Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.137.6.4
      1 /*	$NetBSD: uvm_swap.c,v 1.137.6.4 2008/10/10 22:37:10 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.137.6.4 2008/10/10 22:37:10 skrll Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    185     IPL_BIO);
    186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    187     IPL_BIO);
    188 
    189 /*
    190  * local variables
    191  */
    192 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    193 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    194 
    195 /* list of all active swap devices [by priority] */
    196 LIST_HEAD(swap_priority, swappri);
    197 static struct swap_priority swap_priority;
    198 
    199 /* locks */
    200 static krwlock_t swap_syscall_lock;
    201 
    202 /* workqueue and use counter for swap to regular files */
    203 static int sw_reg_count = 0;
    204 static struct workqueue *sw_reg_workqueue;
    205 
    206 /*
    207  * prototypes
    208  */
    209 static struct swapdev	*swapdrum_getsdp(int);
    210 
    211 static struct swapdev	*swaplist_find(struct vnode *, bool);
    212 static void		 swaplist_insert(struct swapdev *,
    213 					 struct swappri *, int);
    214 static void		 swaplist_trim(void);
    215 
    216 static int swap_on(struct lwp *, struct swapdev *);
    217 static int swap_off(struct lwp *, struct swapdev *);
    218 
    219 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    220 
    221 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    222 static void sw_reg_biodone(struct buf *);
    223 static void sw_reg_iodone(struct work *wk, void *dummy);
    224 static void sw_reg_start(struct swapdev *);
    225 
    226 static int uvm_swap_io(struct vm_page **, int, int, int);
    227 
    228 /*
    229  * uvm_swap_init: init the swap system data structures and locks
    230  *
    231  * => called at boot time from init_main.c after the filesystems
    232  *	are brought up (which happens after uvm_init())
    233  */
    234 void
    235 uvm_swap_init(void)
    236 {
    237 	UVMHIST_FUNC("uvm_swap_init");
    238 
    239 	UVMHIST_CALLED(pdhist);
    240 	/*
    241 	 * first, init the swap list, its counter, and its lock.
    242 	 * then get a handle on the vnode for /dev/drum by using
    243 	 * the its dev_t number ("swapdev", from MD conf.c).
    244 	 */
    245 
    246 	LIST_INIT(&swap_priority);
    247 	uvmexp.nswapdev = 0;
    248 	rw_init(&swap_syscall_lock);
    249 	cv_init(&uvm.scheduler_cv, "schedule");
    250 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    251 
    252 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    253 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    254 
    255 	if (bdevvp(swapdev, &swapdev_vp))
    256 		panic("uvm_swap_init: can't get vnode for swap device");
    257 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    258 		panic("uvm_swap_init: can't lock swap device");
    259 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    260 		panic("uvm_swap_init: can't open swap device");
    261 	VOP_UNLOCK(swapdev_vp, 0);
    262 
    263 	/*
    264 	 * create swap block resource map to map /dev/drum.   the range
    265 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    266 	 * that block 0 is reserved (used to indicate an allocation
    267 	 * failure, or no allocation).
    268 	 */
    269 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    270 	    VM_NOSLEEP, IPL_NONE);
    271 	if (swapmap == 0)
    272 		panic("uvm_swap_init: extent_create failed");
    273 
    274 	/*
    275 	 * done!
    276 	 */
    277 	uvm.swap_running = true;
    278 #ifdef __SWAP_BROKEN
    279 	uvm.swapout_enabled = 0;
    280 #else
    281 	uvm.swapout_enabled = 1;
    282 #endif
    283 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    284 
    285         sysctl_createv(NULL, 0, NULL, NULL,
    286             CTLFLAG_READWRITE,
    287             CTLTYPE_INT, "swapout",
    288             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    289             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    290 }
    291 
    292 /*
    293  * swaplist functions: functions that operate on the list of swap
    294  * devices on the system.
    295  */
    296 
    297 /*
    298  * swaplist_insert: insert swap device "sdp" into the global list
    299  *
    300  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    301  * => caller must provide a newly malloc'd swappri structure (we will
    302  *	FREE it if we don't need it... this it to prevent malloc blocking
    303  *	here while adding swap)
    304  */
    305 static void
    306 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    307 {
    308 	struct swappri *spp, *pspp;
    309 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    310 
    311 	/*
    312 	 * find entry at or after which to insert the new device.
    313 	 */
    314 	pspp = NULL;
    315 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    316 		if (priority <= spp->spi_priority)
    317 			break;
    318 		pspp = spp;
    319 	}
    320 
    321 	/*
    322 	 * new priority?
    323 	 */
    324 	if (spp == NULL || spp->spi_priority != priority) {
    325 		spp = newspp;  /* use newspp! */
    326 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    327 			    priority, 0, 0, 0);
    328 
    329 		spp->spi_priority = priority;
    330 		CIRCLEQ_INIT(&spp->spi_swapdev);
    331 
    332 		if (pspp)
    333 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    334 		else
    335 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    336 	} else {
    337 	  	/* we don't need a new priority structure, free it */
    338 		FREE(newspp, M_VMSWAP);
    339 	}
    340 
    341 	/*
    342 	 * priority found (or created).   now insert on the priority's
    343 	 * circleq list and bump the total number of swapdevs.
    344 	 */
    345 	sdp->swd_priority = priority;
    346 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    347 	uvmexp.nswapdev++;
    348 }
    349 
    350 /*
    351  * swaplist_find: find and optionally remove a swap device from the
    352  *	global list.
    353  *
    354  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    355  * => we return the swapdev we found (and removed)
    356  */
    357 static struct swapdev *
    358 swaplist_find(struct vnode *vp, bool remove)
    359 {
    360 	struct swapdev *sdp;
    361 	struct swappri *spp;
    362 
    363 	/*
    364 	 * search the lists for the requested vp
    365 	 */
    366 
    367 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    368 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    369 			if (sdp->swd_vp == vp) {
    370 				if (remove) {
    371 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    372 					    sdp, swd_next);
    373 					uvmexp.nswapdev--;
    374 				}
    375 				return(sdp);
    376 			}
    377 		}
    378 	}
    379 	return (NULL);
    380 }
    381 
    382 /*
    383  * swaplist_trim: scan priority list for empty priority entries and kill
    384  *	them.
