Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.149
      1 /*	$NetBSD: uvm_swap.c,v 1.149 2010/02/07 15:51:28 mlelstv Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.149 2010/02/07 15:51:28 mlelstv Exp $");
     34 
     35 #include "fs_nfs.h"
     36 #include "opt_uvmhist.h"
     37 #include "opt_compat_netbsd.h"
     38 #include "opt_ddb.h"
     39 
     40 #include <sys/param.h>
     41 #include <sys/systm.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/malloc.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * CIRCLEQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats(9) function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	dev_t			swd_dev;	/* device id */
    128 	int			swd_flags;	/* flags:inuse/enable/fake */
    129 	int			swd_priority;	/* our priority */
    130 	int			swd_nblks;	/* blocks in this device */
    131 	char			*swd_path;	/* saved pathname of device */
    132 	int			swd_pathlen;	/* length of pathname */
    133 	int			swd_npages;	/* #pages we can use */
    134 	int			swd_npginuse;	/* #pages in use */
    135 	int			swd_npgbad;	/* #pages bad */
    136 	int			swd_drumoffset;	/* page0 offset in drum */
    137 	int			swd_drumsize;	/* #pages in drum */
    138 	blist_t			swd_blist;	/* blist for this swapdev */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	CIRCLEQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	*swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	CIRCLEQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* circleq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 /*
    180  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    181  * dev_t and has no se_path[] member.
    182  */
    183 struct swapent13 {
    184 	int32_t	se13_dev;		/* device id */
    185 	int	se13_flags;		/* flags */
    186 	int	se13_nblks;		/* total blocks */
    187 	int	se13_inuse;		/* blocks in use */
    188 	int	se13_priority;		/* priority of this device */
    189 };
    190 
    191 /*
    192  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    193  * dev_t.
    194  */
    195 struct swapent50 {
    196 	int32_t	se50_dev;		/* device id */
    197 	int	se50_flags;		/* flags */
    198 	int	se50_nblks;		/* total blocks */
    199 	int	se50_inuse;		/* blocks in use */
    200 	int	se50_priority;		/* priority of this device */
    201 	char	se50_path[PATH_MAX+1];	/* path name */
    202 };
    203 
    204 /*
    205  * We keep a of pool vndbuf's and vndxfer structures.
    206  */
    207 static struct pool vndxfer_pool, vndbuf_pool;
    208 
    209 /*
    210  * local variables
    211  */
    212 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
    213 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    214 
    215 /* list of all active swap devices [by priority] */
    216 LIST_HEAD(swap_priority, swappri);
    217 static struct swap_priority swap_priority;
    218 
    219 /* locks */
    220 static krwlock_t swap_syscall_lock;
    221 
    222 /* workqueue and use counter for swap to regular files */
    223 static int sw_reg_count = 0;
    224 static struct workqueue *sw_reg_workqueue;
    225 
    226 /* tuneables */
    227 u_int uvm_swapisfull_factor = 99;
    228 
    229 /*
    230  * prototypes
    231  */
    232 static struct swapdev	*swapdrum_getsdp(int);
    233 
    234 static struct swapdev	*swaplist_find(struct vnode *, bool);
    235 static void		 swaplist_insert(struct swapdev *,
    236 					 struct swappri *, int);
    237 static void		 swaplist_trim(void);
    238 
    239 static int swap_on(struct lwp *, struct swapdev *);
    240 static int swap_off(struct lwp *, struct swapdev *);
    241 
    242 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
    243 
    244 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    245 static void sw_reg_biodone(struct buf *);
    246 static void sw_reg_iodone(struct work *wk, void *dummy);
    247 static void sw_reg_start(struct swapdev *);
    248 
    249 static int uvm_swap_io(struct vm_page **, int, int, int);
    250 
    251 /*
    252  * uvm_swap_init: init the swap system data structures and locks
    253  *
    254  * => called at boot time from init_main.c after the filesystems
    255  *	are brought up (which happens after uvm_init())
    256  */
    257 void
    258 uvm_swap_init(void)
    259 {
    260 	UVMHIST_FUNC("uvm_swap_init");
    261 
    262 	UVMHIST_CALLED(pdhist);
    263 	/*
    264 	 * first, init the swap list, its counter, and its lock.
    265 	 * then get a handle on the vnode for /dev/drum by using
    266 	 * the its dev_t number ("swapdev", from MD conf.c).
    267 	 */
    268 
    269 	LIST_INIT(&swap_priority);
    270 	uvmexp.nswapdev = 0;
    271 	rw_init(&swap_syscall_lock);
    272 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    273 
    274 	if (bdevvp(swapdev, &swapdev_vp))
    275 		panic("%s: can't get vnode for swap device", __func__);
    276 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    277 		panic("%s: can't lock swap device", __func__);
    278 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    279 		panic("%s: can't open swap device", __func__);
    280 	VOP_UNLOCK(swapdev_vp, 0);
    281 
    282 	/*
    283 	 * create swap block resource map to map /dev/drum.   the range
    284 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    285 	 * that block 0 is reserved (used to indicate an allocation
    286 	 * failure, or no allocation).
    287 	 */
    288 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    289 	    VM_NOSLEEP, IPL_NONE);
    290 	if (swapmap == 0) {
    291 		panic("%s: vmem_create failed", __func__);
    292 	}
    293 
    294 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    295 	    NULL, IPL_BIO);
    296 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    297 	    NULL, IPL_BIO);
    298 
    299 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    300 }
    301 
    302 /*
    303  * swaplist functions: functions that operate on the list of swap
    304  * devices on the system.
    305  */
    306 
    307 /*
    308  * swaplist_insert: insert swap device "sdp" into the global list
    309  *
    310  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    311  * => caller must provide a newly malloc'd swappri structure (we will
    312  *	FREE it if we don't need it... this it to prevent malloc blocking
    313  *	here while adding swap)
    314  */
    315 static void
    316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    317 {
    318 	struct swappri *spp, *pspp;
    319 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    320 
    321 	/*
    322 	 * find entry at or after which to insert the new device.
    323 	 */
    324 	pspp = NULL;
    325 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    326 		if (priority <= spp->spi_priority)
    327 			break;
    328 		pspp = spp;
    329 	}
    330 
    331 	/*
    332 	 * new priority?
    333 	 */
    334 	if (spp == NULL || spp->spi_priority != priority) {
    335 		spp = newspp;  /* use newspp! */
    336 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    337 			    priority, 0, 0, 0);
    338 
    339 		spp->spi_priority = priority;
    340 		CIRCLEQ_INIT(&spp->spi_swapdev);
    341 
    342 		if (pspp)
    343 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    344 		else
    345 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    346 	} else {
    347 	  	/* we don't need a new priority structure, free it */
    348 		free(newspp, M_VMSWAP);
    349 	}
    350 
    351 	/*
    352 	 * priority found (or created).   now insert on the priority's
    353 	 * circleq list and bump the total number of swapdevs.
