uvm_swap.c revision 1.137.2.1 1 /* $NetBSD: uvm_swap.c,v 1.137.2.1 2008/05/18 12:35:56 yamt Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include <sys/cdefs.h>
35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.137.2.1 2008/05/18 12:35:56 yamt Exp $");
36
37 #include "fs_nfs.h"
38 #include "opt_uvmhist.h"
39 #include "opt_compat_netbsd.h"
40 #include "opt_ddb.h"
41
42 #include <sys/param.h>
43 #include <sys/systm.h>
44 #include <sys/buf.h>
45 #include <sys/bufq.h>
46 #include <sys/conf.h>
47 #include <sys/proc.h>
48 #include <sys/namei.h>
49 #include <sys/disklabel.h>
50 #include <sys/errno.h>
51 #include <sys/kernel.h>
52 #include <sys/malloc.h>
53 #include <sys/vnode.h>
54 #include <sys/file.h>
55 #include <sys/vmem.h>
56 #include <sys/blist.h>
57 #include <sys/mount.h>
58 #include <sys/pool.h>
59 #include <sys/syscallargs.h>
60 #include <sys/swap.h>
61 #include <sys/kauth.h>
62 #include <sys/sysctl.h>
63 #include <sys/workqueue.h>
64
65 #include <uvm/uvm.h>
66
67 #include <miscfs/specfs/specdev.h>
68
69 /*
70 * uvm_swap.c: manage configuration and i/o to swap space.
71 */
72
73 /*
74 * swap space is managed in the following way:
75 *
76 * each swap partition or file is described by a "swapdev" structure.
77 * each "swapdev" structure contains a "swapent" structure which contains
78 * information that is passed up to the user (via system calls).
79 *
80 * each swap partition is assigned a "priority" (int) which controls
81 * swap parition usage.
82 *
83 * the system maintains a global data structure describing all swap
84 * partitions/files. there is a sorted LIST of "swappri" structures
85 * which describe "swapdev"'s at that priority. this LIST is headed
86 * by the "swap_priority" global var. each "swappri" contains a
87 * CIRCLEQ of "swapdev" structures at that priority.
88 *
89 * locking:
90 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
91 * system call and prevents the swap priority list from changing
92 * while we are in the middle of a system call (e.g. SWAP_STATS).
93 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
94 * structures including the priority list, the swapdev structures,
95 * and the swapmap arena.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 *
107 * userland controls and configures swap with the swapctl(2) system call.
108 * the sys_swapctl performs the following operations:
109 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 * (passed in via "arg") of a size passed in via "misc" ... we load
112 * the current swap config into the array. The actual work is done
113 * in the uvm_swap_stats(9) function.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * swapdev: describes a single swap partition/file
123 *
124 * note the following should be true:
125 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
126 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
127 */
128 struct swapdev {
129 struct oswapent swd_ose;
130 #define swd_dev swd_ose.ose_dev /* device id */
131 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
132 #define swd_priority swd_ose.ose_priority /* our priority */
133 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
134 char *swd_path; /* saved pathname of device */
135 int swd_pathlen; /* length of pathname */
136 int swd_npages; /* #pages we can use */
137 int swd_npginuse; /* #pages in use */
138 int swd_npgbad; /* #pages bad */
139 int swd_drumoffset; /* page0 offset in drum */
140 int swd_drumsize; /* #pages in drum */
141 blist_t swd_blist; /* blist for this swapdev */
142 struct vnode *swd_vp; /* backing vnode */
143 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
144
145 int swd_bsize; /* blocksize (bytes) */
146 int swd_maxactive; /* max active i/o reqs */
147 struct bufq_state *swd_tab; /* buffer list */
148 int swd_active; /* number of active buffers */
149 };
150
151 /*
152 * swap device priority entry; the list is kept sorted on `spi_priority'.
153 */
154 struct swappri {
155 int spi_priority; /* priority */
156 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
157 /* circleq of swapdevs at this priority */
158 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
159 };
160
161 /*
162 * The following two structures are used to keep track of data transfers
163 * on swap devices associated with regular files.
164 * NOTE: this code is more or less a copy of vnd.c; we use the same
165 * structure names here to ease porting..
166 */
167 struct vndxfer {
168 struct buf *vx_bp; /* Pointer to parent buffer */
169 struct swapdev *vx_sdp;
170 int vx_error;
171 int vx_pending; /* # of pending aux buffers */
172 int vx_flags;
173 #define VX_BUSY 1
174 #define VX_DEAD 2
175 };
176
177 struct vndbuf {
178 struct buf vb_buf;
179 struct vndxfer *vb_xfer;
180 };
181
182
183 /*
184 * We keep a of pool vndbuf's and vndxfer structures.
185 */
186 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
187 IPL_BIO);
188 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
189 IPL_BIO);
190
191 /*
192 * local variables
193 */
194 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
195 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
196
197 /* list of all active swap devices [by priority] */
198 LIST_HEAD(swap_priority, swappri);
199 static struct swap_priority swap_priority;
200
201 /* locks */
202 static krwlock_t swap_syscall_lock;
203
204 /* workqueue and use counter for swap to regular files */
205 static int sw_reg_count = 0;
206 static struct workqueue *sw_reg_workqueue;
207
208 /*
209 * prototypes
210 */
211 static struct swapdev *swapdrum_getsdp(int);
212
213 static struct swapdev *swaplist_find(struct vnode *, bool);
214 static void swaplist_insert(struct swapdev *,
215 struct swappri *, int);
216 static void swaplist_trim(void);
217
218 static int swap_on(struct lwp *, struct swapdev *);
219 static int swap_off(struct lwp *, struct swapdev *);
220
221 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
222
223 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
224 static void sw_reg_biodone(struct buf *);
225 static void sw_reg_iodone(struct work *wk, void *dummy);
226 static void sw_reg_start(struct swapdev *);
227
228 static int uvm_swap_io(struct vm_page **, int, int, int);
229
230 /*
231 * uvm_swap_init: init the swap system data structures and locks
232 *
233 * => called at boot time from init_main.c after the filesystems
234 * are brought up (which happens after uvm_init())
235 */
236 void
237 uvm_swap_init(void)
238 {
239 UVMHIST_FUNC("uvm_swap_init");
240
241 UVMHIST_CALLED(pdhist);
242 /*
243 * first, init the swap list, its counter, and its lock.
