uvm_swap.c revision 1.150.2.3 1 /* $NetBSD: uvm_swap.c,v 1.150.2.3 2011/03/05 20:56:38 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.150.2.3 2011/03/05 20:56:38 rmind Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/vmem.h>
53 #include <sys/blist.h>
54 #include <sys/mount.h>
55 #include <sys/pool.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * CIRCLEQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats(9) function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 static krwlock_t swap_syscall_lock;
220
221 /* workqueue and use counter for swap to regular files */
222 static int sw_reg_count = 0;
223 static struct workqueue *sw_reg_workqueue;
224
225 /* tuneables */
226 u_int uvm_swapisfull_factor = 99;
227
228 /*
229 * prototypes
230 */
231 static struct swapdev *swapdrum_getsdp(int);
232
233 static struct swapdev *swaplist_find(struct vnode *, bool);
234 static void swaplist_insert(struct swapdev *,
235 struct swappri *, int);
236 static void swaplist_trim(void);
237
238 static int swap_on(struct lwp *, struct swapdev *);
239 static int swap_off(struct lwp *, struct swapdev *);
240
241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
242
243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
244 static void sw_reg_biodone(struct buf *);
245 static void sw_reg_iodone(struct work *wk, void *dummy);
246 static void sw_reg_start(struct swapdev *);
247
248 static int uvm_swap_io(struct vm_page **, int, int, int);
249
250 /*
251 * uvm_swap_init: init the swap system data structures and locks
252 *
253 * => called at boot time from init_main.c after the filesystems
254 * are brought up (which happens after uvm_init())
255 */
256 void
257 uvm_swap_init(void)
258 {
259 UVMHIST_FUNC("uvm_swap_init");
260
261 UVMHIST_CALLED(pdhist);
262 /*
263 * first, init the swap list, its counter, and its lock.
264 * then get a handle on the vnode for /dev/drum by using
265 * the its dev_t number ("swapdev", from MD conf.c).
266 */
267
268 LIST_INIT(&swap_priority);
269 uvmexp.nswapdev = 0;
270 rw_init(&swap_syscall_lock);
271 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
272
273 if (bdevvp(swapdev, &swapdev_vp))
274 panic("%s: can't get vnode for swap device", __func__);
275 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
276 panic("%s: can't lock swap device", __func__);
277 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
278 panic("%s: can't open swap device", __func__);
279 VOP_UNLOCK(swapdev_vp);
280
281 /*
282 * create swap block resource map to map /dev/drum. the range
283 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
284 * that block 0 is reserved (used to indicate an allocation
285 * failure, or no allocation).
286 */
287 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 VM_NOSLEEP, IPL_NONE);
289 if (swapmap == 0) {
290 panic("%s: vmem_create failed", __func__);
291 }
292
293 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
294 NULL, IPL_BIO);
295 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
296 NULL, IPL_BIO);
297
298 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
299 }
300
301 /*
302 * swaplist functions: functions that operate on the list of swap
303 * devices on the system.
304 */
305
306 /*
307 * swaplist_insert: insert swap device "sdp" into the global list
308 *
309 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
310 * => caller must provide a newly malloc'd swappri structure (we will
311 * FREE it if we don't need it... this it to prevent malloc blocking
312 * here while adding swap)
313 */
314 static void
315 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
316 {
317 struct swappri *spp, *pspp;
318 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
319
320 /*
321 * find entry at or after which to insert the new device.
322 */
323 pspp = NULL;
324 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
325 if (priority <= spp->spi_priority)
326 break;
327 pspp = spp;
328 }
329
330 /*
331 * new priority?
