Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.146
      1 /*	$NetBSD: uvm_swap.c,v 1.146 2009/09/13 18:45:12 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.146 2009/09/13 18:45:12 pooka Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	dev_t			swd_dev;	/* device id */
    128 	int			swd_flags;	/* flags:inuse/enable/fake */
    129 	int			swd_priority;	/* our priority */
    130 	int			swd_nblks;	/* blocks in this device */
    131 	char			*swd_path;	/* saved pathname of device */
    132 	int			swd_pathlen;	/* length of pathname */
    133 	int			swd_npages;	/* #pages we can use */
    134 	int			swd_npginuse;	/* #pages in use */
    135 	int			swd_npgbad;	/* #pages bad */
    136 	int			swd_drumoffset;	/* page0 offset in drum */
    137 	int			swd_drumsize;	/* #pages in drum */
    138 	blist_t			swd_blist;	/* blist for this swapdev */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	*swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 /*
    180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    181  * dev_t and has no se_path[] member.
    182  */
    183 struct swapent13 {
    184 	int32_t	se13_dev;		/* device id */
    185 	int	se13_flags;		/* flags */
    186 	int	se13_nblks;		/* total blocks */
    187 	int	se13_inuse;		/* blocks in use */
    188 	int	se13_priority;		/* priority of this device */
    189 };
    190 
    191 /*
    192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    193  * dev_t.
    194  */
    195 struct swapent50 {
    196 	int32_t	se50_dev;		/* device id */
    197 	int	se50_flags;		/* flags */
    198 	int	se50_nblks;		/* total blocks */
    199 	int	se50_inuse;		/* blocks in use */
    200 	int	se50_priority;		/* priority of this device */
    201 	char	se50_path[PATH_MAX+1];	/* path name */
    202 };
    203 
    204 /*
    205  * We keep a of pool vndbuf's and vndxfer structures.
    206  */
    207 static struct pool vndxfer_pool, vndbuf_pool;
    208 
    209 /*
    210  * local variables
    211  */
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    214 
    215 /* list of all active swap devices [by priority] */
    216 LIST_HEAD(swap_priority, swappri);
    217 static struct swap_priority swap_priority;
    218 
    219 /* locks */
    220 static krwlock_t swap_syscall_lock;
    221 
    222 /* workqueue and use counter for swap to regular files */
    223 static int sw_reg_count = 0;
    224 static struct workqueue *sw_reg_workqueue;
    225 
    226 /* tuneables */
    227 u_int uvm_swapisfull_factor = 99;
    228 
    229 /*
    230  * prototypes
    231  */
    232 static struct swapdev	*swapdrum_getsdp(int);
    233 
    234 static struct swapdev	*swaplist_find(struct vnode *, bool);
    235 static void		 swaplist_insert(struct swapdev *,
    236 					 struct swappri *, int);
    237 static void		 swaplist_trim(void);
    238 
    239 static int swap_on(struct lwp *, struct swapdev *);
    240 static int swap_off(struct lwp *, struct swapdev *);
    241 
    242 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    243 
    244 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    245 static void sw_reg_biodone(struct buf *);
    246 static void sw_reg_iodone(struct work *wk, void *dummy);
    247 static void sw_reg_start(struct swapdev *);
    248 
    249 static int uvm_swap_io(struct vm_page **, int, int, int);
    250 
    251 /*
    252  * uvm_swap_init: init the swap system data structures and locks
    253  *
    254  * => called at boot time from init_main.c after the filesystems
    255  *	are brought up (which happens after uvm_init())
    256  */
    257 void
    258 uvm_swap_init(void)
    259 {
    260 	UVMHIST_FUNC("uvm_swap_init");
    261 
    262 	UVMHIST_CALLED(pdhist);
    263 	/*
    264 	 * first, init the swap list, its counter, and its lock.
    265 	 * then get a handle on the vnode for /dev/drum by using
    266 	 * the its dev_t number ("swapdev", from MD conf.c).
    267 	 */
    268 
    269 	LIST_INIT(&swap_priority);
    270 	uvmexp.nswapdev = 0;
    271 	rw_init(&swap_syscall_lock);
    272 	cv_init(&uvm.scheduler_cv, "schedule");
    273 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    274 
    275 	/* XXXSMP should be at IPL_VM, but for audio interrupt handlers. */
    276 	mutex_init(&uvm_scheduler_mutex, MUTEX_SPIN, IPL_SCHED);
    277 
    278 	if (bdevvp(swapdev, &swapdev_vp))
    279 		panic("%s: can't get vnode for swap device", __func__);
    280 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    281 		panic("%s: can't lock swap device", __func__);
    282 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    283 		panic("%s: can't open swap device", __func__);
    284 	VOP_UNLOCK(swapdev_vp, 0);
    285 
    286 	/*
    287 	 * create swap block resource map to map /dev/drum.   the range
    288 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    289 	 * that block 0 is reserved (used to indicate an allocation
    290 	 * failure, or no allocation).
    291 	 */
    292 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    293 	    VM_NOSLEEP, IPL_NONE);
    294 	if (swapmap == 0)
    295 		panic("%s: vmem_create failed", __func__);
    296 
    297 	/*
    298 	 * done!
    299 	 */
    300 	uvm.swap_running = true;
    301 #ifdef __SWAP_BROKEN
    302 	uvm.swapout_enabled = 0;
    303 #else
    304 	uvm.swapout_enabled = 1;
    305 #endif
    306 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    307 
    308         sysctl_createv(NULL, 0, NULL, NULL,
    309             CTLFLAG_READWRITE,
    310             CTLTYPE_INT, "swapout",
    311             SYSCTL_DESCR("Set 0 to disable swapout of kernel stacks"),
    312             NULL, 0, &uvm.swapout_enabled, 0, CTL_VM, CTL_CREATE, CTL_EOL);
    313 
    314 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    315 	    NULL, IPL_BIO);
    316 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    317 	    NULL, IPL_BIO);
    318 }
    319 
    320 /*
    321  * swaplist functions: functions that operate on the list of swap
    322  * devices on the system.
    323  */
    324 
    325 /*
    326  * swaplist_insert: insert swap device "sdp" into the global list
    327  *
    328  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    329  * => caller must provide a newly malloc'd swappri structure (we will
    330  *	FREE it if we don't need it... this it to prevent malloc blocking
    331  *	here while adding swap)
    332  */
    333 static void
    334 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    335 {
    336 	struct swappri *spp, *pspp;
    337 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    338 
    339 	/*
    340 	 * find entry at or after which to insert the new device.
    341 	 */
    342 	pspp = NULL;
    343 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    344 		if (priority <= spp->spi_priority)
    345 			break;
    346 		pspp = spp;
    347 	}
    348 
    349 	/*
    350 	 * new priority?