    385  *
    386  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    387  */
    388 static void
    389 swaplist_trim(void)
    390 {
    391 	struct swappri *spp, *nextspp;
    392 
    393 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    394 		nextspp = LIST_NEXT(spp, spi_swappri);
    395 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    396 		    (void *)&spp->spi_swapdev)
    397 			continue;
    398 		LIST_REMOVE(spp, spi_swappri);
    399 		free(spp, M_VMSWAP);
    400 	}
    401 }
    402 
    403 /*
    404  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    405  *	to the "swapdev" that maps that section of the drum.
    406  *
    407  * => each swapdev takes one big contig chunk of the drum
    408  * => caller must hold uvm_swap_data_lock
    409  */
    410 static struct swapdev *
    411 swapdrum_getsdp(int pgno)
    412 {
    413 	struct swapdev *sdp;
    414 	struct swappri *spp;
    415 
    416 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    417 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    418 			if (sdp->swd_flags & SWF_FAKE)
    419 				continue;
    420 			if (pgno >= sdp->swd_drumoffset &&
    421 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    422 				return sdp;
    423 			}
    424 		}
    425 	}
    426 	return NULL;
    427 }
    428 
    429 
    430 /*
    431  * sys_swapctl: main entry point for swapctl(2) system call
    432  * 	[with two helper functions: swap_on and swap_off]
    433  */
    434 int
    435 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    436 {
    437 	/* {
    438 		syscallarg(int) cmd;
    439 		syscallarg(void *) arg;
    440 		syscallarg(int) misc;
    441 	} */
    442 	struct vnode *vp;
    443 	struct nameidata nd;
    444 	struct swappri *spp;
    445 	struct swapdev *sdp;
    446 	struct swapent *sep;
    447 #define SWAP_PATH_MAX (PATH_MAX + 1)
    448 	char	*userpath;
    449 	size_t	len;
    450 	int	error, misc;
    451 	int	priority;
    452 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    453 
    454 	misc = SCARG(uap, misc);
    455 
    456 	/*
    457 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    458 	 */
    459 	rw_enter(&swap_syscall_lock, RW_WRITER);
    460 
    461 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    462 	/*
    463 	 * we handle the non-priv NSWAP and STATS request first.
    464 	 *
    465 	 * SWAP_NSWAP: return number of config'd swap devices
    466 	 * [can also be obtained with uvmexp sysctl]
    467 	 */
    468 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    469 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    470 		    0, 0, 0);
    471 		*retval = uvmexp.nswapdev;
    472 		error = 0;
    473 		goto out;
    474 	}
    475 
    476 	/*
    477 	 * SWAP_STATS: get stats on current # of configured swap devs
    478 	 *
    479 	 * note that the swap_priority list can't change as long
    480 	 * as we are holding the swap_syscall_lock.  we don't want
    481 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    482 	 * copyout() and we don't want to be holding that lock then!
    483 	 */
    484 	if (SCARG(uap, cmd) == SWAP_STATS
    485 #if defined(COMPAT_13)
    486 	    || SCARG(uap, cmd) == SWAP_OSTATS
    487 #endif
    488 	    ) {
    489 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    490 			misc = uvmexp.nswapdev;
    491 #if defined(COMPAT_13)
    492 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    493 			len = sizeof(struct oswapent) * misc;
    494 		else
    495 #endif
    496 			len = sizeof(struct swapent) * misc;
    497 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    498 
    499 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    500 		error = copyout(sep, SCARG(uap, arg), len);
    501 
    502 		free(sep, M_TEMP);
    503 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    504 		goto out;
    505 	}
    506 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    507 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    508 
    509 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    510 		goto out;
    511 	}
    512 
    513 	/*
    514 	 * all other requests require superuser privs.   verify.
    515 	 */
    516 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    517 	    0, NULL, NULL, NULL)))
    518 		goto out;
    519 
    520 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    521 		/* drop the current dump device */
    522 		dumpdev = NODEV;
    523 		dumpcdev = NODEV;
    524 		cpu_dumpconf();
    525 		goto out;
    526 	}
    527 
    528 	/*
    529 	 * at this point we expect a path name in arg.   we will
    530 	 * use namei() to gain a vnode reference (vref), and lock
    531 	 * the vnode (VOP_LOCK).
    532 	 *
    533 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    534 	 * miniroot)
    535 	 */
    536 	if (SCARG(uap, arg) == NULL) {
    537 		vp = rootvp;		/* miniroot */
    538 		if (vget(vp, LK_EXCLUSIVE)) {
    539 			error = EBUSY;
    540 			goto out;
    541 		}
    542 		if (SCARG(uap, cmd) == SWAP_ON &&
    543 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    544 			panic("swapctl: miniroot copy failed");
    545 	} else {
    546 		int	space;
    547 		char	*where;
    548 
    549 		if (SCARG(uap, cmd) == SWAP_ON) {
    550 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    551 			    SWAP_PATH_MAX, &len)))
    552 				goto out;
    553 			space = UIO_SYSSPACE;
    554 			where = userpath;
    555 		} else {
    556 			space = UIO_USERSPACE;
    557 			where = (char *)SCARG(uap, arg);
    558 		}
    559 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    560 		    space, where);
    561 		if ((error = namei(&nd)))
    562 			goto out;
    563 		vp = nd.ni_vp;
    564 	}
    565 	/* note: "vp" is referenced and locked */
    566 
    567 	error = 0;		/* assume no error */
    568 	switch(SCARG(uap, cmd)) {
    569 
    570 	case SWAP_DUMPDEV:
    571 		if (vp->v_type != VBLK) {
    572 			error = ENOTBLK;
    573 			break;
    574 		}
    575 		if (bdevsw_lookup(vp->v_rdev)) {
    576 			dumpdev = vp->v_rdev;
    577 			dumpcdev = devsw_blk2chr(dumpdev);
    578 		} else
    579 			dumpdev = NODEV;
    580 		cpu_dumpconf();
    581 		break;
    582 
    583 	case SWAP_CTL:
    584 		/*
    585 		 * get new priority, remove old entry (if any) and then
    586 		 * reinsert it in the correct place.  finally, prune out
    587 		 * any empty priority structures.
    588 		 */
    589 		priority = SCARG(uap, misc);
    590 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    591 		mutex_enter(&uvm_swap_data_lock);
    592 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    593 			error = ENOENT;
    594 		} else {
    595 			swaplist_insert(sdp, spp, priority);
    596 			swaplist_trim();
    597 		}
    598 		mutex_exit(&uvm_swap_data_lock);
    599 		if (error)
    600 			free(spp, M_VMSWAP);
    601 		break;
    602 
    603 	case SWAP_ON:
    604 
    605 		/*
    606 		 * check for duplicates.   if none found, then insert a
    607 		 * dummy entry on the list to prevent someone else from
    608 		 * trying to enable this device while we are working on
    609 		 * it.
