Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.137.6.1
      1 /*	$NetBSD: uvm_swap.c,v 1.137.6.1 2008/05/10 23:49:09 wrstuden Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. The name of the author may not be used to endorse or promote products
     16  *    derived from this software without specific prior written permission.
     17  *
     18  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     19  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     20  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     21  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     22  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     23  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     24  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     25  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     26  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     27  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     28  * SUCH DAMAGE.
     29  *
     30  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     31  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     32  */
     33 
     34 #include <sys/cdefs.h>
     35 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.137.6.1 2008/05/10 23:49:09 wrstuden Exp $");
     36 
     37 #include "fs_nfs.h"
     38 #include "opt_uvmhist.h"
     39 #include "opt_compat_netbsd.h"
     40 #include "opt_ddb.h"
     41 
     42 #include <sys/param.h>
     43 #include <sys/systm.h>
     44 #include <sys/buf.h>
     45 #include <sys/bufq.h>
     46 #include <sys/conf.h>
     47 #include <sys/proc.h>
     48 #include <sys/namei.h>
     49 #include <sys/disklabel.h>
     50 #include <sys/errno.h>
     51 #include <sys/kernel.h>
     52 #include <sys/malloc.h>
     53 #include <sys/vnode.h>
     54 #include <sys/file.h>
     55 #include <sys/vmem.h>
     56 #include <sys/blist.h>
     57 #include <sys/mount.h>
     58 #include <sys/pool.h>
     59 #include <sys/sa.h>
     60 #include <sys/syscallargs.h>
     61 #include <sys/swap.h>
     62 #include <sys/kauth.h>
     63 #include <sys/sysctl.h>
     64 #include <sys/workqueue.h>
     65 
     66 #include <uvm/uvm.h>
     67 
     68 #include <miscfs/specfs/specdev.h>
     69 
     70 /*
     71  * uvm_swap.c: manage configuration and i/o to swap space.
     72  */
     73 
     74 /*
     75  * swap space is managed in the following way:
     76  *
     77  * each swap partition or file is described by a "swapdev" structure.
     78  * each "swapdev" structure contains a "swapent" structure which contains
     79  * information that is passed up to the user (via system calls).
     80  *
     81  * each swap partition is assigned a "priority" (int) which controls
     82  * swap parition usage.
     83  *
     84  * the system maintains a global data structure describing all swap
     85  * partitions/files.   there is a sorted LIST of "swappri" structures
     86  * which describe "swapdev"'s at that priority.   this LIST is headed
     87  * by the "swap_priority" global var.    each "swappri" contains a
     88  * CIRCLEQ of "swapdev" structures at that priority.
     89  *
     90  * locking:
     91  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     92  *    system call and prevents the swap priority list from changing
     93  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     94  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     95  *    structures including the priority list, the swapdev structures,
     96  *    and the swapmap arena.
     97  *
     98  * each swap device has the following info:
     99  *  - swap device in use (could be disabled, preventing future use)
    100  *  - swap enabled (allows new allocations on swap)
    101  *  - map info in /dev/drum
    102  *  - vnode pointer
    103  * for swap files only:
    104  *  - block size
    105  *  - max byte count in buffer
    106  *  - buffer
    107  *
    108  * userland controls and configures swap with the swapctl(2) system call.
    109  * the sys_swapctl performs the following operations:
    110  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    111  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    112  *	(passed in via "arg") of a size passed in via "misc" ... we load
    113  *	the current swap config into the array. The actual work is done
    114  *	in the uvm_swap_stats(9) function.
    115  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    116  *	priority in "misc", start swapping on it.
    117  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    118  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    119  *	"misc")
    120  */
    121 
    122 /*
    123  * swapdev: describes a single swap partition/file
    124  *
    125  * note the following should be true:
    126  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    127  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    128  */
    129 struct swapdev {
    130 	struct oswapent swd_ose;
    131 #define	swd_dev		swd_ose.ose_dev		/* device id */
    132 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    133 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    134 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    135 	char			*swd_path;	/* saved pathname of device */
    136 	int			swd_pathlen;	/* length of pathname */
    137 	int			swd_npages;	/* #pages we can use */
    138 	int			swd_npginuse;	/* #pages in use */
    139 	int			swd_npgbad;	/* #pages bad */
    140 	int			swd_drumoffset;	/* page0 offset in drum */
    141 	int			swd_drumsize;	/* #pages in drum */
    142 	blist_t			swd_blist;	/* blist for this swapdev */
    143 	struct vnode		*swd_vp;	/* backing vnode */
    144 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    145 
    146 	int			swd_bsize;	/* blocksize (bytes) */
    147 	int			swd_maxactive;	/* max active i/o reqs */
    148 	struct bufq_state	*swd_tab;	/* buffer list */
    149 	int			swd_active;	/* number of active buffers */
    150 };
    151 
    152 /*
    153  * swap device priority entry; the list is kept sorted on `spi_priority'.
    154  */
    155 struct swappri {
    156 	int			spi_priority;     /* priority */
    157 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    158 	/* circleq of swapdevs at this priority */
    159 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    160 };
    161 
    162 /*
    163  * The following two structures are used to keep track of data transfers
    164  * on swap devices associated with regular files.
    165  * NOTE: this code is more or less a copy of vnd.c; we use the same
    166  * structure names here to ease porting..
    167  */
    168 struct vndxfer {
    169 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    170 	struct swapdev	*vx_sdp;
    171 	int		vx_error;
    172 	int		vx_pending;	/* # of pending aux buffers */
    173 	int		vx_flags;
    174 #define VX_BUSY		1
    175 #define VX_DEAD		2
    176 };
    177 
    178 struct vndbuf {
    179 	struct buf	vb_buf;
    180 	struct vndxfer	*vb_xfer;
    181 };
    182 
    183 
    184 /*
    185  * We keep a of pool vndbuf's and vndxfer structures.
    186  */
    187 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    188     IPL_BIO);
    189 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    190     IPL_BIO);
    191 
    192 /*
    193  * local variables
    194  */
    195 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    196 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    197 
    198 /* list of all active swap devices [by priority] */
    199 LIST_HEAD(swap_priority, swappri);
    200 static struct swap_priority swap_priority;
    201 
    202 /* locks */
    203 static krwlock_t swap_syscall_lock;
    204 
    205 /* workqueue and use counter for swap to regular files */
    206 static int sw_reg_count = 0;
    207 static struct workqueue *sw_reg_workqueue;
    208 
    209 /*
    210  * prototypes
    211  */
    212 static struct swapdev	*swapdrum_getsdp(int);
    213 
    214 static struct swapdev	*swaplist_find(struct vnode *, bool);
    215 static void		 swaplist_insert(struct swapdev *,
    216 					 struct swappri *, int);
    217 static void		 swaplist_trim(void);
    218 
    219 static int swap_on(struct lwp *, struct swapdev *);
    220 static int swap_off(struct lwp *, struct swapdev *);
    221 
    222 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    223 
    224 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    225 static void sw_reg_biodone(struct buf *);
    226 static void sw_reg_iodone(struct work *wk, void *dummy);
    227 static void sw_reg_start(struct swapdev *);
    228 
    229 static int uvm_swap_io(struct vm_page **, int, int, int);
    230 
    231 /*
    232  * uvm_swap_init: init the swap system data structures and locks
    233  *
    234  * => called at boot time from init_main.c after the filesystems
    235  *	are brought up (which happens after uvm_init())
    236  */
    237 void
    238 uvm_swap_init(void)
    239 {
    240 	UVMHIST_FUNC("uvm_swap_init");
    241 
    242 	UVMHIST_CALLED(pdhist);
    243 	/*
    244 	 * first, init the swap list, its counter, and its lock.
