Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.143
      1 /*	$NetBSD: uvm_swap.c,v 1.143 2009/01/13 13:35:54 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.143 2009/01/13 13:35:54 yamt Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	struct oswapent swd_ose;
    128 #define	swd_dev		swd_ose.ose_dev		/* device id */
    129 #define	swd_flags	swd_ose.ose_flags	/* flags:inuse/enable/fake */
    130 #define	swd_priority	swd_ose.ose_priority	/* our priority */
    131 	/* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
    132 	char			*swd_path;	/* saved pathname of device */
    133 	int			swd_pathlen;	/* length of pathname */
    134 	int			swd_npages;	/* #pages we can use */
    135 	int			swd_npginuse;	/* #pages in use */
    136 	int			swd_npgbad;	/* #pages bad */
    137 	int			swd_drumoffset;	/* page0 offset in drum */
    138 	int			swd_drumsize;	/* #pages in drum */
    139 	blist_t			swd_blist;	/* blist for this swapdev */
    140 	struct vnode		*swd_vp;	/* backing vnode */
    141 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    142 
    143 	int			swd_bsize;	/* blocksize (bytes) */
    144 	int			swd_maxactive;	/* max active i/o reqs */
    145 	struct bufq_state	*swd_tab;	/* buffer list */
    146 	int			swd_active;	/* number of active buffers */
    147 };
    148 
    149 /*
    150  * swap device priority entry; the list is kept sorted on `spi_priority'.
    151  */
    152 struct swappri {
    153 	int			spi_priority;     /* priority */
    154 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    155 	/* circleq of swapdevs at this priority */
    156 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    157 };
    158 
    159 /*
    160  * The following two structures are used to keep track of data transfers
    161  * on swap devices associated with regular files.
    162  * NOTE: this code is more or less a copy of vnd.c; we use the same
    163  * structure names here to ease porting..
    164  */
    165 struct vndxfer {
    166 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    167 	struct swapdev	*vx_sdp;
    168 	int		vx_error;
    169 	int		vx_pending;	/* # of pending aux buffers */
    170 	int		vx_flags;
    171 #define VX_BUSY		1
    172 #define VX_DEAD		2
    173 };
    174 
    175 struct vndbuf {
    176 	struct buf	vb_buf;
    177 	struct vndxfer	*vb_xfer;
    178 };
    179 
    180 
    181 /*
    182  * We keep a of pool vndbuf's and vndxfer structures.
    183  */
    184 POOL_INIT(vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx", NULL,
    185     IPL_BIO);
    186 POOL_INIT(vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd", NULL,
    187     IPL_BIO);
    188 
    189 /*
    190  * local variables
    191  */
    192 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    193 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    194 
    195 /* list of all active swap devices [by priority] */
    196 LIST_HEAD(swap_priority, swappri);
    197 static struct swap_priority swap_priority;
    198 
    199 /* locks */
    200 static krwlock_t swap_syscall_lock;
    201 
    202 /* workqueue and use counter for swap to regular files */
    203 static int sw_reg_count = 0;
    204 static struct workqueue *sw_reg_workqueue;
    205 
    206 /* tuneables */
    207 u_int uvm_swapisfull_factor = 99;
    208 
    209 /*
    210  * prototypes
    211  */
    212 static struct swapdev	*swapdrum_getsdp(int);
    213 
    214 static struct swapdev	*swaplist_find(struct vnode *, bool);
    215 static void		 swaplist_insert(struct swapdev *,
    216 					 struct swappri *, int);
    217 static void		 swaplist_trim(void);
    218 
    219 static int swap_on(struct lwp *, struct swapdev *);
    220 static int swap_off(struct lwp *, struct swapdev *);
    221 
    222 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    223 
    224 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    225 static void sw_reg_biodone(struct buf *);
    226 static void sw_reg_iodone(struct work *wk, void *dummy);
    227 static void sw_reg_start(struct swapdev *);
    228 
    229 static int uvm_swap_io(struct vm_page **, int, int, int);
    230 
    231 /*
    232  * uvm_swap_init: init the swap system data structures and locks
    233  *
    234  * => called at boot time from init_main.c after the filesystems
    235  *	are brought up (which happens after uvm_init())
    236  */
    237 void
    238 uvm_swap_init(void)
    239 {
    240 	UVMHIST_FUNC("uvm_swap_init");
    241 
    242 	UVMHIST_CALLED(pdhist);
    243 	/*
    244 	 * first, init the swap list, its counter, and its lock.
    245 	 * then get a handle on the vnode for /dev/drum by using
    246 	 * the its dev_t number ("swapdev", from MD conf.c).
    247 	 */
    248 
    249 	LIST_INIT(&swap_priority);
    250 	uvmexp.nswapdev = 0;
    251 	rw_init(&swap_syscall_lock);
    252 	cv_init(&uvm.scheduler_cv, "schedule");
    253 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    254 
    255 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    256 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    257 
    258 	if (bdevvp(swapdev, &swapdev_vp))
    259 		panic("uvm_swap_init: can't get vnode for swap device");
    260 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    261 		panic("uvm_swap_init: can't lock swap device");
    262 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    263 		panic("uvm_swap_init: can't open swap device");
    264 	VOP_UNLOCK(swapdev_vp, 0);
    265 
    266 	/*
    267 	 * create swap block resource map to map /dev/drum.   the range
    268 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    269 	 * that block 0 is reserved (used to indicate an allocation
    270 	 * failure, or no allocation).
    271 	 */
    272 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    273 	    VM_NOSLEEP, IPL_NONE);
    274 	if (swapmap == 0)
    275 		panic("uvm_swap_init: extent_create failed");
    276 
    277 	/*
    278 	 * done!
    279 	 */
    280 	uvm.swap_running = true;
    281 #ifdef __SWAP_BROKEN
    282 	uvm.swapout_enabled = 0;
    283 #else
    284 	uvm.swapout_enabled = 1;
    285 #endif
    286 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    287 
    288         sysctl_createv(NULL, 0, NULL, NULL,
    289             CTLFLAG_READWRITE,
    290             CTLTYPE_INT, "swapout",
    291             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    292             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    293 }
    294 
    295 /*
    296  * swaplist functions: functions that operate on the list of swap
    297  * devices on the system.
    298  */
    299 
    300 /*
    301  * swaplist_insert: insert swap device "sdp" into the global list
    302  *
    303  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    304  * => caller must provide a newly malloc'd swappri structure (we will
    305  *	FREE it if we don't need it... this it to prevent malloc blocking
    306  *	here while adding swap)
    307  */
    308 static void
    309 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    310 {
    311 	struct swappri *spp, *pspp;
    312 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    313 
    314 	/*
    315 	 * find entry at or after which to insert the new device.
