Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.140.2.2
      1 /*	$NetBSD: uvm_swap.c,v 1.140.2.2 2009/03/03 18:34:40 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.140.2.2 2009/03/03 18:34:40 skrll Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	dev_t			swd_dev;	/* device id */
    128 	int			swd_flags;	/* flags:inuse/enable/fake */
    129 	int			swd_priority;	/* our priority */
    130 	int			swd_nblks;	/* blocks in this device */
    131 	char			*swd_path;	/* saved pathname of device */
    132 	int			swd_pathlen;	/* length of pathname */
    133 	int			swd_npages;	/* #pages we can use */
    134 	int			swd_npginuse;	/* #pages in use */
    135 	int			swd_npgbad;	/* #pages bad */
    136 	int			swd_drumoffset;	/* page0 offset in drum */
    137 	int			swd_drumsize;	/* #pages in drum */
    138 	blist_t			swd_blist;	/* blist for this swapdev */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	*swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 /*
    180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    181  * dev_t and has no se_path[] member.
    182  */
    183 struct swapent13 {
    184 	int32_t	se13_dev;		/* device id */
    185 	int	se13_flags;		/* flags */
    186 	int	se13_nblks;		/* total blocks */
    187 	int	se13_inuse;		/* blocks in use */
    188 	int	se13_priority;		/* priority of this device */
    189 };
    190 
    191 /*
    192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    193  * dev_t.
    194  */
    195 struct swapent50 {
    196 	int32_t	se50_dev;		/* device id */
    197 	int	se50_flags;		/* flags */
    198 	int	se50_nblks;		/* total blocks */
    199 	int	se50_inuse;		/* blocks in use */
    200 	int	se50_priority;		/* priority of this device */
    201 	char	se50_path[PATH_MAX+1];	/* path name */
    202 };
    203 
    204 /*
    205  * We keep a of pool vndbuf's and vndxfer structures.
    206  */
    207 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    208     IPL_BIO);
    209 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    210     IPL_BIO);
    211 
    212 /*
    213  * local variables
    214  */
    215 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    216 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    217 
    218 /* list of all active swap devices [by priority] */
    219 LIST_HEAD(swap_priority, swappri);
    220 static struct swap_priority swap_priority;
    221 
    222 /* locks */
    223 static krwlock_t swap_syscall_lock;
    224 
    225 /* workqueue and use counter for swap to regular files */
    226 static int sw_reg_count = 0;
    227 static struct workqueue *sw_reg_workqueue;
    228 
    229 /* tuneables */
    230 u_int uvm_swapisfull_factor = 99;
    231 
    232 /*
    233  * prototypes
    234  */
    235 static struct swapdev	*swapdrum_getsdp(int);
    236 
    237 static struct swapdev	*swaplist_find(struct vnode *, bool);
    238 static void		 swaplist_insert(struct swapdev *,
    239 					 struct swappri *, int);
    240 static void		 swaplist_trim(void);
    241 
    242 static int swap_on(struct lwp *, struct swapdev *);
    243 static int swap_off(struct lwp *, struct swapdev *);
    244 
    245 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    246 
    247 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    248 static void sw_reg_biodone(struct buf *);
    249 static void sw_reg_iodone(struct work *wk, void *dummy);
    250 static void sw_reg_start(struct swapdev *);
    251 
    252 static int uvm_swap_io(struct vm_page **, int, int, int);
    253 
    254 /*
    255  * uvm_swap_init: init the swap system data structures and locks
    256  *
    257  * => called at boot time from init_main.c after the filesystems
    258  *	are brought up (which happens after uvm_init())
    259  */
    260 void
    261 uvm_swap_init(void)
    262 {
    263 	UVMHIST_FUNC("uvm_swap_init");
    264 
    265 	UVMHIST_CALLED(pdhist);
    266 	/*
    267 	 * first, init the swap list, its counter, and its lock.
    268 	 * then get a handle on the vnode for /dev/drum by using
    269 	 * the its dev_t number ("swapdev", from MD conf.c).
    270 	 */
    271 
    272 	LIST_INIT(&swap_priority);
    273 	uvmexp.nswapdev = 0;
    274 	rw_init(&swap_syscall_lock);
    275 	cv_init(&uvm.scheduler_cv, "schedule");
    276 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    277 
    278 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    279 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    280 
    281 	if (bdevvp(swapdev, &swapdev_vp))
    282 		panic("%s: can't get vnode for swap device", __func__);
    283 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    284 		panic("%s: can't lock swap device", __func__);
    285 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    286 		panic("%s: can't open swap device", __func__);
    287 	VOP_UNLOCK(swapdev_vp, 0);
    288 
    289 	/*
    290 	 * create swap block resource map to map /dev/drum.   the range
    291 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    292 	 * that block 0 is reserved (used to indicate an allocation
    293 	 * failure, or no allocation).
    294 	 */
    295 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    296 	    VM_NOSLEEP, IPL_NONE);
    297 	if (swapmap == 0)
    298 		panic("%s: vmem_create failed", __func__);
    299 
    300 	/*
    301 	 * done!
    302 	 */
    303 	uvm.swap_running = true;
    304 #ifdef __SWAP_BROKEN
    305 	uvm.swapout_enabled = 0;
    306 #else
    307 	uvm.swapout_enabled = 1;
    308 #endif
    309 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    310 
    311         sysctl_createv(NULL, 0, NULL, NULL,
    312             CTLFLAG_READWRITE,
    313             CTLTYPE_INT, "swapout",
    314             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    315             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    316 }
    317 
    318 /*
    319  * swaplist functions: functions that operate on the list of swap
    320  * devices on the system.
    321  */
    322 
    323 /*
    324  * swaplist_insert: insert swap device "sdp" into the global list
    325  *
    326  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    327  * => caller must provide a newly malloc'd swappri structure (we will
    328  *	FREE it if we don't need it... this it to prevent malloc blocking
    329  *	here while adding swap)
    330  */
    331 static void
    332 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    333 {
    334 	struct swappri *spp, *pspp;
    335 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    336 
    337 	/*
    338 	 * find entry at or after which to insert the new device.
    339 	 */
    340 	pspp = NULL;
    341 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    342 		if (priority <= spp->spi_priority)
    343 			break;
    344 		pspp = spp;
    345 	}
    346 
    347 	/*
    348 	 * new priority?
    349 	 */
    350 	if (spp == NULL || spp->spi_priority != priority) {
    351 		spp = newspp;  /* use newspp! */
    352 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    353 			    priority, 0, 0, 0);
    354 
    355 		spp->spi_priority = priority;
    356 		CIRCLEQ_INIT(&spp->spi_swapdev);
    357 
    358 		if (pspp)
    359 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    360 		else
    361 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    362 	} else {
    363 	  	/* we don't need a new priority structure, free it */
    364 		free(newspp, M_VMSWAP);
    365 	}
    366 
    367 	/*
    368 	 * priority found (or created).   now insert on the priority's
    369 	 * circleq list and bump the total number of swapdevs.