    245 	 * then get a handle on the vnode for /dev/drum by using
    246 	 * the its dev_t number ("swapdev", from MD conf.c).
    247 	 */
    248 
    249 	LIST_INIT(&swap_priority);
    250 	uvmexp.nswapdev = 0;
    251 	rw_init(&swap_syscall_lock);
    252 	cv_init(&uvm.scheduler_cv, "schedule");
    253 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    254 
    255 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    256 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    257 
    258 	if (bdevvp(swapdev, &swapdev_vp))
    259 		panic("uvm_swap_init: can't get vnode for swap device");
    260 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    261 		panic("uvm_swap_init: can't lock swap device");
    262 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    263 		panic("uvm_swap_init: can't open swap device");
    264 	VOP_UNLOCK(swapdev_vp, 0);
    265 
    266 	/*
    267 	 * create swap block resource map to map /dev/drum.   the range
    268 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    269 	 * that block 0 is reserved (used to indicate an allocation
    270 	 * failure, or no allocation).
    271 	 */
    272 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    273 	    VM_NOSLEEP, IPL_NONE);
    274 	if (swapmap == 0)
    275 		panic("uvm_swap_init: extent_create failed");
    276 
    277 	/*
    278 	 * done!
    279 	 */
    280 	uvm.swap_running = true;
    281 	uvm.swapout_enabled = 1;
    282 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    283 
    284         sysctl_createv(NULL, 0, NULL, NULL,
    285             CTLFLAG_READWRITE,
    286             CTLTYPE_INT, "swapout",
    287             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    288             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    289 }
    290 
    291 /*
    292  * swaplist functions: functions that operate on the list of swap
    293  * devices on the system.
    294  */
    295 
    296 /*
    297  * swaplist_insert: insert swap device "sdp" into the global list
    298  *
    299  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    300  * => caller must provide a newly malloc'd swappri structure (we will
    301  *	FREE it if we don't need it... this it to prevent malloc blocking
    302  *	here while adding swap)
    303  */
    304 static void
    305 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    306 {
    307 	struct swappri *spp, *pspp;
    308 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    309 
    310 	/*
    311 	 * find entry at or after which to insert the new device.
    312 	 */
    313 	pspp = NULL;
    314 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    315 		if (priority <= spp->spi_priority)
    316 			break;
    317 		pspp = spp;
    318 	}
    319 
    320 	/*
    321 	 * new priority?
    322 	 */
    323 	if (spp == NULL || spp->spi_priority != priority) {
    324 		spp = newspp;  /* use newspp! */
    325 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    326 			    priority, 0, 0, 0);
    327 
    328 		spp->spi_priority = priority;
    329 		CIRCLEQ_INIT(&spp->spi_swapdev);
    330 
    331 		if (pspp)
    332 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    333 		else
    334 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    335 	} else {
    336 	  	/* we don't need a new priority structure, free it */
    337 		FREE(newspp, M_VMSWAP);
    338 	}
    339 
    340 	/*
    341 	 * priority found (or created).   now insert on the priority's
    342 	 * circleq list and bump the total number of swapdevs.
    343 	 */
    344 	sdp->swd_priority = priority;
    345 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    346 	uvmexp.nswapdev++;
    347 }
    348 
    349 /*
    350  * swaplist_find: find and optionally remove a swap device from the
    351  *	global list.
    352  *
    353  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    354  * => we return the swapdev we found (and removed)
    355  */
    356 static struct swapdev *
    357 swaplist_find(struct vnode *vp, bool remove)
    358 {
    359 	struct swapdev *sdp;
    360 	struct swappri *spp;
    361 
    362 	/*
    363 	 * search the lists for the requested vp
    364 	 */
    365 
    366 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    367 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    368 			if (sdp->swd_vp == vp) {
    369 				if (remove) {
    370 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    371 					    sdp, swd_next);
    372 					uvmexp.nswapdev--;
    373 				}
    374 				return(sdp);
    375 			}
    376 		}
    377 	}
    378 	return (NULL);
    379 }
    380 
    381 /*
    382  * swaplist_trim: scan priority list for empty priority entries and kill
    383  *	them.
    384  *
    385  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    386  */
    387 static void
    388 swaplist_trim(void)
    389 {
    390 	struct swappri *spp, *nextspp;
    391 
    392 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    393 		nextspp = LIST_NEXT(spp, spi_swappri);
    394 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    395 		    (void *)&spp->spi_swapdev)
    396 			continue;
    397 		LIST_REMOVE(spp, spi_swappri);
    398 		free(spp, M_VMSWAP);
    399 	}
    400 }
    401 
    402 /*
    403  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    404  *	to the "swapdev" that maps that section of the drum.
    405  *
    406  * => each swapdev takes one big contig chunk of the drum
    407  * => caller must hold uvm_swap_data_lock
    408  */
    409 static struct swapdev *
    410 swapdrum_getsdp(int pgno)
    411 {
    412 	struct swapdev *sdp;
    413 	struct swappri *spp;
    414 
    415 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    416 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    417 			if (sdp->swd_flags & SWF_FAKE)
    418 				continue;
    419 			if (pgno >= sdp->swd_drumoffset &&
    420 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    421 				return sdp;
    422 			}
    423 		}
    424 	}
    425 	return NULL;
    426 }
    427 
    428 
    429 /*
    430  * sys_swapctl: main entry point for swapctl(2) system call
    431  * 	[with two helper functions: swap_on and swap_off]
    432  */
    433 int
    434 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    435 {
    436 	/* {
    437 		syscallarg(int) cmd;
    438 		syscallarg(void *) arg;
    439 		syscallarg(int) misc;
    440 	} */
    441 	struct vnode *vp;
    442 	struct nameidata nd;
    443 	struct swappri *spp;
    444 	struct swapdev *sdp;
    445 	struct swapent *sep;
    446 #define SWAP_PATH_MAX (PATH_MAX + 1)
    447 	char	*userpath;
    448 	size_t	len;
    449 	int	error, misc;
    450 	int	priority;
    451 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    452 
    453 	misc = SCARG(uap, misc);
    454 
    455 	/*
    456 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    457 	 */
    458 	rw_enter(&swap_syscall_lock, RW_WRITER);
    459 
    460 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    461 	/*
    462 	 * we handle the non-priv NSWAP and STATS request first.