    610 		 */
    611 
    612 		priority = SCARG(uap, misc);
    613 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    614 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    615 		memset(sdp, 0, sizeof(*sdp));
    616 		sdp->swd_flags = SWF_FAKE;
    617 		sdp->swd_vp = vp;
    618 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    619 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    620 		mutex_enter(&uvm_swap_data_lock);
    621 		if (swaplist_find(vp, false) != NULL) {
    622 			error = EBUSY;
    623 			mutex_exit(&uvm_swap_data_lock);
    624 			bufq_free(sdp->swd_tab);
    625 			free(sdp, M_VMSWAP);
    626 			free(spp, M_VMSWAP);
    627 			break;
    628 		}
    629 		swaplist_insert(sdp, spp, priority);
    630 		mutex_exit(&uvm_swap_data_lock);
    631 
    632 		sdp->swd_pathlen = len;
    633 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    634 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    635 			panic("swapctl: copystr");
    636 
    637 		/*
    638 		 * we've now got a FAKE placeholder in the swap list.
    639 		 * now attempt to enable swap on it.  if we fail, undo
    640 		 * what we've done and kill the fake entry we just inserted.
    641 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    642 		 */
    643 
    644 		if ((error = swap_on(l, sdp)) != 0) {
    645 			mutex_enter(&uvm_swap_data_lock);
    646 			(void) swaplist_find(vp, true);  /* kill fake entry */
    647 			swaplist_trim();
    648 			mutex_exit(&uvm_swap_data_lock);
    649 			bufq_free(sdp->swd_tab);
    650 			free(sdp->swd_path, M_VMSWAP);
    651 			free(sdp, M_VMSWAP);
    652 			break;
    653 		}
    654 		break;
    655 
    656 	case SWAP_OFF:
    657 		mutex_enter(&uvm_swap_data_lock);
    658 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    659 			mutex_exit(&uvm_swap_data_lock);
    660 			error = ENXIO;
    661 			break;
    662 		}
    663 
    664 		/*
    665 		 * If a device isn't in use or enabled, we
    666 		 * can't stop swapping from it (again).
    667 		 */
    668 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    669 			mutex_exit(&uvm_swap_data_lock);
    670 			error = EBUSY;
    671 			break;
    672 		}
    673 
    674 		/*
    675 		 * do the real work.
    676 		 */
    677 		error = swap_off(l, sdp);
    678 		break;
    679 
    680 	default:
    681 		error = EINVAL;
    682 	}
    683 
    684 	/*
    685 	 * done!  release the ref gained by namei() and unlock.
    686 	 */
    687 	vput(vp);
    688 
    689 out:
    690 	free(userpath, M_TEMP);
    691 	rw_exit(&swap_syscall_lock);
    692 
    693 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    694 	return (error);
    695 }
    696 
    697 /*
    698  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    699  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    700  * emulation to use it directly without going through sys_swapctl().
    701  * The problem with using sys_swapctl() there is that it involves
    702  * copying the swapent array to the stackgap, and this array's size
    703  * is not known at build time. Hence it would not be possible to
    704  * ensure it would fit in the stackgap in any case.
    705  */
    706 void
    707 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    708 {
    709 
    710 	rw_enter(&swap_syscall_lock, RW_READER);
    711 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    712 	rw_exit(&swap_syscall_lock);
    713 }
    714 
    715 static void
    716 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    717 {
    718 	struct swappri *spp;
    719 	struct swapdev *sdp;
    720 	int count = 0;
    721 
    722 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    723 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    724 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    725 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    726 		  	/*
    727 			 * backwards compatibility for system call.
    728 			 * note that we use 'struct oswapent' as an
    729 			 * overlay into both 'struct swapdev' and
    730 			 * the userland 'struct swapent', as we
    731 			 * want to retain backwards compatibility
    732 			 * with NetBSD 1.3.
    733 			 */
    734 			sdp->swd_ose.ose_inuse =
    735 			    btodb((uint64_t)sdp->swd_npginuse <<
    736 			    PAGE_SHIFT);
    737 			(void)memcpy(sep, &sdp->swd_ose,
    738 			    sizeof(struct oswapent));
    739 
    740 			/* now copy out the path if necessary */
    741 #if !defined(COMPAT_13)
    742 			(void) cmd;
    743 #endif
    744 #if defined(COMPAT_13)
    745 			if (cmd == SWAP_STATS)
    746 #endif
    747 				(void)memcpy(&sep->se_path, sdp->swd_path,
    748 				    sdp->swd_pathlen);
    749 
    750 			count++;
    751 #if defined(COMPAT_13)
    752 			if (cmd == SWAP_OSTATS)
    753 				sep = (struct swapent *)
    754 				    ((struct oswapent *)sep + 1);
    755 			else
    756 #endif
    757 				sep++;
    758 		}
    759 	}
    760 
    761 	*retval = count;
    762 	return;
    763 }
    764 
    765 /*
    766  * swap_on: attempt to enable a swapdev for swapping.   note that the
    767  *	swapdev is already on the global list, but disabled (marked
    768  *	SWF_FAKE).
    769  *
    770  * => we avoid the start of the disk (to protect disk labels)
    771  * => we also avoid the miniroot, if we are swapping to root.
    772  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    773  *	if needed.
    774  */
    775 static int
    776 swap_on(struct lwp *l, struct swapdev *sdp)
    777 {
    778 	struct vnode *vp;
    779 	int error, npages, nblocks, size;
    780 	long addr;
    781 	u_long result;
    782 	struct vattr va;
    783 #ifdef NFS
    784 	extern int (**nfsv2_vnodeop_p)(void *);
    785 #endif /* NFS */
    786 	const struct bdevsw *bdev;
    787 	dev_t dev;
    788 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    789 
    790 	/*
    791 	 * we want to enable swapping on sdp.   the swd_vp contains
    792 	 * the vnode we want (locked and ref'd), and the swd_dev
    793 	 * contains the dev_t of the file, if it a block device.
    794 	 */
    795 
    796 	vp = sdp->swd_vp;
    797 	dev = sdp->swd_dev;
    798 
    799 	/*
    800 	 * open the swap file (mostly useful for block device files to
    801 	 * let device driver know what is up).