    351 	 */
    352 	if (spp == NULL || spp->spi_priority != priority) {
    353 		spp = newspp;  /* use newspp! */
    354 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    355 			    priority, 0, 0, 0);
    356 
    357 		spp->spi_priority = priority;
    358 		CIRCLEQ_INIT(&spp->spi_swapdev);
    359 
    360 		if (pspp)
    361 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    362 		else
    363 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    364 	} else {
    365 	  	/* we don't need a new priority structure, free it */
    366 		free(newspp, M_VMSWAP);
    367 	}
    368 
    369 	/*
    370 	 * priority found (or created).   now insert on the priority's
    371 	 * circleq list and bump the total number of swapdevs.
    372 	 */
    373 	sdp->swd_priority = priority;
    374 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    375 	uvmexp.nswapdev++;
    376 }
    377 
    378 /*
    379  * swaplist_find: find and optionally remove a swap device from the
    380  *	global list.
    381  *
    382  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    383  * => we return the swapdev we found (and removed)
    384  */
    385 static struct swapdev *
    386 swaplist_find(struct vnode *vp, bool remove)
    387 {
    388 	struct swapdev *sdp;
    389 	struct swappri *spp;
    390 
    391 	/*
    392 	 * search the lists for the requested vp
    393 	 */
    394 
    395 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    396 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    397 			if (sdp->swd_vp == vp) {
    398 				if (remove) {
    399 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    400 					    sdp, swd_next);
    401 					uvmexp.nswapdev--;
    402 				}
    403 				return(sdp);
    404 			}
    405 		}
    406 	}
    407 	return (NULL);
    408 }
    409 
    410 /*
    411  * swaplist_trim: scan priority list for empty priority entries and kill
    412  *	them.
    413  *
    414  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    415  */
    416 static void
    417 swaplist_trim(void)
    418 {
    419 	struct swappri *spp, *nextspp;
    420 
    421 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    422 		nextspp = LIST_NEXT(spp, spi_swappri);
    423 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    424 		    (void *)&spp->spi_swapdev)
    425 			continue;
    426 		LIST_REMOVE(spp, spi_swappri);
    427 		free(spp, M_VMSWAP);
    428 	}
    429 }
    430 
    431 /*
    432  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    433  *	to the "swapdev" that maps that section of the drum.
    434  *
    435  * => each swapdev takes one big contig chunk of the drum
    436  * => caller must hold uvm_swap_data_lock
    437  */
    438 static struct swapdev *
    439 swapdrum_getsdp(int pgno)
    440 {
    441 	struct swapdev *sdp;
    442 	struct swappri *spp;
    443 
    444 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    445 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    446 			if (sdp->swd_flags & SWF_FAKE)
    447 				continue;
    448 			if (pgno >= sdp->swd_drumoffset &&
    449 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    450 				return sdp;
    451 			}
    452 		}
    453 	}
    454 	return NULL;
    455 }
    456 
    457 
    458 /*
    459  * sys_swapctl: main entry point for swapctl(2) system call
    460  * 	[with two helper functions: swap_on and swap_off]
    461  */
    462 int
    463 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    464 {
    465 	/* {
    466 		syscallarg(int) cmd;
    467 		syscallarg(void *) arg;
    468 		syscallarg(int) misc;
    469 	} */
    470 	struct vnode *vp;
    471 	struct nameidata nd;
    472 	struct swappri *spp;
    473 	struct swapdev *sdp;
    474 	struct swapent *sep;
    475 #define SWAP_PATH_MAX (PATH_MAX + 1)
    476 	char	*userpath;
    477 	size_t	len;
    478 	int	error, misc;
    479 	int	priority;
    480 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    481 
    482 	misc = SCARG(uap, misc);
    483 
    484 	/*
    485 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    486 	 */
    487 	rw_enter(&swap_syscall_lock, RW_WRITER);
    488 
    489 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    490 	/*
    491 	 * we handle the non-priv NSWAP and STATS request first.
    492 	 *
    493 	 * SWAP_NSWAP: return number of config'd swap devices
    494 	 * [can also be obtained with uvmexp sysctl]
    495 	 */
    496 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    497 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    498 		    0, 0, 0);
    499 		*retval = uvmexp.nswapdev;
    500 		error = 0;
    501 		goto out;
    502 	}
    503 
    504 	/*
    505 	 * SWAP_STATS: get stats on current # of configured swap devs
    506 	 *
    507 	 * note that the swap_priority list can't change as long
    508 	 * as we are holding the swap_syscall_lock.  we don't want
    509 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    510 	 * copyout() and we don't want to be holding that lock then!
    511 	 */
    512 	if (SCARG(uap, cmd) == SWAP_STATS
    513 #if defined(COMPAT_50)
    514 	    || SCARG(uap, cmd) == SWAP_STATS50
    515 #endif
    516 #if defined(COMPAT_13)
    517 	    || SCARG(uap, cmd) == SWAP_STATS13
    518 #endif
    519 	    ) {
    520 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    521 			misc = uvmexp.nswapdev;
    522 #if defined(COMPAT_13)
    523 		if (SCARG(uap, cmd) == SWAP_STATS13)
    524 			len = sizeof(struct swapent13) * misc;
    525 		else
    526 #endif
    527 #if defined(COMPAT_50)
    528 		if (SCARG(uap, cmd) == SWAP_STATS50)
    529 			len = sizeof(struct swapent50) * misc;
    530 		else
    531 #endif
    532 			len = sizeof(struct swapent) * misc;
    533 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    534 
    535 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    536 		error = copyout(sep, SCARG(uap, arg), len);
    537 
    538 		free(sep, M_TEMP);
    539 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    540 		goto out;
    541 	}
    542 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    543 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    544 
    545 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    546 		goto out;
    547 	}
    548 
    549 	/*
    550 	 * all other requests require superuser privs.   verify.
    551 	 */
    552 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    553 	    0, NULL, NULL, NULL)))
    554 		goto out;
    555 
    556 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    557 		/* drop the current dump device */
    558 		dumpdev = NODEV;
    559 		dumpcdev = NODEV;
    560 		cpu_dumpconf();
    561 		goto out;
    562 	}
    563 
    564 	/*
    565 	 * at this point we expect a path name in arg.   we will
    566 	 * use namei() to gain a vnode reference (vref), and lock
    567 	 * the vnode (VOP_LOCK).