    316 	 */
    317 	pspp = NULL;
    318 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    319 		if (priority <= spp->spi_priority)
    320 			break;
    321 		pspp = spp;
    322 	}
    323 
    324 	/*
    325 	 * new priority?
    326 	 */
    327 	if (spp == NULL || spp->spi_priority != priority) {
    328 		spp = newspp;  /* use newspp! */
    329 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    330 			    priority, 0, 0, 0);
    331 
    332 		spp->spi_priority = priority;
    333 		CIRCLEQ_INIT(&spp->spi_swapdev);
    334 
    335 		if (pspp)
    336 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    337 		else
    338 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    339 	} else {
    340 	  	/* we don't need a new priority structure, free it */
    341 		free(newspp, M_VMSWAP);
    342 	}
    343 
    344 	/*
    345 	 * priority found (or created).   now insert on the priority's
    346 	 * circleq list and bump the total number of swapdevs.
    347 	 */
    348 	sdp->swd_priority = priority;
    349 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    350 	uvmexp.nswapdev++;
    351 }
    352 
    353 /*
    354  * swaplist_find: find and optionally remove a swap device from the
    355  *	global list.
    356  *
    357  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    358  * => we return the swapdev we found (and removed)
    359  */
    360 static struct swapdev *
    361 swaplist_find(struct vnode *vp, bool remove)
    362 {
    363 	struct swapdev *sdp;
    364 	struct swappri *spp;
    365 
    366 	/*
    367 	 * search the lists for the requested vp
    368 	 */
    369 
    370 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    371 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    372 			if (sdp->swd_vp == vp) {
    373 				if (remove) {
    374 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    375 					    sdp, swd_next);
    376 					uvmexp.nswapdev--;
    377 				}
    378 				return(sdp);
    379 			}
    380 		}
    381 	}
    382 	return (NULL);
    383 }
    384 
    385 /*
    386  * swaplist_trim: scan priority list for empty priority entries and kill
    387  *	them.
    388  *
    389  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    390  */
    391 static void
    392 swaplist_trim(void)
    393 {
    394 	struct swappri *spp, *nextspp;
    395 
    396 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    397 		nextspp = LIST_NEXT(spp, spi_swappri);
    398 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    399 		    (void *)&spp->spi_swapdev)
    400 			continue;
    401 		LIST_REMOVE(spp, spi_swappri);
    402 		free(spp, M_VMSWAP);
    403 	}
    404 }
    405 
    406 /*
    407  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    408  *	to the "swapdev" that maps that section of the drum.
    409  *
    410  * => each swapdev takes one big contig chunk of the drum
    411  * => caller must hold uvm_swap_data_lock
    412  */
    413 static struct swapdev *
    414 swapdrum_getsdp(int pgno)
    415 {
    416 	struct swapdev *sdp;
    417 	struct swappri *spp;
    418 
    419 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    420 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    421 			if (sdp->swd_flags & SWF_FAKE)
    422 				continue;
    423 			if (pgno >= sdp->swd_drumoffset &&
    424 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    425 				return sdp;
    426 			}
    427 		}
    428 	}
    429 	return NULL;
    430 }
    431 
    432 
    433 /*
    434  * sys_swapctl: main entry point for swapctl(2) system call
    435  * 	[with two helper functions: swap_on and swap_off]
    436  */
    437 int
    438 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    439 {
    440 	/* {
    441 		syscallarg(int) cmd;
    442 		syscallarg(void *) arg;
    443 		syscallarg(int) misc;
    444 	} */
    445 	struct vnode *vp;
    446 	struct nameidata nd;
    447 	struct swappri *spp;
    448 	struct swapdev *sdp;
    449 	struct swapent *sep;
    450 #define SWAP_PATH_MAX (PATH_MAX + 1)
    451 	char	*userpath;
    452 	size_t	len;
    453 	int	error, misc;
    454 	int	priority;
    455 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    456 
    457 	misc = SCARG(uap, misc);
    458 
    459 	/*
    460 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    461 	 */
    462 	rw_enter(&swap_syscall_lock, RW_WRITER);
    463 
    464 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    465 	/*
    466 	 * we handle the non-priv NSWAP and STATS request first.
    467 	 *
    468 	 * SWAP_NSWAP: return number of config'd swap devices
    469 	 * [can also be obtained with uvmexp sysctl]
    470 	 */
    471 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    472 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    473 		    0, 0, 0);
    474 		*retval = uvmexp.nswapdev;
    475 		error = 0;
    476 		goto out;
    477 	}
    478 
    479 	/*
    480 	 * SWAP_STATS: get stats on current # of configured swap devs
    481 	 *
    482 	 * note that the swap_priority list can't change as long
    483 	 * as we are holding the swap_syscall_lock.  we don't want
    484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    485 	 * copyout() and we don't want to be holding that lock then!
    486 	 */
    487 	if (SCARG(uap, cmd) == SWAP_STATS
    488 #if defined(COMPAT_13)
    489 	    || SCARG(uap, cmd) == SWAP_OSTATS
    490 #endif
    491 	    ) {
    492 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    493 			misc = uvmexp.nswapdev;
    494 #if defined(COMPAT_13)
    495 		if (SCARG(uap, cmd) == SWAP_OSTATS)
    496 			len = sizeof(struct oswapent) * misc;
    497 		else
    498 #endif
    499 			len = sizeof(struct swapent) * misc;
    500 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    501 
    502 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    503 		error = copyout(sep, SCARG(uap, arg), len);
    504 
    505 		free(sep, M_TEMP);
    506 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    507 		goto out;
    508 	}
    509 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    510 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    511 
    512 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    513 		goto out;
    514 	}
    515 
    516 	/*
    517 	 * all other requests require superuser privs.   verify.
    518 	 */
    519 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    520 	    0, NULL, NULL, NULL)))
    521 		goto out;
    522 
    523 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    524 		/* drop the current dump device */
    525 		dumpdev = NODEV;
    526 		dumpcdev = NODEV;
    527 		cpu_dumpconf();
    528 		goto out;
    529 	}
    530 
    531 	/*
    532 	 * at this point we expect a path name in arg.   we will
    533 	 * use namei() to gain a vnode reference (vref), and lock
    534 	 * the vnode (VOP_LOCK).
