uvm_swap.c revision 1.14 1 /* $NetBSD: uvm_swap.c,v 1.14 1998/08/09 22:36:39 perry Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36
37 #include <sys/param.h>
38 #include <sys/systm.h>
39 #include <sys/buf.h>
40 #include <sys/proc.h>
41 #include <sys/namei.h>
42 #include <sys/disklabel.h>
43 #include <sys/errno.h>
44 #include <sys/kernel.h>
45 #include <sys/malloc.h>
46 #include <sys/vnode.h>
47 #include <sys/file.h>
48 #include <sys/extent.h>
49 #include <sys/mount.h>
50 #include <sys/pool.h>
51 #include <sys/syscallargs.h>
52
53 #include <vm/vm.h>
54 #include <vm/vm_swap.h>
55 #include <vm/vm_conf.h>
56
57 #include <uvm/uvm.h>
58
59 #include <miscfs/specfs/specdev.h>
60
61 /*
62 * uvm_swap.c: manage configuration and i/o to swap space.
63 */
64
65 /*
66 * swap space is managed in the following way:
67 *
68 * each swap partition or file is described by a "swapdev" structure.
69 * each "swapdev" structure contains a "swapent" structure which contains
70 * information that is passed up to the user (via system calls).
71 *
72 * each swap partition is assigned a "priority" (int) which controls
73 * swap parition usage.
74 *
75 * the system maintains a global data structure describing all swap
76 * partitions/files. there is a sorted LIST of "swappri" structures
77 * which describe "swapdev"'s at that priority. this LIST is headed
78 * by the "swap_priority" global var. each "swappri" contains a
79 * CIRCLEQ of "swapdev" structures at that priority.
80 *
81 * the system maintains a fixed pool of "swapbuf" structures for use
82 * at swap i/o time. a swapbuf includes a "buf" structure and an
83 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
84 * since memory may be low].
85 *
86 * locking:
87 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - swap_data_lock (simple_lock): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap extent.
93 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
94 * pool.
95 *
96 * each swap device has the following info:
97 * - swap device in use (could be disabled, preventing future use)
98 * - swap enabled (allows new allocations on swap)
99 * - map info in /dev/drum
100 * - vnode pointer
101 * for swap files only:
102 * - block size
103 * - max byte count in buffer
104 * - buffer
105 * - credentials to use when doing i/o to file
106 *
107 * userland controls and configures swap with the swapctl(2) system call.
108 * the sys_swapctl performs the following operations:
109 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
110 * [2] SWAP_STATS: given a pointer to an array of swapent structures
111 * (passed in via "arg") of a size passed in via "misc" ... we load
112 * the current swap config into the array.
113 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
114 * priority in "misc", start swapping on it.
115 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
116 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
117 * "misc")
118 */
119
120 /*
121 * SWAP_TO_FILES: allows swapping to plain files.
122 */
123
124 #define SWAP_TO_FILES
125
126 /*
127 * swapdev: describes a single swap partition/file
128 *
129 * note the following should be true:
130 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
131 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
132 */
133 struct swapdev {
134 struct swapent swd_se; /* swap entry struct */
135 #define swd_dev swd_se.se_dev /* dev_t for this dev */
136 #define swd_flags swd_se.se_flags /* flags:inuse/enable/fake*/
137 #define swd_priority swd_se.se_priority /* our priority */
138 /* also: swd_se.se_nblks, swd_se.se_inuse */
139 int swd_npages; /* #pages we can use */
140 int swd_npginuse; /* #pages in use */
141 int swd_drumoffset; /* page0 offset in drum */
142 int swd_drumsize; /* #pages in drum */
143 struct extent *swd_ex; /* extent for this swapdev*/
144 struct vnode *swd_vp; /* backing vnode */
145 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
146
147 #ifdef SWAP_TO_FILES
148 int swd_bsize; /* blocksize (bytes) */
149 int swd_maxactive; /* max active i/o reqs */
150 struct buf swd_tab; /* buffer list */
151 struct ucred *swd_cred; /* cred for file access */
152 #endif
153 };
154
155 /*
156 * swap device priority entry; the list is kept sorted on `spi_priority'.
157 */
158 struct swappri {
159 int spi_priority; /* priority */
160 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
161 /* circleq of swapdevs at this priority */
162 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
163 };
164
165 /*
166 * swapbuf, swapbuffer plus async i/o info
167 */
168 struct swapbuf {
169 struct buf sw_buf; /* a buffer structure */
170 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
171 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
172 };
173
174 /*
175 * The following two structures are used to keep track of data transfers
176 * on swap devices associated with regular files.
177 * NOTE: this code is more or less a copy of vnd.c; we use the same
178 * structure names here to ease porting..
179 */
180 struct vndxfer {
181 struct buf *vx_bp; /* Pointer to parent buffer */
182 struct swapdev *vx_sdp;
183 int vx_error;
184 int vx_pending; /* # of pending aux buffers */
185 int vx_flags;
186 #define VX_BUSY 1
187 #define VX_DEAD 2
188 };
189
190 struct vndbuf {
191 struct buf vb_buf;
192 struct vndxfer *vb_xfer;
193 };
194
195
196 /*
197 * We keep a of pool vndbuf's and vndxfer structures.
198 */
199 struct pool *vndxfer_pool;
200 struct pool *vndbuf_pool;
201
202 #define getvndxfer(vnx) do { \
203 int s = splbio(); \
204 vnx = (struct vndxfer *) \
205 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
206 splx(s); \
207 } while (0)
208
209 #define putvndxfer(vnx) { \
210 pool_put(vndxfer_pool, (void *)(vnx)); \
211 }
212
213 #define getvndbuf(vbp) do { \
214 int s = splbio(); \
215 vbp = (struct vndbuf *) \
216 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
217 splx(s); \
218 } while (0)
219
220 #define putvndbuf(vbp) { \
221 pool_put(vndbuf_pool, (void *)(vbp)); \
222 }
223
224
225 /*
226 * local variables
227 */
228 static struct extent *swapmap; /* controls the mapping of /dev/drum */
229 SIMPLEQ_HEAD(swapbufhead, swapbuf);
230 struct pool *swapbuf_pool;
231
232 /* list of all active swap devices [by priority] */
233 LIST_HEAD(swap_priority, swappri);
234 static struct swap_priority swap_priority;
235
236 /* locks */
237 lock_data_t swap_syscall_lock;
238 static simple_lock_data_t swap_data_lock;
239
240 /*
241 * prototypes
242 */
243 static void swapdrum_add __P((struct swapdev *, int));
244 static struct swapdev *swapdrum_getsdp __P((int));
245
246 static struct swapdev *swaplist_find __P((struct vnode *, int));
247 static void swaplist_insert __P((struct swapdev *,
248 struct swappri *, int));
249 static void swaplist_trim __P((void));
250
251 static int swap_on __P((struct proc *, struct swapdev *));
252 #ifdef SWAP_OFF_WORKS
253 static int swap_off __P((struct proc *, struct swapdev *));
254 #endif
255
256 #ifdef SWAP_TO_FILES
257 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
258 static void sw_reg_iodone __P((struct buf *));
259 static void sw_reg_start __P((struct swapdev *));
260 #endif
261
262 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
263 static void uvm_swap_bufdone __P((struct buf *));
264 static int uvm_swap_io __P((struct vm_page **, int, int, int));
265
266 /*
267 * uvm_swap_init: init the swap system data structures and locks
268 *
269 * => called at boot time from init_main.c after the filesystems
270 * are brought up (which happens after uvm_init())
271 */
272 void
273 uvm_swap_init()
274 {
275 UVMHIST_FUNC("uvm_swap_init");
276
277 UVMHIST_CALLED(pdhist);
278 /*
279 * first, init the swap list, its counter, and its lock.