332 */
333 if (spp == NULL || spp->spi_priority != priority) {
334 spp = newspp; /* use newspp! */
335 UVMHIST_LOG(pdhist, "created new swappri = %d",
336 priority, 0, 0, 0);
337
338 spp->spi_priority = priority;
339 CIRCLEQ_INIT(&spp->spi_swapdev);
340
341 if (pspp)
342 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
343 else
344 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
345 } else {
346 /* we don't need a new priority structure, free it */
347 free(newspp, M_VMSWAP);
348 }
349
350 /*
351 * priority found (or created). now insert on the priority's
352 * circleq list and bump the total number of swapdevs.
353 */
354 sdp->swd_priority = priority;
355 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
356 uvmexp.nswapdev++;
357 }
358
359 /*
360 * swaplist_find: find and optionally remove a swap device from the
361 * global list.
362 *
363 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
364 * => we return the swapdev we found (and removed)
365 */
366 static struct swapdev *
367 swaplist_find(struct vnode *vp, bool remove)
368 {
369 struct swapdev *sdp;
370 struct swappri *spp;
371
372 /*
373 * search the lists for the requested vp
374 */
375
376 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 if (sdp->swd_vp == vp) {
379 if (remove) {
380 CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 sdp, swd_next);
382 uvmexp.nswapdev--;
383 }
384 return(sdp);
385 }
386 }
387 }
388 return (NULL);
389 }
390
391 /*
392 * swaplist_trim: scan priority list for empty priority entries and kill
393 * them.
394 *
395 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
396 */
397 static void
398 swaplist_trim(void)
399 {
400 struct swappri *spp, *nextspp;
401
402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 nextspp = LIST_NEXT(spp, spi_swappri);
404 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 (void *)&spp->spi_swapdev)
406 continue;
407 LIST_REMOVE(spp, spi_swappri);
408 free(spp, M_VMSWAP);
409 }
410 }
411
412 /*
413 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414 * to the "swapdev" that maps that section of the drum.
415 *
416 * => each swapdev takes one big contig chunk of the drum
417 * => caller must hold uvm_swap_data_lock
418 */
419 static struct swapdev *
420 swapdrum_getsdp(int pgno)
421 {
422 struct swapdev *sdp;
423 struct swappri *spp;
424
425 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
426 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
427 if (sdp->swd_flags & SWF_FAKE)
428 continue;
429 if (pgno >= sdp->swd_drumoffset &&
430 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
431 return sdp;
432 }
433 }
434 }
435 return NULL;
436 }
437
438
439 /*
440 * sys_swapctl: main entry point for swapctl(2) system call
441 * [with two helper functions: swap_on and swap_off]
442 */
443 int
444 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
445 {
446 /* {
447 syscallarg(int) cmd;
448 syscallarg(void *) arg;
449 syscallarg(int) misc;
450 } */
451 struct vnode *vp;
452 struct nameidata nd;
453 struct swappri *spp;
454 struct swapdev *sdp;
455 struct swapent *sep;
456 #define SWAP_PATH_MAX (PATH_MAX + 1)
457 char *userpath;
458 size_t len;
459 int error, misc;
460 int priority;
461 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
462
463 misc = SCARG(uap, misc);
464
465 /*
466 * ensure serialized syscall access by grabbing the swap_syscall_lock
467 */
468 rw_enter(&swap_syscall_lock, RW_WRITER);
469
470 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
471 /*
472 * we handle the non-priv NSWAP and STATS request first.
473 *
474 * SWAP_NSWAP: return number of config'd swap devices
475 * [can also be obtained with uvmexp sysctl]
476 */
477 if (SCARG(uap, cmd) == SWAP_NSWAP) {
478 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
479 0, 0, 0);
480 *retval = uvmexp.nswapdev;
481 error = 0;
482 goto out;
483 }
484
485 /*
486 * SWAP_STATS: get stats on current # of configured swap devs
487 *
488 * note that the swap_priority list can't change as long
489 * as we are holding the swap_syscall_lock. we don't want
490 * to grab the uvm_swap_data_lock because we may fault&sleep during
491 * copyout() and we don't want to be holding that lock then!
