uvm_swap.c revision 1.147 1 /* $NetBSD: uvm_swap.c,v 1.147 2009/10/21 21:12:07 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.147 2009/10/21 21:12:07 rmind Exp $");
34
35 #include "fs_nfs.h"
36 #include "opt_uvmhist.h"
37 #include "opt_compat_netbsd.h"
38 #include "opt_ddb.h"
39
40 #include <sys/param.h>
41 #include <sys/systm.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/proc.h>
46 #include <sys/namei.h>
47 #include <sys/disklabel.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/malloc.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59 #include <sys/kauth.h>
60 #include <sys/sysctl.h>
61 #include <sys/workqueue.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * CIRCLEQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap arena.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats(9) function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 dev_t swd_dev; /* device id */
128 int swd_flags; /* flags:inuse/enable/fake */
129 int swd_priority; /* our priority */
130 int swd_nblks; /* blocks in this device */
131 char *swd_path; /* saved pathname of device */
132 int swd_pathlen; /* length of pathname */
133 int swd_npages; /* #pages we can use */
134 int swd_npginuse; /* #pages in use */
135 int swd_npgbad; /* #pages bad */
136 int swd_drumoffset; /* page0 offset in drum */
137 int swd_drumsize; /* #pages in drum */
138 blist_t swd_blist; /* blist for this swapdev */
139 struct vnode *swd_vp; /* backing vnode */
140 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state *swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* circleq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179 /*
180 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
181 * dev_t and has no se_path[] member.
182 */
183 struct swapent13 {
184 int32_t se13_dev; /* device id */
185 int se13_flags; /* flags */
186 int se13_nblks; /* total blocks */
187 int se13_inuse; /* blocks in use */
188 int se13_priority; /* priority of this device */
189 };
190
191 /*
192 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
193 * dev_t.
194 */
195 struct swapent50 {
196 int32_t se50_dev; /* device id */
197 int se50_flags; /* flags */
198 int se50_nblks; /* total blocks */
199 int se50_inuse; /* blocks in use */
200 int se50_priority; /* priority of this device */
201 char se50_path[PATH_MAX+1]; /* path name */
202 };
203
204 /*
205 * We keep a of pool vndbuf's and vndxfer structures.
206 */
207 static struct pool vndxfer_pool, vndbuf_pool;
208
209 /*
210 * local variables
211 */
212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
213 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
214
215 /* list of all active swap devices [by priority] */
216 LIST_HEAD(swap_priority, swappri);
217 static struct swap_priority swap_priority;
218
219 /* locks */
220 static krwlock_t swap_syscall_lock;
221
222 /* workqueue and use counter for swap to regular files */
223 static int sw_reg_count = 0;
224 static struct workqueue *sw_reg_workqueue;
225
226 /* tuneables */
227 u_int uvm_swapisfull_factor = 99;
228
229 /*
230 * prototypes
231 */
232 static struct swapdev *swapdrum_getsdp(int);
233
234 static struct swapdev *swaplist_find(struct vnode *, bool);
235 static void swaplist_insert(struct swapdev *,
236 struct swappri *, int);
237 static void swaplist_trim(void);
238
239 static int swap_on(struct lwp *, struct swapdev *);
240 static int swap_off(struct lwp *, struct swapdev *);
241
242 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
243
244 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
245 static void sw_reg_biodone(struct buf *);
246 static void sw_reg_iodone(struct work *wk, void *dummy);
247 static void sw_reg_start(struct swapdev *);
248
249 static int uvm_swap_io(struct vm_page **, int, int, int);
250
251 /*
252 * uvm_swap_init: init the swap system data structures and locks
253 *
254 * => called at boot time from init_main.c after the filesystems
255 * are brought up (which happens after uvm_init())
256 */
257 void
258 uvm_swap_init(void)
259 {
260 UVMHIST_FUNC("uvm_swap_init");
261
262 UVMHIST_CALLED(pdhist);
263 /*
264 * first, init the swap list, its counter, and its lock.
265 * then get a handle on the vnode for /dev/drum by using
266 * the its dev_t number ("swapdev", from MD conf.c).
267 */
268
269 LIST_INIT(&swap_priority);
270 uvmexp.nswapdev = 0;
271 rw_init(&swap_syscall_lock);
272 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
273
274 if (bdevvp(swapdev, &swapdev_vp))
275 panic("%s: can't get vnode for swap device", __func__);
276 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
277 panic("%s: can't lock swap device", __func__);
278 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
279 panic("%s: can't open swap device", __func__);
280 VOP_UNLOCK(swapdev_vp, 0);
281
282 /*
283 * create swap block resource map to map /dev/drum. the range
284 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
285 * that block 0 is reserved (used to indicate an allocation
286 * failure, or no allocation).
287 */
288 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
289 VM_NOSLEEP, IPL_NONE);
290 if (swapmap == 0) {
291 panic("%s: vmem_create failed", __func__);
292 }
293
294 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
295 NULL, IPL_BIO);
296 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
297 NULL, IPL_BIO);
298
299 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
300 }
301
302 /*
303 * swaplist functions: functions that operate on the list of swap
304 * devices on the system.
305 */
306
307 /*
308 * swaplist_insert: insert swap device "sdp" into the global list
309 *
310 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
311 * => caller must provide a newly malloc'd swappri structure (we will
312 * FREE it if we don't need it... this it to prevent malloc blocking
313 * here while adding swap)
314 */
315 static void
316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
317 {
318 struct swappri *spp, *pspp;
319 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
320
321 /*
322 * find entry at or after which to insert the new device.
323 */
324 pspp = NULL;
325 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
326 if (priority <= spp->spi_priority)
327 break;
328 pspp = spp;
329 }
330
331 /*
332 * new priority?
333 */
334 if (spp == NULL || spp->spi_priority != priority) {
335 spp = newspp; /* use newspp! */
336 UVMHIST_LOG(pdhist, "created new swappri = %d",
337 priority, 0, 0, 0);
338
339 spp->spi_priority = priority;
340 CIRCLEQ_INIT(&spp->spi_swapdev);
341
342 if (pspp)
343 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
344 else
345 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
346 } else {
347 /* we don't need a new priority structure, free it */
348 free(newspp, M_VMSWAP);
349 }
350
351 /*
352 * priority found (or created). now insert on the priority's
353 * circleq list and bump the total number of swapdevs.
