Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.148
      1 /*	$NetBSD: uvm_swap.c,v 1.148 2010/02/02 15:00:34 wiz Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.148 2010/02/02 15:00:34 wiz Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	dev_t			swd_dev;	/* device id */
    128 	int			swd_flags;	/* flags:inuse/enable/fake */
    129 	int			swd_priority;	/* our priority */
    130 	int			swd_nblks;	/* blocks in this device */
    131 	char			*swd_path;	/* saved pathname of device */
    132 	int			swd_pathlen;	/* length of pathname */
    133 	int			swd_npages;	/* #pages we can use */
    134 	int			swd_npginuse;	/* #pages in use */
    135 	int			swd_npgbad;	/* #pages bad */
    136 	int			swd_drumoffset;	/* page0 offset in drum */
    137 	int			swd_drumsize;	/* #pages in drum */
    138 	blist_t			swd_blist;	/* blist for this swapdev */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	*swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 /*
    180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    181  * dev_t and has no se_path[] member.
    182  */
    183 struct swapent13 {
    184 	int32_t	se13_dev;		/* device id */
    185 	int	se13_flags;		/* flags */
    186 	int	se13_nblks;		/* total blocks */
    187 	int	se13_inuse;		/* blocks in use */
    188 	int	se13_priority;		/* priority of this device */
    189 };
    190 
    191 /*
    192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    193  * dev_t.
    194  */
    195 struct swapent50 {
    196 	int32_t	se50_dev;		/* device id */
    197 	int	se50_flags;		/* flags */
    198 	int	se50_nblks;		/* total blocks */
    199 	int	se50_inuse;		/* blocks in use */
    200 	int	se50_priority;		/* priority of this device */
    201 	char	se50_path[PATH_MAX+1];	/* path name */
    202 };
    203 
    204 /*
    205  * We keep a of pool vndbuf's and vndxfer structures.
    206  */
    207 static struct pool vndxfer_pool, vndbuf_pool;
    208 
    209 /*
    210  * local variables
    211  */
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    214 
    215 /* list of all active swap devices [by priority] */
    216 LIST_HEAD(swap_priority, swappri);
    217 static struct swap_priority swap_priority;
    218 
    219 /* locks */
    220 static krwlock_t swap_syscall_lock;
    221 
    222 /* workqueue and use counter for swap to regular files */
    223 static int sw_reg_count = 0;
    224 static struct workqueue *sw_reg_workqueue;
    225 
    226 /* tuneables */
    227 u_int uvm_swapisfull_factor = 99;
    228 
    229 /*
    230  * prototypes
    231  */
    232 static struct swapdev	*swapdrum_getsdp(int);
    233 
    234 static struct swapdev	*swaplist_find(struct vnode *, bool);
    235 static void		 swaplist_insert(struct swapdev *,
    236 					 struct swappri *, int);
    237 static void		 swaplist_trim(void);
    238 
    239 static int swap_on(struct lwp *, struct swapdev *);
    240 static int swap_off(struct lwp *, struct swapdev *);
    241 
    242 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    243 
    244 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    245 static void sw_reg_biodone(struct buf *);
    246 static void sw_reg_iodone(struct work *wk, void *dummy);
    247 static void sw_reg_start(struct swapdev *);
    248 
    249 static int uvm_swap_io(struct vm_page **, int, int, int);
    250 
    251 /*
    252  * uvm_swap_init: init the swap system data structures and locks
    253  *
    254  * => called at boot time from init_main.c after the filesystems
    255  *	are brought up (which happens after uvm_init())
    256  */
    257 void
    258 uvm_swap_init(void)
    259 {
    260 	UVMHIST_FUNC("uvm_swap_init");
    261 
    262 	UVMHIST_CALLED(pdhist);
    263 	/*
    264 	 * first, init the swap list, its counter, and its lock.
    265 	 * then get a handle on the vnode for /dev/drum by using
    266 	 * the its dev_t number ("swapdev", from MD conf.c).
    267 	 */
    268 
    269 	LIST_INIT(&swap_priority);
    270 	uvmexp.nswapdev = 0;
    271 	rw_init(&swap_syscall_lock);
    272 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    273 
    274 	if (bdevvp(swapdev, &swapdev_vp))
    275 		panic("%s: can't get vnode for swap device", __func__);
    276 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    277 		panic("%s: can't lock swap device", __func__);
    278 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    279 		panic("%s: can't open swap device", __func__);
    280 	VOP_UNLOCK(swapdev_vp, 0);
    281 
    282 	/*
    283 	 * create swap block resource map to map /dev/drum.   the range
    284 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    285 	 * that block 0 is reserved (used to indicate an allocation
    286 	 * failure, or no allocation).
    287 	 */
    288 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    289 	    VM_NOSLEEP, IPL_NONE);
    290 	if (swapmap == 0) {
    291 		panic("%s: vmem_create failed", __func__);
    292 	}
    293 
    294 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    295 	    NULL, IPL_BIO);
    296 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    297 	    NULL, IPL_BIO);
    298 
    299 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    300 }
    301 
    302 /*
    303  * swaplist functions: functions that operate on the list of swap
    304  * devices on the system.
    305  */
    306 
    307 /*
    308  * swaplist_insert: insert swap device "sdp" into the global list
    309  *
    310  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    311  * => caller must provide a newly malloc'd swappri structure (we will
    312  *	FREE it if we don't need it... this it to prevent malloc blocking
    313  *	here while adding swap)
    314  */
    315 static void
    316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    317 {
    318 	struct swappri *spp, *pspp;
    319 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    320 
    321 	/*
    322 	 * find entry at or after which to insert the new device.
    323 	 */
    324 	pspp = NULL;
    325 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    326 		if (priority <= spp->spi_priority)
    327 			break;
    328 		pspp = spp;
    329 	}
    330 
    331 	/*
    332 	 * new priority?
    333 	 */
    334 	if (spp == NULL || spp->spi_priority != priority) {
    335 		spp = newspp;  /* use newspp! */
    336 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    337 			    priority, 0, 0, 0);
    338 
    339 		spp->spi_priority = priority;
    340 		CIRCLEQ_INIT(&spp->spi_swapdev);
    341 
    342 		if (pspp)
    343 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    344 		else
    345 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    346 	} else {
    347 	  	/* we don't need a new priority structure, free it */
    348 		free(newspp, M_VMSWAP);
    349 	}
    350 
    351 	/*
    352 	 * priority found (or created).   now insert on the priority's
    353 	 * circleq list and bump the total number of swapdevs.
    354 	 */
    355 	sdp->swd_priority = priority;
    356 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    357 	uvmexp.nswapdev++;
    358 }
    359 
    360 /*
    361  * swaplist_find: find and optionally remove a swap device from the
    362  *	global list.