    370 	 */
    371 	sdp->swd_priority = priority;
    372 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    373 	uvmexp.nswapdev++;
    374 }
    375 
    376 /*
    377  * swaplist_find: find and optionally remove a swap device from the
    378  *	global list.
    379  *
    380  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    381  * => we return the swapdev we found (and removed)
    382  */
    383 static struct swapdev *
    384 swaplist_find(struct vnode *vp, bool remove)
    385 {
    386 	struct swapdev *sdp;
    387 	struct swappri *spp;
    388 
    389 	/*
    390 	 * search the lists for the requested vp
    391 	 */
    392 
    393 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    394 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    395 			if (sdp->swd_vp == vp) {
    396 				if (remove) {
    397 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    398 					    sdp, swd_next);
    399 					uvmexp.nswapdev--;
    400 				}
    401 				return(sdp);
    402 			}
    403 		}
    404 	}
    405 	return (NULL);
    406 }
    407 
    408 /*
    409  * swaplist_trim: scan priority list for empty priority entries and kill
    410  *	them.
    411  *
    412  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    413  */
    414 static void
    415 swaplist_trim(void)
    416 {
    417 	struct swappri *spp, *nextspp;
    418 
    419 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    420 		nextspp = LIST_NEXT(spp, spi_swappri);
    421 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    422 		    (void *)&spp->spi_swapdev)
    423 			continue;
    424 		LIST_REMOVE(spp, spi_swappri);
    425 		free(spp, M_VMSWAP);
    426 	}
    427 }
    428 
    429 /*
    430  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    431  *	to the "swapdev" that maps that section of the drum.
    432  *
    433  * => each swapdev takes one big contig chunk of the drum
    434  * => caller must hold uvm_swap_data_lock
    435  */
    436 static struct swapdev *
    437 swapdrum_getsdp(int pgno)
    438 {
    439 	struct swapdev *sdp;
    440 	struct swappri *spp;
    441 
    442 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    443 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    444 			if (sdp->swd_flags & SWF_FAKE)
    445 				continue;
    446 			if (pgno >= sdp->swd_drumoffset &&
    447 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    448 				return sdp;
    449 			}
    450 		}
    451 	}
    452 	return NULL;
    453 }
    454 
    455 
    456 /*
    457  * sys_swapctl: main entry point for swapctl(2) system call
    458  * 	[with two helper functions: swap_on and swap_off]
    459  */
    460 int
    461 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    462 {
    463 	/* {
    464 		syscallarg(int) cmd;
    465 		syscallarg(void *) arg;
    466 		syscallarg(int) misc;
    467 	} */
    468 	struct vnode *vp;
    469 	struct nameidata nd;
    470 	struct swappri *spp;
    471 	struct swapdev *sdp;
    472 	struct swapent *sep;
    473 #define SWAP_PATH_MAX (PATH_MAX + 1)
    474 	char	*userpath;
    475 	size_t	len;
    476 	int	error, misc;
    477 	int	priority;
    478 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    479 
    480 	misc = SCARG(uap, misc);
    481 
    482 	/*
    483 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    484 	 */
    485 	rw_enter(&swap_syscall_lock, RW_WRITER);
    486 
    487 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    488 	/*
    489 	 * we handle the non-priv NSWAP and STATS request first.
    490 	 *
    491 	 * SWAP_NSWAP: return number of config'd swap devices
    492 	 * [can also be obtained with uvmexp sysctl]
    493 	 */
    494 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    495 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    496 		    0, 0, 0);
    497 		*retval = uvmexp.nswapdev;
    498 		error = 0;
    499 		goto out;
    500 	}
    501 
    502 	/*
    503 	 * SWAP_STATS: get stats on current # of configured swap devs
    504 	 *
    505 	 * note that the swap_priority list can't change as long
    506 	 * as we are holding the swap_syscall_lock.  we don't want
    507 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    508 	 * copyout() and we don't want to be holding that lock then!
    509 	 */
    510 	if (SCARG(uap, cmd) == SWAP_STATS
    511 #if defined(COMPAT_50)
    512 	    || SCARG(uap, cmd) == SWAP_STATS50
    513 #endif
    514 #if defined(COMPAT_13)
    515 	    || SCARG(uap, cmd) == SWAP_STATS13
    516 #endif
    517 	    ) {
    518 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    519 			misc = uvmexp.nswapdev;
    520 #if defined(COMPAT_13)
    521 		if (SCARG(uap, cmd) == SWAP_STATS13)
    522 			len = sizeof(struct swapent13) * misc;
    523 		else
    524 #endif
    525 #if defined(COMPAT_50)
    526 		if (SCARG(uap, cmd) == SWAP_STATS50)
    527 			len = sizeof(struct swapent50) * misc;
    528 		else
    529 #endif
    530 			len = sizeof(struct swapent) * misc;
    531 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    532 
    533 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    534 		error = copyout(sep, SCARG(uap, arg), len);
    535 
    536 		free(sep, M_TEMP);
    537 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    538 		goto out;
    539 	}
    540 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    541 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    542 
    543 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    544 		goto out;
    545 	}
    546 
    547 	/*
    548 	 * all other requests require superuser privs.   verify.
    549 	 */
    550 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    551 	    0, NULL, NULL, NULL)))
    552 		goto out;
    553 
    554 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    555 		/* drop the current dump device */
    556 		dumpdev = NODEV;
    557 		dumpcdev = NODEV;
    558 		cpu_dumpconf();
    559 		goto out;
    560 	}
    561 
    562 	/*
    563 	 * at this point we expect a path name in arg.   we will
    564 	 * use namei() to gain a vnode reference (vref), and lock
    565 	 * the vnode (VOP_LOCK).
    566 	 *
    567 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    568 	 * miniroot)
    569 	 */
    570 	if (SCARG(uap, arg) == NULL) {
    571 		vp = rootvp;		/* miniroot */
    572 		if (vget(vp, LK_EXCLUSIVE)) {
    573 			error = EBUSY;
    574 			goto out;
    575 		}
    576 		if (SCARG(uap, cmd) == SWAP_ON &&
    577 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    578 			panic("swapctl: miniroot copy failed");
    579 	} else {
    580 		int	space;
    581 		char	*where;
    582 
    583 		if (SCARG(uap, cmd) == SWAP_ON) {
    584 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    585 			    SWAP_PATH_MAX, &len)))
    586 				goto out;
    587 			space = UIO_SYSSPACE;
    588 			where = userpath;
    589 		} else {
    590 			space = UIO_USERSPACE;
    591 			where = (char *)SCARG(uap, arg);
    592 		}
    593 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    594 		    space, where);
    595 		if ((error = namei(&nd)))
    596 			goto out;
    597 		vp = nd.ni_vp;
    598 	}
    599 	/* note: "vp" is referenced and locked */
    600 
    601 	error = 0;		/* assume no error */
    602 	switch(SCARG(uap, cmd)) {
    603 
    604 	case SWAP_DUMPDEV:
    605 		if (vp->v_type != VBLK) {
    606 			error = ENOTBLK;
    607 			break;
    608 		}
    609 		if (bdevsw_lookup(vp->v_rdev)) {
    610 			dumpdev = vp->v_rdev;
    611 			dumpcdev = devsw_blk2chr(dumpdev);
    612 		} else
    613 			dumpdev = NODEV;
    614 		cpu_dumpconf();
    615 		break;
    616 
    617 	case SWAP_CTL:
    618 		/*
    619 		 * get new priority, remove old entry (if any) and then
    620 		 * reinsert it in the correct place.  finally, prune out
    621 		 * any empty priority structures.