244 * then get a handle on the vnode for /dev/drum by using
245 * the its dev_t number ("swapdev", from MD conf.c).
246 */
247
248 LIST_INIT(&swap_priority);
249 uvmexp.nswapdev = 0;
250 rw_init(&swap_syscall_lock);
251 cv_init(&uvm.scheduler_cv, "schedule");
252 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
253
254 /* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
255 mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
256
257 if (bdevvp(swapdev, &swapdev_vp))
258 panic("uvm_swap_init: can't get vnode for swap device");
259 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
260 panic("uvm_swap_init: can't lock swap device");
261 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
262 panic("uvm_swap_init: can't open swap device");
263 VOP_UNLOCK(swapdev_vp, 0);
264
265 /*
266 * create swap block resource map to map /dev/drum. the range
267 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
268 * that block 0 is reserved (used to indicate an allocation
269 * failure, or no allocation).
270 */
271 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
272 VM_NOSLEEP, IPL_NONE);
273 if (swapmap == 0)
274 panic("uvm_swap_init: extent_create failed");
275
276 /*
277 * done!
278 */
279 uvm.swap_running = true;
280 uvm.swapout_enabled = 1;
281 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
282
283 sysctl_createv(NULL, 0, NULL, NULL,
284 CTLFLAG_READWRITE,
285 CTLTYPE_INT, "swapout",
286 SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
287 NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
288 }
289
290 /*
291 * swaplist functions: functions that operate on the list of swap
292 * devices on the system.
293 */
294
295 /*
296 * swaplist_insert: insert swap device "sdp" into the global list
297 *
298 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
299 * => caller must provide a newly malloc'd swappri structure (we will
300 * FREE it if we don't need it... this it to prevent malloc blocking
301 * here while adding swap)
302 */
303 static void
304 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
305 {
306 struct swappri *spp, *pspp;
307 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
308
309 /*
310 * find entry at or after which to insert the new device.
311 */
312 pspp = NULL;
313 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
314 if (priority <= spp->spi_priority)
315 break;
316 pspp = spp;
317 }
318
319 /*
320 * new priority?
321 */
322 if (spp == NULL || spp->spi_priority != priority) {
323 spp = newspp; /* use newspp! */
324 UVMHIST_LOG(pdhist, "created new swappri = %d",
325 priority, 0, 0, 0);
326
327 spp->spi_priority = priority;
328 CIRCLEQ_INIT(&spp->spi_swapdev);
329
330 if (pspp)
331 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
332 else
333 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
334 } else {
335 /* we don't need a new priority structure, free it */
336 FREE(newspp, M_VMSWAP);
337 }
338
339 /*
340 * priority found (or created). now insert on the priority's
341 * circleq list and bump the total number of swapdevs.
342 */
343 sdp->swd_priority = priority;
344 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
345 uvmexp.nswapdev++;
346 }
347
348 /*
349 * swaplist_find: find and optionally remove a swap device from the
350 * global list.
351 *
352 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
353 * => we return the swapdev we found (and removed)
354 */
355 static struct swapdev *
356 swaplist_find(struct vnode *vp, bool remove)
357 {
358 struct swapdev *sdp;
359 struct swappri *spp;
360
361 /*
362 * search the lists for the requested vp
363 */
364
365 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
366 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
367 if (sdp->swd_vp == vp) {
368 if (remove) {
369 CIRCLEQ_REMOVE(&spp->spi_swapdev,
370 sdp, swd_next);
371 uvmexp.nswapdev--;
372 }
373 return(sdp);
374 }
375 }
376 }
377 return (NULL);
378 }
379
380 /*
381 * swaplist_trim: scan priority list for empty priority entries and kill
382 * them.
383 *
384 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
385 */
386 static void
387 swaplist_trim(void)
388 {
389 struct swappri *spp, *nextspp;
390
391 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
392 nextspp = LIST_NEXT(spp, spi_swappri);
393 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
394 (void *)&spp->spi_swapdev)
395 continue;
396 LIST_REMOVE(spp, spi_swappri);
397 free(spp, M_VMSWAP);
398 }
399 }
400
401 /*
402 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
403 * to the "swapdev" that maps that section of the drum.
404 *
405 * => each swapdev takes one big contig chunk of the drum
406 * => caller must hold uvm_swap_data_lock
407 */
408 static struct swapdev *
409 swapdrum_getsdp(int pgno)
410 {
411 struct swapdev *sdp;
412 struct swappri *spp;
413
414 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
415 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
416 if (sdp->swd_flags & SWF_FAKE)
417 continue;
418 if (pgno >= sdp->swd_drumoffset &&
419 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
420 return sdp;
421 }
422 }
423 }
424 return NULL;
425 }
426
427
428 /*
429 * sys_swapctl: main entry point for swapctl(2) system call
430 * [with two helper functions: swap_on and swap_off]
431 */
432 int
433 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
434 {
435 /* {
436 syscallarg(int) cmd;
437 syscallarg(void *) arg;
438 syscallarg(int) misc;
439 } */
440 struct vnode *vp;
441 struct nameidata nd;
442 struct swappri *spp;
443 struct swapdev *sdp;
444 struct swapent *sep;
445 #define SWAP_PATH_MAX (PATH_MAX + 1)
446 char *userpath;
447 size_t len;
448 int error, misc;
449 int priority;
450 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
451
452 misc = SCARG(uap, misc);
453
454 /*
455 * ensure serialized syscall access by grabbing the swap_syscall_lock
456 */
457 rw_enter(&swap_syscall_lock, RW_WRITER);
458
459 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
460 /*
461 * we handle the non-priv NSWAP and STATS request first.
462 *
463 * SWAP_NSWAP: return number of config'd swap devices
464 * [can also be obtained with uvmexp sysctl]
465 */
466 if (SCARG(uap, cmd) == SWAP_NSWAP) {
467 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
468 0, 0, 0);
469 *retval = uvmexp.nswapdev;
470 error = 0;
471 goto out;
472 }
473
474 /*
475 * SWAP_STATS: get stats on current # of configured swap devs
476 *
477 * note that the swap_priority list can't change as long
478 * as we are holding the swap_syscall_lock. we don't want
479 * to grab the uvm_swap_data_lock because we may fault&sleep during
480 * copyout() and we don't want to be holding that lock then!