354 */
355 sdp->swd_priority = priority;
356 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
357 uvmexp.nswapdev++;
358 }
359
360 /*
361 * swaplist_find: find and optionally remove a swap device from the
362 * global list.
363 *
364 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
365 * => we return the swapdev we found (and removed)
366 */
367 static struct swapdev *
368 swaplist_find(struct vnode *vp, bool remove)
369 {
370 struct swapdev *sdp;
371 struct swappri *spp;
372
373 /*
374 * search the lists for the requested vp
375 */
376
377 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
378 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
379 if (sdp->swd_vp == vp) {
380 if (remove) {
381 CIRCLEQ_REMOVE(&spp->spi_swapdev,
382 sdp, swd_next);
383 uvmexp.nswapdev--;
384 }
385 return(sdp);
386 }
387 }
388 }
389 return (NULL);
390 }
391
392 /*
393 * swaplist_trim: scan priority list for empty priority entries and kill
394 * them.
395 *
396 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
397 */
398 static void
399 swaplist_trim(void)
400 {
401 struct swappri *spp, *nextspp;
402
403 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
404 nextspp = LIST_NEXT(spp, spi_swappri);
405 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
406 (void *)&spp->spi_swapdev)
407 continue;
408 LIST_REMOVE(spp, spi_swappri);
409 free(spp, M_VMSWAP);
410 }
411 }
412
413 /*
414 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
415 * to the "swapdev" that maps that section of the drum.
416 *
417 * => each swapdev takes one big contig chunk of the drum
418 * => caller must hold uvm_swap_data_lock
419 */
420 static struct swapdev *
421 swapdrum_getsdp(int pgno)
422 {
423 struct swapdev *sdp;
424 struct swappri *spp;
425
426 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
427 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
428 if (sdp->swd_flags & SWF_FAKE)
429 continue;
430 if (pgno >= sdp->swd_drumoffset &&
431 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
432 return sdp;
433 }
434 }
435 }
436 return NULL;
437 }
438
439
440 /*
441 * sys_swapctl: main entry point for swapctl(2) system call
442 * [with two helper functions: swap_on and swap_off]
443 */
444 int
445 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
446 {
447 /* {
448 syscallarg(int) cmd;
449 syscallarg(void *) arg;
450 syscallarg(int) misc;
451 } */
452 struct vnode *vp;
453 struct nameidata nd;
454 struct swappri *spp;
455 struct swapdev *sdp;
456 struct swapent *sep;
457 #define SWAP_PATH_MAX (PATH_MAX + 1)
458 char *userpath;
459 size_t len;
460 int error, misc;
461 int priority;
462 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
463
464 misc = SCARG(uap, misc);
465
466 /*
467 * ensure serialized syscall access by grabbing the swap_syscall_lock
468 */
469 rw_enter(&swap_syscall_lock, RW_WRITER);
470
471 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
472 /*
473 * we handle the non-priv NSWAP and STATS request first.
474 *
475 * SWAP_NSWAP: return number of config'd swap devices
476 * [can also be obtained with uvmexp sysctl]
477 */
478 if (SCARG(uap, cmd) == SWAP_NSWAP) {
479 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
480 0, 0, 0);
481 *retval = uvmexp.nswapdev;
482 error = 0;
483 goto out;
484 }
485
486 /*
487 * SWAP_STATS: get stats on current # of configured swap devs
488 *
489 * note that the swap_priority list can't change as long
490 * as we are holding the swap_syscall_lock. we don't want
491 * to grab the uvm_swap_data_lock because we may fault&sleep during
492 * copyout() and we don't want to be holding that lock then!
493 */
494 if (SCARG(uap, cmd) == SWAP_STATS
495 #if defined(COMPAT_50)
496 || SCARG(uap, cmd) == SWAP_STATS50
497 #endif
498 #if defined(COMPAT_13)
499 || SCARG(uap, cmd) == SWAP_STATS13
500 #endif
501 ) {
502 if ((size_t)misc > (size_t)uvmexp.nswapdev)
503 misc = uvmexp.nswapdev;
504 #if defined(COMPAT_13)
505 if (SCARG(uap, cmd) == SWAP_STATS13)
506 len = sizeof(struct swapent13) * misc;
507 else
508 #endif
509 #if defined(COMPAT_50)
510 if (SCARG(uap, cmd) == SWAP_STATS50)
511 len = sizeof(struct swapent50) * misc;
512 else
513 #endif
514 len = sizeof(struct swapent) * misc;
515 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
516
517 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
518 error = copyout(sep, SCARG(uap, arg), len);
519
520 free(sep, M_TEMP);
521 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
522 goto out;
523 }
524 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
525 dev_t *devp = (dev_t *)SCARG(uap, arg);
526
527 error = copyout(&dumpdev, devp, sizeof(dumpdev));
528 goto out;
529 }
530
531 /*
532 * all other requests require superuser privs. verify.
533 */
534 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
535 0, NULL, NULL, NULL)))
536 goto out;
537
538 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
539 /* drop the current dump device */
540 dumpdev = NODEV;
541 dumpcdev = NODEV;
542 cpu_dumpconf();
543 goto out;
544 }
545
546 /*
547 * at this point we expect a path name in arg. we will
548 * use namei() to gain a vnode reference (vref), and lock
549 * the vnode (VOP_LOCK).