492 */
493 if (SCARG(uap, cmd) == SWAP_STATS
494 #if defined(COMPAT_50)
495 || SCARG(uap, cmd) == SWAP_STATS50
496 #endif
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_STATS13
499 #endif
500 ) {
501 if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_STATS13)
505 len = sizeof(struct swapent13) * misc;
506 else
507 #endif
508 #if defined(COMPAT_50)
509 if (SCARG(uap, cmd) == SWAP_STATS50)
510 len = sizeof(struct swapent50) * misc;
511 else
512 #endif
513 len = sizeof(struct swapent) * misc;
514 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
515
516 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
517 error = copyout(sep, SCARG(uap, arg), len);
518
519 free(sep, M_TEMP);
520 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 goto out;
522 }
523 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 dev_t *devp = (dev_t *)SCARG(uap, arg);
525
526 error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 goto out;
528 }
529
530 /*
531 * all other requests require superuser privs. verify.
532 */
533 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 0, NULL, NULL, NULL)))
535 goto out;
536
537 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 /* drop the current dump device */
539 dumpdev = NODEV;
540 dumpcdev = NODEV;
541 cpu_dumpconf();
542 goto out;
543 }
544
545 /*
546 * at this point we expect a path name in arg. we will
547 * use namei() to gain a vnode reference (vref), and lock
548 * the vnode (VOP_LOCK).
549 *
550 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 * miniroot)
552 */
553 if (SCARG(uap, arg) == NULL) {
554 vp = rootvp; /* miniroot */
555 vref(vp);
556 if (vn_lock(vp, LK_EXCLUSIVE)) {
557 vrele(vp);
558 error = EBUSY;
559 goto out;
560 }
561 if (SCARG(uap, cmd) == SWAP_ON &&
562 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
563 panic("swapctl: miniroot copy failed");
564 } else {
565 struct pathbuf *pb;
566
567 /*
568 * This used to allow copying in one extra byte
569 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
570 * This was completely pointless because if anyone
571 * used that extra byte namei would fail with
572 * ENAMETOOLONG anyway, so I've removed the excess
573 * logic. - dholland 20100215
574 */
575
576 error = pathbuf_copyin(SCARG(uap, arg), &pb);
577 if (error) {
578 goto out;
579 }
580 if (SCARG(uap, cmd) == SWAP_ON) {
581 /* get a copy of the string */
582 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
583 len = strlen(userpath) + 1;
584 }
585 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
586 if ((error = namei(&nd))) {
587 pathbuf_destroy(pb);
588 goto out;
589 }
590 vp = nd.ni_vp;
591 pathbuf_destroy(pb);
592 }
593 /* note: "vp" is referenced and locked */
594
595 error = 0; /* assume no error */
596 switch(SCARG(uap, cmd)) {
597
598 case SWAP_DUMPDEV:
599 if (vp->v_type != VBLK) {
600 error = ENOTBLK;
601 break;
602 }
603 if (bdevsw_lookup(vp->v_rdev)) {
604 dumpdev = vp->v_rdev;
605 dumpcdev = devsw_blk2chr(dumpdev);
606 } else
607 dumpdev = NODEV;
608 cpu_dumpconf();
609 break;
610
611 case SWAP_CTL:
612 /*
613 * get new priority, remove old entry (if any) and then
614 * reinsert it in the correct place. finally, prune out
615 * any empty priority structures.
616 */
617 priority = SCARG(uap, misc);
618 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
619 mutex_enter(&uvm_swap_data_lock);
620 if ((sdp = swaplist_find(vp, true)) == NULL) {
621 error = ENOENT;
622 } else {
623 swaplist_insert(sdp, spp, priority);
624 swaplist_trim();
625 }
626 mutex_exit(&uvm_swap_data_lock);
627 if (error)
628 free(spp, M_VMSWAP);
629 break;
630
631 case SWAP_ON:
632
633 /*
634 * check for duplicates. if none found, then insert a
635 * dummy entry on the list to prevent someone else from
636 * trying to enable this device while we are working on
637 * it.