481 */
482 if (SCARG(uap, cmd) == SWAP_STATS
483 #if defined(COMPAT_13)
484 || SCARG(uap, cmd) == SWAP_OSTATS
485 #endif
486 ) {
487 if ((size_t)misc > (size_t)uvmexp.nswapdev)
488 misc = uvmexp.nswapdev;
489 #if defined(COMPAT_13)
490 if (SCARG(uap, cmd) == SWAP_OSTATS)
491 len = sizeof(struct oswapent) * misc;
492 else
493 #endif
494 len = sizeof(struct swapent) * misc;
495 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
496
497 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
498 error = copyout(sep, SCARG(uap, arg), len);
499
500 free(sep, M_TEMP);
501 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
502 goto out;
503 }
504 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
505 dev_t *devp = (dev_t *)SCARG(uap, arg);
506
507 error = copyout(&dumpdev, devp, sizeof(dumpdev));
508 goto out;
509 }
510
511 /*
512 * all other requests require superuser privs. verify.
513 */
514 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
515 0, NULL, NULL, NULL)))
516 goto out;
517
518 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
519 /* drop the current dump device */
520 dumpdev = NODEV;
521 dumpcdev = NODEV;
522 cpu_dumpconf();
523 goto out;
524 }
525
526 /*
527 * at this point we expect a path name in arg. we will
528 * use namei() to gain a vnode reference (vref), and lock
529 * the vnode (VOP_LOCK).
530 *
531 * XXX: a NULL arg means use the root vnode pointer (e.g. for
532 * miniroot)
533 */
534 if (SCARG(uap, arg) == NULL) {
535 vp = rootvp; /* miniroot */
536 if (vget(vp, LK_EXCLUSIVE)) {
537 error = EBUSY;
538 goto out;
539 }
540 if (SCARG(uap, cmd) == SWAP_ON &&
541 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
542 panic("swapctl: miniroot copy failed");
543 } else {
544 int space;
545 char *where;
546
547 if (SCARG(uap, cmd) == SWAP_ON) {
548 if ((error = copyinstr(SCARG(uap, arg), userpath,
549 SWAP_PATH_MAX, &len)))
550 goto out;
551 space = UIO_SYSSPACE;
552 where = userpath;
553 } else {
554 space = UIO_USERSPACE;
555 where = (char *)SCARG(uap, arg);
556 }
557 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
558 space, where);
559 if ((error = namei(&nd)))
560 goto out;
561 vp = nd.ni_vp;
562 }
563 /* note: "vp" is referenced and locked */
564
565 error = 0; /* assume no error */
566 switch(SCARG(uap, cmd)) {
567
568 case SWAP_DUMPDEV:
569 if (vp->v_type != VBLK) {
570 error = ENOTBLK;
571 break;
572 }
573 if (bdevsw_lookup(vp->v_rdev)) {
574 dumpdev = vp->v_rdev;
575 dumpcdev = devsw_blk2chr(dumpdev);
576 } else
577 dumpdev = NODEV;
578 cpu_dumpconf();
579 break;
580
581 case SWAP_CTL:
582 /*
583 * get new priority, remove old entry (if any) and then
584 * reinsert it in the correct place. finally, prune out
585 * any empty priority structures.
586 */
587 priority = SCARG(uap, misc);
588 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
589 mutex_enter(&uvm_swap_data_lock);
590 if ((sdp = swaplist_find(vp, true)) == NULL) {
591 error = ENOENT;
592 } else {
593 swaplist_insert(sdp, spp, priority);
594 swaplist_trim();
595 }
596 mutex_exit(&uvm_swap_data_lock);
597 if (error)
598 free(spp, M_VMSWAP);
599 break;
600
601 case SWAP_ON:
602
603 /*
604 * check for duplicates. if none found, then insert a
605 * dummy entry on the list to prevent someone else from
606 * trying to enable this device while we are working on
607 * it.
608 */
609
610 priority = SCARG(uap, misc);
611 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
612 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
613 memset(sdp, 0, sizeof(*sdp));
614 sdp->swd_flags = SWF_FAKE;
615 sdp->swd_vp = vp;
616 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
617 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
618 mutex_enter(&uvm_swap_data_lock);
619 if (swaplist_find(vp, false) != NULL) {
620 error = EBUSY;
621 mutex_exit(&uvm_swap_data_lock);
622 bufq_free(sdp->swd_tab);
623 free(sdp, M_VMSWAP);
624 free(spp, M_VMSWAP);
625 break;
626 }
627 swaplist_insert(sdp, spp, priority);
628 mutex_exit(&uvm_swap_data_lock);
629
630 sdp->swd_pathlen = len;
631 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
632 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
633 panic("swapctl: copystr");
634
635 /*
636 * we've now got a FAKE placeholder in the swap list.
637 * now attempt to enable swap on it. if we fail, undo
638 * what we've done and kill the fake entry we just inserted.
639 * if swap_on is a success, it will clear the SWF_FAKE flag
640 */
641
642 if ((error = swap_on(l, sdp)) != 0) {
643 mutex_enter(&uvm_swap_data_lock);
644 (void) swaplist_find(vp, true); /* kill fake entry */
645 swaplist_trim();
646 mutex_exit(&uvm_swap_data_lock);
647 bufq_free(sdp->swd_tab);
648 free(sdp->swd_path, M_VMSWAP);
649 free(sdp, M_VMSWAP);
650 break;
651 }
652 break;
653
654 case SWAP_OFF:
655 mutex_enter(&uvm_swap_data_lock);
656 if ((sdp = swaplist_find(vp, false)) == NULL) {
657 mutex_exit(&uvm_swap_data_lock);
658 error = ENXIO;
659 break;
660 }
661
662 /*
663 * If a device isn't in use or enabled, we
664 * can't stop swapping from it (again).
665 */
666 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
667 mutex_exit(&uvm_swap_data_lock);
668 error = EBUSY;
669 break;
670 }
671
672 /*
673 * do the real work.
674 */
675 error = swap_off(l, sdp);
676 break;
677
678 default:
679 error = EINVAL;
680 }
681
682 /*
683 * done! release the ref gained by namei() and unlock.
684 */
685 vput(vp);
686
687 out:
688 free(userpath, M_TEMP);
689 rw_exit(&swap_syscall_lock);
690
691 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
692 return (error);
693 }
694
695 /*
696 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
697 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
698 * emulation to use it directly without going through sys_swapctl().
699 * The problem with using sys_swapctl() there is that it involves
700 * copying the swapent array to the stackgap, and this array's size
701 * is not known at build time. Hence it would not be possible to
702 * ensure it would fit in the stackgap in any case.