550 *
551 * XXX: a NULL arg means use the root vnode pointer (e.g. for
552 * miniroot)
553 */
554 if (SCARG(uap, arg) == NULL) {
555 vp = rootvp; /* miniroot */
556 if (vget(vp, LK_EXCLUSIVE)) {
557 error = EBUSY;
558 goto out;
559 }
560 if (SCARG(uap, cmd) == SWAP_ON &&
561 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
562 panic("swapctl: miniroot copy failed");
563 } else {
564 int space;
565 char *where;
566
567 if (SCARG(uap, cmd) == SWAP_ON) {
568 if ((error = copyinstr(SCARG(uap, arg), userpath,
569 SWAP_PATH_MAX, &len)))
570 goto out;
571 space = UIO_SYSSPACE;
572 where = userpath;
573 } else {
574 space = UIO_USERSPACE;
575 where = (char *)SCARG(uap, arg);
576 }
577 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
578 space, where);
579 if ((error = namei(&nd)))
580 goto out;
581 vp = nd.ni_vp;
582 }
583 /* note: "vp" is referenced and locked */
584
585 error = 0; /* assume no error */
586 switch(SCARG(uap, cmd)) {
587
588 case SWAP_DUMPDEV:
589 if (vp->v_type != VBLK) {
590 error = ENOTBLK;
591 break;
592 }
593 if (bdevsw_lookup(vp->v_rdev)) {
594 dumpdev = vp->v_rdev;
595 dumpcdev = devsw_blk2chr(dumpdev);
596 } else
597 dumpdev = NODEV;
598 cpu_dumpconf();
599 break;
600
601 case SWAP_CTL:
602 /*
603 * get new priority, remove old entry (if any) and then
604 * reinsert it in the correct place. finally, prune out
605 * any empty priority structures.
606 */
607 priority = SCARG(uap, misc);
608 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
609 mutex_enter(&uvm_swap_data_lock);
610 if ((sdp = swaplist_find(vp, true)) == NULL) {
611 error = ENOENT;
612 } else {
613 swaplist_insert(sdp, spp, priority);
614 swaplist_trim();
615 }
616 mutex_exit(&uvm_swap_data_lock);
617 if (error)
618 free(spp, M_VMSWAP);
619 break;
620
621 case SWAP_ON:
622
623 /*
624 * check for duplicates. if none found, then insert a
625 * dummy entry on the list to prevent someone else from
626 * trying to enable this device while we are working on
627 * it.
628 */
629
630 priority = SCARG(uap, misc);
631 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
632 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
633 memset(sdp, 0, sizeof(*sdp));
634 sdp->swd_flags = SWF_FAKE;
635 sdp->swd_vp = vp;
636 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
637 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
638 mutex_enter(&uvm_swap_data_lock);
639 if (swaplist_find(vp, false) != NULL) {
640 error = EBUSY;
641 mutex_exit(&uvm_swap_data_lock);
642 bufq_free(sdp->swd_tab);
643 free(sdp, M_VMSWAP);
644 free(spp, M_VMSWAP);
645 break;
646 }
647 swaplist_insert(sdp, spp, priority);
648 mutex_exit(&uvm_swap_data_lock);
649
650 sdp->swd_pathlen = len;
651 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
652 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
653 panic("swapctl: copystr");
654
655 /*
656 * we've now got a FAKE placeholder in the swap list.
657 * now attempt to enable swap on it. if we fail, undo
658 * what we've done and kill the fake entry we just inserted.
659 * if swap_on is a success, it will clear the SWF_FAKE flag
660 */
661
662 if ((error = swap_on(l, sdp)) != 0) {
663 mutex_enter(&uvm_swap_data_lock);
664 (void) swaplist_find(vp, true); /* kill fake entry */
665 swaplist_trim();
666 mutex_exit(&uvm_swap_data_lock);
667 bufq_free(sdp->swd_tab);
668 free(sdp->swd_path, M_VMSWAP);
669 free(sdp, M_VMSWAP);
670 break;
671 }
672 break;
673
674 case SWAP_OFF:
675 mutex_enter(&uvm_swap_data_lock);
676 if ((sdp = swaplist_find(vp, false)) == NULL) {
677 mutex_exit(&uvm_swap_data_lock);
678 error = ENXIO;
679 break;
680 }
681
682 /*
683 * If a device isn't in use or enabled, we
684 * can't stop swapping from it (again).
685 */
686 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
687 mutex_exit(&uvm_swap_data_lock);
688 error = EBUSY;
689 break;
690 }
691
692 /*
693 * do the real work.
694 */
695 error = swap_off(l, sdp);
696 break;
697
698 default:
699 error = EINVAL;
700 }
701
702 /*
703 * done! release the ref gained by namei() and unlock.
704 */
705 vput(vp);
706
707 out:
708 free(userpath, M_TEMP);
709 rw_exit(&swap_syscall_lock);
710
711 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
712 return (error);
713 }
714
715 /*
716 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
717 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
718 * emulation to use it directly without going through sys_swapctl().
719 * The problem with using sys_swapctl() there is that it involves
720 * copying the swapent array to the stackgap, and this array's size
721 * is not known at build time. Hence it would not be possible to
722 * ensure it would fit in the stackgap in any case.
723 */
724 void
725 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
726 {
727
728 rw_enter(&swap_syscall_lock, RW_READER);
729 uvm_swap_stats_locked(cmd, sep, sec, retval);
730 rw_exit(&swap_syscall_lock);
731 }
732
733 static void
734 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
735 {
736 struct swappri *spp;
737 struct swapdev *sdp;
738 int count = 0;
739
740 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
741 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
742 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
743 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
744 int inuse;
745
746 /*
747 * backwards compatibility for system call.
748 * For NetBSD 1.3 and 5.0, we have to use
749 * the 32 bit dev_t. For 5.0 and -current
750 * we have to add the path.
751 */
752 inuse = btodb((uint64_t)sdp->swd_npginuse <<
753 PAGE_SHIFT);
754
755 #if defined(COMPAT_13) || defined(COMPAT_50)
756 if (cmd == SWAP_STATS) {
757 #endif
758 sep->se_dev = sdp->swd_dev;
759 sep->se_flags = sdp->swd_flags;
760 sep->se_nblks = sdp->swd_nblks;
761 sep->se_inuse = inuse;
762 sep->se_priority = sdp->swd_priority;
763 memcpy(&sep->se_path, sdp->swd_path,
764 sizeof sep->se_path);
765 sep++;
766 #if defined(COMPAT_13)
767 } else if (cmd == SWAP_STATS13) {
768 struct swapent13 *sep13 =
769 (struct swapent13 *)sep;
770
771 sep13->se13_dev = sdp->swd_dev;
772 sep13->se13_flags = sdp->swd_flags;
773 sep13->se13_nblks = sdp->swd_nblks;
774 sep13->se13_inuse = inuse;
775 sep13->se13_priority = sdp->swd_priority;
776 sep = (struct swapent *)(sep13 + 1);
777 #endif
778 #if defined(COMPAT_50)
779 } else if (cmd == SWAP_STATS50) {
780 struct swapent50 *sep50 =
781 (struct swapent50 *)sep;
782
783 sep50->se50_dev = sdp->swd_dev;
784 sep50->se50_flags = sdp->swd_flags;
785 sep50->se50_nblks = sdp->swd_nblks;
786 sep50->se50_inuse = inuse;
787 sep50->se50_priority = sdp->swd_priority;
788 memcpy(&sep50->se50_path, sdp->swd_path,
789 sizeof sep50->se50_path);
790 sep = (struct swapent *)(sep50 + 1);
791 }
792 #endif
793 count++;
794 }
795 }
796
797 *retval = count;
798 return;
799 }
800
801 /*
802 * swap_on: attempt to enable a swapdev for swapping. note that the
803 * swapdev is already on the global list, but disabled (marked
804 * SWF_FAKE).