    354 	 */
    355 	sdp->swd_priority = priority;
    356 	CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    357 	uvmexp.nswapdev++;
    358 }
    359 
    360 /*
    361  * swaplist_find: find and optionally remove a swap device from the
    362  *	global list.
    363  *
    364  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    365  * => we return the swapdev we found (and removed)
    366  */
    367 static struct swapdev *
    368 swaplist_find(struct vnode *vp, bool remove)
    369 {
    370 	struct swapdev *sdp;
    371 	struct swappri *spp;
    372 
    373 	/*
    374 	 * search the lists for the requested vp
    375 	 */
    376 
    377 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    378 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    379 			if (sdp->swd_vp == vp) {
    380 				if (remove) {
    381 					CIRCLEQ_REMOVE(&spp->spi_swapdev,
    382 					    sdp, swd_next);
    383 					uvmexp.nswapdev--;
    384 				}
    385 				return(sdp);
    386 			}
    387 		}
    388 	}
    389 	return (NULL);
    390 }
    391 
    392 /*
    393  * swaplist_trim: scan priority list for empty priority entries and kill
    394  *	them.
    395  *
    396  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    397  */
    398 static void
    399 swaplist_trim(void)
    400 {
    401 	struct swappri *spp, *nextspp;
    402 
    403 	for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
    404 		nextspp = LIST_NEXT(spp, spi_swappri);
    405 		if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
    406 		    (void *)&spp->spi_swapdev)
    407 			continue;
    408 		LIST_REMOVE(spp, spi_swappri);
    409 		free(spp, M_VMSWAP);
    410 	}
    411 }
    412 
    413 /*
    414  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    415  *	to the "swapdev" that maps that section of the drum.
    416  *
    417  * => each swapdev takes one big contig chunk of the drum
    418  * => caller must hold uvm_swap_data_lock
    419  */
    420 static struct swapdev *
    421 swapdrum_getsdp(int pgno)
    422 {
    423 	struct swapdev *sdp;
    424 	struct swappri *spp;
    425 
    426 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    427 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    428 			if (sdp->swd_flags & SWF_FAKE)
    429 				continue;
    430 			if (pgno >= sdp->swd_drumoffset &&
    431 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    432 				return sdp;
    433 			}
    434 		}
    435 	}
    436 	return NULL;
    437 }
    438 
    439 
    440 /*
    441  * sys_swapctl: main entry point for swapctl(2) system call
    442  * 	[with two helper functions: swap_on and swap_off]
    443  */
    444 int
    445 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    446 {
    447 	/* {
    448 		syscallarg(int) cmd;
    449 		syscallarg(void *) arg;
    450 		syscallarg(int) misc;
    451 	} */
    452 	struct vnode *vp;
    453 	struct nameidata nd;
    454 	struct swappri *spp;
    455 	struct swapdev *sdp;
    456 	struct swapent *sep;
    457 #define SWAP_PATH_MAX (PATH_MAX + 1)
    458 	char	*userpath;
    459 	size_t	len;
    460 	int	error, misc;
    461 	int	priority;
    462 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    463 
    464 	misc = SCARG(uap, misc);
    465 
    466 	/*
    467 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    468 	 */
    469 	rw_enter(&swap_syscall_lock, RW_WRITER);
    470 
    471 	userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
    472 	/*
    473 	 * we handle the non-priv NSWAP and STATS request first.
    474 	 *
    475 	 * SWAP_NSWAP: return number of config'd swap devices
    476 	 * [can also be obtained with uvmexp sysctl]
    477 	 */
    478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    479 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
    480 		    0, 0, 0);
    481 		*retval = uvmexp.nswapdev;
    482 		error = 0;
    483 		goto out;
    484 	}
    485 
    486 	/*
    487 	 * SWAP_STATS: get stats on current # of configured swap devs
    488 	 *
    489 	 * note that the swap_priority list can't change as long
    490 	 * as we are holding the swap_syscall_lock.  we don't want
    491 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    492 	 * copyout() and we don't want to be holding that lock then!
    493 	 */
    494 	if (SCARG(uap, cmd) == SWAP_STATS
    495 #if defined(COMPAT_50)
    496 	    || SCARG(uap, cmd) == SWAP_STATS50
    497 #endif
    498 #if defined(COMPAT_13)
    499 	    || SCARG(uap, cmd) == SWAP_STATS13
    500 #endif
    501 	    ) {
    502 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    503 			misc = uvmexp.nswapdev;
    504 #if defined(COMPAT_13)
    505 		if (SCARG(uap, cmd) == SWAP_STATS13)
    506 			len = sizeof(struct swapent13) * misc;
    507 		else
    508 #endif
    509 #if defined(COMPAT_50)
    510 		if (SCARG(uap, cmd) == SWAP_STATS50)
    511 			len = sizeof(struct swapent50) * misc;
    512 		else
    513 #endif
    514 			len = sizeof(struct swapent) * misc;
    515 		sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
    516 
    517 		uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
    518 		error = copyout(sep, SCARG(uap, arg), len);
    519 
    520 		free(sep, M_TEMP);
    521 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    522 		goto out;
    523 	}
    524 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    525 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    526 
    527 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    528 		goto out;
    529 	}
    530 
    531 	/*
    532 	 * all other requests require superuser privs.   verify.
    533 	 */
    534 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    535 	    0, NULL, NULL, NULL)))
    536 		goto out;
    537 
    538 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    539 		/* drop the current dump device */
    540 		dumpdev = NODEV;
    541 		dumpcdev = NODEV;
    542 		cpu_dumpconf();
    543 		goto out;
    544 	}
    545 
    546 	/*
    547 	 * at this point we expect a path name in arg.   we will
    548 	 * use namei() to gain a vnode reference (vref), and lock
    549 	 * the vnode (VOP_LOCK).
    550 	 *
    551 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    552 	 * miniroot)
    553 	 */
    554 	if (SCARG(uap, arg) == NULL) {
    555 		vp = rootvp;		/* miniroot */
    556 		if (vget(vp, LK_EXCLUSIVE)) {
    557 			error = EBUSY;
    558 			goto out;
    559 		}
    560 		if (SCARG(uap, cmd) == SWAP_ON &&
    561 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    562 			panic("swapctl: miniroot copy failed");
    563 	} else {
    564 		int	space;
    565 		char	*where;
    566 
    567 		if (SCARG(uap, cmd) == SWAP_ON) {
    568 			if ((error = copyinstr(SCARG(uap, arg), userpath,
    569 			    SWAP_PATH_MAX, &len)))
    570 				goto out;
    571 			space = UIO_SYSSPACE;
    572 			where = userpath;
    573 		} else {
    574 			space = UIO_USERSPACE;
    575 			where = (char *)SCARG(uap, arg);
    576 		}
    577 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
    578 		    space, where);
    579 		if ((error = namei(&nd)))
    580 			goto out;
    581 		vp = nd.ni_vp;
    582 	}
    583 	/* note: "vp" is referenced and locked */
    584 
    585 	error = 0;		/* assume no error */
    586 	switch(SCARG(uap, cmd)) {
    587 
    588 	case SWAP_DUMPDEV:
    589 		if (vp->v_type != VBLK) {
    590 			error = ENOTBLK;
    591 			break;
    592 		}
    593 		if (bdevsw_lookup(vp->v_rdev)) {
    594 			dumpdev = vp->v_rdev;
    595 			dumpcdev = devsw_blk2chr(dumpdev);
    596 		} else
    597 			dumpdev = NODEV;
    598 		cpu_dumpconf();
    599 		break;
    600 
    601 	case SWAP_CTL:
    602 		/*
    603 		 * get new priority, remove old entry (if any) and then
    604 		 * reinsert it in the correct place.  finally, prune out
    605 		 * any empty priority structures.