703 */
704 void
705 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
706 {
707
708 rw_enter(&swap_syscall_lock, RW_READER);
709 uvm_swap_stats_locked(cmd, sep, sec, retval);
710 rw_exit(&swap_syscall_lock);
711 }
712
713 static void
714 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
715 {
716 struct swappri *spp;
717 struct swapdev *sdp;
718 int count = 0;
719
720 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
721 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
722 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
723 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
724 /*
725 * backwards compatibility for system call.
726 * note that we use 'struct oswapent' as an
727 * overlay into both 'struct swapdev' and
728 * the userland 'struct swapent', as we
729 * want to retain backwards compatibility
730 * with NetBSD 1.3.
731 */
732 sdp->swd_ose.ose_inuse =
733 btodb((uint64_t)sdp->swd_npginuse <<
734 PAGE_SHIFT);
735 (void)memcpy(sep, &sdp->swd_ose,
736 sizeof(struct oswapent));
737
738 /* now copy out the path if necessary */
739 #if !defined(COMPAT_13)
740 (void) cmd;
741 #endif
742 #if defined(COMPAT_13)
743 if (cmd == SWAP_STATS)
744 #endif
745 (void)memcpy(&sep->se_path, sdp->swd_path,
746 sdp->swd_pathlen);
747
748 count++;
749 #if defined(COMPAT_13)
750 if (cmd == SWAP_OSTATS)
751 sep = (struct swapent *)
752 ((struct oswapent *)sep + 1);
753 else
754 #endif
755 sep++;
756 }
757 }
758
759 *retval = count;
760 return;
761 }
762
763 /*
764 * swap_on: attempt to enable a swapdev for swapping. note that the
765 * swapdev is already on the global list, but disabled (marked
766 * SWF_FAKE).
767 *
768 * => we avoid the start of the disk (to protect disk labels)
769 * => we also avoid the miniroot, if we are swapping to root.
770 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
771 * if needed.
772 */
773 static int
774 swap_on(struct lwp *l, struct swapdev *sdp)
775 {
776 struct vnode *vp;
777 int error, npages, nblocks, size;
778 long addr;
779 u_long result;
780 struct vattr va;
781 #ifdef NFS
782 extern int (**nfsv2_vnodeop_p)(void *);
783 #endif /* NFS */
784 const struct bdevsw *bdev;
785 dev_t dev;
786 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
787
788 /*
789 * we want to enable swapping on sdp. the swd_vp contains
790 * the vnode we want (locked and ref'd), and the swd_dev
791 * contains the dev_t of the file, if it a block device.
792 */
793
794 vp = sdp->swd_vp;
795 dev = sdp->swd_dev;
796
797 /*
798 * open the swap file (mostly useful for block device files to
799 * let device driver know what is up).
800 *
801 * we skip the open/close for root on swap because the root
802 * has already been opened when root was mounted (mountroot).
803 */
804 if (vp != rootvp) {
805 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
806 return (error);
807 }
808
809 /* XXX this only works for block devices */
810 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
811
812 /*
813 * we now need to determine the size of the swap area. for
814 * block specials we can call the d_psize function.
815 * for normal files, we must stat [get attrs].
816 *
817 * we put the result in nblks.
818 * for normal files, we also want the filesystem block size
819 * (which we get with statfs).
820 */
821 switch (vp->v_type) {
822 case VBLK:
823 bdev = bdevsw_lookup(dev);
824 if (bdev == NULL || bdev->d_psize == NULL ||
825 (nblocks = (*bdev->d_psize)(dev)) == -1) {
826 error = ENXIO;
827 goto bad;
828 }
829 break;
830
831 case VREG:
832 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
833 goto bad;
834 nblocks = (int)btodb(va.va_size);
835 if ((error =
836 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
837 goto bad;
838
839 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
840 /*
841 * limit the max # of outstanding I/O requests we issue
842 * at any one time. take it easy on NFS servers.
843 */
844 #ifdef NFS
845 if (vp->v_op == nfsv2_vnodeop_p)
846 sdp->swd_maxactive = 2; /* XXX */
847 else
848 #endif /* NFS */
849 sdp->swd_maxactive = 8; /* XXX */
850 break;
851
852 default:
853 error = ENXIO;
854 goto bad;
855 }
856
857 /*
858 * save nblocks in a safe place and convert to pages.
859 */
860
861 sdp->swd_ose.ose_nblks = nblocks;
862 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
863
864 /*
865 * for block special files, we want to make sure that leave
866 * the disklabel and bootblocks alone, so we arrange to skip
867 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
868 * note that because of this the "size" can be less than the
869 * actual number of blocks on the device.
870 */
871 if (vp->v_type == VBLK) {
872 /* we use pages 1 to (size - 1) [inclusive] */
873 size = npages - 1;
874 addr = 1;
875 } else {
876 /* we use pages 0 to (size - 1) [inclusive] */
877 size = npages;
878 addr = 0;
879 }
880
881 /*
882 * make sure we have enough blocks for a reasonable sized swap
883 * area. we want at least one page.
884 */
885
886 if (size < 1) {
887 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
888 error = EINVAL;
889 goto bad;
890 }
891
892 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
893
894 /*
895 * now we need to allocate an extent to manage this swap device
896 */
897
898 sdp->swd_blist = blist_create(npages);
899 /* mark all expect the `saved' region free. */
900 blist_free(sdp->swd_blist, addr, size);
901
902 /*
903 * if the vnode we are swapping to is the root vnode
904 * (i.e. we are swapping to the miniroot) then we want
905 * to make sure we don't overwrite it. do a statfs to
906 * find its size and skip over it.
907 */
908 if (vp == rootvp) {
909 struct mount *mp;
910 struct statvfs *sp;
911 int rootblocks, rootpages;
912
913 mp = rootvnode->v_mount;
914 sp = &mp->mnt_stat;
915 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
916 /*
917 * XXX: sp->f_blocks isn't the total number of
918 * blocks in the filesystem, it's the number of
919 * data blocks. so, our rootblocks almost
920 * definitely underestimates the total size
921 * of the filesystem - how badly depends on the
922 * details of the filesystem type. there isn't
923 * an obvious way to deal with this cleanly
924 * and perfectly, so for now we just pad our
925 * rootblocks estimate with an extra 5 percent.