    463 	 *
    464 	 * SWAP_NSWAP: return number of config'd swap devices
    465 	 * [can also be obtained with uvmexp sysctl]
    466 	 */
    467 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    468 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    469 		    0, 0, 0);
    470 		*retval = uvmexp.nswapdev;
    471 		error = 0;
    472 		goto out;
    473 	}
    474 
    475 	/*
    476 	 * SWAP_STATS: get stats on current # of configured swap devs
    477 	 *
    478 	 * note that the swap_priority list can't change as long
    479 	 * as we are holding the swap_syscall_lock.  we don't want
    480 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    481 	 * copyout() and we don't want to be holding that lock then!
    482 	 */
    483 	if (SCARG(uap, cmd) == SWAP_STATS
    484 #if defined(COMPAT_13)
    485 	    || SCARG(uap, cmd) == SWAP_OSTATS
    486 #endif
    487 	    ) {
    488 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    489 			misc = uvmexp.nswapdev;
    490 #if defined(COMPAT_13)
    491 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    492 			len = sizeof(struct oswapent) * misc;
    493 		else
    494 #endif
    495 			len = sizeof(struct swapent) * misc;
    496 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    497 
    498 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    499 		error = copyout(sep, SCARG(uap, arg), len);
    500 
    501 		free(sep, M_TEMP);
    502 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    503 		goto out;
    504 	}
    505 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    506 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    507 
    508 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    509 		goto out;
    510 	}
    511 
    512 	/*
    513 	 * all other requests require superuser privs.   verify.
    514 	 */
    515 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    516 	    0, NULL, NULL, NULL)))
    517 		goto out;
    518 
    519 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    520 		/* drop the current dump device */
    521 		dumpdev = NODEV;
    522 		cpu_dumpconf();
    523 		goto out;
    524 	}
    525 
    526 	/*
    527 	 * at this point we expect a path name in arg.   we will
    528 	 * use namei() to gain a vnode reference (vref), and lock
    529 	 * the vnode (VOP_LOCK).
    530 	 *
    531 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    532 	 * miniroot)
    533 	 */
    534 	if (SCARG(uap, arg) == NULL) {
    535 		vp = rootvp;		/* miniroot */
    536 		if (vget(vp, LK_EXCLUSIVE)) {
    537 			error = EBUSY;
    538 			goto out;
    539 		}
    540 		if (SCARG(uap, cmd) == SWAP_ON &&
    541 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    542 			panic("swapctl: miniroot copy failed");
    543 	} else {
    544 		int	space;
    545 		char	*where;
    546 
    547 		if (SCARG(uap, cmd) == SWAP_ON) {
    548 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    549 			    SWAP_PATH_MAX, &len)))
    550 				goto out;
    551 			space = UIO_SYSSPACE;
    552 			where = userpath;
    553 		} else {
    554 			space = UIO_USERSPACE;
    555 			where = (char *)SCARG(uap, arg);
    556 		}
    557 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    558 		    space, where);
    559 		if ((error = namei(&nd)))
    560 			goto out;
    561 		vp = nd.ni_vp;
    562 	}
    563 	/* note: "vp" is referenced and locked */
    564 
    565 	error = 0;		/* assume no error */
    566 	switch(SCARG(uap, cmd)) {
    567 
    568 	case SWAP_DUMPDEV:
    569 		if (vp->v_type != VBLK) {
    570 			error = ENOTBLK;
    571 			break;
    572 		}
    573 		if (bdevsw_lookup(vp->v_rdev))
    574 			dumpdev = vp->v_rdev;
    575 		else
    576 			dumpdev = NODEV;
    577 		cpu_dumpconf();
    578 		break;
    579 
    580 	case SWAP_CTL:
    581 		/*
    582 		 * get new priority, remove old entry (if any) and then
    583 		 * reinsert it in the correct place.  finally, prune out
    584 		 * any empty priority structures.
    585 		 */
    586 		priority = SCARG(uap, misc);
    587 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    588 		mutex_enter(&uvm_swap_data_lock);
    589 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    590 			error = ENOENT;
    591 		} else {
    592 			swaplist_insert(sdp, spp, priority);
    593 			swaplist_trim();
    594 		}
    595 		mutex_exit(&uvm_swap_data_lock);
    596 		if (error)
    597 			free(spp, M_VMSWAP);
    598 		break;
    599 
    600 	case SWAP_ON:
    601 
    602 		/*
    603 		 * check for duplicates.   if none found, then insert a
    604 		 * dummy entry on the list to prevent someone else from
    605 		 * trying to enable this device while we are working on
    606 		 * it.
    607 		 */
    608 
    609 		priority = SCARG(uap, misc);
    610 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    611 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    612 		memset(sdp, 0, sizeof(*sdp));
    613 		sdp->swd_flags = SWF_FAKE;
    614 		sdp->swd_vp = vp;
    615 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    616 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    617 		mutex_enter(&uvm_swap_data_lock);
    618 		if (swaplist_find(vp, false) != NULL) {
    619 			error = EBUSY;
    620 			mutex_exit(&uvm_swap_data_lock);
    621 			bufq_free(sdp->swd_tab);
    622 			free(sdp, M_VMSWAP);
    623 			free(spp, M_VMSWAP);
    624 			break;
    625 		}
    626 		swaplist_insert(sdp, spp, priority);
    627 		mutex_exit(&uvm_swap_data_lock);
    628 
    629 		sdp->swd_pathlen = len;
    630 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    631 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    632 			panic("swapctl: copystr");
    633 
    634 		/*
    635 		 * we've now got a FAKE placeholder in the swap list.
    636 		 * now attempt to enable swap on it.  if we fail, undo
    637 		 * what we've done and kill the fake entry we just inserted.
    638 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    639 		 */
    640 
    641 		if ((error = swap_on(l, sdp)) != 0) {
    642 			mutex_enter(&uvm_swap_data_lock);
    643 			(void) swaplist_find(vp, true);  /* kill fake entry */
    644 			swaplist_trim();
    645 			mutex_exit(&uvm_swap_data_lock);
    646 			bufq_free(sdp->swd_tab);
    647 			free(sdp->swd_path, M_VMSWAP);
    648 			free(sdp, M_VMSWAP);
    649 			break;
    650 		}
    651 		break;
    652 
    653 	case SWAP_OFF:
    654 		mutex_enter(&uvm_swap_data_lock);
    655 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    656 			mutex_exit(&uvm_swap_data_lock);
    657 			error = ENXIO;
    658 			break;
    659 		}
    660 
    661 		/*
    662 		 * If a device isn't in use or enabled, we
    663 		 * can't stop swapping from it (again).
    664 		 */
    665 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    666 			mutex_exit(&uvm_swap_data_lock);
    667 			error = EBUSY;
    668 			break;
    669 		}
    670 
    671 		/*
    672 		 * do the real work.
    673 		 */
    674 		error = swap_off(l, sdp);
    675 		break;
    676 
    677 	default:
    678 		error = EINVAL;
    679 	}
    680 
    681 	/*
    682 	 * done!  release the ref gained by namei() and unlock.
    683 	 */
    684 	vput(vp);
    685 
    686 out:
    687 	free(userpath, M_TEMP);
    688 	rw_exit(&swap_syscall_lock);
    689 
    690 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    691 	return (error);
    692 }
    693 
    694 /*
    695  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    696  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    697  * emulation to use it directly without going through sys_swapctl().