280 * then get a handle on the vnode for /dev/drum by using
281 * the its dev_t number ("swapdev", from MD conf.c).
282 */
283
284 LIST_INIT(&swap_priority);
285 uvmexp.nswapdev = 0;
286 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
287 simple_lock_init(&swap_data_lock);
288
289 if (bdevvp(swapdev, &swapdev_vp))
290 panic("uvm_swap_init: can't get vnode for swap device");
291
292 /*
293 * create swap block resource map to map /dev/drum. the range
294 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
295 * that block 0 is reserved (used to indicate an allocation
296 * failure, or no allocation).
297 */
298 swapmap = extent_create("swapmap", 1, INT_MAX,
299 M_VMSWAP, 0, 0, EX_NOWAIT);
300 if (swapmap == 0)
301 panic("uvm_swap_init: extent_create failed");
302
303 /*
304 * allocate our private pool of "swapbuf" structures (includes
305 * a "buf" structure). ["nswbuf" comes from param.c and can
306 * be adjusted by MD code before we get here].
307 */
308
309 swapbuf_pool =
310 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
311 NULL, NULL, 0);
312 if (swapbuf_pool == NULL)
313 panic("swapinit: pool_create failed");
314 /* XXX - set a maximum on swapbuf_pool? */
315
316 vndxfer_pool =
317 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
318 NULL, NULL, 0);
319 if (vndxfer_pool == NULL)
320 panic("swapinit: pool_create failed");
321
322 vndbuf_pool =
323 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
324 NULL, NULL, 0);
325 if (vndbuf_pool == NULL)
326 panic("swapinit: pool_create failed");
327 /*
328 * done!
329 */
330 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
331 }
332
333 /*
334 * swaplist functions: functions that operate on the list of swap
335 * devices on the system.
336 */
337
338 /*
339 * swaplist_insert: insert swap device "sdp" into the global list
340 *
341 * => caller must hold both swap_syscall_lock and swap_data_lock
342 * => caller must provide a newly malloc'd swappri structure (we will
343 * FREE it if we don't need it... this it to prevent malloc blocking
344 * here while adding swap)
345 */
346 static void
347 swaplist_insert(sdp, newspp, priority)
348 struct swapdev *sdp;
349 struct swappri *newspp;
350 int priority;
351 {
352 struct swappri *spp, *pspp;
353 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
354
355 /*
356 * find entry at or after which to insert the new device.
357 */
358 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
359 spp = spp->spi_swappri.le_next) {
360 if (priority <= spp->spi_priority)
361 break;
362 pspp = spp;
363 }
364
365 /*
366 * new priority?
367 */
368 if (spp == NULL || spp->spi_priority != priority) {
369 spp = newspp; /* use newspp! */
370 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
371
372 spp->spi_priority = priority;
373 CIRCLEQ_INIT(&spp->spi_swapdev);
374
375 if (pspp)
376 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
377 else
378 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
379 } else {
380 /* we don't need a new priority structure, free it */
381 FREE(newspp, M_VMSWAP);
382 }
383
384 /*
385 * priority found (or created). now insert on the priority's
386 * circleq list and bump the total number of swapdevs.
387 */
388 sdp->swd_priority = priority;
389 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
390 uvmexp.nswapdev++;
391
392 /*
393 * done!
394 */
395 }
396
397 /*
398 * swaplist_find: find and optionally remove a swap device from the
399 * global list.
400 *
401 * => caller must hold both swap_syscall_lock and swap_data_lock
402 * => we return the swapdev we found (and removed)
403 */
404 static struct swapdev *
405 swaplist_find(vp, remove)
406 struct vnode *vp;
407 boolean_t remove;
408 {
409 struct swapdev *sdp;
410 struct swappri *spp;
411
412 /*
413 * search the lists for the requested vp
414 */
415 for (spp = swap_priority.lh_first; spp != NULL;
416 spp = spp->spi_swappri.le_next) {
417 for (sdp = spp->spi_swapdev.cqh_first;
418 sdp != (void *)&spp->spi_swapdev;
419 sdp = sdp->swd_next.cqe_next)
420 if (sdp->swd_vp == vp) {
421 if (remove) {
422 CIRCLEQ_REMOVE(&spp->spi_swapdev,
423 sdp, swd_next);
424 uvmexp.nswapdev--;
425 }
426 return(sdp);
427 }
428 }
429 return (NULL);
430 }
431
432
433 /*
434 * swaplist_trim: scan priority list for empty priority entries and kill
435 * them.
436 *
437 * => caller must hold both swap_syscall_lock and swap_data_lock
438 */
439 static void
440 swaplist_trim()
441 {
442 struct swappri *spp, *nextspp;
443
444 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
445 nextspp = spp->spi_swappri.le_next;
446 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
447 continue;
448 LIST_REMOVE(spp, spi_swappri);
449 free((caddr_t)spp, M_VMSWAP);
450 }
451 }
452
453 /*
454 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
455 *
456 * => caller must hold swap_syscall_lock
457 * => swap_data_lock should be unlocked (we may sleep)
458 */
459 static void
460 swapdrum_add(sdp, npages)
461 struct swapdev *sdp;
462 int npages;
463 {
464 u_long result;
465
466 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
467 EX_WAITOK, &result))
468 panic("swapdrum_add");
469
470 sdp->swd_drumoffset = result;
471 sdp->swd_drumsize = npages;
472 }
473
474 /*
475 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
476 * to the "swapdev" that maps that section of the drum.