    363  *
    364  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    365  * => we return the swapdev we found (and removed)
    366  */
    367 static struct swapdev *
    368 swaplist_find(struct vnode *vp, bool remove)
    369 {
    370 	struct swapdev *sdp;
    371 	struct swappri *spp;
    372 
    373 	/*
    374 	 * search the lists for the requested vp
    375 	 */
    376 
    377 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    378 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    379 			if (sdp->swd_vp == vp) {
    380 				if (remove) {
    381 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    382 					    sdp, swd_next);
    383 					uvmexp.nswapdev--;
    384 				}
    385 				return(sdp);
    386 			}
    387 		}
    388 	}
    389 	return (NULL);
    390 }
    391 
    392 /*
    393  * swaplist_trim: scan priority list for empty priority entries and kill
    394  *	them.
    395  *
    396  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    397  */
    398 static void
    399 swaplist_trim(void)
    400 {
    401 	struct swappri *spp, *nextspp;
    402 
    403 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    404 		nextspp = LIST_NEXT(spp, spi_swappri);
    405 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    406 		    (void *)&spp->spi_swapdev)
    407 			continue;
    408 		LIST_REMOVE(spp, spi_swappri);
    409 		free(spp, M_VMSWAP);
    410 	}
    411 }
    412 
    413 /*
    414  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    415  *	to the "swapdev" that maps that section of the drum.
    416  *
    417  * => each swapdev takes one big contig chunk of the drum
    418  * => caller must hold uvm_swap_data_lock
    419  */
    420 static struct swapdev *
    421 swapdrum_getsdp(int pgno)
    422 {
    423 	struct swapdev *sdp;
    424 	struct swappri *spp;
    425 
    426 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    427 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    428 			if (sdp->swd_flags & SWF_FAKE)
    429 				continue;
    430 			if (pgno >= sdp->swd_drumoffset &&
    431 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    432 				return sdp;
    433 			}
    434 		}
    435 	}
    436 	return NULL;
    437 }
    438 
    439 
    440 /*
    441  * sys_swapctl: main entry point for swapctl(2) system call
    442  * 	[with two helper functions: swap_on and swap_off]
    443  */
    444 int
    445 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    446 {
    447 	/* {
    448 		syscallarg(int) cmd;
    449 		syscallarg(void *) arg;
    450 		syscallarg(int) misc;
    451 	} */
    452 	struct vnode *vp;
    453 	struct nameidata nd;
    454 	struct swappri *spp;
    455 	struct swapdev *sdp;
    456 	struct swapent *sep;
    457 #define SWAP_PATH_MAX (PATH_MAX + 1)
    458 	char	*userpath;
    459 	size_t	len;
    460 	int	error, misc;
    461 	int	priority;
    462 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    463 
    464 	misc = SCARG(uap, misc);
    465 
    466 	/*
    467 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    468 	 */
    469 	rw_enter(&swap_syscall_lock, RW_WRITER);
    470 
    471 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    472 	/*
    473 	 * we handle the non-priv NSWAP and STATS request first.
    474 	 *
    475 	 * SWAP_NSWAP: return number of config'd swap devices
    476 	 * [can also be obtained with uvmexp sysctl]
    477 	 */
    478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    479 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    480 		    0, 0, 0);
    481 		*retval = uvmexp.nswapdev;
    482 		error = 0;
    483 		goto out;
    484 	}
    485 
    486 	/*
    487 	 * SWAP_STATS: get stats on current # of configured swap devs
    488 	 *
    489 	 * note that the swap_priority list can't change as long
    490 	 * as we are holding the swap_syscall_lock.  we don't want
    491 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    492 	 * copyout() and we don't want to be holding that lock then!
    493 	 */
    494 	if (SCARG(uap, cmd) == SWAP_STATS
    495 #if defined(COMPAT_50)
    496 	    || SCARG(uap, cmd) == SWAP_STATS50
    497 #endif
    498 #if defined(COMPAT_13)
    499 	    || SCARG(uap, cmd) == SWAP_STATS13
    500 #endif
    501 	    ) {
    502 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    503 			misc = uvmexp.nswapdev;
    504 #if defined(COMPAT_13)
    505 		if (SCARG(uap, cmd) == SWAP_STATS13)
    506 			len = sizeof(struct swapent13) * misc;
    507 		else
    508 #endif
    509 #if defined(COMPAT_50)
    510 		if (SCARG(uap, cmd) == SWAP_STATS50)
    511 			len = sizeof(struct swapent50) * misc;
    512 		else
    513 #endif
    514 			len = sizeof(struct swapent) * misc;
    515 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    516 
    517 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    518 		error = copyout(sep, SCARG(uap, arg), len);
    519 
    520 		free(sep, M_TEMP);
    521 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    522 		goto out;
    523 	}
    524 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    525 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    526 
    527 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    528 		goto out;
    529 	}
    530 
    531 	/*
    532 	 * all other requests require superuser privs.   verify.
    533 	 */
    534 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    535 	    0, NULL, NULL, NULL)))
    536 		goto out;
    537 
    538 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    539 		/* drop the current dump device */
    540 		dumpdev = NODEV;
    541 		dumpcdev = NODEV;
    542 		cpu_dumpconf();
    543 		goto out;
    544 	}
    545 
    546 	/*
    547 	 * at this point we expect a path name in arg.   we will
    548 	 * use namei() to gain a vnode reference (vref), and lock
    549 	 * the vnode (VOP_LOCK).
    550 	 *
    551 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    552 	 * miniroot)
    553 	 */
    554 	if (SCARG(uap, arg) == NULL) {
    555 		vp = rootvp;		/* miniroot */
    556 		if (vget(vp, LK_EXCLUSIVE)) {
    557 			error = EBUSY;
    558 			goto out;
    559 		}
    560 		if (SCARG(uap, cmd) == SWAP_ON &&
    561 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    562 			panic("swapctl: miniroot copy failed");
    563 	} else {
    564 		int	space;
    565 		char	*where;
    566 
    567 		if (SCARG(uap, cmd) == SWAP_ON) {
    568 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    569 			    SWAP_PATH_MAX, &len)))
    570 				goto out;
    571 			space = UIO_SYSSPACE;
    572 			where = userpath;
    573 		} else {
    574 			space = UIO_USERSPACE;
    575 			where = (char *)SCARG(uap, arg);
    576 		}
    577 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    578 		    space, where);
    579 		if ((error = namei(&nd)))
    580 			goto out;
    581 		vp = nd.ni_vp;
    582 	}
    583 	/* note: "vp" is referenced and locked */
    584 
    585 	error = 0;		/* assume no error */
    586 	switch(SCARG(uap, cmd)) {
    587 
    588 	case SWAP_DUMPDEV:
    589 		if (vp->v_type != VBLK) {
    590 			error = ENOTBLK;
    591 			break;
    592 		}
    593 		if (bdevsw_lookup(vp->v_rdev)) {
    594 			dumpdev = vp->v_rdev;
    595 			dumpcdev = devsw_blk2chr(dumpdev);
    596 		} else
    597 			dumpdev = NODEV;
    598 		cpu_dumpconf();
    599 		break;
    600 
    601 	case SWAP_CTL:
    602 		/*
    603 		 * get new priority, remove old entry (if any) and then
    604 		 * reinsert it in the correct place.  finally, prune out
    605 		 * any empty priority structures.