    622 		 */
    623 		priority = SCARG(uap, misc);
    624 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    625 		mutex_enter(&uvm_swap_data_lock);
    626 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    627 			error = ENOENT;
    628 		} else {
    629 			swaplist_insert(sdp, spp, priority);
    630 			swaplist_trim();
    631 		}
    632 		mutex_exit(&uvm_swap_data_lock);
    633 		if (error)
    634 			free(spp, M_VMSWAP);
    635 		break;
    636 
    637 	case SWAP_ON:
    638 
    639 		/*
    640 		 * check for duplicates.   if none found, then insert a
    641 		 * dummy entry on the list to prevent someone else from
    642 		 * trying to enable this device while we are working on
    643 		 * it.
    644 		 */
    645 
    646 		priority = SCARG(uap, misc);
    647 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    648 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    649 		memset(sdp, 0, sizeof(*sdp));
    650 		sdp->swd_flags = SWF_FAKE;
    651 		sdp->swd_vp = vp;
    652 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    653 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    654 		mutex_enter(&uvm_swap_data_lock);
    655 		if (swaplist_find(vp, false) != NULL) {
    656 			error = EBUSY;
    657 			mutex_exit(&uvm_swap_data_lock);
    658 			bufq_free(sdp->swd_tab);
    659 			free(sdp, M_VMSWAP);
    660 			free(spp, M_VMSWAP);
    661 			break;
    662 		}
    663 		swaplist_insert(sdp, spp, priority);
    664 		mutex_exit(&uvm_swap_data_lock);
    665 
    666 		sdp->swd_pathlen = len;
    667 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    668 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    669 			panic("swapctl: copystr");
    670 
    671 		/*
    672 		 * we've now got a FAKE placeholder in the swap list.
    673 		 * now attempt to enable swap on it.  if we fail, undo
    674 		 * what we've done and kill the fake entry we just inserted.
    675 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    676 		 */
    677 
    678 		if ((error = swap_on(l, sdp)) != 0) {
    679 			mutex_enter(&uvm_swap_data_lock);
    680 			(void) swaplist_find(vp, true);  /* kill fake entry */
    681 			swaplist_trim();
    682 			mutex_exit(&uvm_swap_data_lock);
    683 			bufq_free(sdp->swd_tab);
    684 			free(sdp->swd_path, M_VMSWAP);
    685 			free(sdp, M_VMSWAP);
    686 			break;
    687 		}
    688 		break;
    689 
    690 	case SWAP_OFF:
    691 		mutex_enter(&uvm_swap_data_lock);
    692 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    693 			mutex_exit(&uvm_swap_data_lock);
    694 			error = ENXIO;
    695 			break;
    696 		}
    697 
    698 		/*
    699 		 * If a device isn't in use or enabled, we
    700 		 * can't stop swapping from it (again).
    701 		 */
    702 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    703 			mutex_exit(&uvm_swap_data_lock);
    704 			error = EBUSY;
    705 			break;
    706 		}
    707 
    708 		/*
    709 		 * do the real work.
    710 		 */
    711 		error = swap_off(l, sdp);
    712 		break;
    713 
    714 	default:
    715 		error = EINVAL;
    716 	}
    717 
    718 	/*
    719 	 * done!  release the ref gained by namei() and unlock.
    720 	 */
    721 	vput(vp);
    722 
    723 out:
    724 	free(userpath, M_TEMP);
    725 	rw_exit(&swap_syscall_lock);
    726 
    727 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    728 	return (error);
    729 }
    730 
    731 /*
    732  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    733  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    734  * emulation to use it directly without going through sys_swapctl().
    735  * The problem with using sys_swapctl() there is that it involves
    736  * copying the swapent array to the stackgap, and this array's size
    737  * is not known at build time. Hence it would not be possible to
    738  * ensure it would fit in the stackgap in any case.
    739  */
    740 void
    741 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    742 {
    743 
    744 	rw_enter(&swap_syscall_lock, RW_READER);
    745 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    746 	rw_exit(&swap_syscall_lock);
    747 }
    748 
    749 static void
    750 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    751 {
    752 	struct swappri *spp;
    753 	struct swapdev *sdp;
    754 	int count = 0;
    755 
    756 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    757 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    758 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    759 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    760 			int inuse;
    761 
    762 		  	/*
    763 			 * backwards compatibility for system call.
    764 			 * For NetBSD 1.3 and 5.0, we have to use
    765 			 * the 32 bit dev_t.  For 5.0 and -current
    766 			 * we have to add the path.
    767 			 */
    768 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    769 			    PAGE_SHIFT);
    770 
    771 #if defined(COMPAT_13) || defined(COMPAT_50)
    772 			if (cmd == SWAP_STATS) {
    773 #endif
    774 				sep->se_dev = sdp->swd_dev;
    775 				sep->se_flags = sdp->swd_flags;
    776 				sep->se_nblks = sdp->swd_nblks;
    777 				sep->se_inuse = inuse;
    778 				sep->se_priority = sdp->swd_priority;
    779 				memcpy(&sep->se_path, sdp->swd_path,
    780 				       sizeof sep->se_path);
    781 				sep++;
    782 #if defined(COMPAT_13)
    783 			} else if (cmd == SWAP_STATS13) {
    784 				struct swapent13 *sep13 =
    785 				    (struct swapent13 *)sep;
    786 
    787 				sep13->se13_dev = sdp->swd_dev;
    788 				sep13->se13_flags = sdp->swd_flags;
    789 				sep13->se13_nblks = sdp->swd_nblks;
    790 				sep13->se13_inuse = inuse;
    791 				sep13->se13_priority = sdp->swd_priority;
    792 				sep = (struct swapent *)(sep13 + 1);
    793 #endif
    794 #if defined(COMPAT_50)
    795 			} else if (cmd == SWAP_STATS50) {
    796 				struct swapent50 *sep50 =
    797 				    (struct swapent50 *)sep;
    798 
    799 				sep50->se50_dev = sdp->swd_dev;
    800 				sep50->se50_flags = sdp->swd_flags;
    801 				sep50->se50_nblks = sdp->swd_nblks;
    802 				sep50->se50_inuse = inuse;
    803 				sep50->se50_priority = sdp->swd_priority;
    804 				memcpy(&sep50->se50_path, sdp->swd_path,
    805 				       sizeof sep50->se50_path);
    806 				sep = (struct swapent *)(sep50 + 1);
    807 			}
    808 #endif
    809 			count++;
    810 		}
    811 	}
    812 
    813 	*retval = count;
    814 	return;
    815 }
    816 
    817 /*
    818  * swap_on: attempt to enable a swapdev for swapping.   note that the
    819  *	swapdev is already on the global list, but disabled (marked
    820  *	SWF_FAKE).