    568 	 *
    569 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    570 	 * miniroot)
    571 	 */
    572 	if (SCARG(uap, arg) == NULL) {
    573 		vp = rootvp;		/* miniroot */
    574 		if (vget(vp, LK_EXCLUSIVE)) {
    575 			error = EBUSY;
    576 			goto out;
    577 		}
    578 		if (SCARG(uap, cmd) == SWAP_ON &&
    579 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    580 			panic("swapctl: miniroot copy failed");
    581 	} else {
    582 		int	space;
    583 		char	*where;
    584 
    585 		if (SCARG(uap, cmd) == SWAP_ON) {
    586 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    587 			    SWAP_PATH_MAX, &len)))
    588 				goto out;
    589 			space = UIO_SYSSPACE;
    590 			where = userpath;
    591 		} else {
    592 			space = UIO_USERSPACE;
    593 			where = (char *)SCARG(uap, arg);
    594 		}
    595 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    596 		    space, where);
    597 		if ((error = namei(&nd)))
    598 			goto out;
    599 		vp = nd.ni_vp;
    600 	}
    601 	/* note: "vp" is referenced and locked */
    602 
    603 	error = 0;		/* assume no error */
    604 	switch(SCARG(uap, cmd)) {
    605 
    606 	case SWAP_DUMPDEV:
    607 		if (vp->v_type != VBLK) {
    608 			error = ENOTBLK;
    609 			break;
    610 		}
    611 		if (bdevsw_lookup(vp->v_rdev)) {
    612 			dumpdev = vp->v_rdev;
    613 			dumpcdev = devsw_blk2chr(dumpdev);
    614 		} else
    615 			dumpdev = NODEV;
    616 		cpu_dumpconf();
    617 		break;
    618 
    619 	case SWAP_CTL:
    620 		/*
    621 		 * get new priority, remove old entry (if any) and then
    622 		 * reinsert it in the correct place.  finally, prune out
    623 		 * any empty priority structures.
    624 		 */
    625 		priority = SCARG(uap, misc);
    626 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    627 		mutex_enter(&uvm_swap_data_lock);
    628 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    629 			error = ENOENT;
    630 		} else {
    631 			swaplist_insert(sdp, spp, priority);
    632 			swaplist_trim();
    633 		}
    634 		mutex_exit(&uvm_swap_data_lock);
    635 		if (error)
    636 			free(spp, M_VMSWAP);
    637 		break;
    638 
    639 	case SWAP_ON:
    640 
    641 		/*
    642 		 * check for duplicates.   if none found, then insert a
    643 		 * dummy entry on the list to prevent someone else from
    644 		 * trying to enable this device while we are working on
    645 		 * it.
    646 		 */
    647 
    648 		priority = SCARG(uap, misc);
    649 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    650 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    651 		memset(sdp, 0, sizeof(*sdp));
    652 		sdp->swd_flags = SWF_FAKE;
    653 		sdp->swd_vp = vp;
    654 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    655 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    656 		mutex_enter(&uvm_swap_data_lock);
    657 		if (swaplist_find(vp, false) != NULL) {
    658 			error = EBUSY;
    659 			mutex_exit(&uvm_swap_data_lock);
    660 			bufq_free(sdp->swd_tab);
    661 			free(sdp, M_VMSWAP);
    662 			free(spp, M_VMSWAP);
    663 			break;
    664 		}
    665 		swaplist_insert(sdp, spp, priority);
    666 		mutex_exit(&uvm_swap_data_lock);
    667 
    668 		sdp->swd_pathlen = len;
    669 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    670 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    671 			panic("swapctl: copystr");
    672 
    673 		/*
    674 		 * we've now got a FAKE placeholder in the swap list.
    675 		 * now attempt to enable swap on it.  if we fail, undo
    676 		 * what we've done and kill the fake entry we just inserted.
    677 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    678 		 */
    679 
    680 		if ((error = swap_on(l, sdp)) != 0) {
    681 			mutex_enter(&uvm_swap_data_lock);
    682 			(void) swaplist_find(vp, true);  /* kill fake entry */
    683 			swaplist_trim();
    684 			mutex_exit(&uvm_swap_data_lock);
    685 			bufq_free(sdp->swd_tab);
    686 			free(sdp->swd_path, M_VMSWAP);
    687 			free(sdp, M_VMSWAP);
    688 			break;
    689 		}
    690 		break;
    691 
    692 	case SWAP_OFF:
    693 		mutex_enter(&uvm_swap_data_lock);
    694 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    695 			mutex_exit(&uvm_swap_data_lock);
    696 			error = ENXIO;
    697 			break;
    698 		}
    699 
    700 		/*
    701 		 * If a device isn't in use or enabled, we
    702 		 * can't stop swapping from it (again).
    703 		 */
    704 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    705 			mutex_exit(&uvm_swap_data_lock);
    706 			error = EBUSY;
    707 			break;
    708 		}
    709 
    710 		/*
    711 		 * do the real work.
    712 		 */
    713 		error = swap_off(l, sdp);
    714 		break;
    715 
    716 	default:
    717 		error = EINVAL;
    718 	}
    719 
    720 	/*
    721 	 * done!  release the ref gained by namei() and unlock.
    722 	 */
    723 	vput(vp);
    724 
    725 out:
    726 	free(userpath, M_TEMP);
    727 	rw_exit(&swap_syscall_lock);
    728 
    729 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    730 	return (error);
    731 }
    732 
    733 /*
    734  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    735  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    736  * emulation to use it directly without going through sys_swapctl().
    737  * The problem with using sys_swapctl() there is that it involves
    738  * copying the swapent array to the stackgap, and this array's size
    739  * is not known at build time. Hence it would not be possible to
    740  * ensure it would fit in the stackgap in any case.
    741  */
    742 void
    743 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    744 {
    745 
    746 	rw_enter(&swap_syscall_lock, RW_READER);
    747 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    748 	rw_exit(&swap_syscall_lock);
    749 }
    750 
    751 static void
    752 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    753 {
    754 	struct swappri *spp;
    755 	struct swapdev *sdp;
    756 	int count = 0;
    757 
    758 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    759 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    760 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    761 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    762 			int inuse;
    763 
    764 		  	/*
    765 			 * backwards compatibility for system call.
    766 			 * For NetBSD 1.3 and 5.0, we have to use
    767 			 * the 32 bit dev_t.  For 5.0 and -current
    768 			 * we have to add the path.
    769 			 */
    770 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    771 			    PAGE_SHIFT);
    772 
    773 #if defined(COMPAT_13) || defined(COMPAT_50)
    774 			if (cmd == SWAP_STATS) {
    775 #endif
    776 				sep->se_dev = sdp->swd_dev;
    777 				sep->se_flags = sdp->swd_flags;
    778 				sep->se_nblks = sdp->swd_nblks;
    779 				sep->se_inuse = inuse;
    780 				sep->se_priority = sdp->swd_priority;
    781 				memcpy(&sep->se_path, sdp->swd_path,
    782 				       sizeof sep->se_path);
    783 				sep++;
    784 #if defined(COMPAT_13)
    785 			} else if (cmd == SWAP_STATS13) {
    786 				struct swapent13 *sep13 =
    787 				    (struct swapent13 *)sep;
    788 
    789 				sep13->se13_dev = sdp->swd_dev;
    790 				sep13->se13_flags = sdp->swd_flags;
    791 				sep13->se13_nblks = sdp->swd_nblks;
    792 				sep13->se13_inuse = inuse;
    793 				sep13->se13_priority = sdp->swd_priority;
    794 				sep = (struct swapent *)(sep13 + 1);
    795 #endif
    796 #if defined(COMPAT_50)
    797 			} else if (cmd == SWAP_STATS50) {
    798 				struct swapent50 *sep50 =
    799 				    (struct swapent50 *)sep;
    800 
    801 				sep50->se50_dev = sdp->swd_dev;
    802 				sep50->se50_flags = sdp->swd_flags;
    803 				sep50->se50_nblks = sdp->swd_nblks;
    804 				sep50->se50_inuse = inuse;
    805 				sep50->se50_priority = sdp->swd_priority;
    806 				memcpy(&sep50->se50_path, sdp->swd_path,
    807 				       sizeof sep50->se50_path);
    808 				sep = (struct swapent *)(sep50 + 1);
    809 			}
    810 #endif
    811 			count++;
    812 		}
    813 	}
    814 
    815 	*retval = count;
    816 	return;
    817 }
    818 
    819 /*
    820  * swap_on: attempt to enable a swapdev for swapping.   note that the
    821  *	swapdev is already on the global list, but disabled (marked
    822  *	SWF_FAKE).