    606 		 */
    607 		priority = SCARG(uap, misc);
    608 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    609 		mutex_enter(&uvm_swap_data_lock);
    610 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    611 			error = ENOENT;
    612 		} else {
    613 			swaplist_insert(sdp, spp, priority);
    614 			swaplist_trim();
    615 		}
    616 		mutex_exit(&uvm_swap_data_lock);
    617 		if (error)
    618 			free(spp, M_VMSWAP);
    619 		break;
    620 
    621 	case SWAP_ON:
    622 
    623 		/*
    624 		 * check for duplicates.   if none found, then insert a
    625 		 * dummy entry on the list to prevent someone else from
    626 		 * trying to enable this device while we are working on
    627 		 * it.
    628 		 */
    629 
    630 		priority = SCARG(uap, misc);
    631 		sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
    632 		spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
    633 		memset(sdp, 0, sizeof(*sdp));
    634 		sdp->swd_flags = SWF_FAKE;
    635 		sdp->swd_vp = vp;
    636 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    637 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    638 		mutex_enter(&uvm_swap_data_lock);
    639 		if (swaplist_find(vp, false) != NULL) {
    640 			error = EBUSY;
    641 			mutex_exit(&uvm_swap_data_lock);
    642 			bufq_free(sdp->swd_tab);
    643 			free(sdp, M_VMSWAP);
    644 			free(spp, M_VMSWAP);
    645 			break;
    646 		}
    647 		swaplist_insert(sdp, spp, priority);
    648 		mutex_exit(&uvm_swap_data_lock);
    649 
    650 		sdp->swd_pathlen = len;
    651 		sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
    652 		if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
    653 			panic("swapctl: copystr");
    654 
    655 		/*
    656 		 * we've now got a FAKE placeholder in the swap list.
    657 		 * now attempt to enable swap on it.  if we fail, undo
    658 		 * what we've done and kill the fake entry we just inserted.
    659 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    660 		 */
    661 
    662 		if ((error = swap_on(l, sdp)) != 0) {
    663 			mutex_enter(&uvm_swap_data_lock);
    664 			(void) swaplist_find(vp, true);  /* kill fake entry */
    665 			swaplist_trim();
    666 			mutex_exit(&uvm_swap_data_lock);
    667 			bufq_free(sdp->swd_tab);
    668 			free(sdp->swd_path, M_VMSWAP);
    669 			free(sdp, M_VMSWAP);
    670 			break;
    671 		}
    672 		break;
    673 
    674 	case SWAP_OFF:
    675 		mutex_enter(&uvm_swap_data_lock);
    676 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    677 			mutex_exit(&uvm_swap_data_lock);
    678 			error = ENXIO;
    679 			break;
    680 		}
    681 
    682 		/*
    683 		 * If a device isn't in use or enabled, we
    684 		 * can't stop swapping from it (again).
    685 		 */
    686 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    687 			mutex_exit(&uvm_swap_data_lock);
    688 			error = EBUSY;
    689 			break;
    690 		}
    691 
    692 		/*
    693 		 * do the real work.
    694 		 */
    695 		error = swap_off(l, sdp);
    696 		break;
    697 
    698 	default:
    699 		error = EINVAL;
    700 	}
    701 
    702 	/*
    703 	 * done!  release the ref gained by namei() and unlock.
    704 	 */
    705 	vput(vp);
    706 
    707 out:
    708 	free(userpath, M_TEMP);
    709 	rw_exit(&swap_syscall_lock);
    710 
    711 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    712 	return (error);
    713 }
    714 
    715 /*
    716  * swap_stats: implements swapctl(SWAP_STATS). The function is kept
    717  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    718  * emulation to use it directly without going through sys_swapctl().
    719  * The problem with using sys_swapctl() there is that it involves
    720  * copying the swapent array to the stackgap, and this array's size
    721  * is not known at build time. Hence it would not be possible to
    722  * ensure it would fit in the stackgap in any case.
    723  */
    724 void
    725 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    726 {
    727 
    728 	rw_enter(&swap_syscall_lock, RW_READER);
    729 	uvm_swap_stats_locked(cmd, sep, sec, retval);
    730 	rw_exit(&swap_syscall_lock);
    731 }
    732 
    733 static void
    734 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
    735 {
    736 	struct swappri *spp;
    737 	struct swapdev *sdp;
    738 	int count = 0;
    739 
    740 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    741 		for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
    742 		     sdp != (void *)&spp->spi_swapdev && sec-- > 0;
    743 		     sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
    744 			int inuse;
    745 
    746 		  	/*
    747 			 * backwards compatibility for system call.
    748 			 * For NetBSD 1.3 and 5.0, we have to use
    749 			 * the 32 bit dev_t.  For 5.0 and -current
    750 			 * we have to add the path.
    751 			 */
    752 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    753 			    PAGE_SHIFT);
    754 
    755 #if defined(COMPAT_13) || defined(COMPAT_50)
    756 			if (cmd == SWAP_STATS) {
    757 #endif
    758 				sep->se_dev = sdp->swd_dev;
    759 				sep->se_flags = sdp->swd_flags;
    760 				sep->se_nblks = sdp->swd_nblks;
    761 				sep->se_inuse = inuse;
    762 				sep->se_priority = sdp->swd_priority;
    763 				memcpy(&sep->se_path, sdp->swd_path,
    764 				       sizeof sep->se_path);
    765 				sep++;
    766 #if defined(COMPAT_13)
    767 			} else if (cmd == SWAP_STATS13) {
    768 				struct swapent13 *sep13 =
    769 				    (struct swapent13 *)sep;
    770 
    771 				sep13->se13_dev = sdp->swd_dev;
    772 				sep13->se13_flags = sdp->swd_flags;
    773 				sep13->se13_nblks = sdp->swd_nblks;
    774 				sep13->se13_inuse = inuse;
    775 				sep13->se13_priority = sdp->swd_priority;
    776 				sep = (struct swapent *)(sep13 + 1);
    777 #endif
    778 #if defined(COMPAT_50)
    779 			} else if (cmd == SWAP_STATS50) {
    780 				struct swapent50 *sep50 =
    781 				    (struct swapent50 *)sep;
    782 
    783 				sep50->se50_dev = sdp->swd_dev;
    784 				sep50->se50_flags = sdp->swd_flags;
    785 				sep50->se50_nblks = sdp->swd_nblks;
    786 				sep50->se50_inuse = inuse;
    787 				sep50->se50_priority = sdp->swd_priority;
    788 				memcpy(&sep50->se50_path, sdp->swd_path,
    789 				       sizeof sep50->se50_path);
    790 				sep = (struct swapent *)(sep50 + 1);
    791 #endif
    792 #if defined(COMPAT_13) || defined(COMPAT_50)
    793 			}
    794 #endif
    795 			count++;
    796 		}
    797 	}
    798 
    799 	*retval = count;
    800 	return;
    801 }
    802 
    803 /*
    804  * swap_on: attempt to enable a swapdev for swapping.   note that the
    805  *	swapdev is already on the global list, but disabled (marked
    806  *	SWF_FAKE).