    802 	 *
    803 	 * we skip the open/close for root on swap because the root
    804 	 * has already been opened when root was mounted (mountroot).
    805 	 */
    806 	if (vp != rootvp) {
    807 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    808 			return (error);
    809 	}
    810 
    811 	/* XXX this only works for block devices */
    812 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    813 
    814 	/*
    815 	 * we now need to determine the size of the swap area.   for
    816 	 * block specials we can call the d_psize function.
    817 	 * for normal files, we must stat [get attrs].
    818 	 *
    819 	 * we put the result in nblks.
    820 	 * for normal files, we also want the filesystem block size
    821 	 * (which we get with statfs).
    822 	 */
    823 	switch (vp->v_type) {
    824 	case VBLK:
    825 		bdev = bdevsw_lookup(dev);
    826 		if (bdev == NULL || bdev->d_psize == NULL ||
    827 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    828 			error = ENXIO;
    829 			goto bad;
    830 		}
    831 		break;
    832 
    833 	case VREG:
    834 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    835 			goto bad;
    836 		nblocks = (int)btodb(va.va_size);
    837 		if ((error =
    838 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    839 			goto bad;
    840 
    841 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    842 		/*
    843 		 * limit the max # of outstanding I/O requests we issue
    844 		 * at any one time.   take it easy on NFS servers.
    845 		 */
    846 #ifdef NFS
    847 		if (vp->v_op == nfsv2_vnodeop_p)
    848 			sdp->swd_maxactive = 2; /* XXX */
    849 		else
    850 #endif /* NFS */
    851 			sdp->swd_maxactive = 8; /* XXX */
    852 		break;
    853 
    854 	default:
    855 		error = ENXIO;
    856 		goto bad;
    857 	}
    858 
    859 	/*
    860 	 * save nblocks in a safe place and convert to pages.
    861 	 */
    862 
    863 	sdp->swd_ose.ose_nblks = nblocks;
    864 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    865 
    866 	/*
    867 	 * for block special files, we want to make sure that leave
    868 	 * the disklabel and bootblocks alone, so we arrange to skip
    869 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    870 	 * note that because of this the "size" can be less than the
    871 	 * actual number of blocks on the device.
    872 	 */
    873 	if (vp->v_type == VBLK) {
    874 		/* we use pages 1 to (size - 1) [inclusive] */
    875 		size = npages - 1;
    876 		addr = 1;
    877 	} else {
    878 		/* we use pages 0 to (size - 1) [inclusive] */
    879 		size = npages;
    880 		addr = 0;
    881 	}
    882 
    883 	/*
    884 	 * make sure we have enough blocks for a reasonable sized swap
    885 	 * area.   we want at least one page.
    886 	 */
    887 
    888 	if (size < 1) {
    889 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    890 		error = EINVAL;
    891 		goto bad;
    892 	}
    893 
    894 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    895 
    896 	/*
    897 	 * now we need to allocate an extent to manage this swap device
    898 	 */
    899 
    900 	sdp->swd_blist = blist_create(npages);
    901 	/* mark all expect the `saved' region free. */
    902 	blist_free(sdp->swd_blist, addr, size);
    903 
    904 	/*
    905 	 * if the vnode we are swapping to is the root vnode
    906 	 * (i.e. we are swapping to the miniroot) then we want
    907 	 * to make sure we don't overwrite it.   do a statfs to
    908 	 * find its size and skip over it.
    909 	 */
    910 	if (vp == rootvp) {
    911 		struct mount *mp;
    912 		struct statvfs *sp;
    913 		int rootblocks, rootpages;
    914 
    915 		mp = rootvnode->v_mount;
    916 		sp = &mp->mnt_stat;
    917 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    918 		/*
    919 		 * XXX: sp->f_blocks isn't the total number of
    920 		 * blocks in the filesystem, it's the number of
    921 		 * data blocks.  so, our rootblocks almost
    922 		 * definitely underestimates the total size
    923 		 * of the filesystem - how badly depends on the
    924 		 * details of the filesystem type.  there isn't
    925 		 * an obvious way to deal with this cleanly
    926 		 * and perfectly, so for now we just pad our
    927 		 * rootblocks estimate with an extra 5 percent.
    928 		 */
    929 		rootblocks += (rootblocks >> 5) +
    930 			(rootblocks >> 6) +
    931 			(rootblocks >> 7);
    932 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    933 		if (rootpages > size)
    934 			panic("swap_on: miniroot larger than swap?");
    935 
    936 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    937 			panic("swap_on: unable to preserve miniroot");
    938 		}
    939 
    940 		size -= rootpages;
    941 		printf("Preserved %d pages of miniroot ", rootpages);
    942 		printf("leaving %d pages of swap\n", size);
    943 	}
    944 
    945 	/*
    946 	 * add a ref to vp to reflect usage as a swap device.
    947 	 */
    948 	vref(vp);
    949 
    950 	/*
    951 	 * now add the new swapdev to the drum and enable.
    952 	 */
    953 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    954 	if (result == 0)
    955 		panic("swapdrum_add");
    956 	/*
    957 	 * If this is the first regular swap create the workqueue.
    958 	 * => Protected by swap_syscall_lock.
    959 	 */
    960 	if (vp->v_type != VBLK) {
    961 		if (sw_reg_count++ == 0) {
    962 			KASSERT(sw_reg_workqueue == NULL);
    963 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    964 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    965 				panic("swap_add: workqueue_create failed");
    966 		}
    967 	}
    968 
    969 	sdp->swd_drumoffset = (int)result;
    970 	sdp->swd_drumsize = npages;
    971 	sdp->swd_npages = size;
    972 	mutex_enter(&uvm_swap_data_lock);
    973 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    974 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    975 	uvmexp.swpages += size;
    976 	uvmexp.swpgavail += size;
    977 	mutex_exit(&uvm_swap_data_lock);
    978 	return (0);
    979 
    980 	/*
    981 	 * failure: clean up and return error.
    982 	 */
    983 
    984 bad:
    985 	if (sdp->swd_blist) {
    986 		blist_destroy(sdp->swd_blist);
    987 	}
    988 	if (vp != rootvp) {
    989 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    990 	}
    991 	return (error);
    992 }
    993 
    994 /*
    995  * swap_off: stop swapping on swapdev
    996  *
    997  * => swap data should be locked, we will unlock.
