1729 * fill in the bp/sbp. we currently route our i/o through
1730 * /dev/drum's vnode [swapdev_vp].
1731 */
1732
1733 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1734 bp->b_flags = (flags & (B_READ|B_ASYNC));
1735 bp->b_proc = &proc0; /* XXX */
1736 bp->b_vnbufs.le_next = NOLIST;
1737 bp->b_data = (void *)kva;
1738 bp->b_blkno = startblk;
1739 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1740
1741 /*
1742 * bump v_numoutput (counter of number of active outputs).
1743 */
1744
1745 if (write) {
1746 mutex_enter(&swapdev_vp->v_interlock);
1747 swapdev_vp->v_numoutput++;
1748 mutex_exit(&swapdev_vp->v_interlock);
1749 }
1750
1751 /*
1752 * for async ops we must set up the iodone handler.
1753 */
1754
1755 if (async) {
1756 bp->b_iodone = uvm_aio_biodone;
1757 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1758 if (curlwp == uvm.pagedaemon_lwp)
1759 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1760 else
1761 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1762 } else {
1763 bp->b_iodone = NULL;
1764 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1765 }
1766 UVMHIST_LOG(pdhist,
1767 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1768 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1769
1770 /*
1771 * now we start the I/O, and if async, return.
1772 */
1773
1774 VOP_STRATEGY(swapdev_vp, bp);
1775 if (async)
1776 return 0;
1777
1778 /*
1779 * must be sync i/o. wait for it to finish
1780 */
1781
1782 error = biowait(bp);
1783
1784 /*
1785 * kill the pager mapping
1786 */
1787
1788 uvm_pagermapout(kva, npages);
1789
1790 /*
1791 * now dispose of the buf and we're done.
1792 */
1793
1794 if (write) {
1795 mutex_enter(&swapdev_vp->v_interlock);
1796 vwakeup(bp);
1797 mutex_exit(&swapdev_vp->v_interlock);
1798 }
1799 putiobuf(bp);
1800 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1801
1802 return (error);
1803 }
1804