    807  *
    808  * => we avoid the start of the disk (to protect disk labels)
    809  * => we also avoid the miniroot, if we are swapping to root.
    810  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    811  *	if needed.
    812  */
    813 static int
    814 swap_on(struct lwp *l, struct swapdev *sdp)
    815 {
    816 	struct vnode *vp;
    817 	int error, npages, nblocks, size;
    818 	long addr;
    819 	u_long result;
    820 	struct vattr va;
    821 #ifdef NFS
    822 	extern int (**nfsv2_vnodeop_p)(void *);
    823 #endif /* NFS */
    824 	const struct bdevsw *bdev;
    825 	dev_t dev;
    826 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    827 
    828 	/*
    829 	 * we want to enable swapping on sdp.   the swd_vp contains
    830 	 * the vnode we want (locked and ref'd), and the swd_dev
    831 	 * contains the dev_t of the file, if it a block device.
    832 	 */
    833 
    834 	vp = sdp->swd_vp;
    835 	dev = sdp->swd_dev;
    836 
    837 	/*
    838 	 * open the swap file (mostly useful for block device files to
    839 	 * let device driver know what is up).
    840 	 *
    841 	 * we skip the open/close for root on swap because the root
    842 	 * has already been opened when root was mounted (mountroot).
    843 	 */
    844 	if (vp != rootvp) {
    845 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    846 			return (error);
    847 	}
    848 
    849 	/* XXX this only works for block devices */
    850 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    851 
    852 	/*
    853 	 * we now need to determine the size of the swap area.   for
    854 	 * block specials we can call the d_psize function.
    855 	 * for normal files, we must stat [get attrs].
    856 	 *
    857 	 * we put the result in nblks.
    858 	 * for normal files, we also want the filesystem block size
    859 	 * (which we get with statfs).
    860 	 */
    861 	switch (vp->v_type) {
    862 	case VBLK:
    863 		bdev = bdevsw_lookup(dev);
    864 		if (bdev == NULL || bdev->d_psize == NULL ||
    865 		    (nblocks = (*bdev->d_psize)(dev)) == -1) {
    866 			error = ENXIO;
    867 			goto bad;
    868 		}
    869 		break;
    870 
    871 	case VREG:
    872 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    873 			goto bad;
    874 		nblocks = (int)btodb(va.va_size);
    875 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    876 		/*
    877 		 * limit the max # of outstanding I/O requests we issue
    878 		 * at any one time.   take it easy on NFS servers.
    879 		 */
    880 #ifdef NFS
    881 		if (vp->v_op == nfsv2_vnodeop_p)
    882 			sdp->swd_maxactive = 2; /* XXX */
    883 		else
    884 #endif /* NFS */
    885 			sdp->swd_maxactive = 8; /* XXX */
    886 		break;
    887 
    888 	default:
    889 		error = ENXIO;
    890 		goto bad;
    891 	}
    892 
    893 	/*
    894 	 * save nblocks in a safe place and convert to pages.
    895 	 */
    896 
    897 	sdp->swd_nblks = nblocks;
    898 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    899 
    900 	/*
    901 	 * for block special files, we want to make sure that leave
    902 	 * the disklabel and bootblocks alone, so we arrange to skip
    903 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    904 	 * note that because of this the "size" can be less than the
    905 	 * actual number of blocks on the device.
    906 	 */
    907 	if (vp->v_type == VBLK) {
    908 		/* we use pages 1 to (size - 1) [inclusive] */
    909 		size = npages - 1;
    910 		addr = 1;
    911 	} else {
    912 		/* we use pages 0 to (size - 1) [inclusive] */
    913 		size = npages;
    914 		addr = 0;
    915 	}
    916 
    917 	/*
    918 	 * make sure we have enough blocks for a reasonable sized swap
    919 	 * area.   we want at least one page.
    920 	 */
    921 
    922 	if (size < 1) {
    923 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    924 		error = EINVAL;
    925 		goto bad;
    926 	}
    927 
    928 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    929 
    930 	/*
    931 	 * now we need to allocate an extent to manage this swap device
    932 	 */
    933 
    934 	sdp->swd_blist = blist_create(npages);
    935 	/* mark all expect the `saved' region free. */
    936 	blist_free(sdp->swd_blist, addr, size);
    937 
    938 	/*
    939 	 * if the vnode we are swapping to is the root vnode
    940 	 * (i.e. we are swapping to the miniroot) then we want
    941 	 * to make sure we don't overwrite it.   do a statfs to
    942 	 * find its size and skip over it.
    943 	 */
    944 	if (vp == rootvp) {
    945 		struct mount *mp;
    946 		struct statvfs *sp;
    947 		int rootblocks, rootpages;
    948 
    949 		mp = rootvnode->v_mount;
    950 		sp = &mp->mnt_stat;
    951 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    952 		/*
    953 		 * XXX: sp->f_blocks isn't the total number of
    954 		 * blocks in the filesystem, it's the number of
    955 		 * data blocks.  so, our rootblocks almost
    956 		 * definitely underestimates the total size
    957 		 * of the filesystem - how badly depends on the
    958 		 * details of the filesystem type.  there isn't
    959 		 * an obvious way to deal with this cleanly
    960 		 * and perfectly, so for now we just pad our
    961 		 * rootblocks estimate with an extra 5 percent.
    962 		 */
    963 		rootblocks += (rootblocks >> 5) +
    964 			(rootblocks >> 6) +
    965 			(rootblocks >> 7);
    966 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    967 		if (rootpages > size)
    968 			panic("swap_on: miniroot larger than swap?");
    969 
    970 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    971 			panic("swap_on: unable to preserve miniroot");
    972 		}
    973 
    974 		size -= rootpages;
    975 		printf("Preserved %d pages of miniroot ", rootpages);
    976 		printf("leaving %d pages of swap\n", size);
    977 	}
    978 
    979 	/*
    980 	 * add a ref to vp to reflect usage as a swap device.
    981 	 */
    982 	vref(vp);
    983 
    984 	/*
    985 	 * now add the new swapdev to the drum and enable.