    698  * The problem with using sys_swapctl() there is that it involves
    699  * copying the swapent array to the stackgap, and this array's size
    700  * is not known at build time. Hence it would not be possible to
    701  * ensure it would fit in the stackgap in any case.
    702  */
    703 void
    704 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    705 {
    706 
    707 	rw_enter(&swap_syscall_lock, RW_READER);
    708 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    709 	rw_exit(&swap_syscall_lock);
    710 }
    711 
    712 static void
    713 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    714 {
    715 	struct swappri *spp;
    716 	struct swapdev *sdp;
    717 	int count = 0;
    718 
    719 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    720 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    721 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    722 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    723 		  	/*
    724 			 * backwards compatibility for system call.
    725 			 * note that we use 'struct oswapent' as an
    726 			 * overlay into both 'struct swapdev' and
    727 			 * the userland 'struct swapent', as we
    728 			 * want to retain backwards compatibility
    729 			 * with NetBSD 1.3.
    730 			 */
    731 			sdp->swd_ose.ose_inuse =
    732 			    btodb((uint64_t)sdp->swd_npginuse <<
    733 			    PAGE_SHIFT);
    734 			(void)memcpy(sep, &sdp->swd_ose,
    735 			    sizeof(struct oswapent));
    736 
    737 			/* now copy out the path if necessary */
    738 #if !defined(COMPAT_13)
    739 			(void) cmd;
    740 #endif
    741 #if defined(COMPAT_13)
    742 			if (cmd == SWAP_STATS)
    743 #endif
    744 				(void)memcpy(&sep->se_path, sdp->swd_path,
    745 				    sdp->swd_pathlen);
    746 
    747 			count++;
    748 #if defined(COMPAT_13)
    749 			if (cmd == SWAP_OSTATS)
    750 				sep = (struct swapent *)
    751 				    ((struct oswapent *)sep + 1);
    752 			else
    753 #endif
    754 				sep++;
    755 		}
    756 	}
    757 
    758 	*retval = count;
    759 	return;
    760 }
    761 
    762 /*
    763  * swap_on: attempt to enable a swapdev for swapping.   note that the
    764  *	swapdev is already on the global list, but disabled (marked
    765  *	SWF_FAKE).
    766  *
    767  * => we avoid the start of the disk (to protect disk labels)
    768  * => we also avoid the miniroot, if we are swapping to root.
    769  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    770  *	if needed.
    771  */
    772 static int
    773 swap_on(struct lwp *l, struct swapdev *sdp)
    774 {
    775 	struct vnode *vp;
    776 	int error, npages, nblocks, size;
    777 	long addr;
    778 	u_long result;
    779 	struct vattr va;
    780 #ifdef NFS
    781 	extern int (**nfsv2_vnodeop_p)(void *);
    782 #endif /* NFS */
    783 	const struct bdevsw *bdev;
    784 	dev_t dev;
    785 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    786 
    787 	/*
    788 	 * we want to enable swapping on sdp.   the swd_vp contains
    789 	 * the vnode we want (locked and ref'd), and the swd_dev
    790 	 * contains the dev_t of the file, if it a block device.
    791 	 */
    792 
    793 	vp = sdp->swd_vp;
    794 	dev = sdp->swd_dev;
    795 
    796 	/*
    797 	 * open the swap file (mostly useful for block device files to
    798 	 * let device driver know what is up).
    799 	 *
    800 	 * we skip the open/close for root on swap because the root
    801 	 * has already been opened when root was mounted (mountroot).
    802 	 */
    803 	if (vp != rootvp) {
    804 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    805 			return (error);
    806 	}
    807 
    808 	/* XXX this only works for block devices */
    809 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    810 
    811 	/*
    812 	 * we now need to determine the size of the swap area.   for
    813 	 * block specials we can call the d_psize function.
    814 	 * for normal files, we must stat [get attrs].
    815 	 *
    816 	 * we put the result in nblks.
    817 	 * for normal files, we also want the filesystem block size
    818 	 * (which we get with statfs).
    819 	 */
    820 	switch (vp->v_type) {
    821 	case VBLK:
    822 		bdev = bdevsw_lookup(dev);
    823 		if (bdev == NULL || bdev->d_psize == NULL ||
    824 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    825 			error = ENXIO;
    826 			goto bad;
    827 		}
    828 		break;
    829 
    830 	case VREG:
    831 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    832 			goto bad;
    833 		nblocks = (int)btodb(va.va_size);
    834 		if ((error =
    835 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    836 			goto bad;
    837 
    838 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    839 		/*
    840 		 * limit the max # of outstanding I/O requests we issue
    841 		 * at any one time.   take it easy on NFS servers.
    842 		 */
    843 #ifdef NFS
    844 		if (vp->v_op == nfsv2_vnodeop_p)
    845 			sdp->swd_maxactive = 2; /* XXX */
    846 		else
    847 #endif /* NFS */
    848 			sdp->swd_maxactive = 8; /* XXX */
    849 		break;
    850 
    851 	default:
    852 		error = ENXIO;
    853 		goto bad;
    854 	}
    855 
    856 	/*
    857 	 * save nblocks in a safe place and convert to pages.
    858 	 */
    859 
    860 	sdp->swd_ose.ose_nblks = nblocks;
    861 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    862 
    863 	/*
    864 	 * for block special files, we want to make sure that leave
    865 	 * the disklabel and bootblocks alone, so we arrange to skip
    866 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    867 	 * note that because of this the "size" can be less than the
    868 	 * actual number of blocks on the device.
    869 	 */
    870 	if (vp->v_type == VBLK) {
    871 		/* we use pages 1 to (size - 1) [inclusive] */
    872 		size = npages - 1;
    873 		addr = 1;
    874 	} else {
    875 		/* we use pages 0 to (size - 1) [inclusive] */
    876 		size = npages;
    877 		addr = 0;
    878 	}
    879 
    880 	/*
    881 	 * make sure we have enough blocks for a reasonable sized swap
    882 	 * area.   we want at least one page.
    883 	 */
    884 
    885 	if (size < 1) {
    886 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    887 		error = EINVAL;
    888 		goto bad;
    889 	}
    890 
    891 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    892 
    893 	/*
    894 	 * now we need to allocate an extent to manage this swap device
    895 	 */
    896 
    897 	sdp->swd_blist = blist_create(npages);
    898 	/* mark all expect the `saved' region free. */
    899 	blist_free(sdp->swd_blist, addr, size);
    900 
    901 	/*
    902 	 * if the vnode we are swapping to is the root vnode
    903 	 * (i.e. we are swapping to the miniroot) then we want
    904 	 * to make sure we don't overwrite it.   do a statfs to
    905 	 * find its size and skip over it.