    998  */
    999 static int
   1000 swap_off(struct lwp *l, struct swapdev *sdp)
   1001 {
   1002 	int npages = sdp->swd_npages;
   1003 	int error = 0;
   1004 
   1005 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1006 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1007 
   1008 	/* disable the swap area being removed */
   1009 	sdp->swd_flags &= ~SWF_ENABLE;
   1010 	uvmexp.swpgavail -= npages;
   1011 	mutex_exit(&uvm_swap_data_lock);
   1012 
   1013 	/*
   1014 	 * the idea is to find all the pages that are paged out to this
   1015 	 * device, and page them all in.  in uvm, swap-backed pageable
   1016 	 * memory can take two forms: aobjs and anons.  call the
   1017 	 * swapoff hook for each subsystem to bring in pages.
   1018 	 */
   1019 
   1020 	if (uao_swap_off(sdp->swd_drumoffset,
   1021 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1022 	    amap_swap_off(sdp->swd_drumoffset,
   1023 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1024 		error = ENOMEM;
   1025 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1026 		error = EBUSY;
   1027 	}
   1028 
   1029 	if (error) {
   1030 		mutex_enter(&uvm_swap_data_lock);
   1031 		sdp->swd_flags |= SWF_ENABLE;
   1032 		uvmexp.swpgavail += npages;
   1033 		mutex_exit(&uvm_swap_data_lock);
   1034 
   1035 		return error;
   1036 	}
   1037 
   1038 	/*
   1039 	 * If this is the last regular swap destroy the workqueue.
   1040 	 * => Protected by swap_syscall_lock.
   1041 	 */
   1042 	if (sdp->swd_vp->v_type != VBLK) {
   1043 		KASSERT(sw_reg_count > 0);
   1044 		KASSERT(sw_reg_workqueue != NULL);
   1045 		if (--sw_reg_count == 0) {
   1046 			workqueue_destroy(sw_reg_workqueue);
   1047 			sw_reg_workqueue = NULL;
   1048 		}
   1049 	}
   1050 
   1051 	/*
   1052 	 * done with the vnode.
   1053 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1054 	 * so that spec_close() can tell if this is the last close.
   1055 	 */
   1056 	vrele(sdp->swd_vp);
   1057 	if (sdp->swd_vp != rootvp) {
   1058 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1059 	}
   1060 
   1061 	mutex_enter(&uvm_swap_data_lock);
   1062 	uvmexp.swpages -= npages;
   1063 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1064 
   1065 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1066 		panic("swap_off: swapdev not in list");
   1067 	swaplist_trim();
   1068 	mutex_exit(&uvm_swap_data_lock);
   1069 
   1070 	/*
   1071 	 * free all resources!
   1072 	 */
   1073 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1074 	blist_destroy(sdp->swd_blist);
   1075 	bufq_free(sdp->swd_tab);
   1076 	free(sdp, M_VMSWAP);
   1077 	return (0);
   1078 }
   1079 
   1080 /*
   1081  * /dev/drum interface and i/o functions
   1082  */
   1083 
   1084 /*
   1085  * swstrategy: perform I/O on the drum
   1086  *
   1087  * => we must map the i/o request from the drum to the correct swapdev.
   1088  */
   1089 static void
   1090 swstrategy(struct buf *bp)
   1091 {
   1092 	struct swapdev *sdp;
   1093 	struct vnode *vp;
   1094 	int pageno, bn;
   1095 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1096 
   1097 	/*
   1098 	 * convert block number to swapdev.   note that swapdev can't
   1099 	 * be yanked out from under us because we are holding resources
   1100 	 * in it (i.e. the blocks we are doing I/O on).
   1101 	 */
   1102 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1103 	mutex_enter(&uvm_swap_data_lock);
   1104 	sdp = swapdrum_getsdp(pageno);
   1105 	mutex_exit(&uvm_swap_data_lock);
   1106 	if (sdp == NULL) {
   1107 		bp->b_error = EINVAL;
   1108 		biodone(bp);
   1109 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1110 		return;
   1111 	}
   1112 
   1113 	/*
   1114 	 * convert drum page number to block number on this swapdev.
   1115 	 */
   1116 
   1117 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1118 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1119 
   1120 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1121 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1122 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1123 
   1124 	/*
   1125 	 * for block devices we finish up here.
   1126 	 * for regular files we have to do more work which we delegate
   1127 	 * to sw_reg_strategy().
   1128 	 */
   1129 
   1130 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1131 	switch (vp->v_type) {
   1132 	default:
   1133 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1134 
   1135 	case VBLK:
   1136 
   1137 		/*
   1138 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1139 		 * on the swapdev (sdp).
   1140 		 */
   1141 		bp->b_blkno = bn;		/* swapdev block number */
   1142 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1143 
   1144 		/*
   1145 		 * if we are doing a write, we have to redirect the i/o on
   1146 		 * drum's v_numoutput counter to the swapdevs.
   1147 		 */
   1148 		if ((bp->b_flags & B_READ) == 0) {
   1149 			mutex_enter(bp->b_objlock);
   1150 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1151 			mutex_exit(bp->b_objlock);
   1152 			mutex_enter(&vp->v_interlock);
   1153 			vp->v_numoutput++;	/* put it on swapdev */
   1154 			mutex_exit(&vp->v_interlock);
   1155 		}
   1156 
   1157 		/*
   1158 		 * finally plug in swapdev vnode and start I/O
   1159 		 */
   1160 		bp->b_vp = vp;
   1161 		bp->b_objlock = &vp->v_interlock;
   1162 		VOP_STRATEGY(vp, bp);
   1163 		return;
   1164 
   1165 	case VREG:
   1166 		/*
   1167 		 * delegate to sw_reg_strategy function.
   1168 		 */
   1169 		sw_reg_strategy(sdp, bp, bn);
   1170 		return;
   1171 	}
   1172 	/* NOTREACHED */
   1173 }
   1174 
   1175 /*
   1176  * swread: the read function for the drum (just a call to physio)
   1177  */
   1178 /*ARGSUSED*/
   1179 static int
   1180 swread(dev_t dev, struct uio *uio, int ioflag)
   1181 {
   1182 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1183 
   1184 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1185 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1186 }
   1187 
   1188 /*
   1189  * swwrite: the write function for the drum (just a call to physio)
   1190  */
   1191 /*ARGSUSED*/
   1192 static int
   1193 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1194 {
   1195 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1196 
   1197 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1198 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1199 }
   1200 
   1201 const struct bdevsw swap_bdevsw = {
   1202 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1203 };
   1204 
   1205 const struct cdevsw swap_cdevsw = {
   1206 	nullopen, nullclose, swread, swwrite, noioctl,
   1207 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1208 };
   1209 
   1210 /*
   1211  * sw_reg_strategy: handle swap i/o to regular files
   1212  */
   1213 static void
   1214 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1215 {
   1216 	struct vnode	*vp;
   1217 	struct vndxfer	*vnx;
   1218 	daddr_t		nbn;
   1219 	char 		*addr;
   1220 	off_t		byteoff;
   1221 	int		s, off, nra, error, sz, resid;
   1222 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1223 
   1224 	/*
   1225 	 * allocate a vndxfer head for this transfer and point it to
   1226 	 * our buffer.