    606 		 */
    607 		priority = SCARG(uap, misc);
    608 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    609 		mutex_enter(&uvm_swap_data_lock);
    610 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    611 			error = ENOENT;
    612 		} else {
    613 			swaplist_insert(sdp, spp, priority);
    614 			swaplist_trim();
    615 		}
    616 		mutex_exit(&uvm_swap_data_lock);
    617 		if (error)
    618 			free(spp, M_VMSWAP);
    619 		break;
    620 
    621 	case SWAP_ON:
    622 
    623 		/*
    624 		 * check for duplicates.   if none found, then insert a
    625 		 * dummy entry on the list to prevent someone else from
    626 		 * trying to enable this device while we are working on
    627 		 * it.
    628 		 */
    629 
    630 		priority = SCARG(uap, misc);
    631 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    632 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    633 		memset(sdp, 0, sizeof(*sdp));
    634 		sdp->swd_flags = SWF_FAKE;
    635 		sdp->swd_vp = vp;
    636 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    637 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    638 		mutex_enter(&uvm_swap_data_lock);
    639 		if (swaplist_find(vp, false) != NULL) {
    640 			error = EBUSY;
    641 			mutex_exit(&uvm_swap_data_lock);
    642 			bufq_free(sdp->swd_tab);
    643 			free(sdp, M_VMSWAP);
    644 			free(spp, M_VMSWAP);
    645 			break;
    646 		}
    647 		swaplist_insert(sdp, spp, priority);
    648 		mutex_exit(&uvm_swap_data_lock);
    649 
    650 		sdp->swd_pathlen = len;
    651 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    652 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    653 			panic("swapctl: copystr");
    654 
    655 		/*
    656 		 * we've now got a FAKE placeholder in the swap list.
    657 		 * now attempt to enable swap on it.  if we fail, undo
    658 		 * what we've done and kill the fake entry we just inserted.
    659 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    660 		 */
    661 
    662 		if ((error = swap_on(l, sdp)) != 0) {
    663 			mutex_enter(&uvm_swap_data_lock);
    664 			(void) swaplist_find(vp, true);  /* kill fake entry */
    665 			swaplist_trim();
    666 			mutex_exit(&uvm_swap_data_lock);
    667 			bufq_free(sdp->swd_tab);
    668 			free(sdp->swd_path, M_VMSWAP);
    669 			free(sdp, M_VMSWAP);
    670 			break;
    671 		}
    672 		break;
    673 
    674 	case SWAP_OFF:
    675 		mutex_enter(&uvm_swap_data_lock);
    676 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    677 			mutex_exit(&uvm_swap_data_lock);
    678 			error = ENXIO;
    679 			break;
    680 		}
    681 
    682 		/*
    683 		 * If a device isn't in use or enabled, we
    684 		 * can't stop swapping from it (again).
    685 		 */
    686 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    687 			mutex_exit(&uvm_swap_data_lock);
    688 			error = EBUSY;
    689 			break;
    690 		}
    691 
    692 		/*
    693 		 * do the real work.
    694 		 */
    695 		error = swap_off(l, sdp);
    696 		break;
    697 
    698 	default:
    699 		error = EINVAL;
    700 	}
    701 
    702 	/*
    703 	 * done!  release the ref gained by namei() and unlock.
    704 	 */
    705 	vput(vp);
    706 
    707 out:
    708 	free(userpath, M_TEMP);
    709 	rw_exit(&swap_syscall_lock);
    710 
    711 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    712 	return (error);
    713 }
    714 
    715 /*
    716  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    717  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    718  * emulation to use it directly without going through sys_swapctl().
    719  * The problem with using sys_swapctl() there is that it involves
    720  * copying the swapent array to the stackgap, and this array's size
    721  * is not known at build time. Hence it would not be possible to
    722  * ensure it would fit in the stackgap in any case.
    723  */
    724 void
    725 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    726 {
    727 
    728 	rw_enter(&swap_syscall_lock, RW_READER);
    729 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    730 	rw_exit(&swap_syscall_lock);
    731 }
    732 
    733 static void
    734 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    735 {
    736 	struct swappri *spp;
    737 	struct swapdev *sdp;
    738 	int count = 0;
    739 
    740 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    741 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    742 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    743 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    744 			int inuse;
    745 
    746 		  	/*
    747 			 * backwards compatibility for system call.
    748 			 * For NetBSD 1.3 and 5.0, we have to use
    749 			 * the 32 bit dev_t.  For 5.0 and -current
    750 			 * we have to add the path.
    751 			 */
    752 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    753 			    PAGE_SHIFT);
    754 
    755 #if defined(COMPAT_13) || defined(COMPAT_50)
    756 			if (cmd == SWAP_STATS) {
    757 #endif
    758 				sep->se_dev = sdp->swd_dev;
    759 				sep->se_flags = sdp->swd_flags;
    760 				sep->se_nblks = sdp->swd_nblks;
    761 				sep->se_inuse = inuse;
    762 				sep->se_priority = sdp->swd_priority;
    763 				memcpy(&sep->se_path, sdp->swd_path,
    764 				       sizeof sep->se_path);
    765 				sep++;
    766 #if defined(COMPAT_13)
    767 			} else if (cmd == SWAP_STATS13) {
    768 				struct swapent13 *sep13 =
    769 				    (struct swapent13 *)sep;
    770 
    771 				sep13->se13_dev = sdp->swd_dev;
    772 				sep13->se13_flags = sdp->swd_flags;
    773 				sep13->se13_nblks = sdp->swd_nblks;
    774 				sep13->se13_inuse = inuse;
    775 				sep13->se13_priority = sdp->swd_priority;
    776 				sep = (struct swapent *)(sep13 + 1);
    777 #endif
    778 #if defined(COMPAT_50)
    779 			} else if (cmd == SWAP_STATS50) {
    780 				struct swapent50 *sep50 =
    781 				    (struct swapent50 *)sep;
    782 
    783 				sep50->se50_dev = sdp->swd_dev;
    784 				sep50->se50_flags = sdp->swd_flags;
    785 				sep50->se50_nblks = sdp->swd_nblks;
    786 				sep50->se50_inuse = inuse;
    787 				sep50->se50_priority = sdp->swd_priority;
    788 				memcpy(&sep50->se50_path, sdp->swd_path,
    789 				       sizeof sep50->se50_path);
    790 				sep = (struct swapent *)(sep50 + 1);
    791 #endif
    792 #if defined(COMPAT_13) || defined(COMPAT_50)
    793 			}
    794 #endif
    795 			count++;
    796 		}
    797 	}
    798 
    799 	*retval = count;
    800 	return;
    801 }
    802 
    803 /*
    804  * swap_on: attempt to enable a swapdev for swapping.   note that the
    805  *	swapdev is already on the global list, but disabled (marked
    806  *	SWF_FAKE).