    823  *
    824  * => we avoid the start of the disk (to protect disk labels)
    825  * => we also avoid the miniroot, if we are swapping to root.
    826  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    827  *	if needed.
    828  */
    829 static int
    830 swap_on(struct lwp *l, struct swapdev *sdp)
    831 {
    832 	struct vnode *vp;
    833 	int error, npages, nblocks, size;
    834 	long addr;
    835 	u_long result;
    836 	struct vattr va;
    837 #ifdef NFS
    838 	extern int (**nfsv2_vnodeop_p)(void *);
    839 #endif /* NFS */
    840 	const struct bdevsw *bdev;
    841 	dev_t dev;
    842 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    843 
    844 	/*
    845 	 * we want to enable swapping on sdp.   the swd_vp contains
    846 	 * the vnode we want (locked and ref'd), and the swd_dev
    847 	 * contains the dev_t of the file, if it a block device.
    848 	 */
    849 
    850 	vp = sdp->swd_vp;
    851 	dev = sdp->swd_dev;
    852 
    853 	/*
    854 	 * open the swap file (mostly useful for block device files to
    855 	 * let device driver know what is up).
    856 	 *
    857 	 * we skip the open/close for root on swap because the root
    858 	 * has already been opened when root was mounted (mountroot).
    859 	 */
    860 	if (vp != rootvp) {
    861 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    862 			return (error);
    863 	}
    864 
    865 	/* XXX this only works for block devices */
    866 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    867 
    868 	/*
    869 	 * we now need to determine the size of the swap area.   for
    870 	 * block specials we can call the d_psize function.
    871 	 * for normal files, we must stat [get attrs].
    872 	 *
    873 	 * we put the result in nblks.
    874 	 * for normal files, we also want the filesystem block size
    875 	 * (which we get with statfs).
    876 	 */
    877 	switch (vp->v_type) {
    878 	case VBLK:
    879 		bdev = bdevsw_lookup(dev);
    880 		if (bdev == NULL || bdev->d_psize == NULL ||
    881 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    882 			error = ENXIO;
    883 			goto bad;
    884 		}
    885 		break;
    886 
    887 	case VREG:
    888 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    889 			goto bad;
    890 		nblocks = (int)btodb(va.va_size);
    891 		if ((error =
    892 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    893 			goto bad;
    894 
    895 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    896 		/*
    897 		 * limit the max # of outstanding I/O requests we issue
    898 		 * at any one time.   take it easy on NFS servers.
    899 		 */
    900 #ifdef NFS
    901 		if (vp->v_op == nfsv2_vnodeop_p)
    902 			sdp->swd_maxactive = 2; /* XXX */
    903 		else
    904 #endif /* NFS */
    905 			sdp->swd_maxactive = 8; /* XXX */
    906 		break;
    907 
    908 	default:
    909 		error = ENXIO;
    910 		goto bad;
    911 	}
    912 
    913 	/*
    914 	 * save nblocks in a safe place and convert to pages.
    915 	 */
    916 
    917 	sdp->swd_nblks = nblocks;
    918 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    919 
    920 	/*
    921 	 * for block special files, we want to make sure that leave
    922 	 * the disklabel and bootblocks alone, so we arrange to skip
    923 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    924 	 * note that because of this the "size" can be less than the
    925 	 * actual number of blocks on the device.
    926 	 */
    927 	if (vp->v_type == VBLK) {
    928 		/* we use pages 1 to (size - 1) [inclusive] */
    929 		size = npages - 1;
    930 		addr = 1;
    931 	} else {
    932 		/* we use pages 0 to (size - 1) [inclusive] */
    933 		size = npages;
    934 		addr = 0;
    935 	}
    936 
    937 	/*
    938 	 * make sure we have enough blocks for a reasonable sized swap
    939 	 * area.   we want at least one page.
    940 	 */
    941 
    942 	if (size < 1) {
    943 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    944 		error = EINVAL;
    945 		goto bad;
    946 	}
    947 
    948 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    949 
    950 	/*
    951 	 * now we need to allocate an extent to manage this swap device
    952 	 */
    953 
    954 	sdp->swd_blist = blist_create(npages);
    955 	/* mark all expect the `saved' region free. */
    956 	blist_free(sdp->swd_blist, addr, size);
    957 
    958 	/*
    959 	 * if the vnode we are swapping to is the root vnode
    960 	 * (i.e. we are swapping to the miniroot) then we want
    961 	 * to make sure we don't overwrite it.   do a statfs to
    962 	 * find its size and skip over it.
    963 	 */
    964 	if (vp == rootvp) {
    965 		struct mount *mp;
    966 		struct statvfs *sp;
    967 		int rootblocks, rootpages;
    968 
    969 		mp = rootvnode->v_mount;
    970 		sp = &mp->mnt_stat;
    971 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    972 		/*
    973 		 * XXX: sp->f_blocks isn't the total number of
    974 		 * blocks in the filesystem, it's the number of
    975 		 * data blocks.  so, our rootblocks almost
    976 		 * definitely underestimates the total size
    977 		 * of the filesystem - how badly depends on the
    978 		 * details of the filesystem type.  there isn't
    979 		 * an obvious way to deal with this cleanly
    980 		 * and perfectly, so for now we just pad our
    981 		 * rootblocks estimate with an extra 5 percent.
    982 		 */
    983 		rootblocks += (rootblocks >> 5) +
    984 			(rootblocks >> 6) +
    985 			(rootblocks >> 7);
    986 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    987 		if (rootpages > size)
    988 			panic("swap_on: miniroot larger than swap?");
    989 
    990 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    991 			panic("swap_on: unable to preserve miniroot");
    992 		}
    993 
    994 		size -= rootpages;
    995 		printf("Preserved %d pages of miniroot ", rootpages);
    996 		printf("leaving %d pages of swap\n", size);
    997 	}
    998 
    999 	/*
   1000 	 * add a ref to vp to reflect usage as a swap device.
   1001 	 */
   1002 	vref(vp);
   1003 
   1004 	/*
   1005 	 * now add the new swapdev to the drum and enable.