638 */
639
640 priority = SCARG(uap, misc);
641 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
642 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
643 memset(sdp, 0, sizeof(*sdp));
644 sdp->swd_flags = SWF_FAKE;
645 sdp->swd_vp = vp;
646 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
647 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
648 mutex_enter(&uvm_swap_data_lock);
649 if (swaplist_find(vp, false) != NULL) {
650 error = EBUSY;
651 mutex_exit(&uvm_swap_data_lock);
652 bufq_free(sdp->swd_tab);
653 free(sdp, M_VMSWAP);
654 free(spp, M_VMSWAP);
655 break;
656 }
657 swaplist_insert(sdp, spp, priority);
658 mutex_exit(&uvm_swap_data_lock);
659
660 sdp->swd_pathlen = len;
661 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
662 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
663 panic("swapctl: copystr");
664
665 /*
666 * we've now got a FAKE placeholder in the swap list.
667 * now attempt to enable swap on it. if we fail, undo
668 * what we've done and kill the fake entry we just inserted.
669 * if swap_on is a success, it will clear the SWF_FAKE flag
670 */
671
672 if ((error = swap_on(l, sdp)) != 0) {
673 mutex_enter(&uvm_swap_data_lock);
674 (void) swaplist_find(vp, true); /* kill fake entry */
675 swaplist_trim();
676 mutex_exit(&uvm_swap_data_lock);
677 bufq_free(sdp->swd_tab);
678 free(sdp->swd_path, M_VMSWAP);
679 free(sdp, M_VMSWAP);
680 break;
681 }
682 break;
683
684 case SWAP_OFF:
685 mutex_enter(&uvm_swap_data_lock);
686 if ((sdp = swaplist_find(vp, false)) == NULL) {
687 mutex_exit(&uvm_swap_data_lock);
688 error = ENXIO;
689 break;
690 }
691
692 /*
693 * If a device isn't in use or enabled, we
694 * can't stop swapping from it (again).
695 */
696 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
697 mutex_exit(&uvm_swap_data_lock);
698 error = EBUSY;
699 break;
700 }
701
702 /*
703 * do the real work.
704 */
705 error = swap_off(l, sdp);
706 break;
707
708 default:
709 error = EINVAL;
710 }
711
712 /*
713 * done! release the ref gained by namei() and unlock.
714 */
715 vput(vp);
716
717 out:
718 free(userpath, M_TEMP);
719 rw_exit(&swap_syscall_lock);
720
721 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
722 return (error);
723 }
724
725 /*
726 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
727 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
728 * emulation to use it directly without going through sys_swapctl().
729 * The problem with using sys_swapctl() there is that it involves
730 * copying the swapent array to the stackgap, and this array's size
731 * is not known at build time. Hence it would not be possible to
732 * ensure it would fit in the stackgap in any case.
733 */
734 void
735 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
736 {
737
738 rw_enter(&swap_syscall_lock, RW_READER);
739 uvm_swap_stats_locked(cmd, sep, sec, retval);
740 rw_exit(&swap_syscall_lock);
741 }
742
743 static void
744 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
745 {
746 struct swappri *spp;
747 struct swapdev *sdp;
748 int count = 0;
749
750 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
751 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
752 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
753 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
754 int inuse;
755
756 /*
757 * backwards compatibility for system call.
758 * For NetBSD 1.3 and 5.0, we have to use
759 * the 32 bit dev_t. For 5.0 and -current
760 * we have to add the path.