    807  *
    808  * => we avoid the start of the disk (to protect disk labels)
    809  * => we also avoid the miniroot, if we are swapping to root.
    810  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    811  *	if needed.
    812  */
    813 static int
    814 swap_on(struct lwp *l, struct swapdev *sdp)
    815 {
    816 	struct vnode *vp;
    817 	int error, npages, nblocks, size;
    818 	long addr;
    819 	u_long result;
    820 	struct vattr va;
    821 #ifdef NFS
    822 	extern int (**nfsv2_vnodeop_p)(void *);
    823 #endif /* NFS */
    824 	const struct bdevsw *bdev;
    825 	dev_t dev;
    826 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    827 
    828 	/*
    829 	 * we want to enable swapping on sdp.   the swd_vp contains
    830 	 * the vnode we want (locked and ref'd), and the swd_dev
    831 	 * contains the dev_t of the file, if it a block device.
    832 	 */
    833 
    834 	vp = sdp->swd_vp;
    835 	dev = sdp->swd_dev;
    836 
    837 	/*
    838 	 * open the swap file (mostly useful for block device files to
    839 	 * let device driver know what is up).
    840 	 *
    841 	 * we skip the open/close for root on swap because the root
    842 	 * has already been opened when root was mounted (mountroot).
    843 	 */
    844 	if (vp != rootvp) {
    845 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    846 			return (error);
    847 	}
    848 
    849 	/* XXX this only works for block devices */
    850 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    851 
    852 	/*
    853 	 * we now need to determine the size of the swap area.   for
    854 	 * block specials we can call the d_psize function.
    855 	 * for normal files, we must stat [get attrs].
    856 	 *
    857 	 * we put the result in nblks.
    858 	 * for normal files, we also want the filesystem block size
    859 	 * (which we get with statfs).
    860 	 */
    861 	switch (vp->v_type) {
    862 	case VBLK:
    863 		bdev = bdevsw_lookup(dev);
    864 		if (bdev == NULL || bdev->d_psize == NULL ||
    865 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    866 			error = ENXIO;
    867 			goto bad;
    868 		}
    869 		break;
    870 
    871 	case VREG:
    872 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    873 			goto bad;
    874 		nblocks = (int)btodb(va.va_size);
    875 		if ((error =
    876 		     VFS_STATVFS(vp->v_mount, &vp->v_mount->mnt_stat)) != 0)
    877 			goto bad;
    878 
    879 		sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
    880 		/*
    881 		 * limit the max # of outstanding I/O requests we issue
    882 		 * at any one time.   take it easy on NFS servers.
    883 		 */
    884 #ifdef NFS
    885 		if (vp->v_op == nfsv2_vnodeop_p)
    886 			sdp->swd_maxactive = 2; /* XXX */
    887 		else
    888 #endif /* NFS */
    889 			sdp->swd_maxactive = 8; /* XXX */
    890 		break;
    891 
    892 	default:
    893 		error = ENXIO;
    894 		goto bad;
    895 	}
    896 
    897 	/*
    898 	 * save nblocks in a safe place and convert to pages.
    899 	 */
    900 
    901 	sdp->swd_nblks = nblocks;
    902 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    903 
    904 	/*
    905 	 * for block special files, we want to make sure that leave
    906 	 * the disklabel and bootblocks alone, so we arrange to skip
    907 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    908 	 * note that because of this the "size" can be less than the
    909 	 * actual number of blocks on the device.
    910 	 */
    911 	if (vp->v_type == VBLK) {
    912 		/* we use pages 1 to (size - 1) [inclusive] */
    913 		size = npages - 1;
    914 		addr = 1;
    915 	} else {
    916 		/* we use pages 0 to (size - 1) [inclusive] */
    917 		size = npages;
    918 		addr = 0;
    919 	}
    920 
    921 	/*
    922 	 * make sure we have enough blocks for a reasonable sized swap
    923 	 * area.   we want at least one page.
    924 	 */
    925 
    926 	if (size < 1) {
    927 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    928 		error = EINVAL;
    929 		goto bad;
    930 	}
    931 
    932 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    933 
    934 	/*
    935 	 * now we need to allocate an extent to manage this swap device
    936 	 */
    937 
    938 	sdp->swd_blist = blist_create(npages);
    939 	/* mark all expect the `saved' region free. */
    940 	blist_free(sdp->swd_blist, addr, size);
    941 
    942 	/*
    943 	 * if the vnode we are swapping to is the root vnode
    944 	 * (i.e. we are swapping to the miniroot) then we want
    945 	 * to make sure we don't overwrite it.   do a statfs to
    946 	 * find its size and skip over it.
    947 	 */
    948 	if (vp == rootvp) {
    949 		struct mount *mp;
    950 		struct statvfs *sp;
    951 		int rootblocks, rootpages;
    952 
    953 		mp = rootvnode->v_mount;
    954 		sp = &mp->mnt_stat;
    955 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    956 		/*
    957 		 * XXX: sp->f_blocks isn't the total number of
    958 		 * blocks in the filesystem, it's the number of
    959 		 * data blocks.  so, our rootblocks almost
    960 		 * definitely underestimates the total size
    961 		 * of the filesystem - how badly depends on the
    962 		 * details of the filesystem type.  there isn't
    963 		 * an obvious way to deal with this cleanly
    964 		 * and perfectly, so for now we just pad our
    965 		 * rootblocks estimate with an extra 5 percent.
    966 		 */
    967 		rootblocks += (rootblocks >> 5) +
    968 			(rootblocks >> 6) +
    969 			(rootblocks >> 7);
    970 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    971 		if (rootpages > size)
    972 			panic("swap_on: miniroot larger than swap?");
    973 
    974 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    975 			panic("swap_on: unable to preserve miniroot");
    976 		}
    977 
    978 		size -= rootpages;
    979 		printf("Preserved %d pages of miniroot ", rootpages);
    980 		printf("leaving %d pages of swap\n", size);
    981 	}
    982 
    983 	/*
    984 	 * add a ref to vp to reflect usage as a swap device.
    985 	 */
    986 	vref(vp);
    987 
    988 	/*
    989 	 * now add the new swapdev to the drum and enable.
    990 	 */
    991 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    992 	if (result == 0)
    993 		panic("swapdrum_add");
    994 	/*
    995 	 * If this is the first regular swap create the workqueue.
    996 	 * => Protected by swap_syscall_lock.