   1006 	 */
   1007 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
   1008 	if (result == 0)
   1009 		panic("swapdrum_add");
   1010 	/*
   1011 	 * If this is the first regular swap create the workqueue.
   1012 	 * => Protected by swap_syscall_lock.
   1013 	 */
   1014 	if (vp->v_type != VBLK) {
   1015 		if (sw_reg_count++ == 0) {
   1016 			KASSERT(sw_reg_workqueue == NULL);
   1017 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1018 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1019 				panic("%s: workqueue_create failed", __func__);
   1020 		}
   1021 	}
   1022 
   1023 	sdp->swd_drumoffset = (int)result;
   1024 	sdp->swd_drumsize = npages;
   1025 	sdp->swd_npages = size;
   1026 	mutex_enter(&uvm_swap_data_lock);
   1027 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1028 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1029 	uvmexp.swpages += size;
   1030 	uvmexp.swpgavail += size;
   1031 	mutex_exit(&uvm_swap_data_lock);
   1032 	return (0);
   1033 
   1034 	/*
   1035 	 * failure: clean up and return error.
   1036 	 */
   1037 
   1038 bad:
   1039 	if (sdp->swd_blist) {
   1040 		blist_destroy(sdp->swd_blist);
   1041 	}
   1042 	if (vp != rootvp) {
   1043 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1044 	}
   1045 	return (error);
   1046 }
   1047 
   1048 /*
   1049  * swap_off: stop swapping on swapdev
   1050  *
   1051  * => swap data should be locked, we will unlock.
   1052  */
   1053 static int
   1054 swap_off(struct lwp *l, struct swapdev *sdp)
   1055 {
   1056 	int npages = sdp->swd_npages;
   1057 	int error = 0;
   1058 
   1059 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1060 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1061 
   1062 	/* disable the swap area being removed */
   1063 	sdp->swd_flags &= ~SWF_ENABLE;
   1064 	uvmexp.swpgavail -= npages;
   1065 	mutex_exit(&uvm_swap_data_lock);
   1066 
   1067 	/*
   1068 	 * the idea is to find all the pages that are paged out to this
   1069 	 * device, and page them all in.  in uvm, swap-backed pageable
   1070 	 * memory can take two forms: aobjs and anons.  call the
   1071 	 * swapoff hook for each subsystem to bring in pages.
   1072 	 */
   1073 
   1074 	if (uao_swap_off(sdp->swd_drumoffset,
   1075 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1076 	    amap_swap_off(sdp->swd_drumoffset,
   1077 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1078 		error = ENOMEM;
   1079 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1080 		error = EBUSY;
   1081 	}
   1082 
   1083 	if (error) {
   1084 		mutex_enter(&uvm_swap_data_lock);
   1085 		sdp->swd_flags |= SWF_ENABLE;
   1086 		uvmexp.swpgavail += npages;
   1087 		mutex_exit(&uvm_swap_data_lock);
   1088 
   1089 		return error;
   1090 	}
   1091 
   1092 	/*
   1093 	 * If this is the last regular swap destroy the workqueue.
   1094 	 * => Protected by swap_syscall_lock.
   1095 	 */
   1096 	if (sdp->swd_vp->v_type != VBLK) {
   1097 		KASSERT(sw_reg_count > 0);
   1098 		KASSERT(sw_reg_workqueue != NULL);
   1099 		if (--sw_reg_count == 0) {
   1100 			workqueue_destroy(sw_reg_workqueue);
   1101 			sw_reg_workqueue = NULL;
   1102 		}
   1103 	}
   1104 
   1105 	/*
   1106 	 * done with the vnode.
   1107 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1108 	 * so that spec_close() can tell if this is the last close.
   1109 	 */
   1110 	vrele(sdp->swd_vp);
   1111 	if (sdp->swd_vp != rootvp) {
   1112 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1113 	}
   1114 
   1115 	mutex_enter(&uvm_swap_data_lock);
   1116 	uvmexp.swpages -= npages;
   1117 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1118 
   1119 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1120 		panic("%s: swapdev not in list", __func__);
   1121 	swaplist_trim();
   1122 	mutex_exit(&uvm_swap_data_lock);
   1123 
   1124 	/*
   1125 	 * free all resources!
   1126 	 */
   1127 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1128 	blist_destroy(sdp->swd_blist);
   1129 	bufq_free(sdp->swd_tab);
   1130 	free(sdp, M_VMSWAP);
   1131 	return (0);
   1132 }
   1133 
   1134 /*
   1135  * /dev/drum interface and i/o functions
   1136  */
   1137 
   1138 /*
   1139  * swstrategy: perform I/O on the drum
   1140  *
   1141  * => we must map the i/o request from the drum to the correct swapdev.
   1142  */
   1143 static void
   1144 swstrategy(struct buf *bp)
   1145 {
   1146 	struct swapdev *sdp;
   1147 	struct vnode *vp;
   1148 	int pageno, bn;
   1149 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1150 
   1151 	/*
   1152 	 * convert block number to swapdev.   note that swapdev can't
   1153 	 * be yanked out from under us because we are holding resources
   1154 	 * in it (i.e. the blocks we are doing I/O on).
   1155 	 */
   1156 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1157 	mutex_enter(&uvm_swap_data_lock);
   1158 	sdp = swapdrum_getsdp(pageno);
   1159 	mutex_exit(&uvm_swap_data_lock);
   1160 	if (sdp == NULL) {
   1161 		bp->b_error = EINVAL;
   1162 		biodone(bp);
   1163 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1164 		return;
   1165 	}
   1166 
   1167 	/*
   1168 	 * convert drum page number to block number on this swapdev.
   1169 	 */
   1170 
   1171 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1172 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1173 
   1174 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1175 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1176 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1177 
   1178 	/*
   1179 	 * for block devices we finish up here.
   1180 	 * for regular files we have to do more work which we delegate
   1181 	 * to sw_reg_strategy().
   1182 	 */
   1183 
   1184 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1185 	switch (vp->v_type) {
   1186 	default:
   1187 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1188 
   1189 	case VBLK:
   1190 
   1191 		/*
   1192 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1193 		 * on the swapdev (sdp).
   1194 		 */
   1195 		bp->b_blkno = bn;		/* swapdev block number */
   1196 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1197 
   1198 		/*
   1199 		 * if we are doing a write, we have to redirect the i/o on
   1200 		 * drum's v_numoutput counter to the swapdevs.
   1201 		 */
   1202 		if ((bp->b_flags & B_READ) == 0) {
   1203 			mutex_enter(bp->b_objlock);
   1204 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1205 			mutex_exit(bp->b_objlock);
   1206 			mutex_enter(&vp->v_interlock);
   1207 			vp->v_numoutput++;	/* put it on swapdev */
   1208 			mutex_exit(&vp->v_interlock);
   1209 		}
   1210 
   1211 		/*
   1212 		 * finally plug in swapdev vnode and start I/O
   1213 		 */
   1214 		bp->b_vp = vp;
   1215 		bp->b_objlock = &vp->v_interlock;
   1216 		VOP_STRATEGY(vp, bp);
   1217 		return;
   1218 
   1219 	case VREG:
   1220 		/*
   1221 		 * delegate to sw_reg_strategy function.