    535 	 *
    536 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    537 	 * miniroot)
    538 	 */
    539 	if (SCARG(uap, arg) == NULL) {
    540 		vp = rootvp;		/* miniroot */
    541 		if (vget(vp, LK_EXCLUSIVE)) {
    542 			error = EBUSY;
    543 			goto out;
    544 		}
    545 		if (SCARG(uap, cmd) == SWAP_ON &&
    546 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    547 			panic("swapctl: miniroot copy failed");
    548 	} else {
    549 		int	space;
    550 		char	*where;
    551 
    552 		if (SCARG(uap, cmd) == SWAP_ON) {
    553 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    554 			    SWAP_PATH_MAX, &len)))
    555 				goto out;
    556 			space = UIO_SYSSPACE;
    557 			where = userpath;
    558 		} else {
    559 			space = UIO_USERSPACE;
    560 			where = (char *)SCARG(uap, arg);
    561 		}
    562 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    563 		    space, where);
    564 		if ((error = namei(&nd)))
    565 			goto out;
    566 		vp = nd.ni_vp;
    567 	}
    568 	/* note: "vp" is referenced and locked */
    569 
    570 	error = 0;		/* assume no error */
    571 	switch(SCARG(uap, cmd)) {
    572 
    573 	case SWAP_DUMPDEV:
    574 		if (vp->v_type != VBLK) {
    575 			error = ENOTBLK;
    576 			break;
    577 		}
    578 		if (bdevsw_lookup(vp->v_rdev)) {
    579 			dumpdev = vp->v_rdev;
    580 			dumpcdev = devsw_blk2chr(dumpdev);
    581 		} else
    582 			dumpdev = NODEV;
    583 		cpu_dumpconf();
    584 		break;
    585 
    586 	case SWAP_CTL:
    587 		/*
    588 		 * get new priority, remove old entry (if any) and then
    589 		 * reinsert it in the correct place.  finally, prune out
    590 		 * any empty priority structures.
    591 		 */
    592 		priority = SCARG(uap, misc);
    593 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    594 		mutex_enter(&uvm_swap_data_lock);
    595 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    596 			error = ENOENT;
    597 		} else {
    598 			swaplist_insert(sdp, spp, priority);
    599 			swaplist_trim();
    600 		}
    601 		mutex_exit(&uvm_swap_data_lock);
    602 		if (error)
    603 			free(spp, M_VMSWAP);
    604 		break;
    605 
    606 	case SWAP_ON:
    607 
    608 		/*
    609 		 * check for duplicates.   if none found, then insert a
    610 		 * dummy entry on the list to prevent someone else from
    611 		 * trying to enable this device while we are working on
    612 		 * it.
    613 		 */
    614 
    615 		priority = SCARG(uap, misc);
    616 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    617 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    618 		memset(sdp, 0, sizeof(*sdp));
    619 		sdp->swd_flags = SWF_FAKE;
    620 		sdp->swd_vp = vp;
    621 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    622 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    623 		mutex_enter(&uvm_swap_data_lock);
    624 		if (swaplist_find(vp, false) != NULL) {
    625 			error = EBUSY;
    626 			mutex_exit(&uvm_swap_data_lock);
    627 			bufq_free(sdp->swd_tab);
    628 			free(sdp, M_VMSWAP);
    629 			free(spp, M_VMSWAP);
    630 			break;
    631 		}
    632 		swaplist_insert(sdp, spp, priority);
    633 		mutex_exit(&uvm_swap_data_lock);
    634 
    635 		sdp->swd_pathlen = len;
    636 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    637 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    638 			panic("swapctl: copystr");
    639 
    640 		/*
    641 		 * we've now got a FAKE placeholder in the swap list.
    642 		 * now attempt to enable swap on it.  if we fail, undo
    643 		 * what we've done and kill the fake entry we just inserted.
    644 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    645 		 */
    646 
    647 		if ((error = swap_on(l, sdp)) != 0) {
    648 			mutex_enter(&uvm_swap_data_lock);
    649 			(void) swaplist_find(vp, true);  /* kill fake entry */
    650 			swaplist_trim();
    651 			mutex_exit(&uvm_swap_data_lock);
    652 			bufq_free(sdp->swd_tab);
    653 			free(sdp->swd_path, M_VMSWAP);
    654 			free(sdp, M_VMSWAP);
    655 			break;
    656 		}
    657 		break;
    658 
    659 	case SWAP_OFF:
    660 		mutex_enter(&uvm_swap_data_lock);
    661 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    662 			mutex_exit(&uvm_swap_data_lock);
    663 			error = ENXIO;
    664 			break;
    665 		}
    666 
    667 		/*
    668 		 * If a device isn't in use or enabled, we
    669 		 * can't stop swapping from it (again).
    670 		 */
    671 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    672 			mutex_exit(&uvm_swap_data_lock);
    673 			error = EBUSY;
    674 			break;
    675 		}
    676 
    677 		/*
    678 		 * do the real work.
    679 		 */
    680 		error = swap_off(l, sdp);
    681 		break;
    682 
    683 	default:
    684 		error = EINVAL;
    685 	}
    686 
    687 	/*
    688 	 * done!  release the ref gained by namei() and unlock.
    689 	 */
    690 	vput(vp);
    691 
    692 out:
    693 	free(userpath, M_TEMP);
    694 	rw_exit(&swap_syscall_lock);
    695 
    696 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    697 	return (error);
    698 }
    699 
    700 /*
    701  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    702  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    703  * emulation to use it directly without going through sys_swapctl().
    704  * The problem with using sys_swapctl() there is that it involves
    705  * copying the swapent array to the stackgap, and this array's size
    706  * is not known at build time. Hence it would not be possible to
    707  * ensure it would fit in the stackgap in any case.
    708  */
    709 void
    710 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    711 {
    712 
    713 	rw_enter(&swap_syscall_lock, RW_READER);
    714 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    715 	rw_exit(&swap_syscall_lock);
    716 }
    717 
    718 static void
    719 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    720 {
    721 	struct swappri *spp;
    722 	struct swapdev *sdp;
    723 	int count = 0;
    724 
    725 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    726 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    727 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    728 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    729 		  	/*
    730 			 * backwards compatibility for system call.
    731 			 * note that we use 'struct oswapent' as an
    732 			 * overlay into both 'struct swapdev' and
    733 			 * the userland 'struct swapent', as we
    734 			 * want to retain backwards compatibility
    735 			 * with NetBSD 1.3.
    736 			 */
    737 			sdp->swd_ose.ose_inuse =
    738 			    btodb((uint64_t)sdp->swd_npginuse <<
    739 			    PAGE_SHIFT);
    740 			(void)memcpy(sep, &sdp->swd_ose,
    741 			    sizeof(struct oswapent));
    742 
    743 			/* now copy out the path if necessary */
    744 #if !defined(COMPAT_13)
    745 			(void) cmd;
    746 #endif
    747 #if defined(COMPAT_13)
    748 			if (cmd == SWAP_STATS)
    749 #endif
    750 				(void)memcpy(&sep->se_path, sdp->swd_path,
    751 				    sdp->swd_pathlen);
    752 
    753 			count++;
    754 #if defined(COMPAT_13)
    755 			if (cmd == SWAP_OSTATS)
    756 				sep = (struct swapent *)
    757 				    ((struct oswapent *)sep + 1);
    758 			else
    759 #endif
    760 				sep++;
    761 		}
    762 	}
    763 
    764 	*retval = count;
    765 	return;
    766 }
    767 
    768 /*
    769  * swap_on: attempt to enable a swapdev for swapping.   note that the
    770  *	swapdev is already on the global list, but disabled (marked
    771  *	SWF_FAKE).