    821  *
    822  * => we avoid the start of the disk (to protect disk labels)
    823  * => we also avoid the miniroot, if we are swapping to root.
    824  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    825  *	if needed.
    826  */
    827 static int
    828 swap_on(struct lwp *l, struct swapdev *sdp)
    829 {
    830 	struct vnode *vp;
    831 	int error, npages, nblocks, size;
    832 	long addr;
    833 	u_long result;
    834 	struct vattr va;
    835 #ifdef NFS
    836 	extern int (**nfsv2_vnodeop_p)(void *);
    837 #endif /* NFS */
    838 	const struct bdevsw *bdev;
    839 	dev_t dev;
    840 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    841 
    842 	/*
    843 	 * we want to enable swapping on sdp.   the swd_vp contains
    844 	 * the vnode we want (locked and ref'd), and the swd_dev
    845 	 * contains the dev_t of the file, if it a block device.
    846 	 */
    847 
    848 	vp = sdp->swd_vp;
    849 	dev = sdp->swd_dev;
    850 
    851 	/*
    852 	 * open the swap file (mostly useful for block device files to
    853 	 * let device driver know what is up).
    854 	 *
    855 	 * we skip the open/close for root on swap because the root
    856 	 * has already been opened when root was mounted (mountroot).
    857 	 */
    858 	if (vp != rootvp) {
    859 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    860 			return (error);
    861 	}
    862 
    863 	/* XXX this only works for block devices */
    864 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    865 
    866 	/*
    867 	 * we now need to determine the size of the swap area.   for
    868 	 * block specials we can call the d_psize function.
    869 	 * for normal files, we must stat [get attrs].
    870 	 *
    871 	 * we put the result in nblks.
    872 	 * for normal files, we also want the filesystem block size
    873 	 * (which we get with statfs).
    874 	 */
    875 	switch (vp->v_type) {
    876 	case VBLK:
    877 		bdev = bdevsw_lookup(dev);
    878 		if (bdev == NULL || bdev->d_psize == NULL ||
    879 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    880 			error = ENXIO;
    881 			goto bad;
    882 		}
    883 		break;
    884 
    885 	case VREG:
    886 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    887 			goto bad;
    888 		nblocks = (int)btodb(va.va_size);
    889 		if ((error =
    890 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    891 			goto bad;
    892 
    893 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    894 		/*
    895 		 * limit the max # of outstanding I/O requests we issue
    896 		 * at any one time.   take it easy on NFS servers.
    897 		 */
    898 #ifdef NFS
    899 		if (vp->v_op == nfsv2_vnodeop_p)
    900 			sdp->swd_maxactive = 2; /* XXX */
    901 		else
    902 #endif /* NFS */
    903 			sdp->swd_maxactive = 8; /* XXX */
    904 		break;
    905 
    906 	default:
    907 		error = ENXIO;
    908 		goto bad;
    909 	}
    910 
    911 	/*
    912 	 * save nblocks in a safe place and convert to pages.
    913 	 */
    914 
    915 	sdp->swd_nblks = nblocks;
    916 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    917 
    918 	/*
    919 	 * for block special files, we want to make sure that leave
    920 	 * the disklabel and bootblocks alone, so we arrange to skip
    921 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    922 	 * note that because of this the "size" can be less than the
    923 	 * actual number of blocks on the device.
    924 	 */
    925 	if (vp->v_type == VBLK) {
    926 		/* we use pages 1 to (size - 1) [inclusive] */
    927 		size = npages - 1;
    928 		addr = 1;
    929 	} else {
    930 		/* we use pages 0 to (size - 1) [inclusive] */
    931 		size = npages;
    932 		addr = 0;
    933 	}
    934 
    935 	/*
    936 	 * make sure we have enough blocks for a reasonable sized swap
    937 	 * area.   we want at least one page.
    938 	 */
    939 
    940 	if (size < 1) {
    941 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    942 		error = EINVAL;
    943 		goto bad;
    944 	}
    945 
    946 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    947 
    948 	/*
    949 	 * now we need to allocate an extent to manage this swap device
    950 	 */
    951 
    952 	sdp->swd_blist = blist_create(npages);
    953 	/* mark all expect the `saved' region free. */
    954 	blist_free(sdp->swd_blist, addr, size);
    955 
    956 	/*
    957 	 * if the vnode we are swapping to is the root vnode
    958 	 * (i.e. we are swapping to the miniroot) then we want
    959 	 * to make sure we don't overwrite it.   do a statfs to
    960 	 * find its size and skip over it.
    961 	 */
    962 	if (vp == rootvp) {
    963 		struct mount *mp;
    964 		struct statvfs *sp;
    965 		int rootblocks, rootpages;
    966 
    967 		mp = rootvnode->v_mount;
    968 		sp = &mp->mnt_stat;
    969 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    970 		/*
    971 		 * XXX: sp->f_blocks isn't the total number of
    972 		 * blocks in the filesystem, it's the number of
    973 		 * data blocks.  so, our rootblocks almost
    974 		 * definitely underestimates the total size
    975 		 * of the filesystem - how badly depends on the
    976 		 * details of the filesystem type.  there isn't
    977 		 * an obvious way to deal with this cleanly
    978 		 * and perfectly, so for now we just pad our
    979 		 * rootblocks estimate with an extra 5 percent.
    980 		 */
    981 		rootblocks += (rootblocks >> 5) +
    982 			(rootblocks >> 6) +
    983 			(rootblocks >> 7);
    984 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    985 		if (rootpages > size)
    986 			panic("swap_on: miniroot larger than swap?");
    987 
    988 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    989 			panic("swap_on: unable to preserve miniroot");
    990 		}
    991 
    992 		size -= rootpages;
    993 		printf("Preserved %d pages of miniroot ", rootpages);
    994 		printf("leaving %d pages of swap\n", size);
    995 	}
    996 
    997 	/*
    998 	 * add a ref to vp to reflect usage as a swap device.
    999 	 */
   1000 	vref(vp);
   1001 
   1002 	/*
   1003 	 * now add the new swapdev to the drum and enable.
   1004 	 */
   1005 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
   1006 	if (result == 0)
   1007 		panic("swapdrum_add");
   1008 	/*
   1009 	 * If this is the first regular swap create the workqueue.