805 *
806 * => we avoid the start of the disk (to protect disk labels)
807 * => we also avoid the miniroot, if we are swapping to root.
808 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
809 * if needed.
810 */
811 static int
812 swap_on(struct lwp *l, struct swapdev *sdp)
813 {
814 struct vnode *vp;
815 int error, npages, nblocks, size;
816 long addr;
817 u_long result;
818 struct vattr va;
819 #ifdef NFS
820 extern int (**nfsv2_vnodeop_p)(void *);
821 #endif /* NFS */
822 const struct bdevsw *bdev;
823 dev_t dev;
824 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
825
826 /*
827 * we want to enable swapping on sdp. the swd_vp contains
828 * the vnode we want (locked and ref'd), and the swd_dev
829 * contains the dev_t of the file, if it a block device.
830 */
831
832 vp = sdp->swd_vp;
833 dev = sdp->swd_dev;
834
835 /*
836 * open the swap file (mostly useful for block device files to
837 * let device driver know what is up).
838 *
839 * we skip the open/close for root on swap because the root
840 * has already been opened when root was mounted (mountroot).
841 */
842 if (vp != rootvp) {
843 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
844 return (error);
845 }
846
847 /* XXX this only works for block devices */
848 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
849
850 /*
851 * we now need to determine the size of the swap area. for
852 * block specials we can call the d_psize function.
853 * for normal files, we must stat [get attrs].
854 *
855 * we put the result in nblks.
856 * for normal files, we also want the filesystem block size
857 * (which we get with statfs).
858 */
859 switch (vp->v_type) {
860 case VBLK:
861 bdev = bdevsw_lookup(dev);
862 if (bdev == NULL || bdev->d_psize == NULL ||
863 (nblocks = (*bdev->d_psize)(dev)) == -1) {
864 error = ENXIO;
865 goto bad;
866 }
867 break;
868
869 case VREG:
870 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
871 goto bad;
872 nblocks = (int)btodb(va.va_size);
873 if ((error =
874 VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
875 goto bad;
876
877 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
878 /*
879 * limit the max # of outstanding I/O requests we issue
880 * at any one time. take it easy on NFS servers.
881 */
882 #ifdef NFS
883 if (vp->v_op == nfsv2_vnodeop_p)
884 sdp->swd_maxactive = 2; /* XXX */
885 else
886 #endif /* NFS */
887 sdp->swd_maxactive = 8; /* XXX */
888 break;
889
890 default:
891 error = ENXIO;
892 goto bad;
893 }
894
895 /*
896 * save nblocks in a safe place and convert to pages.
897 */
898
899 sdp->swd_nblks = nblocks;
900 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
901
902 /*
903 * for block special files, we want to make sure that leave
904 * the disklabel and bootblocks alone, so we arrange to skip
905 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
906 * note that because of this the "size" can be less than the
907 * actual number of blocks on the device.
908 */
909 if (vp->v_type == VBLK) {
910 /* we use pages 1 to (size - 1) [inclusive] */
911 size = npages - 1;
912 addr = 1;
913 } else {
914 /* we use pages 0 to (size - 1) [inclusive] */
915 size = npages;
916 addr = 0;
917 }
918
919 /*
920 * make sure we have enough blocks for a reasonable sized swap
921 * area. we want at least one page.
922 */
923
924 if (size < 1) {
925 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
926 error = EINVAL;
927 goto bad;
928 }
929
930 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
931
932 /*
933 * now we need to allocate an extent to manage this swap device
934 */
935
936 sdp->swd_blist = blist_create(npages);
937 /* mark all expect the `saved' region free. */
938 blist_free(sdp->swd_blist, addr, size);
939
940 /*
941 * if the vnode we are swapping to is the root vnode
942 * (i.e. we are swapping to the miniroot) then we want
943 * to make sure we don't overwrite it. do a statfs to
944 * find its size and skip over it.
945 */
946 if (vp == rootvp) {
947 struct mount *mp;
948 struct statvfs *sp;
949 int rootblocks, rootpages;
950
951 mp = rootvnode->v_mount;
952 sp = &mp->mnt_stat;
953 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
954 /*
955 * XXX: sp->f_blocks isn't the total number of
956 * blocks in the filesystem, it's the number of
957 * data blocks. so, our rootblocks almost
958 * definitely underestimates the total size
959 * of the filesystem - how badly depends on the
960 * details of the filesystem type. there isn't
961 * an obvious way to deal with this cleanly
962 * and perfectly, so for now we just pad our
963 * rootblocks estimate with an extra 5 percent.
964 */
965 rootblocks += (rootblocks >> 5) +
966 (rootblocks >> 6) +
967 (rootblocks >> 7);
968 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
969 if (rootpages > size)
970 panic("swap_on: miniroot larger than swap?");
971
972 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
973 panic("swap_on: unable to preserve miniroot");
974 }
975
976 size -= rootpages;
977 printf("Preserved %d pages of miniroot ", rootpages);
978 printf("leaving %d pages of swap\n", size);
979 }
980
981 /*
982 * add a ref to vp to reflect usage as a swap device.
983 */
984 vref(vp);
985
986 /*
987 * now add the new swapdev to the drum and enable.
988 */
989 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
990 if (result == 0)
991 panic("swapdrum_add");
992 /*
993 * If this is the first regular swap create the workqueue.
994 * => Protected by swap_syscall_lock.