    772  *
    773  * => we avoid the start of the disk (to protect disk labels)
    774  * => we also avoid the miniroot, if we are swapping to root.
    775  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    776  *	if needed.
    777  */
    778 static int
    779 swap_on(struct lwp *l, struct swapdev *sdp)
    780 {
    781 	struct vnode *vp;
    782 	int error, npages, nblocks, size;
    783 	long addr;
    784 	u_long result;
    785 	struct vattr va;
    786 #ifdef NFS
    787 	extern int (**nfsv2_vnodeop_p)(void *);
    788 #endif /* NFS */
    789 	const struct bdevsw *bdev;
    790 	dev_t dev;
    791 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    792 
    793 	/*
    794 	 * we want to enable swapping on sdp.   the swd_vp contains
    795 	 * the vnode we want (locked and ref'd), and the swd_dev
    796 	 * contains the dev_t of the file, if it a block device.
    797 	 */
    798 
    799 	vp = sdp->swd_vp;
    800 	dev = sdp->swd_dev;
    801 
    802 	/*
    803 	 * open the swap file (mostly useful for block device files to
    804 	 * let device driver know what is up).
    805 	 *
    806 	 * we skip the open/close for root on swap because the root
    807 	 * has already been opened when root was mounted (mountroot).
    808 	 */
    809 	if (vp != rootvp) {
    810 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    811 			return (error);
    812 	}
    813 
    814 	/* XXX this only works for block devices */
    815 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    816 
    817 	/*
    818 	 * we now need to determine the size of the swap area.   for
    819 	 * block specials we can call the d_psize function.
    820 	 * for normal files, we must stat [get attrs].
    821 	 *
    822 	 * we put the result in nblks.
    823 	 * for normal files, we also want the filesystem block size
    824 	 * (which we get with statfs).
    825 	 */
    826 	switch (vp->v_type) {
    827 	case VBLK:
    828 		bdev = bdevsw_lookup(dev);
    829 		if (bdev == NULL || bdev->d_psize == NULL ||
    830 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    831 			error = ENXIO;
    832 			goto bad;
    833 		}
    834 		break;
    835 
    836 	case VREG:
    837 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    838 			goto bad;
    839 		nblocks = (int)btodb(va.va_size);
    840 		if ((error =
    841 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    842 			goto bad;
    843 
    844 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    845 		/*
    846 		 * limit the max # of outstanding I/O requests we issue
    847 		 * at any one time.   take it easy on NFS servers.
    848 		 */
    849 #ifdef NFS
    850 		if (vp->v_op == nfsv2_vnodeop_p)
    851 			sdp->swd_maxactive = 2; /* XXX */
    852 		else
    853 #endif /* NFS */
    854 			sdp->swd_maxactive = 8; /* XXX */
    855 		break;
    856 
    857 	default:
    858 		error = ENXIO;
    859 		goto bad;
    860 	}
    861 
    862 	/*
    863 	 * save nblocks in a safe place and convert to pages.
    864 	 */
    865 
    866 	sdp->swd_ose.ose_nblks = nblocks;
    867 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    868 
    869 	/*
    870 	 * for block special files, we want to make sure that leave
    871 	 * the disklabel and bootblocks alone, so we arrange to skip
    872 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    873 	 * note that because of this the "size" can be less than the
    874 	 * actual number of blocks on the device.
    875 	 */
    876 	if (vp->v_type == VBLK) {
    877 		/* we use pages 1 to (size - 1) [inclusive] */
    878 		size = npages - 1;
    879 		addr = 1;
    880 	} else {
    881 		/* we use pages 0 to (size - 1) [inclusive] */
    882 		size = npages;
    883 		addr = 0;
    884 	}
    885 
    886 	/*
    887 	 * make sure we have enough blocks for a reasonable sized swap
    888 	 * area.   we want at least one page.
    889 	 */
    890 
    891 	if (size < 1) {
    892 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    893 		error = EINVAL;
    894 		goto bad;
    895 	}
    896 
    897 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    898 
    899 	/*
    900 	 * now we need to allocate an extent to manage this swap device
    901 	 */
    902 
    903 	sdp->swd_blist = blist_create(npages);
    904 	/* mark all expect the `saved' region free. */
    905 	blist_free(sdp->swd_blist, addr, size);
    906 
    907 	/*
    908 	 * if the vnode we are swapping to is the root vnode
    909 	 * (i.e. we are swapping to the miniroot) then we want
    910 	 * to make sure we don't overwrite it.   do a statfs to
    911 	 * find its size and skip over it.
    912 	 */
    913 	if (vp == rootvp) {
    914 		struct mount *mp;
    915 		struct statvfs *sp;
    916 		int rootblocks, rootpages;
    917 
    918 		mp = rootvnode->v_mount;
    919 		sp = &mp->mnt_stat;
    920 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    921 		/*
    922 		 * XXX: sp->f_blocks isn't the total number of
    923 		 * blocks in the filesystem, it's the number of
    924 		 * data blocks.  so, our rootblocks almost
    925 		 * definitely underestimates the total size
    926 		 * of the filesystem - how badly depends on the
    927 		 * details of the filesystem type.  there isn't
    928 		 * an obvious way to deal with this cleanly
    929 		 * and perfectly, so for now we just pad our
    930 		 * rootblocks estimate with an extra 5 percent.
    931 		 */
    932 		rootblocks += (rootblocks >> 5) +
    933 			(rootblocks >> 6) +
    934 			(rootblocks >> 7);
    935 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    936 		if (rootpages > size)
    937 			panic("swap_on: miniroot larger than swap?");
    938 
    939 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    940 			panic("swap_on: unable to preserve miniroot");
    941 		}
    942 
    943 		size -= rootpages;
    944 		printf("Preserved %d pages of miniroot ", rootpages);
    945 		printf("leaving %d pages of swap\n", size);
    946 	}
    947 
    948 	/*
    949 	 * add a ref to vp to reflect usage as a swap device.
    950 	 */
    951 	vref(vp);
    952 
    953 	/*
    954 	 * now add the new swapdev to the drum and enable.
    955 	 */
    956 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    957 	if (result == 0)
    958 		panic("swapdrum_add");
    959 	/*
    960 	 * If this is the first regular swap create the workqueue.
    961 	 * => Protected by swap_syscall_lock.