    997 	 */
    998 	if (vp->v_type != VBLK) {
    999 		if (sw_reg_count++ == 0) {
   1000 			KASSERT(sw_reg_workqueue == NULL);
   1001 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1002 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1003 				panic("%s: workqueue_create failed", __func__);
   1004 		}
   1005 	}
   1006 
   1007 	sdp->swd_drumoffset = (int)result;
   1008 	sdp->swd_drumsize = npages;
   1009 	sdp->swd_npages = size;
   1010 	mutex_enter(&uvm_swap_data_lock);
   1011 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1012 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1013 	uvmexp.swpages += size;
   1014 	uvmexp.swpgavail += size;
   1015 	mutex_exit(&uvm_swap_data_lock);
   1016 	return (0);
   1017 
   1018 	/*
   1019 	 * failure: clean up and return error.
   1020 	 */
   1021 
   1022 bad:
   1023 	if (sdp->swd_blist) {
   1024 		blist_destroy(sdp->swd_blist);
   1025 	}
   1026 	if (vp != rootvp) {
   1027 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1028 	}
   1029 	return (error);
   1030 }
   1031 
   1032 /*
   1033  * swap_off: stop swapping on swapdev
   1034  *
   1035  * => swap data should be locked, we will unlock.
   1036  */
   1037 static int
   1038 swap_off(struct lwp *l, struct swapdev *sdp)
   1039 {
   1040 	int npages = sdp->swd_npages;
   1041 	int error = 0;
   1042 
   1043 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1044 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1045 
   1046 	/* disable the swap area being removed */
   1047 	sdp->swd_flags &= ~SWF_ENABLE;
   1048 	uvmexp.swpgavail -= npages;
   1049 	mutex_exit(&uvm_swap_data_lock);
   1050 
   1051 	/*
   1052 	 * the idea is to find all the pages that are paged out to this
   1053 	 * device, and page them all in.  in uvm, swap-backed pageable
   1054 	 * memory can take two forms: aobjs and anons.  call the
   1055 	 * swapoff hook for each subsystem to bring in pages.
   1056 	 */
   1057 
   1058 	if (uao_swap_off(sdp->swd_drumoffset,
   1059 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1060 	    amap_swap_off(sdp->swd_drumoffset,
   1061 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1062 		error = ENOMEM;
   1063 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1064 		error = EBUSY;
   1065 	}
   1066 
   1067 	if (error) {
   1068 		mutex_enter(&uvm_swap_data_lock);
   1069 		sdp->swd_flags |= SWF_ENABLE;
   1070 		uvmexp.swpgavail += npages;
   1071 		mutex_exit(&uvm_swap_data_lock);
   1072 
   1073 		return error;
   1074 	}
   1075 
   1076 	/*
   1077 	 * If this is the last regular swap destroy the workqueue.
   1078 	 * => Protected by swap_syscall_lock.
   1079 	 */
   1080 	if (sdp->swd_vp->v_type != VBLK) {
   1081 		KASSERT(sw_reg_count > 0);
   1082 		KASSERT(sw_reg_workqueue != NULL);
   1083 		if (--sw_reg_count == 0) {
   1084 			workqueue_destroy(sw_reg_workqueue);
   1085 			sw_reg_workqueue = NULL;
   1086 		}
   1087 	}
   1088 
   1089 	/*
   1090 	 * done with the vnode.
   1091 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1092 	 * so that spec_close() can tell if this is the last close.
   1093 	 */
   1094 	vrele(sdp->swd_vp);
   1095 	if (sdp->swd_vp != rootvp) {
   1096 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1097 	}
   1098 
   1099 	mutex_enter(&uvm_swap_data_lock);
   1100 	uvmexp.swpages -= npages;
   1101 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1102 
   1103 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1104 		panic("%s: swapdev not in list", __func__);
   1105 	swaplist_trim();
   1106 	mutex_exit(&uvm_swap_data_lock);
   1107 
   1108 	/*
   1109 	 * free all resources!
   1110 	 */
   1111 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1112 	blist_destroy(sdp->swd_blist);
   1113 	bufq_free(sdp->swd_tab);
   1114 	free(sdp, M_VMSWAP);
   1115 	return (0);
   1116 }
   1117 
   1118 /*
   1119  * /dev/drum interface and i/o functions
   1120  */
   1121 
   1122 /*
   1123  * swstrategy: perform I/O on the drum
   1124  *
   1125  * => we must map the i/o request from the drum to the correct swapdev.
   1126  */
   1127 static void
   1128 swstrategy(struct buf *bp)
   1129 {
   1130 	struct swapdev *sdp;
   1131 	struct vnode *vp;
   1132 	int pageno, bn;
   1133 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1134 
   1135 	/*
   1136 	 * convert block number to swapdev.   note that swapdev can't
   1137 	 * be yanked out from under us because we are holding resources
   1138 	 * in it (i.e. the blocks we are doing I/O on).
   1139 	 */
   1140 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1141 	mutex_enter(&uvm_swap_data_lock);
   1142 	sdp = swapdrum_getsdp(pageno);
   1143 	mutex_exit(&uvm_swap_data_lock);
   1144 	if (sdp == NULL) {
   1145 		bp->b_error = EINVAL;
   1146 		biodone(bp);
   1147 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1148 		return;
   1149 	}
   1150 
   1151 	/*
   1152 	 * convert drum page number to block number on this swapdev.
   1153 	 */
   1154 
   1155 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1156 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1157 
   1158 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1159 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1160 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1161 
   1162 	/*
   1163 	 * for block devices we finish up here.
   1164 	 * for regular files we have to do more work which we delegate
   1165 	 * to sw_reg_strategy().
   1166 	 */
   1167 
   1168 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1169 	switch (vp->v_type) {
   1170 	default:
   1171 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1172 
   1173 	case VBLK:
   1174 
   1175 		/*
   1176 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1177 		 * on the swapdev (sdp).
   1178 		 */
   1179 		bp->b_blkno = bn;		/* swapdev block number */
   1180 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1181 
   1182 		/*
   1183 		 * if we are doing a write, we have to redirect the i/o on
   1184 		 * drum's v_numoutput counter to the swapdevs.
   1185 		 */
   1186 		if ((bp->b_flags & B_READ) == 0) {
   1187 			mutex_enter(bp->b_objlock);
   1188 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1189 			mutex_exit(bp->b_objlock);
   1190 			mutex_enter(&vp->v_interlock);
   1191 			vp->v_numoutput++;	/* put it on swapdev */
   1192 			mutex_exit(&vp->v_interlock);
   1193 		}
   1194 
   1195 		/*
   1196 		 * finally plug in swapdev vnode and start I/O
   1197 		 */
   1198 		bp->b_vp = vp;
   1199 		bp->b_objlock = &vp->v_interlock;
   1200 		VOP_STRATEGY(vp, bp);
   1201 		return;
   1202 
   1203 	case VREG:
   1204 		/*
   1205 		 * delegate to sw_reg_strategy function.