    906 	 */
    907 	if (vp == rootvp) {
    908 		struct mount *mp;
    909 		struct statvfs *sp;
    910 		int rootblocks, rootpages;
    911 
    912 		mp = rootvnode->v_mount;
    913 		sp = &mp->mnt_stat;
    914 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    915 		/*
    916 		 * XXX: sp->f_blocks isn't the total number of
    917 		 * blocks in the filesystem, it's the number of
    918 		 * data blocks.  so, our rootblocks almost
    919 		 * definitely underestimates the total size
    920 		 * of the filesystem - how badly depends on the
    921 		 * details of the filesystem type.  there isn't
    922 		 * an obvious way to deal with this cleanly
    923 		 * and perfectly, so for now we just pad our
    924 		 * rootblocks estimate with an extra 5 percent.
    925 		 */
    926 		rootblocks += (rootblocks >> 5) +
    927 			(rootblocks >> 6) +
    928 			(rootblocks >> 7);
    929 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    930 		if (rootpages > size)
    931 			panic("swap_on: miniroot larger than swap?");
    932 
    933 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    934 			panic("swap_on: unable to preserve miniroot");
    935 		}
    936 
    937 		size -= rootpages;
    938 		printf("Preserved %d pages of miniroot ", rootpages);
    939 		printf("leaving %d pages of swap\n", size);
    940 	}
    941 
    942 	/*
    943 	 * add a ref to vp to reflect usage as a swap device.
    944 	 */
    945 	vref(vp);
    946 
    947 	/*
    948 	 * now add the new swapdev to the drum and enable.
    949 	 */
    950 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    951 	if (result == 0)
    952 		panic("swapdrum_add");
    953 	/*
    954 	 * If this is the first regular swap create the workqueue.
    955 	 * => Protected by swap_syscall_lock.
    956 	 */
    957 	if (vp->v_type != VBLK) {
    958 		if (sw_reg_count++ == 0) {
    959 			KASSERT(sw_reg_workqueue == NULL);
    960 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    961 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    962 				panic("swap_add: workqueue_create failed");
    963 		}
    964 	}
    965 
    966 	sdp->swd_drumoffset = (int)result;
    967 	sdp->swd_drumsize = npages;
    968 	sdp->swd_npages = size;
    969 	mutex_enter(&uvm_swap_data_lock);
    970 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    971 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    972 	uvmexp.swpages += size;
    973 	uvmexp.swpgavail += size;
    974 	mutex_exit(&uvm_swap_data_lock);
    975 	return (0);
    976 
    977 	/*
    978 	 * failure: clean up and return error.
    979 	 */
    980 
    981 bad:
    982 	if (sdp->swd_blist) {
    983 		blist_destroy(sdp->swd_blist);
    984 	}
    985 	if (vp != rootvp) {
    986 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    987 	}
    988 	return (error);
    989 }
    990 
    991 /*
    992  * swap_off: stop swapping on swapdev
    993  *
    994  * => swap data should be locked, we will unlock.
    995  */
    996 static int
    997 swap_off(struct lwp *l, struct swapdev *sdp)
    998 {
    999 	int npages = sdp->swd_npages;
   1000 	int error = 0;
   1001 
   1002 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1003 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1004 
   1005 	/* disable the swap area being removed */
   1006 	sdp->swd_flags &= ~SWF_ENABLE;
   1007 	uvmexp.swpgavail -= npages;
   1008 	mutex_exit(&uvm_swap_data_lock);
   1009 
   1010 	/*
   1011 	 * the idea is to find all the pages that are paged out to this
   1012 	 * device, and page them all in.  in uvm, swap-backed pageable
   1013 	 * memory can take two forms: aobjs and anons.  call the
   1014 	 * swapoff hook for each subsystem to bring in pages.
   1015 	 */
   1016 
   1017 	if (uao_swap_off(sdp->swd_drumoffset,
   1018 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1019 	    amap_swap_off(sdp->swd_drumoffset,
   1020 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1021 		error = ENOMEM;
   1022 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1023 		error = EBUSY;
   1024 	}
   1025 
   1026 	if (error) {
   1027 		mutex_enter(&uvm_swap_data_lock);
   1028 		sdp->swd_flags |= SWF_ENABLE;
   1029 		uvmexp.swpgavail += npages;
   1030 		mutex_exit(&uvm_swap_data_lock);
   1031 
   1032 		return error;
   1033 	}
   1034 
   1035 	/*
   1036 	 * If this is the last regular swap destroy the workqueue.
   1037 	 * => Protected by swap_syscall_lock.
   1038 	 */
   1039 	if (sdp->swd_vp->v_type != VBLK) {
   1040 		KASSERT(sw_reg_count > 0);
   1041 		KASSERT(sw_reg_workqueue != NULL);
   1042 		if (--sw_reg_count == 0) {
   1043 			workqueue_destroy(sw_reg_workqueue);
   1044 			sw_reg_workqueue = NULL;
   1045 		}
   1046 	}
   1047 
   1048 	/*
   1049 	 * done with the vnode.
   1050 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1051 	 * so that spec_close() can tell if this is the last close.
   1052 	 */
   1053 	vrele(sdp->swd_vp);
   1054 	if (sdp->swd_vp != rootvp) {
   1055 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1056 	}
   1057 
   1058 	mutex_enter(&uvm_swap_data_lock);
   1059 	uvmexp.swpages -= npages;
   1060 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1061 
   1062 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1063 		panic("swap_off: swapdev not in list");
   1064 	swaplist_trim();
   1065 	mutex_exit(&uvm_swap_data_lock);
   1066 
   1067 	/*
   1068 	 * free all resources!
   1069 	 */
   1070 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1071 	blist_destroy(sdp->swd_blist);
   1072 	bufq_free(sdp->swd_tab);
   1073 	free(sdp, M_VMSWAP);
   1074 	return (0);
   1075 }
   1076 
   1077 /*
   1078  * /dev/drum interface and i/o functions
   1079  */
   1080 
   1081 /*
   1082  * swstrategy: perform I/O on the drum
   1083  *
   1084  * => we must map the i/o request from the drum to the correct swapdev.
   1085  */
   1086 static void
   1087 swstrategy(struct buf *bp)
   1088 {
   1089 	struct swapdev *sdp;
   1090 	struct vnode *vp;
   1091 	int pageno, bn;
   1092 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1093 
   1094 	/*
   1095 	 * convert block number to swapdev.   note that swapdev can't
   1096 	 * be yanked out from under us because we are holding resources
   1097 	 * in it (i.e. the blocks we are doing I/O on).
   1098 	 */
   1099 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1100 	mutex_enter(&uvm_swap_data_lock);
   1101 	sdp = swapdrum_getsdp(pageno);
   1102 	mutex_exit(&uvm_swap_data_lock);
   1103 	if (sdp == NULL) {
   1104 		bp->b_error = EINVAL;
   1105 		biodone(bp);
   1106 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1107 		return;
   1108 	}
   1109 
   1110 	/*
   1111 	 * convert drum page number to block number on this swapdev.
   1112 	 */
   1113 
   1114 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1115 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1116 
   1117 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1118 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1119 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1120 
   1121 	/*
   1122 	 * for block devices we finish up here.
   1123 	 * for regular files we have to do more work which we delegate
   1124 	 * to sw_reg_strategy().
   1125 	 */
   1126 
   1127 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1128 	switch (vp->v_type) {
   1129 	default:
   1130 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1131 
   1132 	case VBLK:
   1133 
   1134 		/*
   1135 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1136 		 * on the swapdev (sdp).