   1010 	 * => Protected by swap_syscall_lock.
   1011 	 */
   1012 	if (vp->v_type != VBLK) {
   1013 		if (sw_reg_count++ == 0) {
   1014 			KASSERT(sw_reg_workqueue == NULL);
   1015 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1016 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1017 				panic("%s: workqueue_create failed", __func__);
   1018 		}
   1019 	}
   1020 
   1021 	sdp->swd_drumoffset = (int)result;
   1022 	sdp->swd_drumsize = npages;
   1023 	sdp->swd_npages = size;
   1024 	mutex_enter(&uvm_swap_data_lock);
   1025 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1026 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1027 	uvmexp.swpages += size;
   1028 	uvmexp.swpgavail += size;
   1029 	mutex_exit(&uvm_swap_data_lock);
   1030 	return (0);
   1031 
   1032 	/*
   1033 	 * failure: clean up and return error.
   1034 	 */
   1035 
   1036 bad:
   1037 	if (sdp->swd_blist) {
   1038 		blist_destroy(sdp->swd_blist);
   1039 	}
   1040 	if (vp != rootvp) {
   1041 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1042 	}
   1043 	return (error);
   1044 }
   1045 
   1046 /*
   1047  * swap_off: stop swapping on swapdev
   1048  *
   1049  * => swap data should be locked, we will unlock.
   1050  */
   1051 static int
   1052 swap_off(struct lwp *l, struct swapdev *sdp)
   1053 {
   1054 	int npages = sdp->swd_npages;
   1055 	int error = 0;
   1056 
   1057 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1058 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1059 
   1060 	/* disable the swap area being removed */
   1061 	sdp->swd_flags &= ~SWF_ENABLE;
   1062 	uvmexp.swpgavail -= npages;
   1063 	mutex_exit(&uvm_swap_data_lock);
   1064 
   1065 	/*
   1066 	 * the idea is to find all the pages that are paged out to this
   1067 	 * device, and page them all in.  in uvm, swap-backed pageable
   1068 	 * memory can take two forms: aobjs and anons.  call the
   1069 	 * swapoff hook for each subsystem to bring in pages.
   1070 	 */
   1071 
   1072 	if (uao_swap_off(sdp->swd_drumoffset,
   1073 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1074 	    amap_swap_off(sdp->swd_drumoffset,
   1075 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1076 		error = ENOMEM;
   1077 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1078 		error = EBUSY;
   1079 	}
   1080 
   1081 	if (error) {
   1082 		mutex_enter(&uvm_swap_data_lock);
   1083 		sdp->swd_flags |= SWF_ENABLE;
   1084 		uvmexp.swpgavail += npages;
   1085 		mutex_exit(&uvm_swap_data_lock);
   1086 
   1087 		return error;
   1088 	}
   1089 
   1090 	/*
   1091 	 * If this is the last regular swap destroy the workqueue.
   1092 	 * => Protected by swap_syscall_lock.
   1093 	 */
   1094 	if (sdp->swd_vp->v_type != VBLK) {
   1095 		KASSERT(sw_reg_count > 0);
   1096 		KASSERT(sw_reg_workqueue != NULL);
   1097 		if (--sw_reg_count == 0) {
   1098 			workqueue_destroy(sw_reg_workqueue);
   1099 			sw_reg_workqueue = NULL;
   1100 		}
   1101 	}
   1102 
   1103 	/*
   1104 	 * done with the vnode.
   1105 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1106 	 * so that spec_close() can tell if this is the last close.
   1107 	 */
   1108 	vrele(sdp->swd_vp);
   1109 	if (sdp->swd_vp != rootvp) {
   1110 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1111 	}
   1112 
   1113 	mutex_enter(&uvm_swap_data_lock);
   1114 	uvmexp.swpages -= npages;
   1115 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1116 
   1117 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1118 		panic("%s: swapdev not in list", __func__);
   1119 	swaplist_trim();
   1120 	mutex_exit(&uvm_swap_data_lock);
   1121 
   1122 	/*
   1123 	 * free all resources!
   1124 	 */
   1125 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1126 	blist_destroy(sdp->swd_blist);
   1127 	bufq_free(sdp->swd_tab);
   1128 	free(sdp, M_VMSWAP);
   1129 	return (0);
   1130 }
   1131 
   1132 /*
   1133  * /dev/drum interface and i/o functions
   1134  */
   1135 
   1136 /*
   1137  * swstrategy: perform I/O on the drum
   1138  *
   1139  * => we must map the i/o request from the drum to the correct swapdev.
   1140  */
   1141 static void
   1142 swstrategy(struct buf *bp)
   1143 {
   1144 	struct swapdev *sdp;
   1145 	struct vnode *vp;
   1146 	int pageno, bn;
   1147 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1148 
   1149 	/*
   1150 	 * convert block number to swapdev.   note that swapdev can't
   1151 	 * be yanked out from under us because we are holding resources
   1152 	 * in it (i.e. the blocks we are doing I/O on).
   1153 	 */
   1154 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1155 	mutex_enter(&uvm_swap_data_lock);
   1156 	sdp = swapdrum_getsdp(pageno);
   1157 	mutex_exit(&uvm_swap_data_lock);
   1158 	if (sdp == NULL) {
   1159 		bp->b_error = EINVAL;
   1160 		biodone(bp);
   1161 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1162 		return;
   1163 	}
   1164 
   1165 	/*
   1166 	 * convert drum page number to block number on this swapdev.
   1167 	 */
   1168 
   1169 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1170 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1171 
   1172 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1173 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1174 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1175 
   1176 	/*
   1177 	 * for block devices we finish up here.
   1178 	 * for regular files we have to do more work which we delegate
   1179 	 * to sw_reg_strategy().
   1180 	 */
   1181 
   1182 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1183 	switch (vp->v_type) {
   1184 	default:
   1185 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1186 
   1187 	case VBLK:
   1188 
   1189 		/*
   1190 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1191 		 * on the swapdev (sdp).
   1192 		 */
   1193 		bp->b_blkno = bn;		/* swapdev block number */
   1194 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1195 
   1196 		/*
   1197 		 * if we are doing a write, we have to redirect the i/o on
   1198 		 * drum's v_numoutput counter to the swapdevs.
   1199 		 */
   1200 		if ((bp->b_flags & B_READ) == 0) {
   1201 			mutex_enter(bp->b_objlock);
   1202 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1203 			mutex_exit(bp->b_objlock);
   1204 			mutex_enter(&vp->v_interlock);
   1205 			vp->v_numoutput++;	/* put it on swapdev */
   1206 			mutex_exit(&vp->v_interlock);
   1207 		}
   1208 
   1209 		/*
   1210 		 * finally plug in swapdev vnode and start I/O
   1211 		 */
   1212 		bp->b_vp = vp;
   1213 		bp->b_objlock = &vp->v_interlock;
   1214 		VOP_STRATEGY(vp, bp);
   1215 		return;
   1216 
   1217 	case VREG:
   1218 		/*
   1219 		 * delegate to sw_reg_strategy function.