   1206 		 */
   1207 		sw_reg_strategy(sdp, bp, bn);
   1208 		return;
   1209 	}
   1210 	/* NOTREACHED */
   1211 }
   1212 
   1213 /*
   1214  * swread: the read function for the drum (just a call to physio)
   1215  */
   1216 /*ARGSUSED*/
   1217 static int
   1218 swread(dev_t dev, struct uio *uio, int ioflag)
   1219 {
   1220 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1221 
   1222 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1223 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1224 }
   1225 
   1226 /*
   1227  * swwrite: the write function for the drum (just a call to physio)
   1228  */
   1229 /*ARGSUSED*/
   1230 static int
   1231 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1232 {
   1233 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1234 
   1235 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1236 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1237 }
   1238 
   1239 const struct bdevsw swap_bdevsw = {
   1240 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1241 };
   1242 
   1243 const struct cdevsw swap_cdevsw = {
   1244 	nullopen, nullclose, swread, swwrite, noioctl,
   1245 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1246 };
   1247 
   1248 /*
   1249  * sw_reg_strategy: handle swap i/o to regular files
   1250  */
   1251 static void
   1252 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1253 {
   1254 	struct vnode	*vp;
   1255 	struct vndxfer	*vnx;
   1256 	daddr_t		nbn;
   1257 	char 		*addr;
   1258 	off_t		byteoff;
   1259 	int		s, off, nra, error, sz, resid;
   1260 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1261 
   1262 	/*
   1263 	 * allocate a vndxfer head for this transfer and point it to
   1264 	 * our buffer.
   1265 	 */
   1266 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1267 	vnx->vx_flags = VX_BUSY;
   1268 	vnx->vx_error = 0;
   1269 	vnx->vx_pending = 0;
   1270 	vnx->vx_bp = bp;
   1271 	vnx->vx_sdp = sdp;
   1272 
   1273 	/*
   1274 	 * setup for main loop where we read filesystem blocks into
   1275 	 * our buffer.
   1276 	 */
   1277 	error = 0;
   1278 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1279 	addr = bp->b_data;		/* current position in buffer */
   1280 	byteoff = dbtob((uint64_t)bn);
   1281 
   1282 	for (resid = bp->b_resid; resid; resid -= sz) {
   1283 		struct vndbuf	*nbp;
   1284 
   1285 		/*
   1286 		 * translate byteoffset into block number.  return values:
   1287 		 *   vp = vnode of underlying device
   1288 		 *  nbn = new block number (on underlying vnode dev)
   1289 		 *  nra = num blocks we can read-ahead (excludes requested
   1290 		 *	block)
   1291 		 */
   1292 		nra = 0;
   1293 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1294 				 	&vp, &nbn, &nra);
   1295 
   1296 		if (error == 0 && nbn == (daddr_t)-1) {
   1297 			/*
   1298 			 * this used to just set error, but that doesn't
   1299 			 * do the right thing.  Instead, it causes random
   1300 			 * memory errors.  The panic() should remain until
   1301 			 * this condition doesn't destabilize the system.
   1302 			 */
   1303 #if 1
   1304 			panic("%s: swap to sparse file", __func__);
   1305 #else
   1306 			error = EIO;	/* failure */
   1307 #endif
   1308 		}
   1309 
   1310 		/*
   1311 		 * punt if there was an error or a hole in the file.
   1312 		 * we must wait for any i/o ops we have already started
   1313 		 * to finish before returning.
   1314 		 *
   1315 		 * XXX we could deal with holes here but it would be
   1316 		 * a hassle (in the write case).
   1317 		 */
   1318 		if (error) {
   1319 			s = splbio();
   1320 			vnx->vx_error = error;	/* pass error up */
   1321 			goto out;
   1322 		}
   1323 
   1324 		/*
   1325 		 * compute the size ("sz") of this transfer (in bytes).
   1326 		 */
   1327 		off = byteoff % sdp->swd_bsize;
   1328 		sz = (1 + nra) * sdp->swd_bsize - off;
   1329 		if (sz > resid)
   1330 			sz = resid;
   1331 
   1332 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1333 			    "vp %p/%p offset 0x%x/0x%x",
   1334 			    sdp->swd_vp, vp, byteoff, nbn);
   1335 
   1336 		/*
   1337 		 * now get a buf structure.   note that the vb_buf is
   1338 		 * at the front of the nbp structure so that you can
   1339 		 * cast pointers between the two structure easily.
   1340 		 */
   1341 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1342 		buf_init(&nbp->vb_buf);
   1343 		nbp->vb_buf.b_flags    = bp->b_flags;
   1344 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1345 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1346 		nbp->vb_buf.b_bcount   = sz;
   1347 		nbp->vb_buf.b_bufsize  = sz;
   1348 		nbp->vb_buf.b_error    = 0;
   1349 		nbp->vb_buf.b_data     = addr;
   1350 		nbp->vb_buf.b_lblkno   = 0;
   1351 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1352 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1353 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1354 		nbp->vb_buf.b_vp       = vp;
   1355 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1356 		if (vp->v_type == VBLK) {
   1357 			nbp->vb_buf.b_dev = vp->v_rdev;
   1358 		}
   1359 
   1360 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1361 
   1362 		/*
   1363 		 * Just sort by block number
   1364 		 */
   1365 		s = splbio();
   1366 		if (vnx->vx_error != 0) {
   1367 			buf_destroy(&nbp->vb_buf);
   1368 			pool_put(&vndbuf_pool, nbp);
   1369 			goto out;
   1370 		}
   1371 		vnx->vx_pending++;
   1372 
   1373 		/* sort it in and start I/O if we are not over our limit */
   1374 		/* XXXAD locking */
   1375 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1376 		sw_reg_start(sdp);
   1377 		splx(s);
   1378 
   1379 		/*
   1380 		 * advance to the next I/O
   1381 		 */
   1382 		byteoff += sz;
   1383 		addr += sz;
   1384 	}
   1385 
   1386 	s = splbio();
   1387 
   1388 out: /* Arrive here at splbio */
   1389 	vnx->vx_flags &= ~VX_BUSY;
   1390 	if (vnx->vx_pending == 0) {
   1391 		error = vnx->vx_error;
   1392 		pool_put(&vndxfer_pool, vnx);
   1393 		bp->b_error = error;
   1394 		biodone(bp);
   1395 	}
   1396 	splx(s);
   1397 }
   1398 
   1399 /*
   1400  * sw_reg_start: start an I/O request on the requested swapdev
   1401  *
   1402  * => reqs are sorted by b_rawblkno (above)
   1403  */
   1404 static void
   1405 sw_reg_start(struct swapdev *sdp)
   1406 {
   1407 	struct buf	*bp;
   1408 	struct vnode	*vp;
   1409 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1410 
   1411 	/* recursion control */
   1412 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1413 		return;
   1414 
   1415 	sdp->swd_flags |= SWF_BUSY;
   1416 
   1417 	while (sdp->swd_active < sdp->swd_maxactive) {
   1418 		bp = bufq_get(sdp->swd_tab);
   1419 		if (bp == NULL)
   1420 			break;
   1421 		sdp->swd_active++;
   1422 
   1423 		UVMHIST_LOG(pdhist,
   1424 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1425 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1426 		vp = bp->b_vp;
   1427 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1428 		if ((bp->b_flags & B_READ) == 0) {
   1429 			mutex_enter(&vp->v_interlock);
   1430 			vp->v_numoutput++;
   1431 			mutex_exit(&vp->v_interlock);
   1432 		}
   1433 		VOP_STRATEGY(vp, bp);
   1434 	}
   1435 	sdp->swd_flags &= ~SWF_BUSY;
   1436 }
   1437 
   1438 /*
   1439  * sw_reg_biodone: one of our i/o's has completed
   1440  */
   1441 static void
   1442 sw_reg_biodone(struct buf *bp)
   1443 {
   1444 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1445 }
   1446 
   1447 /*
   1448  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1449  *
   1450  * => note that we can recover the vndbuf struct by casting the buf ptr
   1451  */
   1452 static void
   1453 sw_reg_iodone(struct work *wk, void *dummy)
   1454 {
   1455 	struct vndbuf *vbp = (void *)wk;
   1456 	struct vndxfer *vnx = vbp->vb_xfer;
   1457 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1458 	struct swapdev	*sdp = vnx->vx_sdp;
   1459 	int s, resid, error;
   1460 	KASSERT(&vbp->vb_buf.b_work == wk);
   1461 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1462 
   1463 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1464 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1465 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1466 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1467 
   1468 	/*
   1469 	 * protect vbp at splbio and update.