    962 	 */
    963 	if (vp->v_type != VBLK) {
    964 		if (sw_reg_count++ == 0) {
    965 			KASSERT(sw_reg_workqueue == NULL);
    966 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    967 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    968 				panic("swap_add: workqueue_create failed");
    969 		}
    970 	}
    971 
    972 	sdp->swd_drumoffset = (int)result;
    973 	sdp->swd_drumsize = npages;
    974 	sdp->swd_npages = size;
    975 	mutex_enter(&uvm_swap_data_lock);
    976 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    977 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    978 	uvmexp.swpages += size;
    979 	uvmexp.swpgavail += size;
    980 	mutex_exit(&uvm_swap_data_lock);
    981 	return (0);
    982 
    983 	/*
    984 	 * failure: clean up and return error.
    985 	 */
    986 
    987 bad:
    988 	if (sdp->swd_blist) {
    989 		blist_destroy(sdp->swd_blist);
    990 	}
    991 	if (vp != rootvp) {
    992 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    993 	}
    994 	return (error);
    995 }
    996 
    997 /*
    998  * swap_off: stop swapping on swapdev
    999  *
   1000  * => swap data should be locked, we will unlock.
   1001  */
   1002 static int
   1003 swap_off(struct lwp *l, struct swapdev *sdp)
   1004 {
   1005 	int npages = sdp->swd_npages;
   1006 	int error = 0;
   1007 
   1008 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1009 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1010 
   1011 	/* disable the swap area being removed */
   1012 	sdp->swd_flags &= ~SWF_ENABLE;
   1013 	uvmexp.swpgavail -= npages;
   1014 	mutex_exit(&uvm_swap_data_lock);
   1015 
   1016 	/*
   1017 	 * the idea is to find all the pages that are paged out to this
   1018 	 * device, and page them all in.  in uvm, swap-backed pageable
   1019 	 * memory can take two forms: aobjs and anons.  call the
   1020 	 * swapoff hook for each subsystem to bring in pages.
   1021 	 */
   1022 
   1023 	if (uao_swap_off(sdp->swd_drumoffset,
   1024 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1025 	    amap_swap_off(sdp->swd_drumoffset,
   1026 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1027 		error = ENOMEM;
   1028 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1029 		error = EBUSY;
   1030 	}
   1031 
   1032 	if (error) {
   1033 		mutex_enter(&uvm_swap_data_lock);
   1034 		sdp->swd_flags |= SWF_ENABLE;
   1035 		uvmexp.swpgavail += npages;
   1036 		mutex_exit(&uvm_swap_data_lock);
   1037 
   1038 		return error;
   1039 	}
   1040 
   1041 	/*
   1042 	 * If this is the last regular swap destroy the workqueue.
   1043 	 * => Protected by swap_syscall_lock.
   1044 	 */
   1045 	if (sdp->swd_vp->v_type != VBLK) {
   1046 		KASSERT(sw_reg_count > 0);
   1047 		KASSERT(sw_reg_workqueue != NULL);
   1048 		if (--sw_reg_count == 0) {
   1049 			workqueue_destroy(sw_reg_workqueue);
   1050 			sw_reg_workqueue = NULL;
   1051 		}
   1052 	}
   1053 
   1054 	/*
   1055 	 * done with the vnode.
   1056 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1057 	 * so that spec_close() can tell if this is the last close.
   1058 	 */
   1059 	vrele(sdp->swd_vp);
   1060 	if (sdp->swd_vp != rootvp) {
   1061 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1062 	}
   1063 
   1064 	mutex_enter(&uvm_swap_data_lock);
   1065 	uvmexp.swpages -= npages;
   1066 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1067 
   1068 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1069 		panic("swap_off: swapdev not in list");
   1070 	swaplist_trim();
   1071 	mutex_exit(&uvm_swap_data_lock);
   1072 
   1073 	/*
   1074 	 * free all resources!
   1075 	 */
   1076 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1077 	blist_destroy(sdp->swd_blist);
   1078 	bufq_free(sdp->swd_tab);
   1079 	free(sdp, M_VMSWAP);
   1080 	return (0);
   1081 }
   1082 
   1083 /*
   1084  * /dev/drum interface and i/o functions
   1085  */
   1086 
   1087 /*
   1088  * swstrategy: perform I/O on the drum
   1089  *
   1090  * => we must map the i/o request from the drum to the correct swapdev.
   1091  */
   1092 static void
   1093 swstrategy(struct buf *bp)
   1094 {
   1095 	struct swapdev *sdp;
   1096 	struct vnode *vp;
   1097 	int pageno, bn;
   1098 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1099 
   1100 	/*
   1101 	 * convert block number to swapdev.   note that swapdev can't
   1102 	 * be yanked out from under us because we are holding resources
   1103 	 * in it (i.e. the blocks we are doing I/O on).
   1104 	 */
   1105 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1106 	mutex_enter(&uvm_swap_data_lock);
   1107 	sdp = swapdrum_getsdp(pageno);
   1108 	mutex_exit(&uvm_swap_data_lock);
   1109 	if (sdp == NULL) {
   1110 		bp->b_error = EINVAL;
   1111 		biodone(bp);
   1112 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1113 		return;
   1114 	}
   1115 
   1116 	/*
   1117 	 * convert drum page number to block number on this swapdev.
   1118 	 */
   1119 
   1120 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1121 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1122 
   1123 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1124 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1125 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1126 
   1127 	/*
   1128 	 * for block devices we finish up here.
   1129 	 * for regular files we have to do more work which we delegate
   1130 	 * to sw_reg_strategy().
   1131 	 */
   1132 
   1133 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1134 	switch (vp->v_type) {
   1135 	default:
   1136 		panic("swstrategy: vnode type 0x%x", vp->v_type);
   1137 
   1138 	case VBLK:
   1139 
   1140 		/*
   1141 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1142 		 * on the swapdev (sdp).
   1143 		 */
   1144 		bp->b_blkno = bn;		/* swapdev block number */
   1145 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1146 
   1147 		/*
   1148 		 * if we are doing a write, we have to redirect the i/o on
   1149 		 * drum's v_numoutput counter to the swapdevs.
   1150 		 */
   1151 		if ((bp->b_flags & B_READ) == 0) {
   1152 			mutex_enter(bp->b_objlock);
   1153 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1154 			mutex_exit(bp->b_objlock);
   1155 			mutex_enter(&vp->v_interlock);
   1156 			vp->v_numoutput++;	/* put it on swapdev */
   1157 			mutex_exit(&vp->v_interlock);
   1158 		}
   1159 
   1160 		/*
   1161 		 * finally plug in swapdev vnode and start I/O
   1162 		 */
   1163 		bp->b_vp = vp;
   1164 		bp->b_objlock = &vp->v_interlock;
   1165 		VOP_STRATEGY(vp, bp);
   1166 		return;
   1167 
   1168 	case VREG:
   1169 		/*
   1170 		 * delegate to sw_reg_strategy function.