995 */
996 if (vp->v_type != VBLK) {
997 if (sw_reg_count++ == 0) {
998 KASSERT(sw_reg_workqueue == NULL);
999 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1000 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1001 panic("%s: workqueue_create failed", __func__);
1002 }
1003 }
1004
1005 sdp->swd_drumoffset = (int)result;
1006 sdp->swd_drumsize = npages;
1007 sdp->swd_npages = size;
1008 mutex_enter(&uvm_swap_data_lock);
1009 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1010 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1011 uvmexp.swpages += size;
1012 uvmexp.swpgavail += size;
1013 mutex_exit(&uvm_swap_data_lock);
1014 return (0);
1015
1016 /*
1017 * failure: clean up and return error.
1018 */
1019
1020 bad:
1021 if (sdp->swd_blist) {
1022 blist_destroy(sdp->swd_blist);
1023 }
1024 if (vp != rootvp) {
1025 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1026 }
1027 return (error);
1028 }
1029
1030 /*
1031 * swap_off: stop swapping on swapdev
1032 *
1033 * => swap data should be locked, we will unlock.
1034 */
1035 static int
1036 swap_off(struct lwp *l, struct swapdev *sdp)
1037 {
1038 int npages = sdp->swd_npages;
1039 int error = 0;
1040
1041 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1042 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1043
1044 /* disable the swap area being removed */
1045 sdp->swd_flags &= ~SWF_ENABLE;
1046 uvmexp.swpgavail -= npages;
1047 mutex_exit(&uvm_swap_data_lock);
1048
1049 /*
1050 * the idea is to find all the pages that are paged out to this
1051 * device, and page them all in. in uvm, swap-backed pageable
1052 * memory can take two forms: aobjs and anons. call the
1053 * swapoff hook for each subsystem to bring in pages.
1054 */
1055
1056 if (uao_swap_off(sdp->swd_drumoffset,
1057 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1058 amap_swap_off(sdp->swd_drumoffset,
1059 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1060 error = ENOMEM;
1061 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1062 error = EBUSY;
1063 }
1064
1065 if (error) {
1066 mutex_enter(&uvm_swap_data_lock);
1067 sdp->swd_flags |= SWF_ENABLE;
1068 uvmexp.swpgavail += npages;
1069 mutex_exit(&uvm_swap_data_lock);
1070
1071 return error;
1072 }
1073
1074 /*
1075 * If this is the last regular swap destroy the workqueue.
1076 * => Protected by swap_syscall_lock.
1077 */
1078 if (sdp->swd_vp->v_type != VBLK) {
1079 KASSERT(sw_reg_count > 0);
1080 KASSERT(sw_reg_workqueue != NULL);
1081 if (--sw_reg_count == 0) {
1082 workqueue_destroy(sw_reg_workqueue);
1083 sw_reg_workqueue = NULL;
1084 }
1085 }
1086
1087 /*
1088 * done with the vnode.
1089 * drop our ref on the vnode before calling VOP_CLOSE()
1090 * so that spec_close() can tell if this is the last close.
1091 */
1092 vrele(sdp->swd_vp);
1093 if (sdp->swd_vp != rootvp) {
1094 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1095 }
1096
1097 mutex_enter(&uvm_swap_data_lock);
1098 uvmexp.swpages -= npages;
1099 uvmexp.swpginuse -= sdp->swd_npgbad;
1100
1101 if (swaplist_find(sdp->swd_vp, true) == NULL)
1102 panic("%s: swapdev not in list", __func__);
1103 swaplist_trim();
1104 mutex_exit(&uvm_swap_data_lock);
1105
1106 /*
1107 * free all resources!
1108 */
1109 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1110 blist_destroy(sdp->swd_blist);
1111 bufq_free(sdp->swd_tab);
1112 free(sdp, M_VMSWAP);
1113 return (0);
1114 }
1115
1116 /*
1117 * /dev/drum interface and i/o functions
1118 */
1119
1120 /*
1121 * swstrategy: perform I/O on the drum
1122 *
1123 * => we must map the i/o request from the drum to the correct swapdev.
1124 */
1125 static void
1126 swstrategy(struct buf *bp)
1127 {
1128 struct swapdev *sdp;
1129 struct vnode *vp;
1130 int pageno, bn;
1131 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1132
1133 /*
1134 * convert block number to swapdev. note that swapdev can't
1135 * be yanked out from under us because we are holding resources
1136 * in it (i.e. the blocks we are doing I/O on).
1137 */
1138 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1139 mutex_enter(&uvm_swap_data_lock);
1140 sdp = swapdrum_getsdp(pageno);
1141 mutex_exit(&uvm_swap_data_lock);
1142 if (sdp == NULL) {
1143 bp->b_error = EINVAL;
1144 biodone(bp);
1145 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1146 return;
1147 }
1148
1149 /*
1150 * convert drum page number to block number on this swapdev.
1151 */
1152
1153 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1154 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1155
1156 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1157 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1158 sdp->swd_drumoffset, bn, bp->b_bcount);
1159
1160 /*
1161 * for block devices we finish up here.
1162 * for regular files we have to do more work which we delegate
1163 * to sw_reg_strategy().
1164 */
1165
1166 vp = sdp->swd_vp; /* swapdev vnode pointer */
1167 switch (vp->v_type) {
1168 default:
1169 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1170
1171 case VBLK:
1172
1173 /*
1174 * must convert "bp" from an I/O on /dev/drum to an I/O
1175 * on the swapdev (sdp).
1176 */
1177 bp->b_blkno = bn; /* swapdev block number */
1178 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1179
1180 /*
1181 * if we are doing a write, we have to redirect the i/o on
1182 * drum's v_numoutput counter to the swapdevs.
1183 */
1184 if ((bp->b_flags & B_READ) == 0) {
1185 mutex_enter(bp->b_objlock);
1186 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1187 mutex_exit(bp->b_objlock);
1188 mutex_enter(&vp->v_interlock);
1189 vp->v_numoutput++; /* put it on swapdev */
1190 mutex_exit(&vp->v_interlock);
1191 }
1192
1193 /*
1194 * finally plug in swapdev vnode and start I/O
1195 */
1196 bp->b_vp = vp;
1197 bp->b_objlock = &vp->v_interlock;
1198 VOP_STRATEGY(vp, bp);
1199 return;
1200
1201 case VREG:
1202 /*
1203 * delegate to sw_reg_strategy function.