    986 	 */
    987 	result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
    988 	if (result == 0)
    989 		panic("swapdrum_add");
    990 	/*
    991 	 * If this is the first regular swap create the workqueue.
    992 	 * => Protected by swap_syscall_lock.
    993 	 */
    994 	if (vp->v_type != VBLK) {
    995 		if (sw_reg_count++ == 0) {
    996 			KASSERT(sw_reg_workqueue == NULL);
    997 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    998 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    999 				panic("%s: workqueue_create failed", __func__);
   1000 		}
   1001 	}
   1002 
   1003 	sdp->swd_drumoffset = (int)result;
   1004 	sdp->swd_drumsize = npages;
   1005 	sdp->swd_npages = size;
   1006 	mutex_enter(&uvm_swap_data_lock);
   1007 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1008 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1009 	uvmexp.swpages += size;
   1010 	uvmexp.swpgavail += size;
   1011 	mutex_exit(&uvm_swap_data_lock);
   1012 	return (0);
   1013 
   1014 	/*
   1015 	 * failure: clean up and return error.
   1016 	 */
   1017 
   1018 bad:
   1019 	if (sdp->swd_blist) {
   1020 		blist_destroy(sdp->swd_blist);
   1021 	}
   1022 	if (vp != rootvp) {
   1023 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1024 	}
   1025 	return (error);
   1026 }
   1027 
   1028 /*
   1029  * swap_off: stop swapping on swapdev
   1030  *
   1031  * => swap data should be locked, we will unlock.
   1032  */
   1033 static int
   1034 swap_off(struct lwp *l, struct swapdev *sdp)
   1035 {
   1036 	int npages = sdp->swd_npages;
   1037 	int error = 0;
   1038 
   1039 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1040 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1041 
   1042 	/* disable the swap area being removed */
   1043 	sdp->swd_flags &= ~SWF_ENABLE;
   1044 	uvmexp.swpgavail -= npages;
   1045 	mutex_exit(&uvm_swap_data_lock);
   1046 
   1047 	/*
   1048 	 * the idea is to find all the pages that are paged out to this
   1049 	 * device, and page them all in.  in uvm, swap-backed pageable
   1050 	 * memory can take two forms: aobjs and anons.  call the
   1051 	 * swapoff hook for each subsystem to bring in pages.
   1052 	 */
   1053 
   1054 	if (uao_swap_off(sdp->swd_drumoffset,
   1055 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1056 	    amap_swap_off(sdp->swd_drumoffset,
   1057 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1058 		error = ENOMEM;
   1059 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1060 		error = EBUSY;
   1061 	}
   1062 
   1063 	if (error) {
   1064 		mutex_enter(&uvm_swap_data_lock);
   1065 		sdp->swd_flags |= SWF_ENABLE;
   1066 		uvmexp.swpgavail += npages;
   1067 		mutex_exit(&uvm_swap_data_lock);
   1068 
   1069 		return error;
   1070 	}
   1071 
   1072 	/*
   1073 	 * If this is the last regular swap destroy the workqueue.
   1074 	 * => Protected by swap_syscall_lock.
   1075 	 */
   1076 	if (sdp->swd_vp->v_type != VBLK) {
   1077 		KASSERT(sw_reg_count > 0);
   1078 		KASSERT(sw_reg_workqueue != NULL);
   1079 		if (--sw_reg_count == 0) {
   1080 			workqueue_destroy(sw_reg_workqueue);
   1081 			sw_reg_workqueue = NULL;
   1082 		}
   1083 	}
   1084 
   1085 	/*
   1086 	 * done with the vnode.
   1087 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1088 	 * so that spec_close() can tell if this is the last close.
   1089 	 */
   1090 	vrele(sdp->swd_vp);
   1091 	if (sdp->swd_vp != rootvp) {
   1092 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1093 	}
   1094 
   1095 	mutex_enter(&uvm_swap_data_lock);
   1096 	uvmexp.swpages -= npages;
   1097 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1098 
   1099 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1100 		panic("%s: swapdev not in list", __func__);
   1101 	swaplist_trim();
   1102 	mutex_exit(&uvm_swap_data_lock);
   1103 
   1104 	/*
   1105 	 * free all resources!
   1106 	 */
   1107 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1108 	blist_destroy(sdp->swd_blist);
   1109 	bufq_free(sdp->swd_tab);
   1110 	free(sdp, M_VMSWAP);
   1111 	return (0);
   1112 }
   1113 
   1114 /*
   1115  * /dev/drum interface and i/o functions
   1116  */
   1117 
   1118 /*
   1119  * swstrategy: perform I/O on the drum
   1120  *
   1121  * => we must map the i/o request from the drum to the correct swapdev.
   1122  */
   1123 static void
   1124 swstrategy(struct buf *bp)
   1125 {
   1126 	struct swapdev *sdp;
   1127 	struct vnode *vp;
   1128 	int pageno, bn;
   1129 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1130 
   1131 	/*
   1132 	 * convert block number to swapdev.   note that swapdev can't
   1133 	 * be yanked out from under us because we are holding resources
   1134 	 * in it (i.e. the blocks we are doing I/O on).
   1135 	 */
   1136 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1137 	mutex_enter(&uvm_swap_data_lock);
   1138 	sdp = swapdrum_getsdp(pageno);
   1139 	mutex_exit(&uvm_swap_data_lock);
   1140 	if (sdp == NULL) {
   1141 		bp->b_error = EINVAL;
   1142 		biodone(bp);
   1143 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1144 		return;
   1145 	}
   1146 
   1147 	/*
   1148 	 * convert drum page number to block number on this swapdev.
   1149 	 */
   1150 
   1151 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1152 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1153 
   1154 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1155 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1156 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1157 
   1158 	/*
   1159 	 * for block devices we finish up here.
   1160 	 * for regular files we have to do more work which we delegate
   1161 	 * to sw_reg_strategy().
   1162 	 */
   1163 
   1164 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1165 	switch (vp->v_type) {
   1166 	default:
   1167 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1168 
   1169 	case VBLK:
   1170 
   1171 		/*
   1172 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1173 		 * on the swapdev (sdp).
   1174 		 */
   1175 		bp->b_blkno = bn;		/* swapdev block number */
   1176 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1177 
   1178 		/*
   1179 		 * if we are doing a write, we have to redirect the i/o on
   1180 		 * drum's v_numoutput counter to the swapdevs.
   1181 		 */
   1182 		if ((bp->b_flags & B_READ) == 0) {
   1183 			mutex_enter(bp->b_objlock);
   1184 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1185 			mutex_exit(bp->b_objlock);
   1186 			mutex_enter(&vp->v_interlock);
   1187 			vp->v_numoutput++;	/* put it on swapdev */
   1188 			mutex_exit(&vp->v_interlock);
   1189 		}
   1190 
   1191 		/*
   1192 		 * finally plug in swapdev vnode and start I/O
   1193 		 */
   1194 		bp->b_vp = vp;
   1195 		bp->b_objlock = &vp->v_interlock;
   1196 		VOP_STRATEGY(vp, bp);
   1197 		return;
   1198 
   1199 	case VREG:
   1200 		/*
   1201 		 * delegate to sw_reg_strategy function.