   1220 		 */
   1221 		sw_reg_strategy(sdp, bp, bn);
   1222 		return;
   1223 	}
   1224 	/* NOTREACHED */
   1225 }
   1226 
   1227 /*
   1228  * swread: the read function for the drum (just a call to physio)
   1229  */
   1230 /*ARGSUSED*/
   1231 static int
   1232 swread(dev_t dev, struct uio *uio, int ioflag)
   1233 {
   1234 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1235 
   1236 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1237 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1238 }
   1239 
   1240 /*
   1241  * swwrite: the write function for the drum (just a call to physio)
   1242  */
   1243 /*ARGSUSED*/
   1244 static int
   1245 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1246 {
   1247 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1248 
   1249 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1250 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1251 }
   1252 
   1253 const struct bdevsw swap_bdevsw = {
   1254 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1255 };
   1256 
   1257 const struct cdevsw swap_cdevsw = {
   1258 	nullopen, nullclose, swread, swwrite, noioctl,
   1259 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1260 };
   1261 
   1262 /*
   1263  * sw_reg_strategy: handle swap i/o to regular files
   1264  */
   1265 static void
   1266 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1267 {
   1268 	struct vnode	*vp;
   1269 	struct vndxfer	*vnx;
   1270 	daddr_t		nbn;
   1271 	char 		*addr;
   1272 	off_t		byteoff;
   1273 	int		s, off, nra, error, sz, resid;
   1274 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1275 
   1276 	/*
   1277 	 * allocate a vndxfer head for this transfer and point it to
   1278 	 * our buffer.
   1279 	 */
   1280 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1281 	vnx->vx_flags = VX_BUSY;
   1282 	vnx->vx_error = 0;
   1283 	vnx->vx_pending = 0;
   1284 	vnx->vx_bp = bp;
   1285 	vnx->vx_sdp = sdp;
   1286 
   1287 	/*
   1288 	 * setup for main loop where we read filesystem blocks into
   1289 	 * our buffer.
   1290 	 */
   1291 	error = 0;
   1292 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1293 	addr = bp->b_data;		/* current position in buffer */
   1294 	byteoff = dbtob((uint64_t)bn);
   1295 
   1296 	for (resid = bp->b_resid; resid; resid -= sz) {
   1297 		struct vndbuf	*nbp;
   1298 
   1299 		/*
   1300 		 * translate byteoffset into block number.  return values:
   1301 		 *   vp = vnode of underlying device
   1302 		 *  nbn = new block number (on underlying vnode dev)
   1303 		 *  nra = num blocks we can read-ahead (excludes requested
   1304 		 *	block)
   1305 		 */
   1306 		nra = 0;
   1307 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1308 				 	&vp, &nbn, &nra);
   1309 
   1310 		if (error == 0 && nbn == (daddr_t)-1) {
   1311 			/*
   1312 			 * this used to just set error, but that doesn't
   1313 			 * do the right thing.  Instead, it causes random
   1314 			 * memory errors.  The panic() should remain until
   1315 			 * this condition doesn't destabilize the system.
   1316 			 */
   1317 #if 1
   1318 			panic("%s: swap to sparse file", __func__);
   1319 #else
   1320 			error = EIO;	/* failure */
   1321 #endif
   1322 		}
   1323 
   1324 		/*
   1325 		 * punt if there was an error or a hole in the file.
   1326 		 * we must wait for any i/o ops we have already started
   1327 		 * to finish before returning.
   1328 		 *
   1329 		 * XXX we could deal with holes here but it would be
   1330 		 * a hassle (in the write case).
   1331 		 */
   1332 		if (error) {
   1333 			s = splbio();
   1334 			vnx->vx_error = error;	/* pass error up */
   1335 			goto out;
   1336 		}
   1337 
   1338 		/*
   1339 		 * compute the size ("sz") of this transfer (in bytes).
   1340 		 */
   1341 		off = byteoff % sdp->swd_bsize;
   1342 		sz = (1 + nra) * sdp->swd_bsize - off;
   1343 		if (sz > resid)
   1344 			sz = resid;
   1345 
   1346 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1347 			    "vp %p/%p offset 0x%x/0x%x",
   1348 			    sdp->swd_vp, vp, byteoff, nbn);
   1349 
   1350 		/*
   1351 		 * now get a buf structure.   note that the vb_buf is
   1352 		 * at the front of the nbp structure so that you can
   1353 		 * cast pointers between the two structure easily.
   1354 		 */
   1355 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1356 		buf_init(&nbp->vb_buf);
   1357 		nbp->vb_buf.b_flags    = bp->b_flags;
   1358 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1359 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1360 		nbp->vb_buf.b_bcount   = sz;
   1361 		nbp->vb_buf.b_bufsize  = sz;
   1362 		nbp->vb_buf.b_error    = 0;
   1363 		nbp->vb_buf.b_data     = addr;
   1364 		nbp->vb_buf.b_lblkno   = 0;
   1365 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1366 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1367 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1368 		nbp->vb_buf.b_vp       = vp;
   1369 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1370 		if (vp->v_type == VBLK) {
   1371 			nbp->vb_buf.b_dev = vp->v_rdev;
   1372 		}
   1373 
   1374 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1375 
   1376 		/*
   1377 		 * Just sort by block number
   1378 		 */
   1379 		s = splbio();
   1380 		if (vnx->vx_error != 0) {
   1381 			buf_destroy(&nbp->vb_buf);
   1382 			pool_put(&vndbuf_pool, nbp);
   1383 			goto out;
   1384 		}
   1385 		vnx->vx_pending++;
   1386 
   1387 		/* sort it in and start I/O if we are not over our limit */
   1388 		/* XXXAD locking */
   1389 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1390 		sw_reg_start(sdp);
   1391 		splx(s);
   1392 
   1393 		/*
   1394 		 * advance to the next I/O
   1395 		 */
   1396 		byteoff += sz;
   1397 		addr += sz;
   1398 	}
   1399 
   1400 	s = splbio();
   1401 
   1402 out: /* Arrive here at splbio */
   1403 	vnx->vx_flags &= ~VX_BUSY;
   1404 	if (vnx->vx_pending == 0) {
   1405 		error = vnx->vx_error;
   1406 		pool_put(&vndxfer_pool, vnx);
   1407 		bp->b_error = error;
   1408 		biodone(bp);
   1409 	}
   1410 	splx(s);
   1411 }
   1412 
   1413 /*
   1414  * sw_reg_start: start an I/O request on the requested swapdev
   1415  *
   1416  * => reqs are sorted by b_rawblkno (above)
   1417  */
   1418 static void
   1419 sw_reg_start(struct swapdev *sdp)
   1420 {
   1421 	struct buf	*bp;
   1422 	struct vnode	*vp;
   1423 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1424 
   1425 	/* recursion control */
   1426 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1427 		return;
   1428 
   1429 	sdp->swd_flags |= SWF_BUSY;
   1430 
   1431 	while (sdp->swd_active < sdp->swd_maxactive) {
   1432 		bp = bufq_get(sdp->swd_tab);
   1433 		if (bp == NULL)
   1434 			break;
   1435 		sdp->swd_active++;
   1436 
   1437 		UVMHIST_LOG(pdhist,
   1438 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1439 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1440 		vp = bp->b_vp;
   1441 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1442 		if ((bp->b_flags & B_READ) == 0) {
   1443 			mutex_enter(&vp->v_interlock);
   1444 			vp->v_numoutput++;
   1445 			mutex_exit(&vp->v_interlock);
   1446 		}
   1447 		VOP_STRATEGY(vp, bp);
   1448 	}
   1449 	sdp->swd_flags &= ~SWF_BUSY;
   1450 }
   1451 
   1452 /*
   1453  * sw_reg_biodone: one of our i/o's has completed
   1454  */
   1455 static void
   1456 sw_reg_biodone(struct buf *bp)
   1457 {
   1458 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1459 }
   1460 
   1461 /*
   1462  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1463  *
   1464  * => note that we can recover the vndbuf struct by casting the buf ptr
   1465  */
   1466 static void
   1467 sw_reg_iodone(struct work *wk, void *dummy)
   1468 {
   1469 	struct vndbuf *vbp = (void *)wk;
   1470 	struct vndxfer *vnx = vbp->vb_xfer;
   1471 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1472 	struct swapdev	*sdp = vnx->vx_sdp;
   1473 	int s, resid, error;
   1474 	KASSERT(&vbp->vb_buf.b_work == wk);
   1475 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1476 
   1477 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1478 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1479 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1480 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1481 
   1482 	/*
   1483 	 * protect vbp at splbio and update.