   1171 		 */
   1172 		sw_reg_strategy(sdp, bp, bn);
   1173 		return;
   1174 	}
   1175 	/* NOTREACHED */
   1176 }
   1177 
   1178 /*
   1179  * swread: the read function for the drum (just a call to physio)
   1180  */
   1181 /*ARGSUSED*/
   1182 static int
   1183 swread(dev_t dev, struct uio *uio, int ioflag)
   1184 {
   1185 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1186 
   1187 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1188 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1189 }
   1190 
   1191 /*
   1192  * swwrite: the write function for the drum (just a call to physio)
   1193  */
   1194 /*ARGSUSED*/
   1195 static int
   1196 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1197 {
   1198 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1199 
   1200 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1201 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1202 }
   1203 
   1204 const struct bdevsw swap_bdevsw = {
   1205 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1206 };
   1207 
   1208 const struct cdevsw swap_cdevsw = {
   1209 	nullopen, nullclose, swread, swwrite, noioctl,
   1210 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1211 };
   1212 
   1213 /*
   1214  * sw_reg_strategy: handle swap i/o to regular files
   1215  */
   1216 static void
   1217 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1218 {
   1219 	struct vnode	*vp;
   1220 	struct vndxfer	*vnx;
   1221 	daddr_t		nbn;
   1222 	char 		*addr;
   1223 	off_t		byteoff;
   1224 	int		s, off, nra, error, sz, resid;
   1225 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1226 
   1227 	/*
   1228 	 * allocate a vndxfer head for this transfer and point it to
   1229 	 * our buffer.
   1230 	 */
   1231 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1232 	vnx->vx_flags = VX_BUSY;
   1233 	vnx->vx_error = 0;
   1234 	vnx->vx_pending = 0;
   1235 	vnx->vx_bp = bp;
   1236 	vnx->vx_sdp = sdp;
   1237 
   1238 	/*
   1239 	 * setup for main loop where we read filesystem blocks into
   1240 	 * our buffer.
   1241 	 */
   1242 	error = 0;
   1243 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1244 	addr = bp->b_data;		/* current position in buffer */
   1245 	byteoff = dbtob((uint64_t)bn);
   1246 
   1247 	for (resid = bp->b_resid; resid; resid -= sz) {
   1248 		struct vndbuf	*nbp;
   1249 
   1250 		/*
   1251 		 * translate byteoffset into block number.  return values:
   1252 		 *   vp = vnode of underlying device
   1253 		 *  nbn = new block number (on underlying vnode dev)
   1254 		 *  nra = num blocks we can read-ahead (excludes requested
   1255 		 *	block)
   1256 		 */
   1257 		nra = 0;
   1258 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1259 				 	&vp, &nbn, &nra);
   1260 
   1261 		if (error == 0 && nbn == (daddr_t)-1) {
   1262 			/*
   1263 			 * this used to just set error, but that doesn't
   1264 			 * do the right thing.  Instead, it causes random
   1265 			 * memory errors.  The panic() should remain until
   1266 			 * this condition doesn't destabilize the system.
   1267 			 */
   1268 #if 1
   1269 			panic("sw_reg_strategy: swap to sparse file");
   1270 #else
   1271 			error = EIO;	/* failure */
   1272 #endif
   1273 		}
   1274 
   1275 		/*
   1276 		 * punt if there was an error or a hole in the file.
   1277 		 * we must wait for any i/o ops we have already started
   1278 		 * to finish before returning.
   1279 		 *
   1280 		 * XXX we could deal with holes here but it would be
   1281 		 * a hassle (in the write case).
   1282 		 */
   1283 		if (error) {
   1284 			s = splbio();
   1285 			vnx->vx_error = error;	/* pass error up */
   1286 			goto out;
   1287 		}
   1288 
   1289 		/*
   1290 		 * compute the size ("sz") of this transfer (in bytes).
   1291 		 */
   1292 		off = byteoff % sdp->swd_bsize;
   1293 		sz = (1 + nra) * sdp->swd_bsize - off;
   1294 		if (sz > resid)
   1295 			sz = resid;
   1296 
   1297 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1298 			    "vp %p/%p offset 0x%x/0x%x",
   1299 			    sdp->swd_vp, vp, byteoff, nbn);
   1300 
   1301 		/*
   1302 		 * now get a buf structure.   note that the vb_buf is
   1303 		 * at the front of the nbp structure so that you can
   1304 		 * cast pointers between the two structure easily.
   1305 		 */
   1306 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1307 		buf_init(&nbp->vb_buf);
   1308 		nbp->vb_buf.b_flags    = bp->b_flags;
   1309 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1310 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1311 		nbp->vb_buf.b_bcount   = sz;
   1312 		nbp->vb_buf.b_bufsize  = sz;
   1313 		nbp->vb_buf.b_error    = 0;
   1314 		nbp->vb_buf.b_data     = addr;
   1315 		nbp->vb_buf.b_lblkno   = 0;
   1316 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1317 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1318 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1319 		nbp->vb_buf.b_vp       = vp;
   1320 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1321 		if (vp->v_type == VBLK) {
   1322 			nbp->vb_buf.b_dev = vp->v_rdev;
   1323 		}
   1324 
   1325 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1326 
   1327 		/*
   1328 		 * Just sort by block number
   1329 		 */
   1330 		s = splbio();
   1331 		if (vnx->vx_error != 0) {
   1332 			buf_destroy(&nbp->vb_buf);
   1333 			pool_put(&vndbuf_pool, nbp);
   1334 			goto out;
   1335 		}
   1336 		vnx->vx_pending++;
   1337 
   1338 		/* sort it in and start I/O if we are not over our limit */
   1339 		/* XXXAD locking */
   1340 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1341 		sw_reg_start(sdp);
   1342 		splx(s);
   1343 
   1344 		/*
   1345 		 * advance to the next I/O
   1346 		 */
   1347 		byteoff += sz;
   1348 		addr += sz;
   1349 	}
   1350 
   1351 	s = splbio();
   1352 
   1353 out: /* Arrive here at splbio */
   1354 	vnx->vx_flags &= ~VX_BUSY;
   1355 	if (vnx->vx_pending == 0) {
   1356 		error = vnx->vx_error;
   1357 		pool_put(&vndxfer_pool, vnx);
   1358 		bp->b_error = error;
   1359 		biodone(bp);
   1360 	}
   1361 	splx(s);
   1362 }
   1363 
   1364 /*
   1365  * sw_reg_start: start an I/O request on the requested swapdev
   1366  *
   1367  * => reqs are sorted by b_rawblkno (above)
   1368  */
   1369 static void
   1370 sw_reg_start(struct swapdev *sdp)
   1371 {
   1372 	struct buf	*bp;
   1373 	struct vnode	*vp;
   1374 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1375 
   1376 	/* recursion control */
   1377 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1378 		return;
   1379 
   1380 	sdp->swd_flags |= SWF_BUSY;
   1381 
   1382 	while (sdp->swd_active < sdp->swd_maxactive) {
   1383 		bp = bufq_get(sdp->swd_tab);
   1384 		if (bp == NULL)
   1385 			break;
   1386 		sdp->swd_active++;
   1387 
   1388 		UVMHIST_LOG(pdhist,
   1389 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1390 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1391 		vp = bp->b_vp;
   1392 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1393 		if ((bp->b_flags & B_READ) == 0) {
   1394 			mutex_enter(&vp->v_interlock);
   1395 			vp->v_numoutput++;
   1396 			mutex_exit(&vp->v_interlock);
   1397 		}
   1398 		VOP_STRATEGY(vp, bp);
   1399 	}
   1400 	sdp->swd_flags &= ~SWF_BUSY;
   1401 }
   1402 
   1403 /*
   1404  * sw_reg_biodone: one of our i/o's has completed
   1405  */
   1406 static void
   1407 sw_reg_biodone(struct buf *bp)
   1408 {
   1409 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1410 }
   1411 
   1412 /*
   1413  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1414  *
   1415  * => note that we can recover the vndbuf struct by casting the buf ptr
   1416  */
   1417 static void
   1418 sw_reg_iodone(struct work *wk, void *dummy)
   1419 {
   1420 	struct vndbuf *vbp = (void *)wk;
   1421 	struct vndxfer *vnx = vbp->vb_xfer;
   1422 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1423 	struct swapdev	*sdp = vnx->vx_sdp;
   1424 	int s, resid, error;
   1425 	KASSERT(&vbp->vb_buf.b_work == wk);
   1426 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1427 
   1428 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1429 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1430 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1431 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1432 
   1433 	/*
   1434 	 * protect vbp at splbio and update.