   1137 		 */
   1138 		bp->b_blkno = bn;		/* swapdev block number */
   1139 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1140 
   1141 		/*
   1142 		 * if we are doing a write, we have to redirect the i/o on
   1143 		 * drum's v_numoutput counter to the swapdevs.
   1144 		 */
   1145 		if ((bp->b_flags & B_READ) == 0) {
   1146 			mutex_enter(bp->b_objlock);
   1147 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1148 			mutex_exit(bp->b_objlock);
   1149 			mutex_enter(&vp->v_interlock);
   1150 			vp->v_numoutput++;	/* put it on swapdev */
   1151 			mutex_exit(&vp->v_interlock);
   1152 		}
   1153 
   1154 		/*
   1155 		 * finally plug in swapdev vnode and start I/O
   1156 		 */
   1157 		bp->b_vp = vp;
   1158 		bp->b_objlock = &vp->v_interlock;
   1159 		VOP_STRATEGY(vp, bp);
   1160 		return;
   1161 
   1162 	case VREG:
   1163 		/*
   1164 		 * delegate to sw_reg_strategy function.
   1165 		 */
   1166 		sw_reg_strategy(sdp, bp, bn);
   1167 		return;
   1168 	}
   1169 	/* NOTREACHED */
   1170 }
   1171 
   1172 /*
   1173  * swread: the read function for the drum (just a call to physio)
   1174  */
   1175 /*ARGSUSED*/
   1176 static int
   1177 swread(dev_t dev, struct uio *uio, int ioflag)
   1178 {
   1179 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1180 
   1181 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1182 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1183 }
   1184 
   1185 /*
   1186  * swwrite: the write function for the drum (just a call to physio)
   1187  */
   1188 /*ARGSUSED*/
   1189 static int
   1190 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1191 {
   1192 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1193 
   1194 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1195 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1196 }
   1197 
   1198 const struct bdevsw swap_bdevsw = {
   1199 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1200 };
   1201 
   1202 const struct cdevsw swap_cdevsw = {
   1203 	nullopen, nullclose, swread, swwrite, noioctl,
   1204 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1205 };
   1206 
   1207 /*
   1208  * sw_reg_strategy: handle swap i/o to regular files
   1209  */
   1210 static void
   1211 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1212 {
   1213 	struct vnode	*vp;
   1214 	struct vndxfer	*vnx;
   1215 	daddr_t		nbn;
   1216 	char 		*addr;
   1217 	off_t		byteoff;
   1218 	int		s, off, nra, error, sz, resid;
   1219 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1220 
   1221 	/*
   1222 	 * allocate a vndxfer head for this transfer and point it to
   1223 	 * our buffer.
   1224 	 */
   1225 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1226 	vnx->vx_flags = VX_BUSY;
   1227 	vnx->vx_error = 0;
   1228 	vnx->vx_pending = 0;
   1229 	vnx->vx_bp = bp;
   1230 	vnx->vx_sdp = sdp;
   1231 
   1232 	/*
   1233 	 * setup for main loop where we read filesystem blocks into
   1234 	 * our buffer.
   1235 	 */
   1236 	error = 0;
   1237 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1238 	addr = bp->b_data;		/* current position in buffer */
   1239 	byteoff = dbtob((uint64_t)bn);
   1240 
   1241 	for (resid = bp->b_resid; resid; resid -= sz) {
   1242 		struct vndbuf	*nbp;
   1243 
   1244 		/*
   1245 		 * translate byteoffset into block number.  return values:
   1246 		 *   vp = vnode of underlying device
   1247 		 *  nbn = new block number (on underlying vnode dev)
   1248 		 *  nra = num blocks we can read-ahead (excludes requested
   1249 		 *	block)
   1250 		 */
   1251 		nra = 0;
   1252 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1253 				 	&vp, &nbn, &nra);
   1254 
   1255 		if (error == 0 && nbn == (daddr_t)-1) {
   1256 			/*
   1257 			 * this used to just set error, but that doesn't
   1258 			 * do the right thing.  Instead, it causes random
   1259 			 * memory errors.  The panic() should remain until
   1260 			 * this condition doesn't destabilize the system.
   1261 			 */
   1262 #if 1
   1263 			panic("sw_reg_strategy: swap to sparse file");
   1264 #else
   1265 			error = EIO;	/* failure */
   1266 #endif
   1267 		}
   1268 
   1269 		/*
   1270 		 * punt if there was an error or a hole in the file.
   1271 		 * we must wait for any i/o ops we have already started
   1272 		 * to finish before returning.
   1273 		 *
   1274 		 * XXX we could deal with holes here but it would be
   1275 		 * a hassle (in the write case).
   1276 		 */
   1277 		if (error) {
   1278 			s = splbio();
   1279 			vnx->vx_error = error;	/* pass error up */
   1280 			goto out;
   1281 		}
   1282 
   1283 		/*
   1284 		 * compute the size ("sz") of this transfer (in bytes).
   1285 		 */
   1286 		off = byteoff % sdp->swd_bsize;
   1287 		sz = (1 + nra) * sdp->swd_bsize - off;
   1288 		if (sz > resid)
   1289 			sz = resid;
   1290 
   1291 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1292 			    "vp %p/%p offset 0x%x/0x%x",
   1293 			    sdp->swd_vp, vp, byteoff, nbn);
   1294 
   1295 		/*
   1296 		 * now get a buf structure.   note that the vb_buf is
   1297 		 * at the front of the nbp structure so that you can
   1298 		 * cast pointers between the two structure easily.