   1470 	 */
   1471 
   1472 	s = splbio();
   1473 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1474 	pbp->b_resid -= resid;
   1475 	vnx->vx_pending--;
   1476 
   1477 	if (vbp->vb_buf.b_error != 0) {
   1478 		/* pass error upward */
   1479 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1480 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1481 		vnx->vx_error = error;
   1482 	}
   1483 
   1484 	/*
   1485 	 * kill vbp structure
   1486 	 */
   1487 	buf_destroy(&vbp->vb_buf);
   1488 	pool_put(&vndbuf_pool, vbp);
   1489 
   1490 	/*
   1491 	 * wrap up this transaction if it has run to completion or, in
   1492 	 * case of an error, when all auxiliary buffers have returned.
   1493 	 */
   1494 	if (vnx->vx_error != 0) {
   1495 		/* pass error upward */
   1496 		error = vnx->vx_error;
   1497 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1498 			pbp->b_error = error;
   1499 			biodone(pbp);
   1500 			pool_put(&vndxfer_pool, vnx);
   1501 		}
   1502 	} else if (pbp->b_resid == 0) {
   1503 		KASSERT(vnx->vx_pending == 0);
   1504 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1505 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1506 			    pbp, vnx->vx_error, 0, 0);
   1507 			biodone(pbp);
   1508 			pool_put(&vndxfer_pool, vnx);
   1509 		}
   1510 	}
   1511 
   1512 	/*
   1513 	 * done!   start next swapdev I/O if one is pending
   1514 	 */
   1515 	sdp->swd_active--;
   1516 	sw_reg_start(sdp);
   1517 	splx(s);
   1518 }
   1519 
   1520 
   1521 /*
   1522  * uvm_swap_alloc: allocate space on swap
   1523  *
   1524  * => allocation is done "round robin" down the priority list, as we
   1525  *	allocate in a priority we "rotate" the circle queue.
   1526  * => space can be freed with uvm_swap_free
   1527  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1528  * => we lock uvm_swap_data_lock
   1529  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1530  */
   1531 int
   1532 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1533 {
   1534 	struct swapdev *sdp;
   1535 	struct swappri *spp;
   1536 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1537 
   1538 	/*
   1539 	 * no swap devices configured yet?   definite failure.
   1540 	 */
   1541 	if (uvmexp.nswapdev < 1)
   1542 		return 0;
   1543 
   1544 	/*
   1545 	 * lock data lock, convert slots into blocks, and enter loop
   1546 	 */
   1547 	mutex_enter(&uvm_swap_data_lock);
   1548 
   1549 ReTry:	/* XXXMRG */
   1550 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1551 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1552 			uint64_t result;
   1553 
   1554 			/* if it's not enabled, then we can't swap from it */
   1555 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1556 				continue;
   1557 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1558 				continue;
   1559 			result = blist_alloc(sdp->swd_blist, *nslots);
   1560 			if (result == BLIST_NONE) {
   1561 				continue;
   1562 			}
   1563 			KASSERT(result < sdp->swd_drumsize);
   1564 
   1565 			/*
   1566 			 * successful allocation!  now rotate the circleq.
   1567 			 */
   1568 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1569 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1570 			sdp->swd_npginuse += *nslots;
   1571 			uvmexp.swpginuse += *nslots;
   1572 			mutex_exit(&uvm_swap_data_lock);
   1573 			/* done!  return drum slot number */
   1574 			UVMHIST_LOG(pdhist,
   1575 			    "success!  returning %d slots starting at %d",
   1576 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1577 			return (result + sdp->swd_drumoffset);
   1578 		}
   1579 	}
   1580 
   1581 	/* XXXMRG: BEGIN HACK */
   1582 	if (*nslots > 1 && lessok) {
   1583 		*nslots = 1;
   1584 		/* XXXMRG: ugh!  blist should support this for us */
   1585 		goto ReTry;
   1586 	}
   1587 	/* XXXMRG: END HACK */
   1588 
   1589 	mutex_exit(&uvm_swap_data_lock);
   1590 	return 0;
   1591 }
   1592 
   1593 /*
   1594  * uvm_swapisfull: return true if most of available swap is allocated
   1595  * and in use.  we don't count some small portion as it may be inaccessible
   1596  * to us at any given moment, for example if there is lock contention or if
   1597  * pages are busy.
   1598  */
   1599 bool
   1600 uvm_swapisfull(void)
   1601 {
   1602 	int swpgonly;
   1603 	bool rv;
   1604 
   1605 	mutex_enter(&uvm_swap_data_lock);
   1606 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1607 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1608 	    uvm_swapisfull_factor);
   1609 	rv = (swpgonly >= uvmexp.swpgavail);
   1610 	mutex_exit(&uvm_swap_data_lock);
   1611 
   1612 	return (rv);
   1613 }
   1614 
   1615 /*
   1616  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1617  *
   1618  * => we lock uvm_swap_data_lock
   1619  */
   1620 void
   1621 uvm_swap_markbad(int startslot, int nslots)
   1622 {
   1623 	struct swapdev *sdp;
   1624 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1625 
   1626 	mutex_enter(&uvm_swap_data_lock);
   1627 	sdp = swapdrum_getsdp(startslot);
   1628 	KASSERT(sdp != NULL);
   1629 
   1630 	/*
   1631 	 * we just keep track of how many pages have been marked bad
   1632 	 * in this device, to make everything add up in swap_off().