926 */
927 rootblocks += (rootblocks >> 5) +
928 (rootblocks >> 6) +
929 (rootblocks >> 7);
930 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
931 if (rootpages > size)
932 panic("swap_on: miniroot larger than swap?");
933
934 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
935 panic("swap_on: unable to preserve miniroot");
936 }
937
938 size -= rootpages;
939 printf("Preserved %d pages of miniroot ", rootpages);
940 printf("leaving %d pages of swap\n", size);
941 }
942
943 /*
944 * add a ref to vp to reflect usage as a swap device.
945 */
946 vref(vp);
947
948 /*
949 * now add the new swapdev to the drum and enable.
950 */
951 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
952 if (result == 0)
953 panic("swapdrum_add");
954 /*
955 * If this is the first regular swap create the workqueue.
956 * => Protected by swap_syscall_lock.
957 */
958 if (vp->v_type != VBLK) {
959 if (sw_reg_count++ == 0) {
960 KASSERT(sw_reg_workqueue == NULL);
961 if (workqueue_create(&sw_reg_workqueue, "swapiod",
962 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
963 panic("swap_add: workqueue_create failed");
964 }
965 }
966
967 sdp->swd_drumoffset = (int)result;
968 sdp->swd_drumsize = npages;
969 sdp->swd_npages = size;
970 mutex_enter(&uvm_swap_data_lock);
971 sdp->swd_flags &= ~SWF_FAKE; /* going live */
972 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
973 uvmexp.swpages += size;
974 uvmexp.swpgavail += size;
975 mutex_exit(&uvm_swap_data_lock);
976 return (0);
977
978 /*
979 * failure: clean up and return error.
980 */
981
982 bad:
983 if (sdp->swd_blist) {
984 blist_destroy(sdp->swd_blist);
985 }
986 if (vp != rootvp) {
987 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
988 }
989 return (error);
990 }
991
992 /*
993 * swap_off: stop swapping on swapdev
994 *
995 * => swap data should be locked, we will unlock.
996 */
997 static int
998 swap_off(struct lwp *l, struct swapdev *sdp)
999 {
1000 int npages = sdp->swd_npages;
1001 int error = 0;
1002
1003 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1004 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1005
1006 /* disable the swap area being removed */
1007 sdp->swd_flags &= ~SWF_ENABLE;
1008 uvmexp.swpgavail -= npages;
1009 mutex_exit(&uvm_swap_data_lock);
1010
1011 /*
1012 * the idea is to find all the pages that are paged out to this
1013 * device, and page them all in. in uvm, swap-backed pageable
1014 * memory can take two forms: aobjs and anons. call the
1015 * swapoff hook for each subsystem to bring in pages.
1016 */
1017
1018 if (uao_swap_off(sdp->swd_drumoffset,
1019 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1020 amap_swap_off(sdp->swd_drumoffset,
1021 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1022 error = ENOMEM;
1023 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1024 error = EBUSY;
1025 }
1026
1027 if (error) {
1028 mutex_enter(&uvm_swap_data_lock);
1029 sdp->swd_flags |= SWF_ENABLE;
1030 uvmexp.swpgavail += npages;
1031 mutex_exit(&uvm_swap_data_lock);
1032
1033 return error;
1034 }
1035
1036 /*
1037 * If this is the last regular swap destroy the workqueue.
1038 * => Protected by swap_syscall_lock.
1039 */
1040 if (sdp->swd_vp->v_type != VBLK) {
1041 KASSERT(sw_reg_count > 0);
1042 KASSERT(sw_reg_workqueue != NULL);
1043 if (--sw_reg_count == 0) {
1044 workqueue_destroy(sw_reg_workqueue);
1045 sw_reg_workqueue = NULL;
1046 }
1047 }
1048
1049 /*
1050 * done with the vnode.
1051 * drop our ref on the vnode before calling VOP_CLOSE()
1052 * so that spec_close() can tell if this is the last close.
1053 */
1054 vrele(sdp->swd_vp);
1055 if (sdp->swd_vp != rootvp) {
1056 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1057 }
1058
1059 mutex_enter(&uvm_swap_data_lock);
1060 uvmexp.swpages -= npages;
1061 uvmexp.swpginuse -= sdp->swd_npgbad;
1062
1063 if (swaplist_find(sdp->swd_vp, true) == NULL)
1064 panic("swap_off: swapdev not in list");
1065 swaplist_trim();
1066 mutex_exit(&uvm_swap_data_lock);
1067
1068 /*
1069 * free all resources!
1070 */
1071 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1072 blist_destroy(sdp->swd_blist);
1073 bufq_free(sdp->swd_tab);
1074 free(sdp, M_VMSWAP);
1075 return (0);
1076 }
1077
1078 /*
1079 * /dev/drum interface and i/o functions
1080 */
1081
1082 /*
1083 * swstrategy: perform I/O on the drum
1084 *
1085 * => we must map the i/o request from the drum to the correct swapdev.
1086 */
1087 static void
1088 swstrategy(struct buf *bp)
1089 {
1090 struct swapdev *sdp;
1091 struct vnode *vp;
1092 int pageno, bn;
1093 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1094
1095 /*
1096 * convert block number to swapdev. note that swapdev can't
1097 * be yanked out from under us because we are holding resources
1098 * in it (i.e. the blocks we are doing I/O on).
1099 */
1100 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1101 mutex_enter(&uvm_swap_data_lock);
1102 sdp = swapdrum_getsdp(pageno);
1103 mutex_exit(&uvm_swap_data_lock);
1104 if (sdp == NULL) {
1105 bp->b_error = EINVAL;
1106 biodone(bp);
1107 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1108 return;
1109 }
1110
1111 /*
1112 * convert drum page number to block number on this swapdev.
1113 */
1114
1115 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1116 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1117
1118 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1119 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1120 sdp->swd_drumoffset, bn, bp->b_bcount);
1121
1122 /*
1123 * for block devices we finish up here.
1124 * for regular files we have to do more work which we delegate
1125 * to sw_reg_strategy().
1126 */
1127
1128 vp = sdp->swd_vp; /* swapdev vnode pointer */
1129 switch (vp->v_type) {
1130 default:
1131 panic("swstrategy: vnode type 0x%x", vp->v_type);
1132
1133 case VBLK:
1134
1135 /*
1136 * must convert "bp" from an I/O on /dev/drum to an I/O
1137 * on the swapdev (sdp).