   1227 	 */
   1228 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1229 	vnx->vx_flags = VX_BUSY;
   1230 	vnx->vx_error = 0;
   1231 	vnx->vx_pending = 0;
   1232 	vnx->vx_bp = bp;
   1233 	vnx->vx_sdp = sdp;
   1234 
   1235 	/*
   1236 	 * setup for main loop where we read filesystem blocks into
   1237 	 * our buffer.
   1238 	 */
   1239 	error = 0;
   1240 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1241 	addr = bp->b_data;		/* current position in buffer */
   1242 	byteoff = dbtob((uint64_t)bn);
   1243 
   1244 	for (resid = bp->b_resid; resid; resid -= sz) {
   1245 		struct vndbuf	*nbp;
   1246 
   1247 		/*
   1248 		 * translate byteoffset into block number.  return values:
   1249 		 *   vp = vnode of underlying device
   1250 		 *  nbn = new block number (on underlying vnode dev)
   1251 		 *  nra = num blocks we can read-ahead (excludes requested
   1252 		 *	block)
   1253 		 */
   1254 		nra = 0;
   1255 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1256 				 	&vp, &nbn, &nra);
   1257 
   1258 		if (error == 0 && nbn == (daddr_t)-1) {
   1259 			/*
   1260 			 * this used to just set error, but that doesn't
   1261 			 * do the right thing.  Instead, it causes random
   1262 			 * memory errors.  The panic() should remain until
   1263 			 * this condition doesn't destabilize the system.
   1264 			 */
   1265 #if 1
   1266 			panic("sw_reg_strategy: swap to sparse file");
   1267 #else
   1268 			error = EIO;	/* failure */
   1269 #endif
   1270 		}
   1271 
   1272 		/*
   1273 		 * punt if there was an error or a hole in the file.
   1274 		 * we must wait for any i/o ops we have already started
   1275 		 * to finish before returning.
   1276 		 *
   1277 		 * XXX we could deal with holes here but it would be
   1278 		 * a hassle (in the write case).
   1279 		 */
   1280 		if (error) {
   1281 			s = splbio();
   1282 			vnx->vx_error = error;	/* pass error up */
   1283 			goto out;
   1284 		}
   1285 
   1286 		/*
   1287 		 * compute the size ("sz") of this transfer (in bytes).
   1288 		 */
   1289 		off = byteoff % sdp->swd_bsize;
   1290 		sz = (1 + nra) * sdp->swd_bsize - off;
   1291 		if (sz > resid)
   1292 			sz = resid;
   1293 
   1294 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1295 			    "vp %p/%p offset 0x%x/0x%x",
   1296 			    sdp->swd_vp, vp, byteoff, nbn);
   1297 
   1298 		/*
   1299 		 * now get a buf structure.   note that the vb_buf is
   1300 		 * at the front of the nbp structure so that you can
   1301 		 * cast pointers between the two structure easily.
   1302 		 */
   1303 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1304 		buf_init(&nbp->vb_buf);
   1305 		nbp->vb_buf.b_flags    = bp->b_flags;
   1306 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1307 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1308 		nbp->vb_buf.b_bcount   = sz;
   1309 		nbp->vb_buf.b_bufsize  = sz;
   1310 		nbp->vb_buf.b_error    = 0;
   1311 		nbp->vb_buf.b_data     = addr;
   1312 		nbp->vb_buf.b_lblkno   = 0;
   1313 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1314 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1315 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1316 		nbp->vb_buf.b_vp       = vp;
   1317 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1318 		if (vp->v_type == VBLK) {
   1319 			nbp->vb_buf.b_dev = vp->v_rdev;
   1320 		}
   1321 
   1322 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1323 
   1324 		/*
   1325 		 * Just sort by block number
   1326 		 */
   1327 		s = splbio();
   1328 		if (vnx->vx_error != 0) {
   1329 			buf_destroy(&nbp->vb_buf);
   1330 			pool_put(&vndbuf_pool, nbp);
   1331 			goto out;
   1332 		}
   1333 		vnx->vx_pending++;
   1334 
   1335 		/* sort it in and start I/O if we are not over our limit */
   1336 		/* XXXAD locking */
   1337 		BUFQ_PUT(sdp->swd_tab, &nbp->vb_buf);
   1338 		sw_reg_start(sdp);
   1339 		splx(s);
   1340 
   1341 		/*
   1342 		 * advance to the next I/O
   1343 		 */
   1344 		byteoff += sz;
   1345 		addr += sz;
   1346 	}
   1347 
   1348 	s = splbio();
   1349 
   1350 out: /* Arrive here at splbio */
   1351 	vnx->vx_flags &= ~VX_BUSY;
   1352 	if (vnx->vx_pending == 0) {
   1353 		error = vnx->vx_error;
   1354 		pool_put(&vndxfer_pool, vnx);
   1355 		bp->b_error = error;
   1356 		biodone(bp);
   1357 	}
   1358 	splx(s);
   1359 }
   1360 
   1361 /*
   1362  * sw_reg_start: start an I/O request on the requested swapdev
   1363  *
   1364  * => reqs are sorted by b_rawblkno (above)
   1365  */
   1366 static void
   1367 sw_reg_start(struct swapdev *sdp)
   1368 {
   1369 	struct buf	*bp;
   1370 	struct vnode	*vp;
   1371 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1372 
   1373 	/* recursion control */
   1374 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1375 		return;
   1376 
   1377 	sdp->swd_flags |= SWF_BUSY;
   1378 
   1379 	while (sdp->swd_active < sdp->swd_maxactive) {
   1380 		bp = BUFQ_GET(sdp->swd_tab);
   1381 		if (bp == NULL)
   1382 			break;
   1383 		sdp->swd_active++;
   1384 
   1385 		UVMHIST_LOG(pdhist,
   1386 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1387 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1388 		vp = bp->b_vp;
   1389 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1390 		if ((bp->b_flags & B_READ) == 0) {
   1391 			mutex_enter(&vp->v_interlock);
   1392 			vp->v_numoutput++;
   1393 			mutex_exit(&vp->v_interlock);
   1394 		}
   1395 		VOP_STRATEGY(vp, bp);
   1396 	}
   1397 	sdp->swd_flags &= ~SWF_BUSY;
   1398 }
   1399 
   1400 /*
   1401  * sw_reg_biodone: one of our i/o's has completed
   1402  */
   1403 static void
   1404 sw_reg_biodone(struct buf *bp)
   1405 {
   1406 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1407 }
   1408 
   1409 /*
   1410  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1411  *
   1412  * => note that we can recover the vndbuf struct by casting the buf ptr
   1413  */
   1414 static void
   1415 sw_reg_iodone(struct work *wk, void *dummy)
   1416 {
   1417 	struct vndbuf *vbp = (void *)wk;
   1418 	struct vndxfer *vnx = vbp->vb_xfer;
   1419 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1420 	struct swapdev	*sdp = vnx->vx_sdp;
   1421 	int s, resid, error;
   1422 	KASSERT(&vbp->vb_buf.b_work == wk);
   1423 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1424 
   1425 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1426 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1427 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1428 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1429 
   1430 	/*
   1431 	 * protect vbp at splbio and update.