   1633 	 * we assume here that the range of slots will all be within
   1634 	 * one swap device.
   1635 	 */
   1636 
   1637 	KASSERT(uvmexp.swpgonly >= nslots);
   1638 	uvmexp.swpgonly -= nslots;
   1639 	sdp->swd_npgbad += nslots;
   1640 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1641 	mutex_exit(&uvm_swap_data_lock);
   1642 }
   1643 
   1644 /*
   1645  * uvm_swap_free: free swap slots
   1646  *
   1647  * => this can be all or part of an allocation made by uvm_swap_alloc
   1648  * => we lock uvm_swap_data_lock
   1649  */
   1650 void
   1651 uvm_swap_free(int startslot, int nslots)
   1652 {
   1653 	struct swapdev *sdp;
   1654 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1655 
   1656 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1657 	    startslot, 0, 0);
   1658 
   1659 	/*
   1660 	 * ignore attempts to free the "bad" slot.
   1661 	 */
   1662 
   1663 	if (startslot == SWSLOT_BAD) {
   1664 		return;
   1665 	}
   1666 
   1667 	/*
   1668 	 * convert drum slot offset back to sdp, free the blocks
   1669 	 * in the extent, and return.   must hold pri lock to do
   1670 	 * lookup and access the extent.
   1671 	 */
   1672 
   1673 	mutex_enter(&uvm_swap_data_lock);
   1674 	sdp = swapdrum_getsdp(startslot);
   1675 	KASSERT(uvmexp.nswapdev >= 1);
   1676 	KASSERT(sdp != NULL);
   1677 	KASSERT(sdp->swd_npginuse >= nslots);
   1678 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1679 	sdp->swd_npginuse -= nslots;
   1680 	uvmexp.swpginuse -= nslots;
   1681 	mutex_exit(&uvm_swap_data_lock);
   1682 }
   1683 
   1684 /*
   1685  * uvm_swap_put: put any number of pages into a contig place on swap
   1686  *
   1687  * => can be sync or async
   1688  */
   1689 
   1690 int
   1691 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1692 {
   1693 	int error;
   1694 
   1695 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1696 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1697 	return error;
   1698 }
   1699 
   1700 /*
   1701  * uvm_swap_get: get a single page from swap
   1702  *
   1703  * => usually a sync op (from fault)
   1704  */
   1705 
   1706 int
   1707 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1708 {
   1709 	int error;
   1710 
   1711 	uvmexp.nswget++;
   1712 	KASSERT(flags & PGO_SYNCIO);
   1713 	if (swslot == SWSLOT_BAD) {
   1714 		return EIO;
   1715 	}
   1716 
   1717 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1718 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1719 	if (error == 0) {
   1720 
   1721 		/*
   1722 		 * this page is no longer only in swap.
   1723 		 */
   1724 
   1725 		mutex_enter(&uvm_swap_data_lock);
   1726 		KASSERT(uvmexp.swpgonly > 0);
   1727 		uvmexp.swpgonly--;
   1728 		mutex_exit(&uvm_swap_data_lock);
   1729 	}
   1730 	return error;
   1731 }
   1732 
   1733 /*
   1734  * uvm_swap_io: do an i/o operation to swap
   1735  */
   1736 
   1737 static int
   1738 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1739 {
   1740 	daddr_t startblk;
   1741 	struct	buf *bp;
   1742 	vaddr_t kva;
   1743 	int	error, mapinflags;
   1744 	bool write, async;
   1745 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1746 
   1747 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1748 	    startslot, npages, flags, 0);
   1749 
   1750 	write = (flags & B_READ) == 0;
   1751 	async = (flags & B_ASYNC) != 0;
   1752 
   1753 	/*
   1754 	 * allocate a buf for the i/o.
   1755 	 */
   1756 
   1757 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1758 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1759 	if (bp == NULL) {
   1760 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1761 		return ENOMEM;
   1762 	}
   1763 
   1764 	/*
   1765 	 * convert starting drum slot to block number
   1766 	 */
   1767 
   1768 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1769 
   1770 	/*
   1771 	 * first, map the pages into the kernel.
   1772 	 */
   1773 
   1774 	mapinflags = !write ?
   1775 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1776 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1777 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1778 
   1779 	/*
   1780 	 * fill in the bp/sbp.   we currently route our i/o through
   1781 	 * /dev/drum's vnode [swapdev_vp].
   1782 	 */
   1783 
   1784 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1785 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1786 	bp->b_proc = &proc0;	/* XXX */
   1787 	bp->b_vnbufs.le_next = NOLIST;
   1788 	bp->b_data = (void *)kva;
   1789 	bp->b_blkno = startblk;
   1790 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1791 
   1792 	/*
   1793 	 * bump v_numoutput (counter of number of active outputs).
   1794 	 */
   1795 
   1796 	if (write) {
   1797 		mutex_enter(&swapdev_vp->v_interlock);
   1798 		swapdev_vp->v_numoutput++;
   1799 		mutex_exit(&swapdev_vp->v_interlock);
   1800 	}
   1801 
   1802 	/*
   1803 	 * for async ops we must set up the iodone handler.
   1804 	 */
   1805 
   1806 	if (async) {
   1807 		bp->b_iodone = uvm_aio_biodone;
   1808 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1809 		if (curlwp == uvm.pagedaemon_lwp)
   1810 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1811 		else
   1812 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1813 	} else {
   1814 		bp->b_iodone = NULL;
   1815 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1816 	}
   1817 	UVMHIST_LOG(pdhist,
   1818 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1819 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1820 
   1821 	/*
   1822 	 * now we start the I/O, and if async, return.
   1823 	 */
   1824 
   1825 	VOP_STRATEGY(swapdev_vp, bp);
   1826 	if (async)
   1827 		return 0;
   1828 
   1829 	/*
   1830 	 * must be sync i/o.   wait for it to finish
   1831 	 */
   1832 
   1833 	error = biowait(bp);
   1834 
   1835 	/*
   1836 	 * kill the pager mapping
   1837 	 */
   1838 
   1839 	uvm_pagermapout(kva, npages);
   1840 
   1841 	/*
   1842 	 * now dispose of the buf and we're done.
   1843 	 */
   1844 
   1845 	if (write) {
   1846 		mutex_enter(&swapdev_vp->v_interlock);
   1847 		vwakeup(bp);
   1848 		mutex_exit(&swapdev_vp->v_interlock);
   1849 	}
   1850 	putiobuf(bp);
   1851 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1852 
   1853 	return (error);
   1854 }
   1855