477 *
478 * => each swapdev takes one big contig chunk of the drum
479 * => caller must hold swap_data_lock
480 */
481 static struct swapdev *
482 swapdrum_getsdp(pgno)
483 int pgno;
484 {
485 struct swapdev *sdp;
486 struct swappri *spp;
487
488 for (spp = swap_priority.lh_first; spp != NULL;
489 spp = spp->spi_swappri.le_next)
490 for (sdp = spp->spi_swapdev.cqh_first;
491 sdp != (void *)&spp->spi_swapdev;
492 sdp = sdp->swd_next.cqe_next)
493 if (pgno >= sdp->swd_drumoffset &&
494 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
495 return sdp;
496 }
497 return NULL;
498 }
499
500
501 /*
502 * sys_swapctl: main entry point for swapctl(2) system call
503 * [with two helper functions: swap_on and swap_off]
504 */
505 int
506 sys_swapctl(p, v, retval)
507 struct proc *p;
508 void *v;
509 register_t *retval;
510 {
511 struct sys_swapctl_args /* {
512 syscallarg(int) cmd;
513 syscallarg(void *) arg;
514 syscallarg(int) misc;
515 } */ *uap = (struct sys_swapctl_args *)v;
516 struct vnode *vp;
517 struct nameidata nd;
518 struct swappri *spp;
519 struct swapdev *sdp;
520 struct swapent *sep;
521 int count, error, misc;
522 int priority;
523 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
524
525 misc = SCARG(uap, misc);
526
527 /*
528 * ensure serialized syscall access by grabbing the swap_syscall_lock
529 */
530 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
531
532 /*
533 * we handle the non-priv NSWAP and STATS request first.
534 *
535 * SWAP_NSWAP: return number of config'd swap devices
536 * [can also be obtained with uvmexp sysctl]
537 */
538 if (SCARG(uap, cmd) == SWAP_NSWAP) {
539 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
540 0, 0, 0);
541 *retval = uvmexp.nswapdev;
542 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
543 return (0);
544 }
545
546 /*
547 * SWAP_STATS: get stats on current # of configured swap devs
548 *
549 * note that the swap_priority list can't change as long
550 * as we are holding the swap_syscall_lock. we don't want
551 * to grab the swap_data_lock because we may fault&sleep during
552 * copyout() and we don't want to be holding that lock then!
553 */
554 if (SCARG(uap, cmd) == SWAP_STATS) {
555 sep = (struct swapent *)SCARG(uap, arg);
556 count = 0;
557
558 for (spp = swap_priority.lh_first; spp != NULL;
559 spp = spp->spi_swappri.le_next) {
560 for (sdp = spp->spi_swapdev.cqh_first;
561 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
562 sdp = sdp->swd_next.cqe_next) {
563 /* backwards compatibility for system call */
564 sdp->swd_se.se_inuse =
565 btodb(sdp->swd_npginuse * PAGE_SIZE);
566 error = copyout((caddr_t)&sdp->swd_se,
567 (caddr_t)sep, sizeof(struct swapent));
568 if (error) {
569 lockmgr(&swap_syscall_lock,
570 LK_RELEASE, (void *)0);
571 return (error);
572 }
573 count++;
574 sep++;
575 }
576 }
577
578 UVMHIST_LOG(pdhist, "<-done SWAP_STATS", 0, 0, 0, 0);
579
580 *retval = count;
581 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
582 return (0);
583 }
584
585 /*
586 * all other requests require superuser privs. verify.
587 */
588 if ((error = suser(p->p_ucred, &p->p_acflag))) {
589 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
590 return (error);
591 }
592
593 /*
594 * at this point we expect a path name in arg. we will
595 * use namei() to gain a vnode reference (vref), and lock
596 * the vnode (VOP_LOCK).
597 *
598 * XXX: a NULL arg means use the root vnode pointer (e.g. for
599 * miniroot
600 */
601 if (SCARG(uap, arg) == NULL) {
602 vp = rootvp; /* miniroot */
603 if (vget(vp, LK_EXCLUSIVE)) {
604 lockmgr(&swap_syscall_lock, LK_RELEASE,
605 (void *)0);
606 return (EBUSY);
607 }
608 } else {
609 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, UIO_USERSPACE,
610 SCARG(uap, arg), p);
611 if ((error = namei(&nd))) {
612 lockmgr(&swap_syscall_lock, LK_RELEASE,
613 (void *)0);
614 return (error);
615 }
616 vp = nd.ni_vp;
617 }
618 /* note: "vp" is referenced and locked */
619
620 error = 0; /* assume no error */
621 switch(SCARG(uap, cmd)) {
622 case SWAP_CTL:
623 /*
624 * get new priority, remove old entry (if any) and then
625 * reinsert it in the correct place. finally, prune out
626 * any empty priority structures.
627 */
628 priority = SCARG(uap, misc);
629 spp = (struct swappri *)
630 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
631 simple_lock(&swap_data_lock);
632 if ((sdp = swaplist_find(vp, 1)) == NULL) {
633 error = ENOENT;
634 } else {
635 swaplist_insert(sdp, spp, priority);
636 swaplist_trim();
637 }
638 simple_unlock(&swap_data_lock);
639 if (error)
640 free(spp, M_VMSWAP);
641 break;
642
643 case SWAP_ON:
644 /*
645 * check for duplicates. if none found, then insert a
646 * dummy entry on the list to prevent someone else from
647 * trying to enable this device while we are working on
648 * it.
649 */
650 priority = SCARG(uap, misc);
651 simple_lock(&swap_data_lock);
652 if ((sdp = swaplist_find(vp, 0)) != NULL) {
653 error = EBUSY;
654 simple_unlock(&swap_data_lock);
655 goto bad;
656 }
657 sdp = (struct swapdev *)
658 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
659 spp = (struct swappri *)
660 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
661 memset(sdp, 0, sizeof(*sdp));
662 sdp->swd_flags = SWF_FAKE; /* placeholder only */
663 sdp->swd_vp = vp;
664 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
665 #ifdef SWAP_TO_FILES
666 /*
667 * XXX Is NFS elaboration necessary?
668 */
669 if (vp->v_type == VREG)
670 sdp->swd_cred = crdup(p->p_ucred);
671 #endif
672 swaplist_insert(sdp, spp, priority);
673 simple_unlock(&swap_data_lock);
674
675 /*
676 * we've now got a FAKE placeholder in the swap list.
677 * now attempt to enable swap on it. if we fail, undo
678 * what we've done and kill the fake entry we just inserted.
679 * if swap_on is a success, it will clear the SWF_FAKE flag
680 */
681 if ((error = swap_on(p, sdp)) != 0) {
682 simple_lock(&swap_data_lock);
683 (void) swaplist_find(vp, 1); /* kill fake entry */
684 swaplist_trim();
685 simple_unlock(&swap_data_lock);
686 #ifdef SWAP_TO_FILES
687 if (vp->v_type == VREG)
688 crfree(sdp->swd_cred);
689 #endif
690 free((caddr_t)sdp, M_VMSWAP);
691 break;
692 }
693
694 /*
695 * got it! now add a second reference to vp so that
696 * we keep a reference to the vnode after we return.
697 */
698 vref(vp);
699 break;
700
701 case SWAP_OFF:
702 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
703 #ifdef SWAP_OFF_WORKS
704 /*
705 * find the entry of interest and ensure it is enabled.
706 */
707 simple_lock(&swap_data_lock);
708 if ((sdp = swaplist_find(vp, 0)) == NULL) {
709 simple_unlock(&swap_data_lock);
710 error = ENXIO;
711 break;
712 }
713 /*
714 * If a device isn't in use or enabled, we
715 * can't stop swapping from it (again).