1138 */
1139 bp->b_blkno = bn; /* swapdev block number */
1140 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1141
1142 /*
1143 * if we are doing a write, we have to redirect the i/o on
1144 * drum's v_numoutput counter to the swapdevs.
1145 */
1146 if ((bp->b_flags & B_READ) == 0) {
1147 mutex_enter(bp->b_objlock);
1148 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1149 mutex_exit(bp->b_objlock);
1150 mutex_enter(&vp->v_interlock);
1151 vp->v_numoutput++; /* put it on swapdev */
1152 mutex_exit(&vp->v_interlock);
1153 }
1154
1155 /*
1156 * finally plug in swapdev vnode and start I/O
1157 */
1158 bp->b_vp = vp;
1159 bp->b_objlock = &vp->v_interlock;
1160 VOP_STRATEGY(vp, bp);
1161 return;
1162
1163 case VREG:
1164 /*
1165 * delegate to sw_reg_strategy function.
1166 */
1167 sw_reg_strategy(sdp, bp, bn);
1168 return;
1169 }
1170 /* NOTREACHED */
1171 }
1172
1173 /*
1174 * swread: the read function for the drum (just a call to physio)
1175 */
1176 /*ARGSUSED*/
1177 static int
1178 swread(dev_t dev, struct uio *uio, int ioflag)
1179 {
1180 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1181
1182 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1183 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1184 }
1185
1186 /*
1187 * swwrite: the write function for the drum (just a call to physio)
1188 */
1189 /*ARGSUSED*/
1190 static int
1191 swwrite(dev_t dev, struct uio *uio, int ioflag)
1192 {
1193 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1194
1195 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1196 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1197 }
1198
1199 const struct bdevsw swap_bdevsw = {
1200 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1201 };
1202
1203 const struct cdevsw swap_cdevsw = {
1204 nullopen, nullclose, swread, swwrite, noioctl,
1205 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1206 };
1207
1208 /*
1209 * sw_reg_strategy: handle swap i/o to regular files
1210 */
1211 static void
1212 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1213 {
1214 struct vnode *vp;
1215 struct vndxfer *vnx;
1216 daddr_t nbn;
1217 char *addr;
1218 off_t byteoff;
1219 int s, off, nra, error, sz, resid;
1220 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1221
1222 /*
1223 * allocate a vndxfer head for this transfer and point it to
1224 * our buffer.
1225 */
1226 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1227 vnx->vx_flags = VX_BUSY;
1228 vnx->vx_error = 0;
1229 vnx->vx_pending = 0;
1230 vnx->vx_bp = bp;
1231 vnx->vx_sdp = sdp;
1232
1233 /*
1234 * setup for main loop where we read filesystem blocks into
1235 * our buffer.
1236 */
1237 error = 0;
1238 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1239 addr = bp->b_data; /* current position in buffer */
1240 byteoff = dbtob((uint64_t)bn);
1241
1242 for (resid = bp->b_resid; resid; resid -= sz) {
1243 struct vndbuf *nbp;
1244
1245 /*
1246 * translate byteoffset into block number. return values:
1247 * vp = vnode of underlying device
1248 * nbn = new block number (on underlying vnode dev)
1249 * nra = num blocks we can read-ahead (excludes requested
1250 * block)
1251 */
1252 nra = 0;
1253 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1254 &vp, &nbn, &nra);
1255
1256 if (error == 0 && nbn == (daddr_t)-1) {
1257 /*
1258 * this used to just set error, but that doesn't
1259 * do the right thing. Instead, it causes random
1260 * memory errors. The panic() should remain until
1261 * this condition doesn't destabilize the system.
1262 */
1263 #if 1
1264 panic("sw_reg_strategy: swap to sparse file");
1265 #else
1266 error = EIO; /* failure */
1267 #endif
1268 }
1269
1270 /*
1271 * punt if there was an error or a hole in the file.
1272 * we must wait for any i/o ops we have already started
1273 * to finish before returning.
1274 *
1275 * XXX we could deal with holes here but it would be
1276 * a hassle (in the write case).
1277 */
1278 if (error) {
1279 s = splbio();
1280 vnx->vx_error = error; /* pass error up */
1281 goto out;
1282 }
1283
1284 /*
1285 * compute the size ("sz") of this transfer (in bytes).
1286 */
1287 off = byteoff % sdp->swd_bsize;
1288 sz = (1 + nra) * sdp->swd_bsize - off;
1289 if (sz > resid)
1290 sz = resid;
1291
1292 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1293 "vp %p/%p offset 0x%x/0x%x",
1294 sdp->swd_vp, vp, byteoff, nbn);
1295
1296 /*
1297 * now get a buf structure. note that the vb_buf is
1298 * at the front of the nbp structure so that you can
1299 * cast pointers between the two structure easily.