   1202 		 */
   1203 		sw_reg_strategy(sdp, bp, bn);
   1204 		return;
   1205 	}
   1206 	/* NOTREACHED */
   1207 }
   1208 
   1209 /*
   1210  * swread: the read function for the drum (just a call to physio)
   1211  */
   1212 /*ARGSUSED*/
   1213 static int
   1214 swread(dev_t dev, struct uio *uio, int ioflag)
   1215 {
   1216 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1217 
   1218 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1219 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1220 }
   1221 
   1222 /*
   1223  * swwrite: the write function for the drum (just a call to physio)
   1224  */
   1225 /*ARGSUSED*/
   1226 static int
   1227 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1228 {
   1229 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1230 
   1231 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1232 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1233 }
   1234 
   1235 const struct bdevsw swap_bdevsw = {
   1236 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1237 };
   1238 
   1239 const struct cdevsw swap_cdevsw = {
   1240 	nullopen, nullclose, swread, swwrite, noioctl,
   1241 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1242 };
   1243 
   1244 /*
   1245  * sw_reg_strategy: handle swap i/o to regular files
   1246  */
   1247 static void
   1248 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1249 {
   1250 	struct vnode	*vp;
   1251 	struct vndxfer	*vnx;
   1252 	daddr_t		nbn;
   1253 	char 		*addr;
   1254 	off_t		byteoff;
   1255 	int		s, off, nra, error, sz, resid;
   1256 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1257 
   1258 	/*
   1259 	 * allocate a vndxfer head for this transfer and point it to
   1260 	 * our buffer.
   1261 	 */
   1262 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1263 	vnx->vx_flags = VX_BUSY;
   1264 	vnx->vx_error = 0;
   1265 	vnx->vx_pending = 0;
   1266 	vnx->vx_bp = bp;
   1267 	vnx->vx_sdp = sdp;
   1268 
   1269 	/*
   1270 	 * setup for main loop where we read filesystem blocks into
   1271 	 * our buffer.
   1272 	 */
   1273 	error = 0;
   1274 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1275 	addr = bp->b_data;		/* current position in buffer */
   1276 	byteoff = dbtob((uint64_t)bn);
   1277 
   1278 	for (resid = bp->b_resid; resid; resid -= sz) {
   1279 		struct vndbuf	*nbp;
   1280 
   1281 		/*
   1282 		 * translate byteoffset into block number.  return values:
   1283 		 *   vp = vnode of underlying device
   1284 		 *  nbn = new block number (on underlying vnode dev)
   1285 		 *  nra = num blocks we can read-ahead (excludes requested
   1286 		 *	block)
   1287 		 */
   1288 		nra = 0;
   1289 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1290 				 	&vp, &nbn, &nra);
   1291 
   1292 		if (error == 0 && nbn == (daddr_t)-1) {
   1293 			/*
   1294 			 * this used to just set error, but that doesn't
   1295 			 * do the right thing.  Instead, it causes random
   1296 			 * memory errors.  The panic() should remain until
   1297 			 * this condition doesn't destabilize the system.
   1298 			 */
   1299 #if 1
   1300 			panic("%s: swap to sparse file", __func__);
   1301 #else
   1302 			error = EIO;	/* failure */
   1303 #endif
   1304 		}
   1305 
   1306 		/*
   1307 		 * punt if there was an error or a hole in the file.
   1308 		 * we must wait for any i/o ops we have already started
   1309 		 * to finish before returning.
   1310 		 *
   1311 		 * XXX we could deal with holes here but it would be
   1312 		 * a hassle (in the write case).
   1313 		 */
   1314 		if (error) {
   1315 			s = splbio();
   1316 			vnx->vx_error = error;	/* pass error up */
   1317 			goto out;
   1318 		}
   1319 
   1320 		/*
   1321 		 * compute the size ("sz") of this transfer (in bytes).
   1322 		 */
   1323 		off = byteoff % sdp->swd_bsize;
   1324 		sz = (1 + nra) * sdp->swd_bsize - off;
   1325 		if (sz > resid)
   1326 			sz = resid;
   1327 
   1328 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1329 			    "vp %p/%p offset 0x%x/0x%x",
   1330 			    sdp->swd_vp, vp, byteoff, nbn);
   1331 
   1332 		/*
   1333 		 * now get a buf structure.   note that the vb_buf is
   1334 		 * at the front of the nbp structure so that you can
   1335 		 * cast pointers between the two structure easily.
   1336 		 */
   1337 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1338 		buf_init(&nbp->vb_buf);
   1339 		nbp->vb_buf.b_flags    = bp->b_flags;
   1340 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1341 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1342 		nbp->vb_buf.b_bcount   = sz;
   1343 		nbp->vb_buf.b_bufsize  = sz;
   1344 		nbp->vb_buf.b_error    = 0;
   1345 		nbp->vb_buf.b_data     = addr;
   1346 		nbp->vb_buf.b_lblkno   = 0;
   1347 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1348 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1349 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1350 		nbp->vb_buf.b_vp       = vp;
   1351 		nbp->vb_buf.b_objlock  = &vp->v_interlock;
   1352 		if (vp->v_type == VBLK) {
   1353 			nbp->vb_buf.b_dev = vp->v_rdev;
   1354 		}
   1355 
   1356 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1357 
   1358 		/*
   1359 		 * Just sort by block number
   1360 		 */
   1361 		s = splbio();
   1362 		if (vnx->vx_error != 0) {
   1363 			buf_destroy(&nbp->vb_buf);
   1364 			pool_put(&vndbuf_pool, nbp);
   1365 			goto out;
   1366 		}
   1367 		vnx->vx_pending++;
   1368 
   1369 		/* sort it in and start I/O if we are not over our limit */
   1370 		/* XXXAD locking */
   1371 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1372 		sw_reg_start(sdp);
   1373 		splx(s);
   1374 
   1375 		/*
   1376 		 * advance to the next I/O
   1377 		 */
   1378 		byteoff += sz;
   1379 		addr += sz;
   1380 	}
   1381 
   1382 	s = splbio();
   1383 
   1384 out: /* Arrive here at splbio */
   1385 	vnx->vx_flags &= ~VX_BUSY;
   1386 	if (vnx->vx_pending == 0) {
   1387 		error = vnx->vx_error;
   1388 		pool_put(&vndxfer_pool, vnx);
   1389 		bp->b_error = error;
   1390 		biodone(bp);
   1391 	}
   1392 	splx(s);
   1393 }
   1394 
   1395 /*
   1396  * sw_reg_start: start an I/O request on the requested swapdev
   1397  *
   1398  * => reqs are sorted by b_rawblkno (above)
   1399  */
   1400 static void
   1401 sw_reg_start(struct swapdev *sdp)
   1402 {
   1403 	struct buf	*bp;
   1404 	struct vnode	*vp;
   1405 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1406 
   1407 	/* recursion control */
   1408 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1409 		return;
   1410 
   1411 	sdp->swd_flags |= SWF_BUSY;
   1412 
   1413 	while (sdp->swd_active < sdp->swd_maxactive) {
   1414 		bp = bufq_get(sdp->swd_tab);
   1415 		if (bp == NULL)
   1416 			break;
   1417 		sdp->swd_active++;
   1418 
   1419 		UVMHIST_LOG(pdhist,
   1420 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1421 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1422 		vp = bp->b_vp;
   1423 		KASSERT(bp->b_objlock == &vp->v_interlock);
   1424 		if ((bp->b_flags & B_READ) == 0) {
   1425 			mutex_enter(&vp->v_interlock);
   1426 			vp->v_numoutput++;
   1427 			mutex_exit(&vp->v_interlock);
   1428 		}
   1429 		VOP_STRATEGY(vp, bp);
   1430 	}
   1431 	sdp->swd_flags &= ~SWF_BUSY;
   1432 }
   1433 
   1434 /*
   1435  * sw_reg_biodone: one of our i/o's has completed
   1436  */
   1437 static void
   1438 sw_reg_biodone(struct buf *bp)
   1439 {
   1440 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1441 }
   1442 
   1443 /*
   1444  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1445  *
   1446  * => note that we can recover the vndbuf struct by casting the buf ptr
   1447  */
   1448 static void
   1449 sw_reg_iodone(struct work *wk, void *dummy)
   1450 {
   1451 	struct vndbuf *vbp = (void *)wk;
   1452 	struct vndxfer *vnx = vbp->vb_xfer;
   1453 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1454 	struct swapdev	*sdp = vnx->vx_sdp;
   1455 	int s, resid, error;
   1456 	KASSERT(&vbp->vb_buf.b_work == wk);
   1457 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1458 
   1459 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1460 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1461 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1462 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1463 
   1464 	/*
   1465 	 * protect vbp at splbio and update.