716 */
717 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
718 simple_unlock(&swap_data_lock);
719 error = EBUSY;
720 goto bad;
721 }
722 /* XXXCDC: should we call with list locked or unlocked? */
723 if ((error = swap_off(p, sdp)) != 0)
724 goto bad;
725 /* XXXCDC: might need relock here */
726
727 /*
728 * now we can kill the entry.
729 */
730 if ((sdp = swaplist_find(vp, 1)) == NULL) {
731 error = ENXIO;
732 break;
733 }
734 simple_unlock(&swap_data_lock);
735 free((caddr_t)sdp, M_VMSWAP);
736 #else
737 error = EINVAL;
738 #endif
739 break;
740
741 default:
742 UVMHIST_LOG(pdhist, "unhandled command: %#x",
743 SCARG(uap, cmd), 0, 0, 0);
744 error = EINVAL;
745 }
746
747 bad:
748 /*
749 * done! use vput to drop our reference and unlock
750 */
751 vput(vp);
752 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
753
754 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
755 return (error);
756 }
757
758 /*
759 * swap_on: attempt to enable a swapdev for swapping. note that the
760 * swapdev is already on the global list, but disabled (marked
761 * SWF_FAKE).
762 *
763 * => we avoid the start of the disk (to protect disk labels)
764 * => we also avoid the miniroot, if we are swapping to root.
765 * => caller should leave swap_data_lock unlocked, we may lock it
766 * if needed.
767 */
768 static int
769 swap_on(p, sdp)
770 struct proc *p;
771 struct swapdev *sdp;
772 {
773 static int count = 0; /* static */
774 struct vnode *vp;
775 int error, npages, nblocks, size;
776 long addr;
777 #ifdef SWAP_TO_FILES
778 struct vattr va;
779 #endif
780 #ifdef NFS
781 extern int (**nfsv2_vnodeop_p) __P((void *));
782 #endif /* NFS */
783 dev_t dev;
784 char *name;
785 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
786
787 /*
788 * we want to enable swapping on sdp. the swd_vp contains
789 * the vnode we want (locked and ref'd), and the swd_dev
790 * contains the dev_t of the file, if it a block device.
791 */
792
793 vp = sdp->swd_vp;
794 dev = sdp->swd_dev;
795
796 /*
797 * open the swap file (mostly useful for block device files to
798 * let device driver know what is up).
799 *
800 * we skip the open/close for root on swap because the root
801 * has already been opened when root was mounted (mountroot).
802 */
803 if (vp != rootvp) {
804 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
805 return (error);
806 }
807
808 /* XXX this only works for block devices */
809 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
810
811 /*
812 * we now need to determine the size of the swap area. for
813 * block specials we can call the d_psize function.
814 * for normal files, we must stat [get attrs].
815 *
816 * we put the result in nblks.
817 * for normal files, we also want the filesystem block size
818 * (which we get with statfs).
819 */
820 switch (vp->v_type) {
821 case VBLK:
822 if (bdevsw[major(dev)].d_psize == 0 ||
823 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
824 error = ENXIO;
825 goto bad;
826 }
827 break;
828
829 #ifdef SWAP_TO_FILES
830 case VREG:
831 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
832 goto bad;
833 nblocks = (int)btodb(va.va_size);
834 if ((error =
835 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
836 goto bad;
837
838 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
839 /*
840 * limit the max # of outstanding I/O requests we issue
841 * at any one time. take it easy on NFS servers.
842 */
843 #ifdef NFS
844 if (vp->v_op == nfsv2_vnodeop_p)
845 sdp->swd_maxactive = 2; /* XXX */
846 else
847 #endif /* NFS */
848 sdp->swd_maxactive = 8; /* XXX */
849 break;
850 #endif
851
852 default:
853 error = ENXIO;
854 goto bad;
855 }
856
857 /*
858 * save nblocks in a safe place and convert to pages.
859 */
860
861 sdp->swd_se.se_nblks = nblocks;
862 npages = dbtob((u_int64_t)nblocks) / PAGE_SIZE;
863
864 /*
865 * for block special files, we want to make sure that leave
866 * the disklabel and bootblocks alone, so we arrange to skip
867 * over them (randomly choosing to skip PAGE_SIZE bytes).
868 * note that because of this the "size" can be less than the
869 * actual number of blocks on the device.
870 */
871 if (vp->v_type == VBLK) {
872 /* we use pages 1 to (size - 1) [inclusive] */
873 size = npages - 1;
874 addr = 1;
875 } else {
876 /* we use pages 0 to (size - 1) [inclusive] */
877 size = npages;
878 addr = 0;
879 }
880
881 /*
882 * make sure we have enough blocks for a reasonable sized swap
883 * area. we want at least one page.
884 */
885
886 if (size < 1) {
887 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
888 error = EINVAL;
889 goto bad;
890 }
891
892 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
893
894 /*
895 * now we need to allocate an extent to manage this swap device
896 */
897 name = malloc(12, M_VMSWAP, M_WAITOK);
898 sprintf(name, "swap0x%04x", count++);
899
900 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
901 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
902 0, 0, EX_WAITOK);
903 /* allocate the `saved' region from the extent so it won't be used */
904 if (addr) {
905 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
906 panic("disklabel region");
907 sdp->swd_npginuse += addr;
908 uvmexp.swpginuse += addr;
909 }
910
911
912 /*
913 * if the vnode we are swapping to is the root vnode
914 * (i.e. we are swapping to the miniroot) then we want
915 * to make sure we don't overwrite it. do a statfs to
916 * find its size and skip over it.
917 */
918 if (vp == rootvp) {
919 struct mount *mp;
920 struct statfs *sp;
921 int rootblocks, rootpages;
922
923 mp = rootvnode->v_mount;
924 sp = &mp->mnt_stat;
925 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
926 rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
927 if (rootpages > npages)
928 panic("swap_on: miniroot larger than swap?");
929
930 if (extent_alloc_region(sdp->swd_ex, addr,
931 rootpages, EX_WAITOK))
932 panic("swap_on: unable to preserve miniroot");
933
934 sdp->swd_npginuse += (rootpages - addr);
935 uvmexp.swpginuse += (rootpages - addr);
936
937 printf("Preserved %d pages of miniroot ", rootpages);
938 printf("leaving %d pages of swap\n", size - rootpages);
939 }
940
941 /*
942 * now add the new swapdev to the drum and enable.
943 */
944 simple_lock(&swap_data_lock);
945 swapdrum_add(sdp, npages);
946 sdp->swd_npages = npages;
947 sdp->swd_flags &= ~SWF_FAKE; /* going live */
948 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
949 simple_unlock(&swap_data_lock);
950 uvmexp.swpages += npages;
951
952 /*
953 * add anon's to reflect the swap space we added
954 */
955 uvm_anon_add(size);
956
957 #if 0
958 /*
959 * At this point we could arrange to reserve memory for the
960 * swap buffer pools.