   1432 	 */
   1433 
   1434 	s = splbio();
   1435 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1436 	pbp->b_resid -= resid;
   1437 	vnx->vx_pending--;
   1438 
   1439 	if (vbp->vb_buf.b_error != 0) {
   1440 		/* pass error upward */
   1441 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1442 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1443 		vnx->vx_error = error;
   1444 	}
   1445 
   1446 	/*
   1447 	 * kill vbp structure
   1448 	 */
   1449 	buf_destroy(&vbp->vb_buf);
   1450 	pool_put(&vndbuf_pool, vbp);
   1451 
   1452 	/*
   1453 	 * wrap up this transaction if it has run to completion or, in
   1454 	 * case of an error, when all auxiliary buffers have returned.
   1455 	 */
   1456 	if (vnx->vx_error != 0) {
   1457 		/* pass error upward */
   1458 		error = vnx->vx_error;
   1459 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1460 			pbp->b_error = error;
   1461 			biodone(pbp);
   1462 			pool_put(&vndxfer_pool, vnx);
   1463 		}
   1464 	} else if (pbp->b_resid == 0) {
   1465 		KASSERT(vnx->vx_pending == 0);
   1466 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1467 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1468 			    pbp, vnx->vx_error, 0, 0);
   1469 			biodone(pbp);
   1470 			pool_put(&vndxfer_pool, vnx);
   1471 		}
   1472 	}
   1473 
   1474 	/*
   1475 	 * done!   start next swapdev I/O if one is pending
   1476 	 */
   1477 	sdp->swd_active--;
   1478 	sw_reg_start(sdp);
   1479 	splx(s);
   1480 }
   1481 
   1482 
   1483 /*
   1484  * uvm_swap_alloc: allocate space on swap
   1485  *
   1486  * => allocation is done "round robin" down the priority list, as we
   1487  *	allocate in a priority we "rotate" the circle queue.
   1488  * => space can be freed with uvm_swap_free
   1489  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1490  * => we lock uvm_swap_data_lock
   1491  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1492  */
   1493 int
   1494 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1495 {
   1496 	struct swapdev *sdp;
   1497 	struct swappri *spp;
   1498 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1499 
   1500 	/*
   1501 	 * no swap devices configured yet?   definite failure.
   1502 	 */
   1503 	if (uvmexp.nswapdev < 1)
   1504 		return 0;
   1505 
   1506 	/*
   1507 	 * lock data lock, convert slots into blocks, and enter loop
   1508 	 */
   1509 	mutex_enter(&uvm_swap_data_lock);
   1510 
   1511 ReTry:	/* XXXMRG */
   1512 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1513 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1514 			uint64_t result;
   1515 
   1516 			/* if it's not enabled, then we can't swap from it */
   1517 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1518 				continue;
   1519 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1520 				continue;
   1521 			result = blist_alloc(sdp->swd_blist, *nslots);
   1522 			if (result == BLIST_NONE) {
   1523 				continue;
   1524 			}
   1525 			KASSERT(result < sdp->swd_drumsize);
   1526 
   1527 			/*
   1528 			 * successful allocation!  now rotate the circleq.
   1529 			 */
   1530 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1531 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1532 			sdp->swd_npginuse += *nslots;
   1533 			uvmexp.swpginuse += *nslots;
   1534 			mutex_exit(&uvm_swap_data_lock);
   1535 			/* done!  return drum slot number */
   1536 			UVMHIST_LOG(pdhist,
   1537 			    "success!  returning %d slots starting at %d",
   1538 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1539 			return (result + sdp->swd_drumoffset);
   1540 		}
   1541 	}
   1542 
   1543 	/* XXXMRG: BEGIN HACK */
   1544 	if (*nslots > 1 && lessok) {
   1545 		*nslots = 1;
   1546 		/* XXXMRG: ugh!  blist should support this for us */
   1547 		goto ReTry;
   1548 	}
   1549 	/* XXXMRG: END HACK */
   1550 
   1551 	mutex_exit(&uvm_swap_data_lock);
   1552 	return 0;
   1553 }
   1554 
   1555 bool
   1556 uvm_swapisfull(void)
   1557 {
   1558 	bool rv;
   1559 
   1560 	mutex_enter(&uvm_swap_data_lock);
   1561 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1562 	rv = (uvmexp.swpgonly >= uvmexp.swpgavail);
   1563 	mutex_exit(&uvm_swap_data_lock);
   1564 
   1565 	return (rv);
   1566 }
   1567 
   1568 /*
   1569  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1570  *
   1571  * => we lock uvm_swap_data_lock
   1572  */
   1573 void
   1574 uvm_swap_markbad(int startslot, int nslots)
   1575 {
   1576 	struct swapdev *sdp;
   1577 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1578 
   1579 	mutex_enter(&uvm_swap_data_lock);
   1580 	sdp = swapdrum_getsdp(startslot);
   1581 	KASSERT(sdp != NULL);
   1582 
   1583 	/*
   1584 	 * we just keep track of how many pages have been marked bad
   1585 	 * in this device, to make everything add up in swap_off().
   1586 	 * we assume here that the range of slots will all be within
   1587 	 * one swap device.