1204 */
1205 sw_reg_strategy(sdp, bp, bn);
1206 return;
1207 }
1208 /* NOTREACHED */
1209 }
1210
1211 /*
1212 * swread: the read function for the drum (just a call to physio)
1213 */
1214 /*ARGSUSED*/
1215 static int
1216 swread(dev_t dev, struct uio *uio, int ioflag)
1217 {
1218 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1219
1220 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1221 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1222 }
1223
1224 /*
1225 * swwrite: the write function for the drum (just a call to physio)
1226 */
1227 /*ARGSUSED*/
1228 static int
1229 swwrite(dev_t dev, struct uio *uio, int ioflag)
1230 {
1231 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1232
1233 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1234 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1235 }
1236
1237 const struct bdevsw swap_bdevsw = {
1238 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1239 };
1240
1241 const struct cdevsw swap_cdevsw = {
1242 nullopen, nullclose, swread, swwrite, noioctl,
1243 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1244 };
1245
1246 /*
1247 * sw_reg_strategy: handle swap i/o to regular files
1248 */
1249 static void
1250 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1251 {
1252 struct vnode *vp;
1253 struct vndxfer *vnx;
1254 daddr_t nbn;
1255 char *addr;
1256 off_t byteoff;
1257 int s, off, nra, error, sz, resid;
1258 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1259
1260 /*
1261 * allocate a vndxfer head for this transfer and point it to
1262 * our buffer.
1263 */
1264 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1265 vnx->vx_flags = VX_BUSY;
1266 vnx->vx_error = 0;
1267 vnx->vx_pending = 0;
1268 vnx->vx_bp = bp;
1269 vnx->vx_sdp = sdp;
1270
1271 /*
1272 * setup for main loop where we read filesystem blocks into
1273 * our buffer.
1274 */
1275 error = 0;
1276 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1277 addr = bp->b_data; /* current position in buffer */
1278 byteoff = dbtob((uint64_t)bn);
1279
1280 for (resid = bp->b_resid; resid; resid -= sz) {
1281 struct vndbuf *nbp;
1282
1283 /*
1284 * translate byteoffset into block number. return values:
1285 * vp = vnode of underlying device
1286 * nbn = new block number (on underlying vnode dev)
1287 * nra = num blocks we can read-ahead (excludes requested
1288 * block)
1289 */
1290 nra = 0;
1291 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1292 &vp, &nbn, &nra);
1293
1294 if (error == 0 && nbn == (daddr_t)-1) {
1295 /*
1296 * this used to just set error, but that doesn't
1297 * do the right thing. Instead, it causes random
1298 * memory errors. The panic() should remain until
1299 * this condition doesn't destabilize the system.
1300 */
1301 #if 1
1302 panic("%s: swap to sparse file", __func__);
1303 #else
1304 error = EIO; /* failure */
1305 #endif
1306 }
1307
1308 /*
1309 * punt if there was an error or a hole in the file.
1310 * we must wait for any i/o ops we have already started
1311 * to finish before returning.
1312 *
1313 * XXX we could deal with holes here but it would be
1314 * a hassle (in the write case).
1315 */
1316 if (error) {
1317 s = splbio();
1318 vnx->vx_error = error; /* pass error up */
1319 goto out;
1320 }
1321
1322 /*
1323 * compute the size ("sz") of this transfer (in bytes).
1324 */
1325 off = byteoff % sdp->swd_bsize;
1326 sz = (1 + nra) * sdp->swd_bsize - off;
1327 if (sz > resid)
1328 sz = resid;
1329
1330 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1331 "vp %p/%p offset 0x%x/0x%x",
1332 sdp->swd_vp, vp, byteoff, nbn);
1333
1334 /*
1335 * now get a buf structure. note that the vb_buf is
1336 * at the front of the nbp structure so that you can
1337 * cast pointers between the two structure easily.
1338 */
1339 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1340 buf_init(&nbp->vb_buf);
1341 nbp->vb_buf.b_flags = bp->b_flags;
1342 nbp->vb_buf.b_cflags = bp->b_cflags;
1343 nbp->vb_buf.b_oflags = bp->b_oflags;
1344 nbp->vb_buf.b_bcount = sz;
1345 nbp->vb_buf.b_bufsize = sz;
1346 nbp->vb_buf.b_error = 0;
1347 nbp->vb_buf.b_data = addr;
1348 nbp->vb_buf.b_lblkno = 0;
1349 nbp->vb_buf.b_blkno = nbn + btodb(off);
1350 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1351 nbp->vb_buf.b_iodone = sw_reg_biodone;
1352 nbp->vb_buf.b_vp = vp;
1353 nbp->vb_buf.b_objlock = &vp->v_interlock;
1354 if (vp->v_type == VBLK) {
1355 nbp->vb_buf.b_dev = vp->v_rdev;
1356 }
1357
1358 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1359
1360 /*
1361 * Just sort by block number
1362 */
1363 s = splbio();
1364 if (vnx->vx_error != 0) {
1365 buf_destroy(&nbp->vb_buf);
1366 pool_put(&vndbuf_pool, nbp);
1367 goto out;
1368 }
1369 vnx->vx_pending++;
1370
1371 /* sort it in and start I/O if we are not over our limit */
1372 /* XXXAD locking */
1373 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1374 sw_reg_start(sdp);
1375 splx(s);
1376
1377 /*
1378 * advance to the next I/O
1379 */
1380 byteoff += sz;
1381 addr += sz;
1382 }
1383
1384 s = splbio();
1385
1386 out: /* Arrive here at splbio */
1387 vnx->vx_flags &= ~VX_BUSY;
1388 if (vnx->vx_pending == 0) {
1389 error = vnx->vx_error;
1390 pool_put(&vndxfer_pool, vnx);
1391 bp->b_error = error;
1392 biodone(bp);
1393 }
1394 splx(s);
1395 }
1396
1397 /*
1398 * sw_reg_start: start an I/O request on the requested swapdev
1399 *
1400 * => reqs are sorted by b_rawblkno (above)
1401 */
1402 static void
1403 sw_reg_start(struct swapdev *sdp)
1404 {
1405 struct buf *bp;
1406 struct vnode *vp;
1407 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1408
1409 /* recursion control */
1410 if ((sdp->swd_flags & SWF_BUSY) != 0)
1411 return;
1412
1413 sdp->swd_flags |= SWF_BUSY;
1414
1415 while (sdp->swd_active < sdp->swd_maxactive) {
1416 bp = bufq_get(sdp->swd_tab);
1417 if (bp == NULL)
1418 break;
1419 sdp->swd_active++;
1420
1421 UVMHIST_LOG(pdhist,
1422 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1423 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1424 vp = bp->b_vp;
1425 KASSERT(bp->b_objlock == &vp->v_interlock);
1426 if ((bp->b_flags & B_READ) == 0) {
1427 mutex_enter(&vp->v_interlock);
1428 vp->v_numoutput++;
1429 mutex_exit(&vp->v_interlock);
1430 }
1431 VOP_STRATEGY(vp, bp);
1432 }
1433 sdp->swd_flags &= ~SWF_BUSY;
1434 }
1435
1436 /*
1437 * sw_reg_biodone: one of our i/o's has completed
1438 */
1439 static void
1440 sw_reg_biodone(struct buf *bp)
1441 {
1442 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1443 }
1444
1445 /*
1446 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1447 *
1448 * => note that we can recover the vndbuf struct by casting the buf ptr
1449 */
1450 static void
1451 sw_reg_iodone(struct work *wk, void *dummy)
1452 {
1453 struct vndbuf *vbp = (void *)wk;
1454 struct vndxfer *vnx = vbp->vb_xfer;
1455 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1456 struct swapdev *sdp = vnx->vx_sdp;
1457 int s, resid, error;
1458 KASSERT(&vbp->vb_buf.b_work == wk);
1459 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1460
1461 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1462 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1463 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1464 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1465
1466 /*
1467 * protect vbp at splbio and update.