   1299 		 */
   1300 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1301 		buf_init(&nbp->vb_buf);
   1302 		nbp->vb_buf.b_flags    = bp->b_flags;
   1303 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1304 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1305 		nbp->vb_buf.b_bcount   = sz;
   1306 		nbp->vb_buf.b_bufsize  = sz;
   1307 		nbp->vb_buf.b_error    = 0;
   1308 		nbp->vb_buf.b_data     = addr;
   1309 		nbp->vb_buf.b_lblkno   = 0;
   1310 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1311 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1312 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1313 		nbp->vb_buf.b_vp       = vp;
   1314 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1315 		if (vp->v_type == VBLK) {
   1316 			nbp->vb_buf.b_dev = vp->v_rdev;
   1317 		}
   1318 
   1319 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1320 
   1321 		/*
   1322 		 * Just sort by block number
   1323 		 */
   1324 		s = splbio();
   1325 		if (vnx->vx_error != 0) {
   1326 			buf_destroy(&nbp->vb_buf);
   1327 			pool_put(&vndbuf_pool, nbp);
   1328 			goto out;
   1329 		}
   1330 		vnx->vx_pending++;
   1331 
   1332 		/* sort it in and start I/O if we are not over our limit */
   1333 		/* XXXAD locking */
   1334 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1335 		sw_reg_start(sdp);
   1336 		splx(s);
   1337 
   1338 		/*
   1339 		 * advance to the next I/O
   1340 		 */
   1341 		byteoff += sz;
   1342 		addr += sz;
   1343 	}
   1344 
   1345 	s = splbio();
   1346 
   1347 out: /* Arrive here at splbio */
   1348 	vnx->vx_flags &= ~VX_BUSY;
   1349 	if (vnx->vx_pending == 0) {
   1350 		error = vnx->vx_error;
   1351 		pool_put(&vndxfer_pool, vnx);
   1352 		bp->b_error = error;
   1353 		biodone(bp);
   1354 	}
   1355 	splx(s);
   1356 }
   1357 
   1358 /*
   1359  * sw_reg_start: start an I/O request on the requested swapdev
   1360  *
   1361  * => reqs are sorted by b_rawblkno (above)
   1362  */
   1363 static void
   1364 sw_reg_start(struct swapdev *sdp)
   1365 {
   1366 	struct buf	*bp;
   1367 	struct vnode	*vp;
   1368 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1369 
   1370 	/* recursion control */
   1371 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1372 		return;
   1373 
   1374 	sdp->swd_flags |= SWF_BUSY;
   1375 
   1376 	while (sdp->swd_active < sdp->swd_maxactive) {
   1377 		bp = BUFQ_GET(sdp->swd_tab);
   1378 		if (bp == NULL)
   1379 			break;
   1380 		sdp->swd_active++;
   1381 
   1382 		UVMHIST_LOG(pdhist,
   1383 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1384 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1385 		vp = bp->b_vp;
   1386 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1387 		if ((bp->b_flags & B_READ) == 0) {
   1388 			mutex_enter(&vp->v_interlock);
   1389 			vp->v_numoutput++;
   1390 			mutex_exit(&vp->v_interlock);
   1391 		}
   1392 		VOP_STRATEGY(vp, bp);
   1393 	}
   1394 	sdp->swd_flags &= ~SWF_BUSY;
   1395 }
   1396 
   1397 /*
   1398  * sw_reg_biodone: one of our i/o's has completed
   1399  */
   1400 static void
   1401 sw_reg_biodone(struct buf *bp)
   1402 {
   1403 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1404 }
   1405 
   1406 /*
   1407  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1408  *
   1409  * => note that we can recover the vndbuf struct by casting the buf ptr
   1410  */
   1411 static void
   1412 sw_reg_iodone(struct work *wk, void *dummy)
   1413 {
   1414 	struct vndbuf *vbp = (void *)wk;
   1415 	struct vndxfer *vnx = vbp->vb_xfer;
   1416 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1417 	struct swapdev	*sdp = vnx->vx_sdp;
   1418 	int s, resid, error;
   1419 	KASSERT(&vbp->vb_buf.b_work == wk);
   1420 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1421 
   1422 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1423 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1424 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1425 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1426 
   1427 	/*
   1428 	 * protect vbp at splbio and update.
   1429 	 */
   1430 
   1431 	s = splbio();
   1432 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1433 	pbp->b_resid -= resid;
   1434 	vnx->vx_pending--;
   1435 
   1436 	if (vbp->vb_buf.b_error != 0) {
   1437 		/* pass error upward */
   1438 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1439 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1440 		vnx->vx_error = error;
   1441 	}
   1442 
   1443 	/*
   1444 	 * kill vbp structure
   1445 	 */
   1446 	buf_destroy(&vbp->vb_buf);
   1447 	pool_put(&vndbuf_pool, vbp);
   1448 
   1449 	/*
   1450 	 * wrap up this transaction if it has run to completion or, in
   1451 	 * case of an error, when all auxiliary buffers have returned.
   1452 	 */
   1453 	if (vnx->vx_error != 0) {
   1454 		/* pass error upward */
   1455 		error = vnx->vx_error;
   1456 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1457 			pbp->b_error = error;
   1458 			biodone(pbp);
   1459 			pool_put(&vndxfer_pool, vnx);
   1460 		}
   1461 	} else if (pbp->b_resid == 0) {
   1462 		KASSERT(vnx->vx_pending == 0);
   1463 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1464 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1465 			    pbp, vnx->vx_error, 0, 0);
   1466 			biodone(pbp);
   1467 			pool_put(&vndxfer_pool, vnx);
   1468 		}
   1469 	}
   1470 
   1471 	/*
   1472 	 * done!   start next swapdev I/O if one is pending
   1473 	 */
   1474 	sdp->swd_active--;
   1475 	sw_reg_start(sdp);
   1476 	splx(s);
   1477 }
   1478 
   1479 
   1480 /*
   1481  * uvm_swap_alloc: allocate space on swap
   1482  *
   1483  * => allocation is done "round robin" down the priority list, as we
   1484  *	allocate in a priority we "rotate" the circle queue.
   1485  * => space can be freed with uvm_swap_free
   1486  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1487  * => we lock uvm_swap_data_lock
   1488  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1489  */
   1490 int
   1491 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1492 {
   1493 	struct swapdev *sdp;
   1494 	struct swappri *spp;
   1495 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1496 
   1497 	/*
   1498 	 * no swap devices configured yet?   definite failure.
   1499 	 */
   1500 	if (uvmexp.nswapdev < 1)
   1501 		return 0;
   1502 
   1503 	/*
   1504 	 * lock data lock, convert slots into blocks, and enter loop
   1505 	 */
   1506 	mutex_enter(&uvm_swap_data_lock);
   1507 
   1508 ReTry:	/* XXXMRG */
   1509 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1510 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1511 			uint64_t result;
   1512 
   1513 			/* if it's not enabled, then we can't swap from it */
   1514 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1515 				continue;
   1516 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1517 				continue;
   1518 			result = blist_alloc(sdp->swd_blist, *nslots);
   1519 			if (result == BLIST_NONE) {
   1520 				continue;
   1521 			}
   1522 			KASSERT(result < sdp->swd_drumsize);
   1523 
   1524 			/*
   1525 			 * successful allocation!  now rotate the circleq.
   1526 			 */
   1527 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1528 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1529 			sdp->swd_npginuse += *nslots;
   1530 			uvmexp.swpginuse += *nslots;
   1531 			mutex_exit(&uvm_swap_data_lock);
   1532 			/* done!  return drum slot number */
   1533 			UVMHIST_LOG(pdhist,
   1534 			    "success!  returning %d slots starting at %d",
   1535 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1536 			return (result + sdp->swd_drumoffset);
   1537 		}
   1538 	}
   1539 
   1540 	/* XXXMRG: BEGIN HACK */
   1541 	if (*nslots > 1 && lessok) {
   1542 		*nslots = 1;
   1543 		/* XXXMRG: ugh!  blist should support this for us */
   1544 		goto ReTry;
   1545 	}
   1546 	/* XXXMRG: END HACK */
   1547 
   1548 	mutex_exit(&uvm_swap_data_lock);
   1549 	return 0;
   1550 }
   1551 
   1552 bool
   1553 uvm_swapisfull(void)
   1554 {
   1555 	bool rv;
   1556 
   1557 	mutex_enter(&uvm_swap_data_lock);
   1558 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1559 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1560 	mutex_exit(&uvm_swap_data_lock);
   1561 
   1562 	return (rv);
   1563 }
   1564 
   1565 /*
   1566  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1567  *
   1568  * => we lock uvm_swap_data_lock
   1569  */
   1570 void
   1571 uvm_swap_markbad(int startslot, int nslots)
   1572 {
   1573 	struct swapdev *sdp;
   1574 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1575 
   1576 	mutex_enter(&uvm_swap_data_lock);
   1577 	sdp = swapdrum_getsdp(startslot);
   1578 	KASSERT(sdp != NULL);
   1579 
   1580 	/*
   1581 	 * we just keep track of how many pages have been marked bad
   1582 	 * in this device, to make everything add up in swap_off().