   1588 	 */
   1589 
   1590 	KASSERT(uvmexp.swpgonly >= nslots);
   1591 	uvmexp.swpgonly -= nslots;
   1592 	sdp->swd_npgbad += nslots;
   1593 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1594 	mutex_exit(&uvm_swap_data_lock);
   1595 }
   1596 
   1597 /*
   1598  * uvm_swap_free: free swap slots
   1599  *
   1600  * => this can be all or part of an allocation made by uvm_swap_alloc
   1601  * => we lock uvm_swap_data_lock
   1602  */
   1603 void
   1604 uvm_swap_free(int startslot, int nslots)
   1605 {
   1606 	struct swapdev *sdp;
   1607 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1608 
   1609 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1610 	    startslot, 0, 0);
   1611 
   1612 	/*
   1613 	 * ignore attempts to free the "bad" slot.
   1614 	 */
   1615 
   1616 	if (startslot == SWSLOT_BAD) {
   1617 		return;
   1618 	}
   1619 
   1620 	/*
   1621 	 * convert drum slot offset back to sdp, free the blocks
   1622 	 * in the extent, and return.   must hold pri lock to do
   1623 	 * lookup and access the extent.
   1624 	 */
   1625 
   1626 	mutex_enter(&uvm_swap_data_lock);
   1627 	sdp = swapdrum_getsdp(startslot);
   1628 	KASSERT(uvmexp.nswapdev >= 1);
   1629 	KASSERT(sdp != NULL);
   1630 	KASSERT(sdp->swd_npginuse >= nslots);
   1631 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1632 	sdp->swd_npginuse -= nslots;
   1633 	uvmexp.swpginuse -= nslots;
   1634 	mutex_exit(&uvm_swap_data_lock);
   1635 }
   1636 
   1637 /*
   1638  * uvm_swap_put: put any number of pages into a contig place on swap
   1639  *
   1640  * => can be sync or async
   1641  */
   1642 
   1643 int
   1644 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1645 {
   1646 	int error;
   1647 
   1648 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1649 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1650 	return error;
   1651 }
   1652 
   1653 /*
   1654  * uvm_swap_get: get a single page from swap
   1655  *
   1656  * => usually a sync op (from fault)
   1657  */
   1658 
   1659 int
   1660 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1661 {
   1662 	int error;
   1663 
   1664 	uvmexp.nswget++;
   1665 	KASSERT(flags & PGO_SYNCIO);
   1666 	if (swslot == SWSLOT_BAD) {
   1667 		return EIO;
   1668 	}
   1669 
   1670 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1671 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1672 	if (error == 0) {
   1673 
   1674 		/*
   1675 		 * this page is no longer only in swap.
   1676 		 */
   1677 
   1678 		mutex_enter(&uvm_swap_data_lock);
   1679 		KASSERT(uvmexp.swpgonly > 0);
   1680 		uvmexp.swpgonly--;
   1681 		mutex_exit(&uvm_swap_data_lock);
   1682 	}
   1683 	return error;
   1684 }
   1685 
   1686 /*
   1687  * uvm_swap_io: do an i/o operation to swap
   1688  */
   1689 
   1690 static int
   1691 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1692 {
   1693 	daddr_t startblk;
   1694 	struct	buf *bp;
   1695 	vaddr_t kva;
   1696 	int	error, mapinflags;
   1697 	bool write, async;
   1698 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1699 
   1700 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1701 	    startslot, npages, flags, 0);
   1702 
   1703 	write = (flags & B_READ) == 0;
   1704 	async = (flags & B_ASYNC) != 0;
   1705 
   1706 	/*
   1707 	 * allocate a buf for the i/o.
   1708 	 */
   1709 
   1710 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1711 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1712 	if (bp == NULL) {
   1713 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1714 		return ENOMEM;
   1715 	}
   1716 
   1717 	/*
   1718 	 * convert starting drum slot to block number
   1719 	 */
   1720 
   1721 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1722 
   1723 	/*
   1724 	 * first, map the pages into the kernel.
   1725 	 */
   1726 
   1727 	mapinflags = !write ?
   1728 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1729 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1730 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1731 
   1732 	/*
   1733 	 * fill in the bp/sbp.   we currently route our i/o through
   1734 	 * /dev/drum's vnode [swapdev_vp].
   1735 	 */
   1736 
   1737 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1738 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1739 	bp->b_proc = &proc0;	/* XXX */
   1740 	bp->b_vnbufs.le_next = NOLIST;
   1741 	bp->b_data = (void *)kva;
   1742 	bp->b_blkno = startblk;
   1743 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1744 
   1745 	/*
   1746 	 * bump v_numoutput (counter of number of active outputs).
   1747 	 */
   1748 
   1749 	if (write) {
   1750 		mutex_enter(&swapdev_vp->v_interlock);
   1751 		swapdev_vp->v_numoutput++;
   1752 		mutex_exit(&swapdev_vp->v_interlock);
   1753 	}
   1754 
   1755 	/*
   1756 	 * for async ops we must set up the iodone handler.
   1757 	 */
   1758 
   1759 	if (async) {
   1760 		bp->b_iodone = uvm_aio_biodone;
   1761 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1762 		if (curlwp == uvm.pagedaemon_lwp)
   1763 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1764 		else
   1765 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1766 	} else {
   1767 		bp->b_iodone = NULL;
   1768 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1769 	}
   1770 	UVMHIST_LOG(pdhist,
   1771 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1772 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1773 
   1774 	/*
   1775 	 * now we start the I/O, and if async, return.
   1776 	 */
   1777 
   1778 	VOP_STRATEGY(swapdev_vp, bp);
   1779 	if (async)
   1780 		return 0;
   1781 
   1782 	/*
   1783 	 * must be sync i/o.   wait for it to finish
   1784 	 */
   1785 
   1786 	error = biowait(bp);
   1787 
   1788 	/*
   1789 	 * kill the pager mapping
   1790 	 */
   1791 
   1792 	uvm_pagermapout(kva, npages);
   1793 
   1794 	/*
   1795 	 * now dispose of the buf and we're done.
   1796 	 */
   1797 
   1798 	if (write) {
   1799 		mutex_enter(&swapdev_vp->v_interlock);
   1800 		vwakeup(bp);
   1801 		mutex_exit(&swapdev_vp->v_interlock);
   1802 	}
   1803 	putiobuf(bp);
   1804 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1805 
   1806 	return (error);
   1807 }
   1808