   1466 	 */
   1467 
   1468 	s = splbio();
   1469 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1470 	pbp->b_resid -= resid;
   1471 	vnx->vx_pending--;
   1472 
   1473 	if (vbp->vb_buf.b_error != 0) {
   1474 		/* pass error upward */
   1475 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1476 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1477 		vnx->vx_error = error;
   1478 	}
   1479 
   1480 	/*
   1481 	 * kill vbp structure
   1482 	 */
   1483 	buf_destroy(&vbp->vb_buf);
   1484 	pool_put(&vndbuf_pool, vbp);
   1485 
   1486 	/*
   1487 	 * wrap up this transaction if it has run to completion or, in
   1488 	 * case of an error, when all auxiliary buffers have returned.
   1489 	 */
   1490 	if (vnx->vx_error != 0) {
   1491 		/* pass error upward */
   1492 		error = vnx->vx_error;
   1493 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1494 			pbp->b_error = error;
   1495 			biodone(pbp);
   1496 			pool_put(&vndxfer_pool, vnx);
   1497 		}
   1498 	} else if (pbp->b_resid == 0) {
   1499 		KASSERT(vnx->vx_pending == 0);
   1500 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1501 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1502 			    pbp, vnx->vx_error, 0, 0);
   1503 			biodone(pbp);
   1504 			pool_put(&vndxfer_pool, vnx);
   1505 		}
   1506 	}
   1507 
   1508 	/*
   1509 	 * done!   start next swapdev I/O if one is pending
   1510 	 */
   1511 	sdp->swd_active--;
   1512 	sw_reg_start(sdp);
   1513 	splx(s);
   1514 }
   1515 
   1516 
   1517 /*
   1518  * uvm_swap_alloc: allocate space on swap
   1519  *
   1520  * => allocation is done "round robin" down the priority list, as we
   1521  *	allocate in a priority we "rotate" the circle queue.
   1522  * => space can be freed with uvm_swap_free
   1523  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1524  * => we lock uvm_swap_data_lock
   1525  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1526  */
   1527 int
   1528 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1529 {
   1530 	struct swapdev *sdp;
   1531 	struct swappri *spp;
   1532 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1533 
   1534 	/*
   1535 	 * no swap devices configured yet?   definite failure.
   1536 	 */
   1537 	if (uvmexp.nswapdev < 1)
   1538 		return 0;
   1539 
   1540 	/*
   1541 	 * lock data lock, convert slots into blocks, and enter loop
   1542 	 */
   1543 	mutex_enter(&uvm_swap_data_lock);
   1544 
   1545 ReTry:	/* XXXMRG */
   1546 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1547 		CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1548 			uint64_t result;
   1549 
   1550 			/* if it's not enabled, then we can't swap from it */
   1551 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1552 				continue;
   1553 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1554 				continue;
   1555 			result = blist_alloc(sdp->swd_blist, *nslots);
   1556 			if (result == BLIST_NONE) {
   1557 				continue;
   1558 			}
   1559 			KASSERT(result < sdp->swd_drumsize);
   1560 
   1561 			/*
   1562 			 * successful allocation!  now rotate the circleq.
   1563 			 */
   1564 			CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1565 			CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1566 			sdp->swd_npginuse += *nslots;
   1567 			uvmexp.swpginuse += *nslots;
   1568 			mutex_exit(&uvm_swap_data_lock);
   1569 			/* done!  return drum slot number */
   1570 			UVMHIST_LOG(pdhist,
   1571 			    "success!  returning %d slots starting at %d",
   1572 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1573 			return (result + sdp->swd_drumoffset);
   1574 		}
   1575 	}
   1576 
   1577 	/* XXXMRG: BEGIN HACK */
   1578 	if (*nslots > 1 && lessok) {
   1579 		*nslots = 1;
   1580 		/* XXXMRG: ugh!  blist should support this for us */
   1581 		goto ReTry;
   1582 	}
   1583 	/* XXXMRG: END HACK */
   1584 
   1585 	mutex_exit(&uvm_swap_data_lock);
   1586 	return 0;
   1587 }
   1588 
   1589 /*
   1590  * uvm_swapisfull: return true if most of available swap is allocated
   1591  * and in use.  we don't count some small portion as it may be inaccessible
   1592  * to us at any given moment, for example if there is lock contention or if
   1593  * pages are busy.
   1594  */
   1595 bool
   1596 uvm_swapisfull(void)
   1597 {
   1598 	int swpgonly;
   1599 	bool rv;
   1600 
   1601 	mutex_enter(&uvm_swap_data_lock);
   1602 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1603 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1604 	    uvm_swapisfull_factor);
   1605 	rv = (swpgonly >= uvmexp.swpgavail);
   1606 	mutex_exit(&uvm_swap_data_lock);
   1607 
   1608 	return (rv);
   1609 }
   1610 
   1611 /*
   1612  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1613  *
   1614  * => we lock uvm_swap_data_lock
   1615  */
   1616 void
   1617 uvm_swap_markbad(int startslot, int nslots)
   1618 {
   1619 	struct swapdev *sdp;
   1620 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1621 
   1622 	mutex_enter(&uvm_swap_data_lock);
   1623 	sdp = swapdrum_getsdp(startslot);
   1624 	KASSERT(sdp != NULL);
   1625 
   1626 	/*
   1627 	 * we just keep track of how many pages have been marked bad
   1628 	 * in this device, to make everything add up in swap_off().