961 *
962 * I don't think this is necessary, since swapping starts well
963 * ahead of serious memory deprivation and the memory resource
964 * pools hold on to actively used memory. This should ensure
965 * we always have some resources to continue operation.
966 */
967
968 int s = splbio();
969 int n = 8 * sdp->swd_maxactive;
970
971 (void)pool_prime(swapbuf_pool, n, 0);
972
973 if (vp->v_type == VREG) {
974 /* Allocate additional vnx and vnd buffers */
975 /*
976 * Allocation Policy:
977 * (8 * swd_maxactive) vnx headers per swap dev
978 * (16 * swd_maxactive) vnd buffers per swap dev
979 */
980
981 n = 8 * sdp->swd_maxactive;
982 (void)pool_prime(vndxfer_pool, n, 0);
983
984 n = 16 * sdp->swd_maxactive;
985 (void)pool_prime(vndbuf_pool, n, 0);
986 }
987 splx(s);
988 #endif
989
990 return (0);
991
992 bad:
993 /*
994 * failure: close device if necessary and return error.
995 */
996 if (vp != rootvp)
997 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
998 return (error);
999 }
1000
1001 #ifdef SWAP_OFF_WORKS
1002 /*
1003 * swap_off: stop swapping on swapdev
1004 *
1005 * XXXCDC: what conditions go here?
1006 */
1007 static int
1008 swap_off(p, sdp)
1009 struct proc *p;
1010 struct swapdev *sdp;
1011 {
1012 char *name;
1013 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1014
1015 /* turn off the enable flag */
1016 sdp->swd_flags &= ~SWF_ENABLE;
1017
1018 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1019
1020 /*
1021 * XXX write me
1022 *
1023 * the idea is to find out which processes are using this swap
1024 * device, and page them all in.
1025 *
1026 * eventually, we should try to move them out to other swap areas
1027 * if available.
1028 *
1029 * The alternative is to create a redirection map for this swap
1030 * device. This should work by moving all the pages of data from
1031 * the ex-swap device to another one, and making an entry in the
1032 * redirection map for it. locking is going to be important for
1033 * this!
1034 *
1035 * XXXCDC: also need to shrink anon pool
1036 */
1037
1038 /* until the above code is written, we must ENODEV */
1039 return ENODEV;
1040
1041 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1042 name = sdp->swd_ex->ex_name;
1043 extent_destroy(sdp->swd_ex);
1044 free(name, M_VMSWAP);
1045 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1046 if (sdp->swp_vp != rootvp)
1047 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1048 if (sdp->swd_vp)
1049 vrele(sdp->swd_vp);
1050 free((caddr_t)sdp, M_VMSWAP);
1051 return (0);
1052 }
1053 #endif
1054
1055 /*
1056 * /dev/drum interface and i/o functions
1057 */
1058
1059 /*
1060 * swread: the read function for the drum (just a call to physio)
1061 */
1062 /*ARGSUSED*/
1063 int
1064 swread(dev, uio, ioflag)
1065 dev_t dev;
1066 struct uio *uio;
1067 int ioflag;
1068 {
1069 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1070
1071 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1072 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1073 }
1074
1075 /*
1076 * swwrite: the write function for the drum (just a call to physio)
1077 */
1078 /*ARGSUSED*/
1079 int
1080 swwrite(dev, uio, ioflag)
1081 dev_t dev;
1082 struct uio *uio;
1083 int ioflag;
1084 {
1085 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1086
1087 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1088 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1089 }
1090
1091 /*
1092 * swstrategy: perform I/O on the drum
1093 *
1094 * => we must map the i/o request from the drum to the correct swapdev.
1095 */
1096 void
1097 swstrategy(bp)
1098 struct buf *bp;
1099 {
1100 struct swapdev *sdp;
1101 struct vnode *vp;
1102 int pageno;
1103 int bn;
1104 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1105
1106 /*
1107 * convert block number to swapdev. note that swapdev can't
1108 * be yanked out from under us because we are holding resources
1109 * in it (i.e. the blocks we are doing I/O on).
1110 */
1111 pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1112 simple_lock(&swap_data_lock);
1113 sdp = swapdrum_getsdp(pageno);
1114 simple_unlock(&swap_data_lock);
1115 if (sdp == NULL) {
1116 bp->b_error = EINVAL;
1117 bp->b_flags |= B_ERROR;
1118 biodone(bp);
1119 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1120 return;
1121 }
1122
1123 /*
1124 * convert drum page number to block number on this swapdev.
1125 */
1126
1127 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1128 bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1129
1130 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1131 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1132 sdp->swd_drumoffset, bn, bp->b_bcount);
1133
1134
1135 /*
1136 * for block devices we finish up here.
1137 * for regular files we have to do more work which we deligate
1138 * to sw_reg_strategy().
1139 */
1140
1141 switch (sdp->swd_vp->v_type) {
1142 default:
1143 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1144 case VBLK:
1145
1146 /*
1147 * must convert "bp" from an I/O on /dev/drum to an I/O
1148 * on the swapdev (sdp).
1149 */
1150 bp->b_blkno = bn; /* swapdev block number */
1151 vp = sdp->swd_vp; /* swapdev vnode pointer */
1152 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1153 VHOLD(vp); /* "hold" swapdev vp for i/o */
1154
1155 /*
1156 * if we are doing a write, we have to redirect the i/o on
1157 * drum's v_numoutput counter to the swapdevs.
1158 */
1159 if ((bp->b_flags & B_READ) == 0) {
1160 int s = splbio();
1161 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1162 vp->v_numoutput++; /* put it on swapdev */
1163 splx(s);
1164 }
1165
1166 /*
1167 * dissassocate buffer with /dev/drum vnode
1168 * [could be null if buf was from physio]
1169 */
1170 if (bp->b_vp != NULLVP)
1171 brelvp(bp);
1172
1173 /*
1174 * finally plug in swapdev vnode and start I/O
1175 */
1176 bp->b_vp = vp;
1177 VOP_STRATEGY(bp);
1178 return;
1179 #ifdef SWAP_TO_FILES
1180 case VREG:
1181 /*
1182 * deligate to sw_reg_strategy function.
1183 */
1184 sw_reg_strategy(sdp, bp, bn);
1185 return;
1186 #endif
1187 }
1188 /* NOTREACHED */
1189 }
1190
1191 #ifdef SWAP_TO_FILES
1192 /*
1193 * sw_reg_strategy: handle swap i/o to regular files
1194 */
1195 static void
1196 sw_reg_strategy(sdp, bp, bn)
1197 struct swapdev *sdp;
1198 struct buf *bp;
1199 int bn;
1200 {
1201 struct vnode *vp;
1202 struct vndxfer *vnx;
1203 daddr_t nbn, byteoff;
1204 caddr_t addr;
1205 int s, off, nra, error, sz, resid;
1206 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1207
1208 /*
1209 * allocate a vndxfer head for this transfer and point it to
1210 * our buffer.