1468 */
1469
1470 s = splbio();
1471 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1472 pbp->b_resid -= resid;
1473 vnx->vx_pending--;
1474
1475 if (vbp->vb_buf.b_error != 0) {
1476 /* pass error upward */
1477 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1478 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1479 vnx->vx_error = error;
1480 }
1481
1482 /*
1483 * kill vbp structure
1484 */
1485 buf_destroy(&vbp->vb_buf);
1486 pool_put(&vndbuf_pool, vbp);
1487
1488 /*
1489 * wrap up this transaction if it has run to completion or, in
1490 * case of an error, when all auxiliary buffers have returned.
1491 */
1492 if (vnx->vx_error != 0) {
1493 /* pass error upward */
1494 error = vnx->vx_error;
1495 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1496 pbp->b_error = error;
1497 biodone(pbp);
1498 pool_put(&vndxfer_pool, vnx);
1499 }
1500 } else if (pbp->b_resid == 0) {
1501 KASSERT(vnx->vx_pending == 0);
1502 if ((vnx->vx_flags & VX_BUSY) == 0) {
1503 UVMHIST_LOG(pdhist, " iodone error=%d !",
1504 pbp, vnx->vx_error, 0, 0);
1505 biodone(pbp);
1506 pool_put(&vndxfer_pool, vnx);
1507 }
1508 }
1509
1510 /*
1511 * done! start next swapdev I/O if one is pending
1512 */
1513 sdp->swd_active--;
1514 sw_reg_start(sdp);
1515 splx(s);
1516 }
1517
1518
1519 /*
1520 * uvm_swap_alloc: allocate space on swap
1521 *
1522 * => allocation is done "round robin" down the priority list, as we
1523 * allocate in a priority we "rotate" the circle queue.
1524 * => space can be freed with uvm_swap_free
1525 * => we return the page slot number in /dev/drum (0 == invalid slot)
1526 * => we lock uvm_swap_data_lock
1527 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1528 */
1529 int
1530 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1531 {
1532 struct swapdev *sdp;
1533 struct swappri *spp;
1534 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1535
1536 /*
1537 * no swap devices configured yet? definite failure.
1538 */
1539 if (uvmexp.nswapdev < 1)
1540 return 0;
1541
1542 /*
1543 * lock data lock, convert slots into blocks, and enter loop
1544 */
1545 mutex_enter(&uvm_swap_data_lock);
1546
1547 ReTry: /* XXXMRG */
1548 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1549 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1550 uint64_t result;
1551
1552 /* if it's not enabled, then we can't swap from it */
1553 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1554 continue;
1555 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1556 continue;
1557 result = blist_alloc(sdp->swd_blist, *nslots);
1558 if (result == BLIST_NONE) {
1559 continue;
1560 }
1561 KASSERT(result < sdp->swd_drumsize);
1562
1563 /*
1564 * successful allocation! now rotate the circleq.
1565 */
1566 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1567 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1568 sdp->swd_npginuse += *nslots;
1569 uvmexp.swpginuse += *nslots;
1570 mutex_exit(&uvm_swap_data_lock);
1571 /* done! return drum slot number */
1572 UVMHIST_LOG(pdhist,
1573 "success! returning %d slots starting at %d",
1574 *nslots, result + sdp->swd_drumoffset, 0, 0);
1575 return (result + sdp->swd_drumoffset);
1576 }
1577 }
1578
1579 /* XXXMRG: BEGIN HACK */
1580 if (*nslots > 1 && lessok) {
1581 *nslots = 1;
1582 /* XXXMRG: ugh! blist should support this for us */
1583 goto ReTry;
1584 }
1585 /* XXXMRG: END HACK */
1586
1587 mutex_exit(&uvm_swap_data_lock);
1588 return 0;
1589 }
1590
1591 /*
1592 * uvm_swapisfull: return true if most of available swap is allocated
1593 * and in use. we don't count some small portion as it may be inaccessible
1594 * to us at any given moment, for example if there is lock contention or if
1595 * pages are busy.