1300 */
1301 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1302 buf_init(&nbp->vb_buf);
1303 nbp->vb_buf.b_flags = bp->b_flags;
1304 nbp->vb_buf.b_cflags = bp->b_cflags;
1305 nbp->vb_buf.b_oflags = bp->b_oflags;
1306 nbp->vb_buf.b_bcount = sz;
1307 nbp->vb_buf.b_bufsize = sz;
1308 nbp->vb_buf.b_error = 0;
1309 nbp->vb_buf.b_data = addr;
1310 nbp->vb_buf.b_lblkno = 0;
1311 nbp->vb_buf.b_blkno = nbn + btodb(off);
1312 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1313 nbp->vb_buf.b_iodone = sw_reg_biodone;
1314 nbp->vb_buf.b_vp = vp;
1315 nbp->vb_buf.b_objlock = &vp->v_interlock;
1316 if (vp->v_type == VBLK) {
1317 nbp->vb_buf.b_dev = vp->v_rdev;
1318 }
1319
1320 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1321
1322 /*
1323 * Just sort by block number
1324 */
1325 s = splbio();
1326 if (vnx->vx_error != 0) {
1327 buf_destroy(&nbp->vb_buf);
1328 pool_put(&vndbuf_pool, nbp);
1329 goto out;
1330 }
1331 vnx->vx_pending++;
1332
1333 /* sort it in and start I/O if we are not over our limit */
1334 /* XXXAD locking */
1335 BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
1336 sw_reg_start(sdp);
1337 splx(s);
1338
1339 /*
1340 * advance to the next I/O
1341 */
1342 byteoff += sz;
1343 addr += sz;
1344 }
1345
1346 s = splbio();
1347
1348 out: /* Arrive here at splbio */
1349 vnx->vx_flags &= ~VX_BUSY;
1350 if (vnx->vx_pending == 0) {
1351 error = vnx->vx_error;
1352 pool_put(&vndxfer_pool, vnx);
1353 bp->b_error = error;
1354 biodone(bp);
1355 }
1356 splx(s);
1357 }
1358
1359 /*
1360 * sw_reg_start: start an I/O request on the requested swapdev
1361 *
1362 * => reqs are sorted by b_rawblkno (above)
1363 */
1364 static void
1365 sw_reg_start(struct swapdev *sdp)
1366 {
1367 struct buf *bp;
1368 struct vnode *vp;
1369 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1370
1371 /* recursion control */
1372 if ((sdp->swd_flags & SWF_BUSY) != 0)
1373 return;
1374
1375 sdp->swd_flags |= SWF_BUSY;
1376
1377 while (sdp->swd_active < sdp->swd_maxactive) {
1378 bp = BUFQ_GET(sdp->swd_tab);
1379 if (bp == NULL)
1380 break;
1381 sdp->swd_active++;
1382
1383 UVMHIST_LOG(pdhist,
1384 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1385 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1386 vp = bp->b_vp;
1387 KASSERT(bp->b_objlock == &vp->v_interlock);
1388 if ((bp->b_flags & B_READ) == 0) {
1389 mutex_enter(&vp->v_interlock);
1390 vp->v_numoutput++;
1391 mutex_exit(&vp->v_interlock);
1392 }
1393 VOP_STRATEGY(vp, bp);
1394 }
1395 sdp->swd_flags &= ~SWF_BUSY;
1396 }
1397
1398 /*
1399 * sw_reg_biodone: one of our i/o's has completed
1400 */
1401 static void
1402 sw_reg_biodone(struct buf *bp)
1403 {
1404 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1405 }
1406
1407 /*
1408 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1409 *
1410 * => note that we can recover the vndbuf struct by casting the buf ptr
1411 */
1412 static void
1413 sw_reg_iodone(struct work *wk, void *dummy)
1414 {
1415 struct vndbuf *vbp = (void *)wk;
1416 struct vndxfer *vnx = vbp->vb_xfer;
1417 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1418 struct swapdev *sdp = vnx->vx_sdp;
1419 int s, resid, error;
1420 KASSERT(&vbp->vb_buf.b_work == wk);
1421 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1422
1423 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1424 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1425 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1426 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1427
1428 /*
1429 * protect vbp at splbio and update.
1430 */
1431
1432 s = splbio();
1433 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1434 pbp->b_resid -= resid;
1435 vnx->vx_pending--;
1436
1437 if (vbp->vb_buf.b_error != 0) {
1438 /* pass error upward */
1439 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1440 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1441 vnx->vx_error = error;
1442 }
1443
1444 /*
1445 * kill vbp structure
1446 */
1447 buf_destroy(&vbp->vb_buf);
1448 pool_put(&vndbuf_pool, vbp);
1449
1450 /*
1451 * wrap up this transaction if it has run to completion or, in
1452 * case of an error, when all auxiliary buffers have returned.
1453 */
1454 if (vnx->vx_error != 0) {
1455 /* pass error upward */
1456 error = vnx->vx_error;
1457 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1458 pbp->b_error = error;
1459 biodone(pbp);
1460 pool_put(&vndxfer_pool, vnx);
1461 }
1462 } else if (pbp->b_resid == 0) {
1463 KASSERT(vnx->vx_pending == 0);
1464 if ((vnx->vx_flags & VX_BUSY) == 0) {
1465 UVMHIST_LOG(pdhist, " iodone error=%d !",
1466 pbp, vnx->vx_error, 0, 0);
1467 biodone(pbp);
1468 pool_put(&vndxfer_pool, vnx);
1469 }
1470 }
1471
1472 /*
1473 * done! start next swapdev I/O if one is pending
1474 */
1475 sdp->swd_active--;
1476 sw_reg_start(sdp);
1477 splx(s);
1478 }
1479
1480
1481 /*
1482 * uvm_swap_alloc: allocate space on swap
1483 *
1484 * => allocation is done "round robin" down the priority list, as we
1485 * allocate in a priority we "rotate" the circle queue.
1486 * => space can be freed with uvm_swap_free
1487 * => we return the page slot number in /dev/drum (0 == invalid slot)
1488 * => we lock uvm_swap_data_lock
1489 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1490 */
1491 int
1492 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1493 {
1494 struct swapdev *sdp;
1495 struct swappri *spp;
1496 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1497
1498 /*
1499 * no swap devices configured yet? definite failure.
1500 */
1501 if (uvmexp.nswapdev < 1)
1502 return 0;
1503
1504 /*
1505 * lock data lock, convert slots into blocks, and enter loop
1506 */
1507 mutex_enter(&uvm_swap_data_lock);
1508
1509 ReTry: /* XXXMRG */
1510 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1511 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1512 uint64_t result;
1513
1514 /* if it's not enabled, then we can't swap from it */
1515 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1516 continue;
1517 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1518 continue;
1519 result = blist_alloc(sdp->swd_blist, *nslots);
1520 if (result == BLIST_NONE) {
1521 continue;
1522 }
1523 KASSERT(result < sdp->swd_drumsize);
1524
1525 /*
1526 * successful allocation! now rotate the circleq.
1527 */
1528 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1529 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1530 sdp->swd_npginuse += *nslots;
1531 uvmexp.swpginuse += *nslots;
1532 mutex_exit(&uvm_swap_data_lock);
1533 /* done! return drum slot number */
1534 UVMHIST_LOG(pdhist,
1535 "success! returning %d slots starting at %d",
1536 *nslots, result + sdp->swd_drumoffset, 0, 0);
1537 return (result + sdp->swd_drumoffset);
1538 }
1539 }
1540
1541 /* XXXMRG: BEGIN HACK */
1542 if (*nslots > 1 && lessok) {
1543 *nslots = 1;
1544 /* XXXMRG: ugh! blist should support this for us */
1545 goto ReTry;
1546 }
1547 /* XXXMRG: END HACK */
1548
1549 mutex_exit(&uvm_swap_data_lock);
1550 return 0;
1551 }
1552
1553 bool
1554 uvm_swapisfull(void)
1555 {
1556 bool rv;
1557
1558 mutex_enter(&uvm_swap_data_lock);
1559 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1560 rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
1561 mutex_exit(&uvm_swap_data_lock);
1562
1563 return (rv);
1564 }
1565
1566 /*
1567 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1568 *
1569 * => we lock uvm_swap_data_lock
1570 */
1571 void
1572 uvm_swap_markbad(int startslot, int nslots)
1573 {
1574 struct swapdev *sdp;
1575 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1576
1577 mutex_enter(&uvm_swap_data_lock);
1578 sdp = swapdrum_getsdp(startslot);
1579 KASSERT(sdp != NULL);
1580
1581 /*
1582 * we just keep track of how many pages have been marked bad
1583 * in this device, to make everything add up in swap_off().