1211 */
1212 getvndxfer(vnx);
1213 vnx->vx_flags = VX_BUSY;
1214 vnx->vx_error = 0;
1215 vnx->vx_pending = 0;
1216 vnx->vx_bp = bp;
1217 vnx->vx_sdp = sdp;
1218
1219 /*
1220 * setup for main loop where we read filesystem blocks into
1221 * our buffer.
1222 */
1223 error = 0;
1224 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1225 addr = bp->b_data; /* current position in buffer */
1226 byteoff = dbtob(bn);
1227
1228 for (resid = bp->b_resid; resid; resid -= sz) {
1229 struct vndbuf *nbp;
1230
1231 /*
1232 * translate byteoffset into block number. return values:
1233 * vp = vnode of underlying device
1234 * nbn = new block number (on underlying vnode dev)
1235 * nra = num blocks we can read-ahead (excludes requested
1236 * block)
1237 */
1238 nra = 0;
1239 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1240 &vp, &nbn, &nra);
1241
1242 if (error == 0 && (long)nbn == -1)
1243 error = EIO; /* failure */
1244
1245 /*
1246 * punt if there was an error or a hole in the file.
1247 * we must wait for any i/o ops we have already started
1248 * to finish before returning.
1249 *
1250 * XXX we could deal with holes here but it would be
1251 * a hassle (in the write case).
1252 */
1253 if (error) {
1254 s = splbio();
1255 vnx->vx_error = error; /* pass error up */
1256 goto out;
1257 }
1258
1259 /*
1260 * compute the size ("sz") of this transfer (in bytes).
1261 * XXXCDC: ignores read-ahead for non-zero offset
1262 */
1263 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1264 sz = sdp->swd_bsize - off;
1265 else
1266 sz = (1 + nra) * sdp->swd_bsize;
1267
1268 if (resid < sz)
1269 sz = resid;
1270
1271 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1272 sdp->swd_vp, vp, byteoff, nbn);
1273
1274 /*
1275 * now get a buf structure. note that the vb_buf is
1276 * at the front of the nbp structure so that you can
1277 * cast pointers between the two structure easily.
1278 */
1279 getvndbuf(nbp);
1280 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1281 nbp->vb_buf.b_bcount = sz;
1282 #if 0
1283 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1284 #endif
1285 nbp->vb_buf.b_bufsize = sz;
1286 nbp->vb_buf.b_error = 0;
1287 nbp->vb_buf.b_data = addr;
1288 nbp->vb_buf.b_blkno = nbn + btodb(off);
1289 nbp->vb_buf.b_proc = bp->b_proc;
1290 nbp->vb_buf.b_iodone = sw_reg_iodone;
1291 nbp->vb_buf.b_vp = NULLVP;
1292 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1293 nbp->vb_buf.b_rcred = sdp->swd_cred;
1294 nbp->vb_buf.b_wcred = sdp->swd_cred;
1295
1296 /*
1297 * set b_dirtyoff/end and b_validoff/end. this is
1298 * required by the NFS client code (otherwise it will
1299 * just discard our I/O request).
1300 */
1301 if (bp->b_dirtyend == 0) {
1302 nbp->vb_buf.b_dirtyoff = 0;
1303 nbp->vb_buf.b_dirtyend = sz;
1304 } else {
1305 nbp->vb_buf.b_dirtyoff =
1306 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1307 nbp->vb_buf.b_dirtyend =
1308 min(sz,
1309 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1310 }
1311 if (bp->b_validend == 0) {
1312 nbp->vb_buf.b_validoff = 0;
1313 nbp->vb_buf.b_validend = sz;
1314 } else {
1315 nbp->vb_buf.b_validoff =
1316 max(0, bp->b_validoff - (bp->b_bcount-resid));
1317 nbp->vb_buf.b_validend =
1318 min(sz,
1319 max(0, bp->b_validend - (bp->b_bcount-resid)));
1320 }
1321
1322 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1323
1324 /*
1325 * Just sort by block number
1326 */
1327 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1328 s = splbio();
1329 if (vnx->vx_error != 0) {
1330 putvndbuf(nbp);
1331 goto out;
1332 }
1333 vnx->vx_pending++;
1334
1335 /* assoc new buffer with underlying vnode */
1336 bgetvp(vp, &nbp->vb_buf);
1337
1338 /* sort it in and start I/O if we are not over our limit */
1339 disksort(&sdp->swd_tab, &nbp->vb_buf);
1340 sw_reg_start(sdp);
1341 splx(s);
1342
1343 /*
1344 * advance to the next I/O
1345 */
1346 byteoff += sz;
1347 addr += sz;
1348 }
1349
1350 s = splbio();
1351
1352 out: /* Arrive here at splbio */
1353 vnx->vx_flags &= ~VX_BUSY;
1354 if (vnx->vx_pending == 0) {
1355 if (vnx->vx_error != 0) {
1356 bp->b_error = vnx->vx_error;
1357 bp->b_flags |= B_ERROR;
1358 }
1359 putvndxfer(vnx);
1360 biodone(bp);
1361 }
1362 splx(s);
1363 }
1364
1365 /*
1366 * sw_reg_start: start an I/O request on the requested swapdev
1367 *
1368 * => reqs are sorted by disksort (above)
1369 */
1370 static void
1371 sw_reg_start(sdp)
1372 struct swapdev *sdp;
1373 {
1374 struct buf *bp;
1375 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1376
1377 /* recursion control */
1378 if ((sdp->swd_flags & SWF_BUSY) != 0)
1379 return;
1380
1381 sdp->swd_flags |= SWF_BUSY;
1382
1383 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1384 bp = sdp->swd_tab.b_actf;
1385 if (bp == NULL)
1386 break;
1387 sdp->swd_tab.b_actf = bp->b_actf;
1388 sdp->swd_tab.b_active++;
1389
1390 UVMHIST_LOG(pdhist,
1391 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1392 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1393 if ((bp->b_flags & B_READ) == 0)
1394 bp->b_vp->v_numoutput++;
1395 VOP_STRATEGY(bp);
1396 }
1397 sdp->swd_flags &= ~SWF_BUSY;
1398 }
1399
1400 /*
1401 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1402 *
1403 * => note that we can recover the vndbuf struct by casting the buf ptr
1404 */
1405 static void
1406 sw_reg_iodone(bp)
1407 struct buf *bp;
1408 {
1409 struct vndbuf *vbp = (struct vndbuf *) bp;
1410 struct vndxfer *vnx = vbp->vb_xfer;
1411 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1412 struct swapdev *sdp = vnx->vx_sdp;
1413 int s, resid;
1414 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1415
1416 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1417 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1418 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1419 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1420
1421 /*
1422 * protect vbp at splbio and update.
1423 */
1424
1425 s = splbio();
1426 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1427 pbp->b_resid -= resid;
1428 vnx->vx_pending--;
1429
1430 if (vbp->vb_buf.b_error) {
1431 UVMHIST_LOG(pdhist, " got error=%d !",
1432 vbp->vb_buf.b_error, 0, 0, 0);
1433
1434 /* pass error upward */
1435 vnx->vx_error = vbp->vb_buf.b_error;
1436 }
1437
1438 /*
1439 * drop "hold" reference to vnode (if one)
1440 * XXXCDC: always set to NULLVP, this is useless, right?