   1435 	 */
   1436 
   1437 	s = splbio();
   1438 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1439 	pbp->b_resid -= resid;
   1440 	vnx->vx_pending--;
   1441 
   1442 	if (vbp->vb_buf.b_error != 0) {
   1443 		/* pass error upward */
   1444 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1445 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1446 		vnx->vx_error = error;
   1447 	}
   1448 
   1449 	/*
   1450 	 * kill vbp structure
   1451 	 */
   1452 	buf_destroy(&vbp->vb_buf);
   1453 	pool_put(&vndbuf_pool, vbp);
   1454 
   1455 	/*
   1456 	 * wrap up this transaction if it has run to completion or, in
   1457 	 * case of an error, when all auxiliary buffers have returned.
   1458 	 */
   1459 	if (vnx->vx_error != 0) {
   1460 		/* pass error upward */
   1461 		error = vnx->vx_error;
   1462 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1463 			pbp->b_error = error;
   1464 			biodone(pbp);
   1465 			pool_put(&vndxfer_pool, vnx);
   1466 		}
   1467 	} else if (pbp->b_resid == 0) {
   1468 		KASSERT(vnx->vx_pending == 0);
   1469 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1470 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1471 			    pbp, vnx->vx_error, 0, 0);
   1472 			biodone(pbp);
   1473 			pool_put(&vndxfer_pool, vnx);
   1474 		}
   1475 	}
   1476 
   1477 	/*
   1478 	 * done!   start next swapdev I/O if one is pending
   1479 	 */
   1480 	sdp->swd_active--;
   1481 	sw_reg_start(sdp);
   1482 	splx(s);
   1483 }
   1484 
   1485 
   1486 /*
   1487  * uvm_swap_alloc: allocate space on swap
   1488  *
   1489  * => allocation is done "round robin" down the priority list, as we
   1490  *	allocate in a priority we "rotate" the circle queue.
   1491  * => space can be freed with uvm_swap_free
   1492  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1493  * => we lock uvm_swap_data_lock
   1494  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1495  */
   1496 int
   1497 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1498 {
   1499 	struct swapdev *sdp;
   1500 	struct swappri *spp;
   1501 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1502 
   1503 	/*
   1504 	 * no swap devices configured yet?   definite failure.
   1505 	 */
   1506 	if (uvmexp.nswapdev < 1)
   1507 		return 0;
   1508 
   1509 	/*
   1510 	 * lock data lock, convert slots into blocks, and enter loop
   1511 	 */
   1512 	mutex_enter(&uvm_swap_data_lock);
   1513 
   1514 ReTry:	/* XXXMRG */
   1515 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1516 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1517 			uint64_t result;
   1518 
   1519 			/* if it's not enabled, then we can't swap from it */
   1520 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1521 				continue;
   1522 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1523 				continue;
   1524 			result = blist_alloc(sdp->swd_blist, *nslots);
   1525 			if (result == BLIST_NONE) {
   1526 				continue;
   1527 			}
   1528 			KASSERT(result < sdp->swd_drumsize);
   1529 
   1530 			/*
   1531 			 * successful allocation!  now rotate the circleq.
   1532 			 */
   1533 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1534 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1535 			sdp->swd_npginuse += *nslots;
   1536 			uvmexp.swpginuse += *nslots;
   1537 			mutex_exit(&uvm_swap_data_lock);
   1538 			/* done!  return drum slot number */
   1539 			UVMHIST_LOG(pdhist,
   1540 			    "success!  returning %d slots starting at %d",
   1541 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1542 			return (result + sdp->swd_drumoffset);
   1543 		}
   1544 	}
   1545 
   1546 	/* XXXMRG: BEGIN HACK */
   1547 	if (*nslots > 1 && lessok) {
   1548 		*nslots = 1;
   1549 		/* XXXMRG: ugh!  blist should support this for us */
   1550 		goto ReTry;
   1551 	}
   1552 	/* XXXMRG: END HACK */
   1553 
   1554 	mutex_exit(&uvm_swap_data_lock);
   1555 	return 0;
   1556 }
   1557 
   1558 /*
   1559  * uvm_swapisfull: return true if most of available swap is allocated
   1560  * and in use.  we don't count some small portion as it may be inaccessible
   1561  * to us at any given moment, for example if there is lock contention or if
   1562  * pages are busy.
   1563  */
   1564 bool
   1565 uvm_swapisfull(void)
   1566 {
   1567 	int swpgonly;
   1568 	bool rv;
   1569 
   1570 	mutex_enter(&uvm_swap_data_lock);
   1571 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1572 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1573 	    uvm_swapisfull_factor);
   1574 	rv = (swpgonly >= uvmexp.swpgavail);
   1575 	mutex_exit(&uvm_swap_data_lock);
   1576 
   1577 	return (rv);
   1578 }
   1579 
   1580 /*
   1581  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1582  *
   1583  * => we lock uvm_swap_data_lock
   1584  */
   1585 void
   1586 uvm_swap_markbad(int startslot, int nslots)
   1587 {
   1588 	struct swapdev *sdp;
   1589 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1590 
   1591 	mutex_enter(&uvm_swap_data_lock);
   1592 	sdp = swapdrum_getsdp(startslot);
   1593 	KASSERT(sdp != NULL);
   1594 
   1595 	/*
   1596 	 * we just keep track of how many pages have been marked bad
   1597 	 * in this device, to make everything add up in swap_off().