   1222 		 */
   1223 		sw_reg_strategy(sdp, bp, bn);
   1224 		return;
   1225 	}
   1226 	/* NOTREACHED */
   1227 }
   1228 
   1229 /*
   1230  * swread: the read function for the drum (just a call to physio)
   1231  */
   1232 /*ARGSUSED*/
   1233 static int
   1234 swread(dev_t dev, struct uio *uio, int ioflag)
   1235 {
   1236 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1237 
   1238 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1239 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1240 }
   1241 
   1242 /*
   1243  * swwrite: the write function for the drum (just a call to physio)
   1244  */
   1245 /*ARGSUSED*/
   1246 static int
   1247 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1248 {
   1249 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1250 
   1251 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1252 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1253 }
   1254 
   1255 const struct bdevsw swap_bdevsw = {
   1256 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1257 };
   1258 
   1259 const struct cdevsw swap_cdevsw = {
   1260 	nullopen, nullclose, swread, swwrite, noioctl,
   1261 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1262 };
   1263 
   1264 /*
   1265  * sw_reg_strategy: handle swap i/o to regular files
   1266  */
   1267 static void
   1268 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1269 {
   1270 	struct vnode	*vp;
   1271 	struct vndxfer	*vnx;
   1272 	daddr_t		nbn;
   1273 	char 		*addr;
   1274 	off_t		byteoff;
   1275 	int		s, off, nra, error, sz, resid;
   1276 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1277 
   1278 	/*
   1279 	 * allocate a vndxfer head for this transfer and point it to
   1280 	 * our buffer.
   1281 	 */
   1282 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1283 	vnx->vx_flags = VX_BUSY;
   1284 	vnx->vx_error = 0;
   1285 	vnx->vx_pending = 0;
   1286 	vnx->vx_bp = bp;
   1287 	vnx->vx_sdp = sdp;
   1288 
   1289 	/*
   1290 	 * setup for main loop where we read filesystem blocks into
   1291 	 * our buffer.
   1292 	 */
   1293 	error = 0;
   1294 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1295 	addr = bp->b_data;		/* current position in buffer */
   1296 	byteoff = dbtob((uint64_t)bn);
   1297 
   1298 	for (resid = bp->b_resid; resid; resid -= sz) {
   1299 		struct vndbuf	*nbp;
   1300 
   1301 		/*
   1302 		 * translate byteoffset into block number.  return values:
   1303 		 *   vp = vnode of underlying device
   1304 		 *  nbn = new block number (on underlying vnode dev)
   1305 		 *  nra = num blocks we can read-ahead (excludes requested
   1306 		 *	block)
   1307 		 */
   1308 		nra = 0;
   1309 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1310 				 	&vp, &nbn, &nra);
   1311 
   1312 		if (error == 0 && nbn == (daddr_t)-1) {
   1313 			/*
   1314 			 * this used to just set error, but that doesn't
   1315 			 * do the right thing.  Instead, it causes random
   1316 			 * memory errors.  The panic() should remain until
   1317 			 * this condition doesn't destabilize the system.
   1318 			 */
   1319 #if 1
   1320 			panic("%s: swap to sparse file", __func__);
   1321 #else
   1322 			error = EIO;	/* failure */
   1323 #endif
   1324 		}
   1325 
   1326 		/*
   1327 		 * punt if there was an error or a hole in the file.
   1328 		 * we must wait for any i/o ops we have already started
   1329 		 * to finish before returning.
   1330 		 *
   1331 		 * XXX we could deal with holes here but it would be
   1332 		 * a hassle (in the write case).
   1333 		 */
   1334 		if (error) {
   1335 			s = splbio();
   1336 			vnx->vx_error = error;	/* pass error up */
   1337 			goto out;
   1338 		}
   1339 
   1340 		/*
   1341 		 * compute the size ("sz") of this transfer (in bytes).
   1342 		 */
   1343 		off = byteoff % sdp->swd_bsize;
   1344 		sz = (1 + nra) * sdp->swd_bsize - off;
   1345 		if (sz > resid)
   1346 			sz = resid;
   1347 
   1348 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1349 			    "vp %p/%p offset 0x%x/0x%x",
   1350 			    sdp->swd_vp, vp, byteoff, nbn);
   1351 
   1352 		/*
   1353 		 * now get a buf structure.   note that the vb_buf is
   1354 		 * at the front of the nbp structure so that you can
   1355 		 * cast pointers between the two structure easily.
   1356 		 */
   1357 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1358 		buf_init(&nbp->vb_buf);
   1359 		nbp->vb_buf.b_flags    = bp->b_flags;
   1360 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1361 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1362 		nbp->vb_buf.b_bcount   = sz;
   1363 		nbp->vb_buf.b_bufsize  = sz;
   1364 		nbp->vb_buf.b_error    = 0;
   1365 		nbp->vb_buf.b_data     = addr;
   1366 		nbp->vb_buf.b_lblkno   = 0;
   1367 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1368 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1369 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1370 		nbp->vb_buf.b_vp       = vp;
   1371 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1372 		if (vp->v_type == VBLK) {
   1373 			nbp->vb_buf.b_dev = vp->v_rdev;
   1374 		}
   1375 
   1376 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1377 
   1378 		/*
   1379 		 * Just sort by block number
   1380 		 */
   1381 		s = splbio();
   1382 		if (vnx->vx_error != 0) {
   1383 			buf_destroy(&nbp->vb_buf);
   1384 			pool_put(&vndbuf_pool, nbp);
   1385 			goto out;
   1386 		}
   1387 		vnx->vx_pending++;
   1388 
   1389 		/* sort it in and start I/O if we are not over our limit */
   1390 		/* XXXAD locking */
   1391 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1392 		sw_reg_start(sdp);
   1393 		splx(s);
   1394 
   1395 		/*
   1396 		 * advance to the next I/O
   1397 		 */
   1398 		byteoff += sz;
   1399 		addr += sz;
   1400 	}
   1401 
   1402 	s = splbio();
   1403 
   1404 out: /* Arrive here at splbio */
   1405 	vnx->vx_flags &= ~VX_BUSY;
   1406 	if (vnx->vx_pending == 0) {
   1407 		error = vnx->vx_error;
   1408 		pool_put(&vndxfer_pool, vnx);
   1409 		bp->b_error = error;
   1410 		biodone(bp);
   1411 	}
   1412 	splx(s);
   1413 }
   1414 
   1415 /*
   1416  * sw_reg_start: start an I/O request on the requested swapdev
   1417  *
   1418  * => reqs are sorted by b_rawblkno (above)
   1419  */
   1420 static void
   1421 sw_reg_start(struct swapdev *sdp)
   1422 {
   1423 	struct buf	*bp;
   1424 	struct vnode	*vp;
   1425 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1426 
   1427 	/* recursion control */
   1428 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1429 		return;
   1430 
   1431 	sdp->swd_flags |= SWF_BUSY;
   1432 
   1433 	while (sdp->swd_active < sdp->swd_maxactive) {
   1434 		bp = bufq_get(sdp->swd_tab);
   1435 		if (bp == NULL)
   1436 			break;
   1437 		sdp->swd_active++;
   1438 
   1439 		UVMHIST_LOG(pdhist,
   1440 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1441 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1442 		vp = bp->b_vp;
   1443 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1444 		if ((bp->b_flags & B_READ) == 0) {
   1445 			mutex_enter(&vp->v_interlock);
   1446 			vp->v_numoutput++;
   1447 			mutex_exit(&vp->v_interlock);
   1448 		}
   1449 		VOP_STRATEGY(vp, bp);
   1450 	}
   1451 	sdp->swd_flags &= ~SWF_BUSY;
   1452 }
   1453 
   1454 /*
   1455  * sw_reg_biodone: one of our i/o's has completed
   1456  */
   1457 static void
   1458 sw_reg_biodone(struct buf *bp)
   1459 {
   1460 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1461 }
   1462 
   1463 /*
   1464  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1465  *
   1466  * => note that we can recover the vndbuf struct by casting the buf ptr
   1467  */
   1468 static void
   1469 sw_reg_iodone(struct work *wk, void *dummy)
   1470 {
   1471 	struct vndbuf *vbp = (void *)wk;
   1472 	struct vndxfer *vnx = vbp->vb_xfer;
   1473 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1474 	struct swapdev	*sdp = vnx->vx_sdp;
   1475 	int s, resid, error;
   1476 	KASSERT(&vbp->vb_buf.b_work == wk);
   1477 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1478 
   1479 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1480 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1481 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1482 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1483 
   1484 	/*
   1485 	 * protect vbp at splbio and update.