761 */
762 inuse = btodb((uint64_t)sdp->swd_npginuse <<
763 PAGE_SHIFT);
764
765 #if defined(COMPAT_13) || defined(COMPAT_50)
766 if (cmd == SWAP_STATS) {
767 #endif
768 sep->se_dev = sdp->swd_dev;
769 sep->se_flags = sdp->swd_flags;
770 sep->se_nblks = sdp->swd_nblks;
771 sep->se_inuse = inuse;
772 sep->se_priority = sdp->swd_priority;
773 memcpy(&sep->se_path, sdp->swd_path,
774 sizeof sep->se_path);
775 sep++;
776 #if defined(COMPAT_13)
777 } else if (cmd == SWAP_STATS13) {
778 struct swapent13 *sep13 =
779 (struct swapent13 *)sep;
780
781 sep13->se13_dev = sdp->swd_dev;
782 sep13->se13_flags = sdp->swd_flags;
783 sep13->se13_nblks = sdp->swd_nblks;
784 sep13->se13_inuse = inuse;
785 sep13->se13_priority = sdp->swd_priority;
786 sep = (struct swapent *)(sep13 + 1);
787 #endif
788 #if defined(COMPAT_50)
789 } else if (cmd == SWAP_STATS50) {
790 struct swapent50 *sep50 =
791 (struct swapent50 *)sep;
792
793 sep50->se50_dev = sdp->swd_dev;
794 sep50->se50_flags = sdp->swd_flags;
795 sep50->se50_nblks = sdp->swd_nblks;
796 sep50->se50_inuse = inuse;
797 sep50->se50_priority = sdp->swd_priority;
798 memcpy(&sep50->se50_path, sdp->swd_path,
799 sizeof sep50->se50_path);
800 sep = (struct swapent *)(sep50 + 1);
801 #endif
802 #if defined(COMPAT_13) || defined(COMPAT_50)
803 }
804 #endif
805 count++;
806 }
807 }
808
809 *retval = count;
810 return;
811 }
812
813 /*
814 * swap_on: attempt to enable a swapdev for swapping. note that the
815 * swapdev is already on the global list, but disabled (marked
816 * SWF_FAKE).
817 *
818 * => we avoid the start of the disk (to protect disk labels)
819 * => we also avoid the miniroot, if we are swapping to root.
820 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
821 * if needed.
822 */
823 static int
824 swap_on(struct lwp *l, struct swapdev *sdp)
825 {
826 struct vnode *vp;
827 int error, npages, nblocks, size;
828 long addr;
829 u_long result;
830 struct vattr va;
831 const struct bdevsw *bdev;
832 dev_t dev;
833 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
834
835 /*
836 * we want to enable swapping on sdp. the swd_vp contains
837 * the vnode we want (locked and ref'd), and the swd_dev
838 * contains the dev_t of the file, if it a block device.
839 */
840
841 vp = sdp->swd_vp;
842 dev = sdp->swd_dev;
843
844 /*
845 * open the swap file (mostly useful for block device files to
846 * let device driver know what is up).
847 *
848 * we skip the open/close for root on swap because the root
849 * has already been opened when root was mounted (mountroot).
850 */
851 if (vp != rootvp) {
852 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
853 return (error);
854 }
855
856 /* XXX this only works for block devices */
857 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
858
859 /*
860 * we now need to determine the size of the swap area. for
861 * block specials we can call the d_psize function.
862 * for normal files, we must stat [get attrs].
863 *
864 * we put the result in nblks.
865 * for normal files, we also want the filesystem block size
866 * (which we get with statfs).
867 */
868 switch (vp->v_type) {
869 case VBLK:
870 bdev = bdevsw_lookup(dev);
871 if (bdev == NULL || bdev->d_psize == NULL ||
872 (nblocks = (*bdev->d_psize)(dev)) == -1) {
873 error = ENXIO;
874 goto bad;
875 }
876 break;
877
878 case VREG:
879 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
880 goto bad;
881 nblocks = (int)btodb(va.va_size);
882 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
883 /*
884 * limit the max # of outstanding I/O requests we issue
885 * at any one time. take it easy on NFS servers.