   1484 	 */
   1485 
   1486 	s = splbio();
   1487 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1488 	pbp->b_resid -= resid;
   1489 	vnx->vx_pending--;
   1490 
   1491 	if (vbp->vb_buf.b_error != 0) {
   1492 		/* pass error upward */
   1493 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1494 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1495 		vnx->vx_error = error;
   1496 	}
   1497 
   1498 	/*
   1499 	 * kill vbp structure
   1500 	 */
   1501 	buf_destroy(&vbp->vb_buf);
   1502 	pool_put(&vndbuf_pool, vbp);
   1503 
   1504 	/*
   1505 	 * wrap up this transaction if it has run to completion or, in
   1506 	 * case of an error, when all auxiliary buffers have returned.
   1507 	 */
   1508 	if (vnx->vx_error != 0) {
   1509 		/* pass error upward */
   1510 		error = vnx->vx_error;
   1511 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1512 			pbp->b_error = error;
   1513 			biodone(pbp);
   1514 			pool_put(&vndxfer_pool, vnx);
   1515 		}
   1516 	} else if (pbp->b_resid == 0) {
   1517 		KASSERT(vnx->vx_pending == 0);
   1518 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1519 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1520 			    pbp, vnx->vx_error, 0, 0);
   1521 			biodone(pbp);
   1522 			pool_put(&vndxfer_pool, vnx);
   1523 		}
   1524 	}
   1525 
   1526 	/*
   1527 	 * done!   start next swapdev I/O if one is pending
   1528 	 */
   1529 	sdp->swd_active--;
   1530 	sw_reg_start(sdp);
   1531 	splx(s);
   1532 }
   1533 
   1534 
   1535 /*
   1536  * uvm_swap_alloc: allocate space on swap
   1537  *
   1538  * => allocation is done "round robin" down the priority list, as we
   1539  *	allocate in a priority we "rotate" the circle queue.
   1540  * => space can be freed with uvm_swap_free
   1541  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1542  * => we lock uvm_swap_data_lock
   1543  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1544  */
   1545 int
   1546 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1547 {
   1548 	struct swapdev *sdp;
   1549 	struct swappri *spp;
   1550 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1551 
   1552 	/*
   1553 	 * no swap devices configured yet?   definite failure.
   1554 	 */
   1555 	if (uvmexp.nswapdev < 1)
   1556 		return 0;
   1557 
   1558 	/*
   1559 	 * lock data lock, convert slots into blocks, and enter loop
   1560 	 */
   1561 	mutex_enter(&uvm_swap_data_lock);
   1562 
   1563 ReTry:	/* XXXMRG */
   1564 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1565 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1566 			uint64_t result;
   1567 
   1568 			/* if it's not enabled, then we can't swap from it */
   1569 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1570 				continue;
   1571 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1572 				continue;
   1573 			result = blist_alloc(sdp->swd_blist, *nslots);
   1574 			if (result == BLIST_NONE) {
   1575 				continue;
   1576 			}
   1577 			KASSERT(result < sdp->swd_drumsize);
   1578 
   1579 			/*
   1580 			 * successful allocation!  now rotate the circleq.
   1581 			 */
   1582 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1583 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1584 			sdp->swd_npginuse += *nslots;
   1585 			uvmexp.swpginuse += *nslots;
   1586 			mutex_exit(&uvm_swap_data_lock);
   1587 			/* done!  return drum slot number */
   1588 			UVMHIST_LOG(pdhist,
   1589 			    "success!  returning %d slots starting at %d",
   1590 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1591 			return (result + sdp->swd_drumoffset);
   1592 		}
   1593 	}
   1594 
   1595 	/* XXXMRG: BEGIN HACK */
   1596 	if (*nslots > 1 && lessok) {
   1597 		*nslots = 1;
   1598 		/* XXXMRG: ugh!  blist should support this for us */
   1599 		goto ReTry;
   1600 	}
   1601 	/* XXXMRG: END HACK */
   1602 
   1603 	mutex_exit(&uvm_swap_data_lock);
   1604 	return 0;
   1605 }
   1606 
   1607 /*
   1608  * uvm_swapisfull: return true if most of available swap is allocated
   1609  * and in use.  we don't count some small portion as it may be inaccessible
   1610  * to us at any given moment, for example if there is lock contention or if
   1611  * pages are busy.
   1612  */
   1613 bool
   1614 uvm_swapisfull(void)
   1615 {
   1616 	int swpgonly;
   1617 	bool rv;
   1618 
   1619 	mutex_enter(&uvm_swap_data_lock);
   1620 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1621 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1622 	    uvm_swapisfull_factor);
   1623 	rv = (swpgonly >= uvmexp.swpgavail);
   1624 	mutex_exit(&uvm_swap_data_lock);
   1625 
   1626 	return (rv);
   1627 }
   1628 
   1629 /*
   1630  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1631  *
   1632  * => we lock uvm_swap_data_lock
   1633  */
   1634 void
   1635 uvm_swap_markbad(int startslot, int nslots)
   1636 {
   1637 	struct swapdev *sdp;
   1638 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1639 
   1640 	mutex_enter(&uvm_swap_data_lock);
   1641 	sdp = swapdrum_getsdp(startslot);
   1642 	KASSERT(sdp != NULL);
   1643 
   1644 	/*
   1645 	 * we just keep track of how many pages have been marked bad
   1646 	 * in this device, to make everything add up in swap_off().