1584 * we assume here that the range of slots will all be within
1585 * one swap device.
1586 */
1587
1588 KASSERT(uvmexp.swpgonly >= nslots);
1589 uvmexp.swpgonly -= nslots;
1590 sdp->swd_npgbad += nslots;
1591 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1592 mutex_exit(&uvm_swap_data_lock);
1593 }
1594
1595 /*
1596 * uvm_swap_free: free swap slots
1597 *
1598 * => this can be all or part of an allocation made by uvm_swap_alloc
1599 * => we lock uvm_swap_data_lock
1600 */
1601 void
1602 uvm_swap_free(int startslot, int nslots)
1603 {
1604 struct swapdev *sdp;
1605 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1606
1607 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1608 startslot, 0, 0);
1609
1610 /*
1611 * ignore attempts to free the "bad" slot.
1612 */
1613
1614 if (startslot == SWSLOT_BAD) {
1615 return;
1616 }
1617
1618 /*
1619 * convert drum slot offset back to sdp, free the blocks
1620 * in the extent, and return. must hold pri lock to do
1621 * lookup and access the extent.
1622 */
1623
1624 mutex_enter(&uvm_swap_data_lock);
1625 sdp = swapdrum_getsdp(startslot);
1626 KASSERT(uvmexp.nswapdev >= 1);
1627 KASSERT(sdp != NULL);
1628 KASSERT(sdp->swd_npginuse >= nslots);
1629 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1630 sdp->swd_npginuse -= nslots;
1631 uvmexp.swpginuse -= nslots;
1632 mutex_exit(&uvm_swap_data_lock);
1633 }
1634
1635 /*
1636 * uvm_swap_put: put any number of pages into a contig place on swap
1637 *
1638 * => can be sync or async
1639 */
1640
1641 int
1642 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1643 {
1644 int error;
1645
1646 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1647 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1648 return error;
1649 }
1650
1651 /*
1652 * uvm_swap_get: get a single page from swap
1653 *
1654 * => usually a sync op (from fault)
1655 */
1656
1657 int
1658 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1659 {
1660 int error;
1661
1662 uvmexp.nswget++;
1663 KASSERT(flags & PGO_SYNCIO);
1664 if (swslot == SWSLOT_BAD) {
1665 return EIO;
1666 }
1667
1668 error = uvm_swap_io(&page, swslot, 1, B_READ |
1669 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1670 if (error == 0) {
1671
1672 /*
1673 * this page is no longer only in swap.
1674 */
1675
1676 mutex_enter(&uvm_swap_data_lock);
1677 KASSERT(uvmexp.swpgonly > 0);
1678 uvmexp.swpgonly--;
1679 mutex_exit(&uvm_swap_data_lock);
1680 }
1681 return error;
1682 }
1683
1684 /*
1685 * uvm_swap_io: do an i/o operation to swap
1686 */
1687
1688 static int
1689 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1690 {
1691 daddr_t startblk;
1692 struct buf *bp;
1693 vaddr_t kva;
1694 int error, mapinflags;
1695 bool write, async;
1696 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1697
1698 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1699 startslot, npages, flags, 0);
1700
1701 write = (flags & B_READ) == 0;
1702 async = (flags & B_ASYNC) != 0;
1703
1704 /*
1705 * allocate a buf for the i/o.
1706 */
1707
1708 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1709 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1710 if (bp == NULL) {
1711 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1712 return ENOMEM;
1713 }
1714
1715 /*
1716 * convert starting drum slot to block number
1717 */
1718
1719 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1720
1721 /*
1722 * first, map the pages into the kernel.
1723 */
1724
1725 mapinflags = !write ?
1726 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1727 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1728 kva = uvm_pagermapin(pps, npages, mapinflags);
1729
1730 /*
1731 * fill in the bp/sbp. we currently route our i/o through
1732 * /dev/drum's vnode [swapdev_vp].
1733 */
1734
1735 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1736 bp->b_flags = (flags & (B_READ|B_ASYNC));
1737 bp->b_proc = &proc0; /* XXX */
1738 bp->b_vnbufs.le_next = NOLIST;
1739 bp->b_data = (void *)kva;
1740 bp->b_blkno = startblk;
1741 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1742
1743 /*
1744 * bump v_numoutput (counter of number of active outputs).
1745 */
1746
1747 if (write) {
1748 mutex_enter(&swapdev_vp->v_interlock);
1749 swapdev_vp->v_numoutput++;
1750 mutex_exit(&swapdev_vp->v_interlock);
1751 }
1752
1753 /*
1754 * for async ops we must set up the iodone handler.
1755 */
1756
1757 if (async) {
1758 bp->b_iodone = uvm_aio_biodone;
1759 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1760 if (curlwp == uvm.pagedaemon_lwp)
1761 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1762 else
1763 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1764 } else {
1765 bp->b_iodone = NULL;
1766 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1767 }
1768 UVMHIST_LOG(pdhist,
1769 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1770 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1771
1772 /*
1773 * now we start the I/O, and if async, return.
1774 */
1775
1776 VOP_STRATEGY(swapdev_vp, bp);
1777 if (async)
1778 return 0;
1779
1780 /*
1781 * must be sync i/o. wait for it to finish
1782 */
1783
1784 error = biowait(bp);
1785
1786 /*
1787 * kill the pager mapping
1788 */
1789
1790 uvm_pagermapout(kva, npages);
1791
1792 /*
1793 * now dispose of the buf and we're done.
1794 */
1795
1796 if (write) {
1797 mutex_enter(&swapdev_vp->v_interlock);
1798 vwakeup(bp);
1799 mutex_exit(&swapdev_vp->v_interlock);
1800 }
1801 putiobuf(bp);
1802 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1803
1804 return (error);
1805 }
1806