   1486 	 */
   1487 
   1488 	s = splbio();
   1489 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1490 	pbp->b_resid -= resid;
   1491 	vnx->vx_pending--;
   1492 
   1493 	if (vbp->vb_buf.b_error != 0) {
   1494 		/* pass error upward */
   1495 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1496 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1497 		vnx->vx_error = error;
   1498 	}
   1499 
   1500 	/*
   1501 	 * kill vbp structure
   1502 	 */
   1503 	buf_destroy(&vbp->vb_buf);
   1504 	pool_put(&vndbuf_pool, vbp);
   1505 
   1506 	/*
   1507 	 * wrap up this transaction if it has run to completion or, in
   1508 	 * case of an error, when all auxiliary buffers have returned.
   1509 	 */
   1510 	if (vnx->vx_error != 0) {
   1511 		/* pass error upward */
   1512 		error = vnx->vx_error;
   1513 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1514 			pbp->b_error = error;
   1515 			biodone(pbp);
   1516 			pool_put(&vndxfer_pool, vnx);
   1517 		}
   1518 	} else if (pbp->b_resid == 0) {
   1519 		KASSERT(vnx->vx_pending == 0);
   1520 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1521 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1522 			    pbp, vnx->vx_error, 0, 0);
   1523 			biodone(pbp);
   1524 			pool_put(&vndxfer_pool, vnx);
   1525 		}
   1526 	}
   1527 
   1528 	/*
   1529 	 * done!   start next swapdev I/O if one is pending
   1530 	 */
   1531 	sdp->swd_active--;
   1532 	sw_reg_start(sdp);
   1533 	splx(s);
   1534 }
   1535 
   1536 
   1537 /*
   1538  * uvm_swap_alloc: allocate space on swap
   1539  *
   1540  * => allocation is done "round robin" down the priority list, as we
   1541  *	allocate in a priority we "rotate" the circle queue.
   1542  * => space can be freed with uvm_swap_free
   1543  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1544  * => we lock uvm_swap_data_lock
   1545  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1546  */
   1547 int
   1548 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1549 {
   1550 	struct swapdev *sdp;
   1551 	struct swappri *spp;
   1552 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1553 
   1554 	/*
   1555 	 * no swap devices configured yet?   definite failure.
   1556 	 */
   1557 	if (uvmexp.nswapdev < 1)
   1558 		return 0;
   1559 
   1560 	/*
   1561 	 * lock data lock, convert slots into blocks, and enter loop
   1562 	 */
   1563 	mutex_enter(&uvm_swap_data_lock);
   1564 
   1565 ReTry:	/* XXXMRG */
   1566 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1567 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1568 			uint64_t result;
   1569 
   1570 			/* if it's not enabled, then we can't swap from it */
   1571 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1572 				continue;
   1573 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1574 				continue;
   1575 			result = blist_alloc(sdp->swd_blist, *nslots);
   1576 			if (result == BLIST_NONE) {
   1577 				continue;
   1578 			}
   1579 			KASSERT(result < sdp->swd_drumsize);
   1580 
   1581 			/*
   1582 			 * successful allocation!  now rotate the circleq.
   1583 			 */
   1584 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1585 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1586 			sdp->swd_npginuse += *nslots;
   1587 			uvmexp.swpginuse += *nslots;
   1588 			mutex_exit(&uvm_swap_data_lock);
   1589 			/* done!  return drum slot number */
   1590 			UVMHIST_LOG(pdhist,
   1591 			    "success!  returning %d slots starting at %d",
   1592 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1593 			return (result + sdp->swd_drumoffset);
   1594 		}
   1595 	}
   1596 
   1597 	/* XXXMRG: BEGIN HACK */
   1598 	if (*nslots > 1 && lessok) {
   1599 		*nslots = 1;
   1600 		/* XXXMRG: ugh!  blist should support this for us */
   1601 		goto ReTry;
   1602 	}
   1603 	/* XXXMRG: END HACK */
   1604 
   1605 	mutex_exit(&uvm_swap_data_lock);
   1606 	return 0;
   1607 }
   1608 
   1609 /*
   1610  * uvm_swapisfull: return true if most of available swap is allocated
   1611  * and in use.  we don't count some small portion as it may be inaccessible
   1612  * to us at any given moment, for example if there is lock contention or if
   1613  * pages are busy.
   1614  */
   1615 bool
   1616 uvm_swapisfull(void)
   1617 {
   1618 	int swpgonly;
   1619 	bool rv;
   1620 
   1621 	mutex_enter(&uvm_swap_data_lock);
   1622 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1623 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1624 	    uvm_swapisfull_factor);
   1625 	rv = (swpgonly >= uvmexp.swpgavail);
   1626 	mutex_exit(&uvm_swap_data_lock);
   1627 
   1628 	return (rv);
   1629 }
   1630 
   1631 /*
   1632  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1633  *
   1634  * => we lock uvm_swap_data_lock
   1635  */
   1636 void
   1637 uvm_swap_markbad(int startslot, int nslots)
   1638 {
   1639 	struct swapdev *sdp;
   1640 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1641 
   1642 	mutex_enter(&uvm_swap_data_lock);
   1643 	sdp = swapdrum_getsdp(startslot);
   1644 	KASSERT(sdp != NULL);
   1645 
   1646 	/*
   1647 	 * we just keep track of how many pages have been marked bad
   1648 	 * in this device, to make everything add up in swap_off().