   1629 	 * we assume here that the range of slots will all be within
   1630 	 * one swap device.
   1631 	 */
   1632 
   1633 	KASSERT(uvmexp.swpgonly >= nslots);
   1634 	uvmexp.swpgonly -= nslots;
   1635 	sdp->swd_npgbad += nslots;
   1636 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1637 	mutex_exit(&uvm_swap_data_lock);
   1638 }
   1639 
   1640 /*
   1641  * uvm_swap_free: free swap slots
   1642  *
   1643  * => this can be all or part of an allocation made by uvm_swap_alloc
   1644  * => we lock uvm_swap_data_lock
   1645  */
   1646 void
   1647 uvm_swap_free(int startslot, int nslots)
   1648 {
   1649 	struct swapdev *sdp;
   1650 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1651 
   1652 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1653 	    startslot, 0, 0);
   1654 
   1655 	/*
   1656 	 * ignore attempts to free the "bad" slot.
   1657 	 */
   1658 
   1659 	if (startslot == SWSLOT_BAD) {
   1660 		return;
   1661 	}
   1662 
   1663 	/*
   1664 	 * convert drum slot offset back to sdp, free the blocks
   1665 	 * in the extent, and return.   must hold pri lock to do
   1666 	 * lookup and access the extent.
   1667 	 */
   1668 
   1669 	mutex_enter(&uvm_swap_data_lock);
   1670 	sdp = swapdrum_getsdp(startslot);
   1671 	KASSERT(uvmexp.nswapdev >= 1);
   1672 	KASSERT(sdp != NULL);
   1673 	KASSERT(sdp->swd_npginuse >= nslots);
   1674 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1675 	sdp->swd_npginuse -= nslots;
   1676 	uvmexp.swpginuse -= nslots;
   1677 	mutex_exit(&uvm_swap_data_lock);
   1678 }
   1679 
   1680 /*
   1681  * uvm_swap_put: put any number of pages into a contig place on swap
   1682  *
   1683  * => can be sync or async
   1684  */
   1685 
   1686 int
   1687 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1688 {
   1689 	int error;
   1690 
   1691 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1692 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1693 	return error;
   1694 }
   1695 
   1696 /*
   1697  * uvm_swap_get: get a single page from swap
   1698  *
   1699  * => usually a sync op (from fault)
   1700  */
   1701 
   1702 int
   1703 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1704 {
   1705 	int error;
   1706 
   1707 	uvmexp.nswget++;
   1708 	KASSERT(flags & PGO_SYNCIO);
   1709 	if (swslot == SWSLOT_BAD) {
   1710 		return EIO;
   1711 	}
   1712 
   1713 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1714 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1715 	if (error == 0) {
   1716 
   1717 		/*
   1718 		 * this page is no longer only in swap.
   1719 		 */
   1720 
   1721 		mutex_enter(&uvm_swap_data_lock);
   1722 		KASSERT(uvmexp.swpgonly > 0);
   1723 		uvmexp.swpgonly--;
   1724 		mutex_exit(&uvm_swap_data_lock);
   1725 	}
   1726 	return error;
   1727 }
   1728 
   1729 /*
   1730  * uvm_swap_io: do an i/o operation to swap
   1731  */
   1732 
   1733 static int
   1734 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1735 {
   1736 	daddr_t startblk;
   1737 	struct	buf *bp;
   1738 	vaddr_t kva;
   1739 	int	error, mapinflags;
   1740 	bool write, async;
   1741 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1742 
   1743 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1744 	    startslot, npages, flags, 0);
   1745 
   1746 	write = (flags & B_READ) == 0;
   1747 	async = (flags & B_ASYNC) != 0;
   1748 
   1749 	/*
   1750 	 * allocate a buf for the i/o.
   1751 	 */
   1752 
   1753 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1754 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1755 	if (bp == NULL) {
   1756 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1757 		return ENOMEM;
   1758 	}
   1759 
   1760 	/*
   1761 	 * convert starting drum slot to block number
   1762 	 */
   1763 
   1764 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1765 
   1766 	/*
   1767 	 * first, map the pages into the kernel.
   1768 	 */
   1769 
   1770 	mapinflags = !write ?
   1771 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1772 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1773 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1774 
   1775 	/*
   1776 	 * fill in the bp/sbp.   we currently route our i/o through
   1777 	 * /dev/drum's vnode [swapdev_vp].
   1778 	 */
   1779 
   1780 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1781 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1782 	bp->b_proc = &proc0;	/* XXX */
   1783 	bp->b_vnbufs.le_next = NOLIST;
   1784 	bp->b_data = (void *)kva;
   1785 	bp->b_blkno = startblk;
   1786 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1787 
   1788 	/*
   1789 	 * bump v_numoutput (counter of number of active outputs).
   1790 	 */
   1791 
   1792 	if (write) {
   1793 		mutex_enter(&swapdev_vp->v_interlock);
   1794 		swapdev_vp->v_numoutput++;
   1795 		mutex_exit(&swapdev_vp->v_interlock);
   1796 	}
   1797 
   1798 	/*
   1799 	 * for async ops we must set up the iodone handler.
   1800 	 */
   1801 
   1802 	if (async) {
   1803 		bp->b_iodone = uvm_aio_biodone;
   1804 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1805 		if (curlwp == uvm.pagedaemon_lwp)
   1806 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1807 		else
   1808 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1809 	} else {
   1810 		bp->b_iodone = NULL;
   1811 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1812 	}
   1813 	UVMHIST_LOG(pdhist,
   1814 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1815 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1816 
   1817 	/*
   1818 	 * now we start the I/O, and if async, return.
   1819 	 */
   1820 
   1821 	VOP_STRATEGY(swapdev_vp, bp);
   1822 	if (async)
   1823 		return 0;
   1824 
   1825 	/*
   1826 	 * must be sync i/o.   wait for it to finish
   1827 	 */
   1828 
   1829 	error = biowait(bp);
   1830 
   1831 	/*
   1832 	 * kill the pager mapping
   1833 	 */
   1834 
   1835 	uvm_pagermapout(kva, npages);
   1836 
   1837 	/*
   1838 	 * now dispose of the buf and we're done.
   1839 	 */
   1840 
   1841 	if (write) {
   1842 		mutex_enter(&swapdev_vp->v_interlock);
   1843 		vwakeup(bp);
   1844 		mutex_exit(&swapdev_vp->v_interlock);
   1845 	}
   1846 	putiobuf(bp);
   1847 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1848 
   1849 	return (error);
   1850 }
   1851