1441 */
1442 if (vbp->vb_buf.b_vp != NULLVP)
1443 brelvp(&vbp->vb_buf);
1444
1445 /*
1446 * kill vbp structure
1447 */
1448 putvndbuf(vbp);
1449
1450 /*
1451 * wrap up this transaction if it has run to completion or, in
1452 * case of an error, when all auxiliary buffers have returned.
1453 */
1454 if (vnx->vx_error != 0) {
1455 /* pass error upward */
1456 pbp->b_flags |= B_ERROR;
1457 pbp->b_error = vnx->vx_error;
1458 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1459 putvndxfer(vnx);
1460 biodone(pbp);
1461 }
1462 } else if (pbp->b_resid == 0) {
1463 #ifdef DIAGNOSTIC
1464 if (vnx->vx_pending != 0)
1465 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1466 #endif
1467
1468 if ((vnx->vx_flags & VX_BUSY) == 0) {
1469 UVMHIST_LOG(pdhist, " iodone error=%d !",
1470 pbp, vnx->vx_error, 0, 0);
1471 putvndxfer(vnx);
1472 biodone(pbp);
1473 }
1474 }
1475
1476 /*
1477 * done! start next swapdev I/O if one is pending
1478 */
1479 sdp->swd_tab.b_active--;
1480 sw_reg_start(sdp);
1481
1482 splx(s);
1483 }
1484 #endif /* SWAP_TO_FILES */
1485
1486
1487 /*
1488 * uvm_swap_alloc: allocate space on swap
1489 *
1490 * => allocation is done "round robin" down the priority list, as we
1491 * allocate in a priority we "rotate" the circle queue.
1492 * => space can be freed with uvm_swap_free
1493 * => we return the page slot number in /dev/drum (0 == invalid slot)
1494 * => we lock swap_data_lock
1495 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1496 */
1497 int
1498 uvm_swap_alloc(nslots, lessok)
1499 int *nslots; /* IN/OUT */
1500 boolean_t lessok;
1501 {
1502 struct swapdev *sdp;
1503 struct swappri *spp;
1504 u_long result;
1505 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1506
1507 /*
1508 * no swap devices configured yet? definite failure.
1509 */
1510 if (uvmexp.nswapdev < 1)
1511 return 0;
1512
1513 /*
1514 * lock data lock, convert slots into blocks, and enter loop
1515 */
1516 simple_lock(&swap_data_lock);
1517
1518 ReTry: /* XXXMRG */
1519 for (spp = swap_priority.lh_first; spp != NULL;
1520 spp = spp->spi_swappri.le_next) {
1521 for (sdp = spp->spi_swapdev.cqh_first;
1522 sdp != (void *)&spp->spi_swapdev;
1523 sdp = sdp->swd_next.cqe_next) {
1524 /* if it's not enabled, then we can't swap from it */
1525 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1526 continue;
1527 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1528 continue;
1529 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1530 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1531 &result) != 0) {
1532 continue;
1533 }
1534
1535 /*
1536 * successful allocation! now rotate the circleq.
1537 */
1538 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1539 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1540 sdp->swd_npginuse += *nslots;
1541 uvmexp.swpginuse += *nslots;
1542 simple_unlock(&swap_data_lock);
1543 /* done! return drum slot number */
1544 UVMHIST_LOG(pdhist,
1545 "success! returning %d slots starting at %d",
1546 *nslots, result + sdp->swd_drumoffset, 0, 0);
1547 #if 0
1548 {
1549 struct swapdev *sdp2;
1550
1551 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1552 if (sdp2 == NULL) {
1553 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1554 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1555 panic("uvm_swap_alloc: allocating unmapped swap block!");
1556 }
1557 }
1558 #endif
1559 return(result + sdp->swd_drumoffset);
1560 }
1561 }
1562
1563 /* XXXMRG: BEGIN HACK */
1564 if (*nslots > 1 && lessok) {
1565 *nslots = 1;
1566 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1567 }
1568 /* XXXMRG: END HACK */
1569
1570 simple_unlock(&swap_data_lock);
1571 return 0; /* failed */
1572 }
1573
1574 /*
1575 * uvm_swap_free: free swap slots
1576 *
1577 * => this can be all or part of an allocation made by uvm_swap_alloc
1578 * => we lock swap_data_lock
1579 */
1580 void
1581 uvm_swap_free(startslot, nslots)
1582 int startslot;
1583 int nslots;
1584 {
1585 struct swapdev *sdp;
1586 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1587
1588 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1589 startslot, 0, 0);
1590 /*
1591 * convert drum slot offset back to sdp, free the blocks
1592 * in the extent, and return. must hold pri lock to do
1593 * lookup and access the extent.
1594 */
1595 simple_lock(&swap_data_lock);
1596 sdp = swapdrum_getsdp(startslot);
1597
1598 #ifdef DIAGNOSTIC
1599 if (uvmexp.nswapdev < 1)
1600 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1601 if (sdp == NULL) {
1602 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1603 nslots);
1604 panic("uvm_swap_free: unmapped address\n");
1605 }
1606 #endif
1607 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1608 EX_MALLOCOK|EX_NOWAIT) != 0)
1609 printf("warning: resource shortage: %d slots of swap lost\n",
1610 nslots);
1611
1612 sdp->swd_npginuse -= nslots;
1613 uvmexp.swpginuse -= nslots;
1614 #ifdef DIAGNOSTIC
1615 if (sdp->swd_npginuse < 0)
1616 panic("uvm_swap_free: inuse < 0");
1617 #endif
1618 simple_unlock(&swap_data_lock);
1619 }
1620
1621 /*
1622 * uvm_swap_put: put any number of pages into a contig place on swap
1623 *
1624 * => can be sync or async
1625 * => XXXMRG: consider making it an inline or macro
1626 */
1627 int
1628 uvm_swap_put(swslot, ppsp, npages, flags)
1629 int swslot;
1630 struct vm_page **ppsp;
1631 int npages;
1632 int flags;
1633 {
1634 int result;
1635
1636 #if 0
1637 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1638 #endif
1639
1640 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1641 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1642
1643 return (result);
1644 }
1645
1646 /*
1647 * uvm_swap_get: get a single page from swap
1648 *
1649 * => usually a sync op (from fault)
1650 * => XXXMRG: consider making it an inline or macro
1651 */
1652 int
1653 uvm_swap_get(page, swslot, flags)
1654 struct vm_page *page;
1655 int swslot, flags;
1656 {
1657 int result;
1658
1659 uvmexp.nswget++;
1660 #ifdef DIAGNOSTIC
1661 if ((flags & PGO_SYNCIO) == 0)
1662 printf("uvm_swap_get: ASYNC get requested?\n");
1663 #endif
1664
1665 result = uvm_swap_io(&page, swslot, 1, B_READ |
1666 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1667
1668 return (result);
1669 }
1670
1671 /*
1672 * uvm_swap_io: do an i/o operation to swap
1673 */
1674
1675 static int
1676 uvm_swap_io(pps, startslot, npages, flags)
1677 struct vm_page **pps;
1678 int startslot, npages, flags;
1679 {
1680 daddr_t startblk;
1681 struct swapbuf *sbp;
1682 struct buf *bp;
1683 vm_offset_t kva;
1684 int result, s, waitf, pflag;
1685 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1686
1687 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1688 startslot, npages, flags, 0);
1689 /*
1690 * convert starting drum slot to block number
1691 */
1692 startblk = btodb(startslot * PAGE_SIZE);
1693
1694 /*
1695 * first, map the pages into the kernel (XXX: currently required
1696 * by buffer system). note that we don't let pagermapin alloc
1697 * an aiodesc structure because we don't want to chance a malloc.