886 */
887 if (vp->v_tag == VT_NFS)
888 sdp->swd_maxactive = 2; /* XXX */
889 else
890 sdp->swd_maxactive = 8; /* XXX */
891 break;
892
893 default:
894 error = ENXIO;
895 goto bad;
896 }
897
898 /*
899 * save nblocks in a safe place and convert to pages.
900 */
901
902 sdp->swd_nblks = nblocks;
903 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
904
905 /*
906 * for block special files, we want to make sure that leave
907 * the disklabel and bootblocks alone, so we arrange to skip
908 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
909 * note that because of this the "size" can be less than the
910 * actual number of blocks on the device.
911 */
912 if (vp->v_type == VBLK) {
913 /* we use pages 1 to (size - 1) [inclusive] */
914 size = npages - 1;
915 addr = 1;
916 } else {
917 /* we use pages 0 to (size - 1) [inclusive] */
918 size = npages;
919 addr = 0;
920 }
921
922 /*
923 * make sure we have enough blocks for a reasonable sized swap
924 * area. we want at least one page.
925 */
926
927 if (size < 1) {
928 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
929 error = EINVAL;
930 goto bad;
931 }
932
933 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
934
935 /*
936 * now we need to allocate an extent to manage this swap device
937 */
938
939 sdp->swd_blist = blist_create(npages);
940 /* mark all expect the `saved' region free. */
941 blist_free(sdp->swd_blist, addr, size);
942
943 /*
944 * if the vnode we are swapping to is the root vnode
945 * (i.e. we are swapping to the miniroot) then we want
946 * to make sure we don't overwrite it. do a statfs to
947 * find its size and skip over it.
948 */
949 if (vp == rootvp) {
950 struct mount *mp;
951 struct statvfs *sp;
952 int rootblocks, rootpages;
953
954 mp = rootvnode->v_mount;
955 sp = &mp->mnt_stat;
956 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
957 /*
958 * XXX: sp->f_blocks isn't the total number of
959 * blocks in the filesystem, it's the number of
960 * data blocks. so, our rootblocks almost
961 * definitely underestimates the total size
962 * of the filesystem - how badly depends on the
963 * details of the filesystem type. there isn't
964 * an obvious way to deal with this cleanly
965 * and perfectly, so for now we just pad our
966 * rootblocks estimate with an extra 5 percent.
967 */
968 rootblocks += (rootblocks >> 5) +
969 (rootblocks >> 6) +
970 (rootblocks >> 7);
971 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
972 if (rootpages > size)
973 panic("swap_on: miniroot larger than swap?");
974
975 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
976 panic("swap_on: unable to preserve miniroot");
977 }
978
979 size -= rootpages;
980 printf("Preserved %d pages of miniroot ", rootpages);
981 printf("leaving %d pages of swap\n", size);
982 }
983
984 /*
985 * add a ref to vp to reflect usage as a swap device.
986 */
987 vref(vp);
988
989 /*
990 * now add the new swapdev to the drum and enable.
991 */
992 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
993 if (result == 0)
994 panic("swapdrum_add");
995 /*
996 * If this is the first regular swap create the workqueue.
997 * => Protected by swap_syscall_lock.
998 */
999 if (vp->v_type != VBLK) {
1000 if (sw_reg_count++ == 0) {
1001 KASSERT(sw_reg_workqueue == NULL);
1002 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1003 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1004 panic("%s: workqueue_create failed", __func__);
1005 }
1006 }
1007
1008 sdp->swd_drumoffset = (int)result;
1009 sdp->swd_drumsize = npages;
1010 sdp->swd_npages = size;
1011 mutex_enter(&uvm_swap_data_lock);
1012 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1013 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1014 uvmexp.swpages += size;
1015 uvmexp.swpgavail += size;
1016 mutex_exit(&uvm_swap_data_lock);
1017 return (0);
1018
1019 /*
1020 * failure: clean up and return error.