   1649 	 * we assume here that the range of slots will all be within
   1650 	 * one swap device.
   1651 	 */
   1652 
   1653 	KASSERT(uvmexp.swpgonly >= nslots);
   1654 	uvmexp.swpgonly -= nslots;
   1655 	sdp->swd_npgbad += nslots;
   1656 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1657 	mutex_exit(&uvm_swap_data_lock);
   1658 }
   1659 
   1660 /*
   1661  * uvm_swap_free: free swap slots
   1662  *
   1663  * => this can be all or part of an allocation made by uvm_swap_alloc
   1664  * => we lock uvm_swap_data_lock
   1665  */
   1666 void
   1667 uvm_swap_free(int startslot, int nslots)
   1668 {
   1669 	struct swapdev *sdp;
   1670 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1671 
   1672 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1673 	    startslot, 0, 0);
   1674 
   1675 	/*
   1676 	 * ignore attempts to free the "bad" slot.
   1677 	 */
   1678 
   1679 	if (startslot == SWSLOT_BAD) {
   1680 		return;
   1681 	}
   1682 
   1683 	/*
   1684 	 * convert drum slot offset back to sdp, free the blocks
   1685 	 * in the extent, and return.   must hold pri lock to do
   1686 	 * lookup and access the extent.
   1687 	 */
   1688 
   1689 	mutex_enter(&uvm_swap_data_lock);
   1690 	sdp = swapdrum_getsdp(startslot);
   1691 	KASSERT(uvmexp.nswapdev >= 1);
   1692 	KASSERT(sdp != NULL);
   1693 	KASSERT(sdp->swd_npginuse >= nslots);
   1694 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1695 	sdp->swd_npginuse -= nslots;
   1696 	uvmexp.swpginuse -= nslots;
   1697 	mutex_exit(&uvm_swap_data_lock);
   1698 }
   1699 
   1700 /*
   1701  * uvm_swap_put: put any number of pages into a contig place on swap
   1702  *
   1703  * => can be sync or async
   1704  */
   1705 
   1706 int
   1707 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1708 {
   1709 	int error;
   1710 
   1711 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1712 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1713 	return error;
   1714 }
   1715 
   1716 /*
   1717  * uvm_swap_get: get a single page from swap
   1718  *
   1719  * => usually a sync op (from fault)
   1720  */
   1721 
   1722 int
   1723 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1724 {
   1725 	int error;
   1726 
   1727 	uvmexp.nswget++;
   1728 	KASSERT(flags & PGO_SYNCIO);
   1729 	if (swslot == SWSLOT_BAD) {
   1730 		return EIO;
   1731 	}
   1732 
   1733 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1734 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1735 	if (error == 0) {
   1736 
   1737 		/*
   1738 		 * this page is no longer only in swap.
   1739 		 */
   1740 
   1741 		mutex_enter(&uvm_swap_data_lock);
   1742 		KASSERT(uvmexp.swpgonly > 0);
   1743 		uvmexp.swpgonly--;
   1744 		mutex_exit(&uvm_swap_data_lock);
   1745 	}
   1746 	return error;
   1747 }
   1748 
   1749 /*
   1750  * uvm_swap_io: do an i/o operation to swap
   1751  */
   1752 
   1753 static int
   1754 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1755 {
   1756 	daddr_t startblk;
   1757 	struct	buf *bp;
   1758 	vaddr_t kva;
   1759 	int	error, mapinflags;
   1760 	bool write, async;
   1761 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1762 
   1763 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1764 	    startslot, npages, flags, 0);
   1765 
   1766 	write = (flags & B_READ) == 0;
   1767 	async = (flags & B_ASYNC) != 0;
   1768 
   1769 	/*
   1770 	 * allocate a buf for the i/o.
   1771 	 */
   1772 
   1773 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1774 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1775 	if (bp == NULL) {
   1776 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1777 		return ENOMEM;
   1778 	}
   1779 
   1780 	/*
   1781 	 * convert starting drum slot to block number
   1782 	 */
   1783 
   1784 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1785 
   1786 	/*
   1787 	 * first, map the pages into the kernel.
   1788 	 */
   1789 
   1790 	mapinflags = !write ?
   1791 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1792 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1793 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1794 
   1795 	/*
   1796 	 * fill in the bp/sbp.   we currently route our i/o through
   1797 	 * /dev/drum's vnode [swapdev_vp].
   1798 	 */
   1799 
   1800 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1801 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1802 	bp->b_proc = &proc0;	/* XXX */
   1803 	bp->b_vnbufs.le_next = NOLIST;
   1804 	bp->b_data = (void *)kva;
   1805 	bp->b_blkno = startblk;
   1806 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1807 
   1808 	/*
   1809 	 * bump v_numoutput (counter of number of active outputs).
   1810 	 */
   1811 
   1812 	if (write) {
   1813 		mutex_enter(&swapdev_vp->v_interlock);
   1814 		swapdev_vp->v_numoutput++;
   1815 		mutex_exit(&swapdev_vp->v_interlock);
   1816 	}
   1817 
   1818 	/*
   1819 	 * for async ops we must set up the iodone handler.
   1820 	 */
   1821 
   1822 	if (async) {
   1823 		bp->b_iodone = uvm_aio_biodone;
   1824 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1825 		if (curlwp == uvm.pagedaemon_lwp)
   1826 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1827 		else
   1828 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1829 	} else {
   1830 		bp->b_iodone = NULL;
   1831 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1832 	}
   1833 	UVMHIST_LOG(pdhist,
   1834 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1835 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1836 
   1837 	/*
   1838 	 * now we start the I/O, and if async, return.
   1839 	 */
   1840 
   1841 	VOP_STRATEGY(swapdev_vp, bp);
   1842 	if (async)
   1843 		return 0;
   1844 
   1845 	/*
   1846 	 * must be sync i/o.   wait for it to finish
   1847 	 */
   1848 
   1849 	error = biowait(bp);
   1850 
   1851 	/*
   1852 	 * kill the pager mapping
   1853 	 */
   1854 
   1855 	uvm_pagermapout(kva, npages);
   1856 
   1857 	/*
   1858 	 * now dispose of the buf and we're done.
   1859 	 */
   1860 
   1861 	if (write) {
   1862 		mutex_enter(&swapdev_vp->v_interlock);
   1863 		vwakeup(bp);
   1864 		mutex_exit(&swapdev_vp->v_interlock);
   1865 	}
   1866 	putiobuf(bp);
   1867 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1868 
   1869 	return (error);
   1870 }
   1871