1698 * we've got our own pool of aiodesc structures (in swapbuf).
1699 */
1700 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1701 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1702 if (kva == NULL)
1703 return (VM_PAGER_AGAIN);
1704
1705 /*
1706 * now allocate a swap buffer off of freesbufs
1707 * [make sure we don't put the pagedaemon to sleep...]
1708 */
1709 s = splbio();
1710 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1711 ? 0
1712 : PR_WAITOK;
1713 sbp = pool_get(swapbuf_pool, pflag);
1714 splx(s); /* drop splbio */
1715
1716 /*
1717 * if we failed to get a swapbuf, return "try again"
1718 */
1719 if (sbp == NULL)
1720 return (VM_PAGER_AGAIN);
1721
1722 /*
1723 * fill in the bp/sbp. we currently route our i/o through
1724 * /dev/drum's vnode [swapdev_vp].
1725 */
1726 bp = &sbp->sw_buf;
1727 bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1728 bp->b_proc = &proc0; /* XXX */
1729 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1730 bp->b_vnbufs.le_next = NOLIST;
1731 bp->b_data = (caddr_t)kva;
1732 bp->b_blkno = startblk;
1733 VHOLD(swapdev_vp);
1734 bp->b_vp = swapdev_vp;
1735 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1736 /* XXXMRG: probably -- this is obviously something inherited... */
1737 if (swapdev_vp->v_type == VBLK)
1738 bp->b_dev = swapdev_vp->v_rdev;
1739 bp->b_bcount = npages * PAGE_SIZE;
1740
1741 /*
1742 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1743 * and we bump v_numoutput (counter of number of active outputs).
1744 */
1745 if ((bp->b_flags & B_READ) == 0) {
1746 bp->b_dirtyoff = 0;
1747 bp->b_dirtyend = npages * PAGE_SIZE;
1748 s = splbio();
1749 swapdev_vp->v_numoutput++;
1750 splx(s);
1751 }
1752
1753 /*
1754 * for async ops we must set up the aiodesc and setup the callback
1755 * XXX: we expect no async-reads, but we don't prevent it here.
1756 */
1757 if (flags & B_ASYNC) {
1758 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1759 sbp->sw_aio.kva = kva;
1760 sbp->sw_aio.npages = npages;
1761 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1762 bp->b_flags |= B_CALL; /* set callback */
1763 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1764 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1765 }
1766 UVMHIST_LOG(pdhist,
1767 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1768 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1769
1770 /*
1771 * now we start the I/O, and if async, return.
1772 */
1773 VOP_STRATEGY(bp);
1774 if (flags & B_ASYNC)
1775 return (VM_PAGER_PEND);
1776
1777 /*
1778 * must be sync i/o. wait for it to finish
1779 */
1780 bp->b_error = biowait(bp);
1781 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1782
1783 /*
1784 * kill the pager mapping
1785 */
1786 uvm_pagermapout(kva, npages);
1787
1788 /*
1789 * now dispose of the swap buffer
1790 */
1791 s = splbio();
1792 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1793 if (bp->b_vp)
1794 brelvp(bp);
1795
1796 pool_put(swapbuf_pool, sbp);
1797 splx(s);
1798
1799 /*
1800 * finally return.
1801 */
1802 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1803 return (result);
1804 }
1805
1806 /*
1807 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1808 */
1809 static void
1810 uvm_swap_bufdone(bp)
1811 struct buf *bp;
1812 {
1813 struct swapbuf *sbp = (struct swapbuf *) bp;
1814 int s = splbio();
1815 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1816
1817 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1818 #ifdef DIAGNOSTIC
1819 /*
1820 * sanity check: swapbufs are private, so they shouldn't be wanted
1821 */
1822 if (bp->b_flags & B_WANTED)
1823 panic("uvm_swap_bufdone: private buf wanted");
1824 #endif
1825
1826 /*
1827 * drop buffers reference to the vnode and its flags.
1828 */
1829 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1830 if (bp->b_vp)
1831 brelvp(bp);
1832
1833 /*
1834 * now put the aio on the uvm.aio_done list and wake the
1835 * pagedaemon (which will finish up our job in its context).
1836 */
1837 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1838 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1839 simple_unlock(&uvm.pagedaemon_lock);
1840
1841 thread_wakeup(&uvm.pagedaemon);
1842 splx(s);
1843 }
1844
1845 /*
1846 * uvm_swap_aiodone: aiodone function for anonymous memory
1847 *
1848 * => this is called in the context of the pagedaemon (but with the
1849 * page queues unlocked!)
1850 * => our "aio" structure must be part of a "swapbuf"
1851 */
1852 static void
1853 uvm_swap_aiodone(aio)
1854 struct uvm_aiodesc *aio;
1855 {
1856 struct swapbuf *sbp = aio->pd_ptr;
1857 /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1858 /* XXX it does with GCC */
1859 struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1860 int lcv, s;
1861 vm_offset_t addr;
1862 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1863
1864 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1865 #ifdef DIAGNOSTIC
1866 /*
1867 * sanity check
1868 */
1869 if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1870 panic("uvm_swap_aiodone: aio too big!");
1871 #endif
1872
1873 /*
1874 * first, we have to recover the page pointers (pps) by poking in the
1875 * kernel pmap (XXX: should be saved in the buf structure).
1876 */
1877 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1878 addr += PAGE_SIZE, lcv++) {
1879 pps[lcv] = uvm_pageratop(addr);
1880 }
1881
1882 /*
1883 * now we can dispose of the kernel mappings of the buffer
1884 */
1885 uvm_pagermapout(aio->kva, aio->npages);
1886
1887 /*
1888 * now we can dispose of the pages by using the dropcluster function
1889 * [note that we have no "page of interest" so we pass in null]
1890 */
1891 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1892 PGO_PDFREECLUST, 0);
1893
1894 /*
1895 * finally, we can dispose of the swapbuf
1896 */
1897 s = splbio();
1898 pool_put(swapbuf_pool, sbp);
1899 splx(s);
1900
1901 /*
1902 * done!
1903 */
1904 }
1905