   1583 	 * we assume here that the range of slots will all be within
   1584 	 * one swap device.
   1585 	 */
   1586 
   1587 	KASSERT(uvmexp.swpgonly >= nslots);
   1588 	uvmexp.swpgonly -= nslots;
   1589 	sdp->swd_npgbad += nslots;
   1590 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1591 	mutex_exit(&uvm_swap_data_lock);
   1592 }
   1593 
   1594 /*
   1595  * uvm_swap_free: free swap slots
   1596  *
   1597  * => this can be all or part of an allocation made by uvm_swap_alloc
   1598  * => we lock uvm_swap_data_lock
   1599  */
   1600 void
   1601 uvm_swap_free(int startslot, int nslots)
   1602 {
   1603 	struct swapdev *sdp;
   1604 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1605 
   1606 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1607 	    startslot, 0, 0);
   1608 
   1609 	/*
   1610 	 * ignore attempts to free the "bad" slot.
   1611 	 */
   1612 
   1613 	if (startslot == SWSLOT_BAD) {
   1614 		return;
   1615 	}
   1616 
   1617 	/*
   1618 	 * convert drum slot offset back to sdp, free the blocks
   1619 	 * in the extent, and return.   must hold pri lock to do
   1620 	 * lookup and access the extent.
   1621 	 */
   1622 
   1623 	mutex_enter(&uvm_swap_data_lock);
   1624 	sdp = swapdrum_getsdp(startslot);
   1625 	KASSERT(uvmexp.nswapdev >= 1);
   1626 	KASSERT(sdp != NULL);
   1627 	KASSERT(sdp->swd_npginuse >= nslots);
   1628 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1629 	sdp->swd_npginuse -= nslots;
   1630 	uvmexp.swpginuse -= nslots;
   1631 	mutex_exit(&uvm_swap_data_lock);
   1632 }
   1633 
   1634 /*
   1635  * uvm_swap_put: put any number of pages into a contig place on swap
   1636  *
   1637  * => can be sync or async
   1638  */
   1639 
   1640 int
   1641 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1642 {
   1643 	int error;
   1644 
   1645 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1646 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1647 	return error;
   1648 }
   1649 
   1650 /*
   1651  * uvm_swap_get: get a single page from swap
   1652  *
   1653  * => usually a sync op (from fault)
   1654  */
   1655 
   1656 int
   1657 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1658 {
   1659 	int error;
   1660 
   1661 	uvmexp.nswget++;
   1662 	KASSERT(flags & PGO_SYNCIO);
   1663 	if (swslot == SWSLOT_BAD) {
   1664 		return EIO;
   1665 	}
   1666 
   1667 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1668 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1669 	if (error == 0) {
   1670 
   1671 		/*
   1672 		 * this page is no longer only in swap.
   1673 		 */
   1674 
   1675 		mutex_enter(&uvm_swap_data_lock);
   1676 		KASSERT(uvmexp.swpgonly > 0);
   1677 		uvmexp.swpgonly--;
   1678 		mutex_exit(&uvm_swap_data_lock);
   1679 	}
   1680 	return error;
   1681 }
   1682 
   1683 /*
   1684  * uvm_swap_io: do an i/o operation to swap
   1685  */
   1686 
   1687 static int
   1688 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1689 {
   1690 	daddr_t startblk;
   1691 	struct	buf *bp;
   1692 	vaddr_t kva;
   1693 	int	error, mapinflags;
   1694 	bool write, async;
   1695 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1696 
   1697 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1698 	    startslot, npages, flags, 0);
   1699 
   1700 	write = (flags & B_READ) == 0;
   1701 	async = (flags & B_ASYNC) != 0;
   1702 
   1703 	/*
   1704 	 * allocate a buf for the i/o.
   1705 	 */
   1706 
   1707 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1708 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1709 	if (bp == NULL) {
   1710 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1711 		return ENOMEM;
   1712 	}
   1713 
   1714 	/*
   1715 	 * convert starting drum slot to block number
   1716 	 */
   1717 
   1718 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1719 
   1720 	/*
   1721 	 * first, map the pages into the kernel.
   1722 	 */
   1723 
   1724 	mapinflags = !write ?
   1725 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1726 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1727 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1728 
   1729 	/*
   1730 	 * fill in the bp/sbp.   we currently route our i/o through
   1731 	 * /dev/drum's vnode [swapdev_vp].
   1732 	 */
   1733 
   1734 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1735 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1736 	bp->b_proc = &proc0;	/* XXX */
   1737 	bp->b_vnbufs.le_next = NOLIST;
   1738 	bp->b_data = (void *)kva;
   1739 	bp->b_blkno = startblk;
   1740 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1741 
   1742 	/*
   1743 	 * bump v_numoutput (counter of number of active outputs).
   1744 	 */
   1745 
   1746 	if (write) {
   1747 		mutex_enter(&swapdev_vp->v_interlock);
   1748 		swapdev_vp->v_numoutput++;
   1749 		mutex_exit(&swapdev_vp->v_interlock);
   1750 	}
   1751 
   1752 	/*
   1753 	 * for async ops we must set up the iodone handler.
   1754 	 */
   1755 
   1756 	if (async) {
   1757 		bp->b_iodone = uvm_aio_biodone;
   1758 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1759 		if (curlwp == uvm.pagedaemon_lwp)
   1760 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1761 		else
   1762 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1763 	} else {
   1764 		bp->b_iodone = NULL;
   1765 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1766 	}
   1767 	UVMHIST_LOG(pdhist,
   1768 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1769 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1770 
   1771 	/*
   1772 	 * now we start the I/O, and if async, return.
   1773 	 */
   1774 
   1775 	VOP_STRATEGY(swapdev_vp, bp);
   1776 	if (async)
   1777 		return 0;
   1778 
   1779 	/*
   1780 	 * must be sync i/o.   wait for it to finish
   1781 	 */
   1782 
   1783 	error = biowait(bp);
   1784 
   1785 	/*
   1786 	 * kill the pager mapping
   1787 	 */
   1788 
   1789 	uvm_pagermapout(kva, npages);
   1790 
   1791 	/*
   1792 	 * now dispose of the buf and we're done.
   1793 	 */
   1794 
   1795 	if (write) {
   1796 		mutex_enter(&swapdev_vp->v_interlock);
   1797 		vwakeup(bp);
   1798 		mutex_exit(&swapdev_vp->v_interlock);
   1799 	}
   1800 	putiobuf(bp);
   1801 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1802 
   1803 	return (error);
   1804 }
   1805