   1647 	 * we assume here that the range of slots will all be within
   1648 	 * one swap device.
   1649 	 */
   1650 
   1651 	KASSERT(uvmexp.swpgonly >= nslots);
   1652 	uvmexp.swpgonly -= nslots;
   1653 	sdp->swd_npgbad += nslots;
   1654 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1655 	mutex_exit(&uvm_swap_data_lock);
   1656 }
   1657 
   1658 /*
   1659  * uvm_swap_free: free swap slots
   1660  *
   1661  * => this can be all or part of an allocation made by uvm_swap_alloc
   1662  * => we lock uvm_swap_data_lock
   1663  */
   1664 void
   1665 uvm_swap_free(int startslot, int nslots)
   1666 {
   1667 	struct swapdev *sdp;
   1668 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1669 
   1670 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1671 	    startslot, 0, 0);
   1672 
   1673 	/*
   1674 	 * ignore attempts to free the "bad" slot.
   1675 	 */
   1676 
   1677 	if (startslot == SWSLOT_BAD) {
   1678 		return;
   1679 	}
   1680 
   1681 	/*
   1682 	 * convert drum slot offset back to sdp, free the blocks
   1683 	 * in the extent, and return.   must hold pri lock to do
   1684 	 * lookup and access the extent.
   1685 	 */
   1686 
   1687 	mutex_enter(&uvm_swap_data_lock);
   1688 	sdp = swapdrum_getsdp(startslot);
   1689 	KASSERT(uvmexp.nswapdev >= 1);
   1690 	KASSERT(sdp != NULL);
   1691 	KASSERT(sdp->swd_npginuse >= nslots);
   1692 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1693 	sdp->swd_npginuse -= nslots;
   1694 	uvmexp.swpginuse -= nslots;
   1695 	mutex_exit(&uvm_swap_data_lock);
   1696 }
   1697 
   1698 /*
   1699  * uvm_swap_put: put any number of pages into a contig place on swap
   1700  *
   1701  * => can be sync or async
   1702  */
   1703 
   1704 int
   1705 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1706 {
   1707 	int error;
   1708 
   1709 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1710 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1711 	return error;
   1712 }
   1713 
   1714 /*
   1715  * uvm_swap_get: get a single page from swap
   1716  *
   1717  * => usually a sync op (from fault)
   1718  */
   1719 
   1720 int
   1721 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1722 {
   1723 	int error;
   1724 
   1725 	uvmexp.nswget++;
   1726 	KASSERT(flags & PGO_SYNCIO);
   1727 	if (swslot == SWSLOT_BAD) {
   1728 		return EIO;
   1729 	}
   1730 
   1731 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1732 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1733 	if (error == 0) {
   1734 
   1735 		/*
   1736 		 * this page is no longer only in swap.
   1737 		 */
   1738 
   1739 		mutex_enter(&uvm_swap_data_lock);
   1740 		KASSERT(uvmexp.swpgonly > 0);
   1741 		uvmexp.swpgonly--;
   1742 		mutex_exit(&uvm_swap_data_lock);
   1743 	}
   1744 	return error;
   1745 }
   1746 
   1747 /*
   1748  * uvm_swap_io: do an i/o operation to swap
   1749  */
   1750 
   1751 static int
   1752 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1753 {
   1754 	daddr_t startblk;
   1755 	struct	buf *bp;
   1756 	vaddr_t kva;
   1757 	int	error, mapinflags;
   1758 	bool write, async;
   1759 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1760 
   1761 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1762 	    startslot, npages, flags, 0);
   1763 
   1764 	write = (flags & B_READ) == 0;
   1765 	async = (flags & B_ASYNC) != 0;
   1766 
   1767 	/*
   1768 	 * allocate a buf for the i/o.
   1769 	 */
   1770 
   1771 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1772 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1773 	if (bp == NULL) {
   1774 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1775 		return ENOMEM;
   1776 	}
   1777 
   1778 	/*
   1779 	 * convert starting drum slot to block number
   1780 	 */
   1781 
   1782 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1783 
   1784 	/*
   1785 	 * first, map the pages into the kernel.
   1786 	 */
   1787 
   1788 	mapinflags = !write ?
   1789 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1790 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1791 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1792 
   1793 	/*
   1794 	 * fill in the bp/sbp.   we currently route our i/o through
   1795 	 * /dev/drum's vnode [swapdev_vp].
   1796 	 */
   1797 
   1798 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1799 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1800 	bp->b_proc = &proc0;	/* XXX */
   1801 	bp->b_vnbufs.le_next = NOLIST;
   1802 	bp->b_data = (void *)kva;
   1803 	bp->b_blkno = startblk;
   1804 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1805 
   1806 	/*
   1807 	 * bump v_numoutput (counter of number of active outputs).
   1808 	 */
   1809 
   1810 	if (write) {
   1811 		mutex_enter(&swapdev_vp->v_interlock);
   1812 		swapdev_vp->v_numoutput++;
   1813 		mutex_exit(&swapdev_vp->v_interlock);
   1814 	}
   1815 
   1816 	/*
   1817 	 * for async ops we must set up the iodone handler.
   1818 	 */
   1819 
   1820 	if (async) {
   1821 		bp->b_iodone = uvm_aio_biodone;
   1822 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1823 		if (curlwp == uvm.pagedaemon_lwp)
   1824 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1825 		else
   1826 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1827 	} else {
   1828 		bp->b_iodone = NULL;
   1829 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1830 	}
   1831 	UVMHIST_LOG(pdhist,
   1832 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1833 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1834 
   1835 	/*
   1836 	 * now we start the I/O, and if async, return.
   1837 	 */
   1838 
   1839 	VOP_STRATEGY(swapdev_vp, bp);
   1840 	if (async)
   1841 		return 0;
   1842 
   1843 	/*
   1844 	 * must be sync i/o.   wait for it to finish
   1845 	 */
   1846 
   1847 	error = biowait(bp);
   1848 
   1849 	/*
   1850 	 * kill the pager mapping
   1851 	 */
   1852 
   1853 	uvm_pagermapout(kva, npages);
   1854 
   1855 	/*
   1856 	 * now dispose of the buf and we're done.
   1857 	 */
   1858 
   1859 	if (write) {
   1860 		mutex_enter(&swapdev_vp->v_interlock);
   1861 		vwakeup(bp);
   1862 		mutex_exit(&swapdev_vp->v_interlock);
   1863 	}
   1864 	putiobuf(bp);
   1865 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1866 
   1867 	return (error);
   1868 }
   1869