   1598 	 * we assume here that the range of slots will all be within
   1599 	 * one swap device.
   1600 	 */
   1601 
   1602 	KASSERT(uvmexp.swpgonly >= nslots);
   1603 	uvmexp.swpgonly -= nslots;
   1604 	sdp->swd_npgbad += nslots;
   1605 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1606 	mutex_exit(&uvm_swap_data_lock);
   1607 }
   1608 
   1609 /*
   1610  * uvm_swap_free: free swap slots
   1611  *
   1612  * => this can be all or part of an allocation made by uvm_swap_alloc
   1613  * => we lock uvm_swap_data_lock
   1614  */
   1615 void
   1616 uvm_swap_free(int startslot, int nslots)
   1617 {
   1618 	struct swapdev *sdp;
   1619 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1620 
   1621 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1622 	    startslot, 0, 0);
   1623 
   1624 	/*
   1625 	 * ignore attempts to free the "bad" slot.
   1626 	 */
   1627 
   1628 	if (startslot == SWSLOT_BAD) {
   1629 		return;
   1630 	}
   1631 
   1632 	/*
   1633 	 * convert drum slot offset back to sdp, free the blocks
   1634 	 * in the extent, and return.   must hold pri lock to do
   1635 	 * lookup and access the extent.
   1636 	 */
   1637 
   1638 	mutex_enter(&uvm_swap_data_lock);
   1639 	sdp = swapdrum_getsdp(startslot);
   1640 	KASSERT(uvmexp.nswapdev >= 1);
   1641 	KASSERT(sdp != NULL);
   1642 	KASSERT(sdp->swd_npginuse >= nslots);
   1643 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1644 	sdp->swd_npginuse -= nslots;
   1645 	uvmexp.swpginuse -= nslots;
   1646 	mutex_exit(&uvm_swap_data_lock);
   1647 }
   1648 
   1649 /*
   1650  * uvm_swap_put: put any number of pages into a contig place on swap
   1651  *
   1652  * => can be sync or async
   1653  */
   1654 
   1655 int
   1656 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1657 {
   1658 	int error;
   1659 
   1660 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1661 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1662 	return error;
   1663 }
   1664 
   1665 /*
   1666  * uvm_swap_get: get a single page from swap
   1667  *
   1668  * => usually a sync op (from fault)
   1669  */
   1670 
   1671 int
   1672 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1673 {
   1674 	int error;
   1675 
   1676 	uvmexp.nswget++;
   1677 	KASSERT(flags & PGO_SYNCIO);
   1678 	if (swslot == SWSLOT_BAD) {
   1679 		return EIO;
   1680 	}
   1681 
   1682 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1683 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1684 	if (error == 0) {
   1685 
   1686 		/*
   1687 		 * this page is no longer only in swap.
   1688 		 */
   1689 
   1690 		mutex_enter(&uvm_swap_data_lock);
   1691 		KASSERT(uvmexp.swpgonly > 0);
   1692 		uvmexp.swpgonly--;
   1693 		mutex_exit(&uvm_swap_data_lock);
   1694 	}
   1695 	return error;
   1696 }
   1697 
   1698 /*
   1699  * uvm_swap_io: do an i/o operation to swap
   1700  */
   1701 
   1702 static int
   1703 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1704 {
   1705 	daddr_t startblk;
   1706 	struct	buf *bp;
   1707 	vaddr_t kva;
   1708 	int	error, mapinflags;
   1709 	bool write, async;
   1710 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1711 
   1712 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1713 	    startslot, npages, flags, 0);
   1714 
   1715 	write = (flags & B_READ) == 0;
   1716 	async = (flags & B_ASYNC) != 0;
   1717 
   1718 	/*
   1719 	 * allocate a buf for the i/o.
   1720 	 */
   1721 
   1722 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1723 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1724 	if (bp == NULL) {
   1725 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1726 		return ENOMEM;
   1727 	}
   1728 
   1729 	/*
   1730 	 * convert starting drum slot to block number
   1731 	 */
   1732 
   1733 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1734 
   1735 	/*
   1736 	 * first, map the pages into the kernel.
   1737 	 */
   1738 
   1739 	mapinflags = !write ?
   1740 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1741 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1742 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1743 
   1744 	/*
   1745 	 * fill in the bp/sbp.   we currently route our i/o through
   1746 	 * /dev/drum's vnode [swapdev_vp].
   1747 	 */
   1748 
   1749 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1750 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1751 	bp->b_proc = &proc0;	/* XXX */
   1752 	bp->b_vnbufs.le_next = NOLIST;
   1753 	bp->b_data = (void *)kva;
   1754 	bp->b_blkno = startblk;
   1755 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1756 
   1757 	/*
   1758 	 * bump v_numoutput (counter of number of active outputs).
   1759 	 */
   1760 
   1761 	if (write) {
   1762 		mutex_enter(&swapdev_vp->v_interlock);
   1763 		swapdev_vp->v_numoutput++;
   1764 		mutex_exit(&swapdev_vp->v_interlock);
   1765 	}
   1766 
   1767 	/*
   1768 	 * for async ops we must set up the iodone handler.
   1769 	 */
   1770 
   1771 	if (async) {
   1772 		bp->b_iodone = uvm_aio_biodone;
   1773 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1774 		if (curlwp == uvm.pagedaemon_lwp)
   1775 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1776 		else
   1777 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1778 	} else {
   1779 		bp->b_iodone = NULL;
   1780 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1781 	}
   1782 	UVMHIST_LOG(pdhist,
   1783 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1784 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1785 
   1786 	/*
   1787 	 * now we start the I/O, and if async, return.
   1788 	 */
   1789 
   1790 	VOP_STRATEGY(swapdev_vp, bp);
   1791 	if (async)
   1792 		return 0;
   1793 
   1794 	/*
   1795 	 * must be sync i/o.   wait for it to finish
   1796 	 */
   1797 
   1798 	error = biowait(bp);
   1799 
   1800 	/*
   1801 	 * kill the pager mapping
   1802 	 */
   1803 
   1804 	uvm_pagermapout(kva, npages);
   1805 
   1806 	/*
   1807 	 * now dispose of the buf and we're done.
   1808 	 */
   1809 
   1810 	if (write) {
   1811 		mutex_enter(&swapdev_vp->v_interlock);
   1812 		vwakeup(bp);
   1813 		mutex_exit(&swapdev_vp->v_interlock);
   1814 	}
   1815 	putiobuf(bp);
   1816 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1817 
   1818 	return (error);
   1819 }
   1820