1596 */
1597 bool
1598 uvm_swapisfull(void)
1599 {
1600 int swpgonly;
1601 bool rv;
1602
1603 mutex_enter(&uvm_swap_data_lock);
1604 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1605 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1606 uvm_swapisfull_factor);
1607 rv = (swpgonly >= uvmexp.swpgavail);
1608 mutex_exit(&uvm_swap_data_lock);
1609
1610 return (rv);
1611 }
1612
1613 /*
1614 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1615 *
1616 * => we lock uvm_swap_data_lock
1617 */
1618 void
1619 uvm_swap_markbad(int startslot, int nslots)
1620 {
1621 struct swapdev *sdp;
1622 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1623
1624 mutex_enter(&uvm_swap_data_lock);
1625 sdp = swapdrum_getsdp(startslot);
1626 KASSERT(sdp != NULL);
1627
1628 /*
1629 * we just keep track of how many pages have been marked bad
1630 * in this device, to make everything add up in swap_off().
1631 * we assume here that the range of slots will all be within
1632 * one swap device.
1633 */
1634
1635 KASSERT(uvmexp.swpgonly >= nslots);
1636 uvmexp.swpgonly -= nslots;
1637 sdp->swd_npgbad += nslots;
1638 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1639 mutex_exit(&uvm_swap_data_lock);
1640 }
1641
1642 /*
1643 * uvm_swap_free: free swap slots
1644 *
1645 * => this can be all or part of an allocation made by uvm_swap_alloc
1646 * => we lock uvm_swap_data_lock
1647 */
1648 void
1649 uvm_swap_free(int startslot, int nslots)
1650 {
1651 struct swapdev *sdp;
1652 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1653
1654 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1655 startslot, 0, 0);
1656
1657 /*
1658 * ignore attempts to free the "bad" slot.
1659 */
1660
1661 if (startslot == SWSLOT_BAD) {
1662 return;
1663 }
1664
1665 /*
1666 * convert drum slot offset back to sdp, free the blocks
1667 * in the extent, and return. must hold pri lock to do
1668 * lookup and access the extent.
1669 */
1670
1671 mutex_enter(&uvm_swap_data_lock);
1672 sdp = swapdrum_getsdp(startslot);
1673 KASSERT(uvmexp.nswapdev >= 1);
1674 KASSERT(sdp != NULL);
1675 KASSERT(sdp->swd_npginuse >= nslots);
1676 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1677 sdp->swd_npginuse -= nslots;
1678 uvmexp.swpginuse -= nslots;
1679 mutex_exit(&uvm_swap_data_lock);
1680 }
1681
1682 /*
1683 * uvm_swap_put: put any number of pages into a contig place on swap
1684 *
1685 * => can be sync or async
1686 */
1687
1688 int
1689 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1690 {
1691 int error;
1692
1693 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1694 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1695 return error;
1696 }
1697
1698 /*
1699 * uvm_swap_get: get a single page from swap
1700 *
1701 * => usually a sync op (from fault)
1702 */
1703
1704 int
1705 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1706 {
1707 int error;
1708
1709 uvmexp.nswget++;
1710 KASSERT(flags & PGO_SYNCIO);
1711 if (swslot == SWSLOT_BAD) {
1712 return EIO;
1713 }
1714
1715 error = uvm_swap_io(&page, swslot, 1, B_READ |
1716 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1717 if (error == 0) {
1718
1719 /*
1720 * this page is no longer only in swap.
1721 */
1722
1723 mutex_enter(&uvm_swap_data_lock);
1724 KASSERT(uvmexp.swpgonly > 0);
1725 uvmexp.swpgonly--;
1726 mutex_exit(&uvm_swap_data_lock);
1727 }
1728 return error;
1729 }
1730
1731 /*
1732 * uvm_swap_io: do an i/o operation to swap
1733 */
1734
1735 static int
1736 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1737 {
1738 daddr_t startblk;
1739 struct buf *bp;
1740 vaddr_t kva;
1741 int error, mapinflags;
1742 bool write, async;
1743 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1744
1745 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1746 startslot, npages, flags, 0);
1747
1748 write = (flags & B_READ) == 0;
1749 async = (flags & B_ASYNC) != 0;
1750
1751 /*
1752 * allocate a buf for the i/o.
1753 */
1754
1755 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1756 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1757 if (bp == NULL) {
1758 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1759 return ENOMEM;
1760 }
1761
1762 /*
1763 * convert starting drum slot to block number
1764 */
1765
1766 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1767
1768 /*
1769 * first, map the pages into the kernel.
1770 */
1771
1772 mapinflags = !write ?
1773 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1774 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1775 kva = uvm_pagermapin(pps, npages, mapinflags);
1776
1777 /*
1778 * fill in the bp/sbp. we currently route our i/o through
1779 * /dev/drum's vnode [swapdev_vp].
1780 */
1781
1782 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1783 bp->b_flags = (flags & (B_READ|B_ASYNC));
1784 bp->b_proc = &proc0; /* XXX */
1785 bp->b_vnbufs.le_next = NOLIST;
1786 bp->b_data = (void *)kva;
1787 bp->b_blkno = startblk;
1788 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1789
1790 /*
1791 * bump v_numoutput (counter of number of active outputs).
1792 */
1793
1794 if (write) {
1795 mutex_enter(&swapdev_vp->v_interlock);
1796 swapdev_vp->v_numoutput++;
1797 mutex_exit(&swapdev_vp->v_interlock);
1798 }
1799
1800 /*
1801 * for async ops we must set up the iodone handler.
1802 */
1803
1804 if (async) {
1805 bp->b_iodone = uvm_aio_biodone;
1806 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1807 if (curlwp == uvm.pagedaemon_lwp)
1808 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1809 else
1810 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1811 } else {
1812 bp->b_iodone = NULL;
1813 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1814 }
1815 UVMHIST_LOG(pdhist,
1816 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1817 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1818
1819 /*
1820 * now we start the I/O, and if async, return.
1821 */
1822
1823 VOP_STRATEGY(swapdev_vp, bp);
1824 if (async)
1825 return 0;
1826
1827 /*
1828 * must be sync i/o. wait for it to finish
1829 */
1830
1831 error = biowait(bp);
1832
1833 /*
1834 * kill the pager mapping
1835 */
1836
1837 uvm_pagermapout(kva, npages);
1838
1839 /*
1840 * now dispose of the buf and we're done.
1841 */
1842
1843 if (write) {
1844 mutex_enter(&swapdev_vp->v_interlock);
1845 vwakeup(bp);
1846 mutex_exit(&swapdev_vp->v_interlock);
1847 }
1848 putiobuf(bp);
1849 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1850
1851 return (error);
1852 }
1853