1021 */
1022
1023 bad:
1024 if (sdp->swd_blist) {
1025 blist_destroy(sdp->swd_blist);
1026 }
1027 if (vp != rootvp) {
1028 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1029 }
1030 return (error);
1031 }
1032
1033 /*
1034 * swap_off: stop swapping on swapdev
1035 *
1036 * => swap data should be locked, we will unlock.
1037 */
1038 static int
1039 swap_off(struct lwp *l, struct swapdev *sdp)
1040 {
1041 int npages = sdp->swd_npages;
1042 int error = 0;
1043
1044 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1045 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1046
1047 /* disable the swap area being removed */
1048 sdp->swd_flags &= ~SWF_ENABLE;
1049 uvmexp.swpgavail -= npages;
1050 mutex_exit(&uvm_swap_data_lock);
1051
1052 /*
1053 * the idea is to find all the pages that are paged out to this
1054 * device, and page them all in. in uvm, swap-backed pageable
1055 * memory can take two forms: aobjs and anons. call the
1056 * swapoff hook for each subsystem to bring in pages.
1057 */
1058
1059 if (uao_swap_off(sdp->swd_drumoffset,
1060 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1061 amap_swap_off(sdp->swd_drumoffset,
1062 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1063 error = ENOMEM;
1064 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1065 error = EBUSY;
1066 }
1067
1068 if (error) {
1069 mutex_enter(&uvm_swap_data_lock);
1070 sdp->swd_flags |= SWF_ENABLE;
1071 uvmexp.swpgavail += npages;
1072 mutex_exit(&uvm_swap_data_lock);
1073
1074 return error;
1075 }
1076
1077 /*
1078 * If this is the last regular swap destroy the workqueue.
1079 * => Protected by swap_syscall_lock.
1080 */
1081 if (sdp->swd_vp->v_type != VBLK) {
1082 KASSERT(sw_reg_count > 0);
1083 KASSERT(sw_reg_workqueue != NULL);
1084 if (--sw_reg_count == 0) {
1085 workqueue_destroy(sw_reg_workqueue);
1086 sw_reg_workqueue = NULL;
1087 }
1088 }
1089
1090 /*
1091 * done with the vnode.
1092 * drop our ref on the vnode before calling VOP_CLOSE()
1093 * so that spec_close() can tell if this is the last close.
1094 */
1095 vrele(sdp->swd_vp);
1096 if (sdp->swd_vp != rootvp) {
1097 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1098 }
1099
1100 mutex_enter(&uvm_swap_data_lock);
1101 uvmexp.swpages -= npages;
1102 uvmexp.swpginuse -= sdp->swd_npgbad;
1103
1104 if (swaplist_find(sdp->swd_vp, true) == NULL)
1105 panic("%s: swapdev not in list", __func__);
1106 swaplist_trim();
1107 mutex_exit(&uvm_swap_data_lock);
1108
1109 /*
1110 * free all resources!
1111 */
1112 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1113 blist_destroy(sdp->swd_blist);
1114 bufq_free(sdp->swd_tab);
1115 free(sdp, M_VMSWAP);
1116 return (0);
1117 }
1118
1119 /*
1120 * /dev/drum interface and i/o functions
1121 */
1122
1123 /*
1124 * swstrategy: perform I/O on the drum
1125 *
1126 * => we must map the i/o request from the drum to the correct swapdev.
1127 */
1128 static void
1129 swstrategy(struct buf *bp)
1130 {
1131 struct swapdev *sdp;
1132 struct vnode *vp;
1133 int pageno, bn;
1134 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1135
1136 /*
1137 * convert block number to swapdev. note that swapdev can't
1138 * be yanked out from under us because we are holding resources
1139 * in it (i.e. the blocks we are doing I/O on).
1140 */
1141 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1142 mutex_enter(&uvm_swap_data_lock);
1143 sdp = swapdrum_getsdp(pageno);
1144 mutex_exit(&uvm_swap_data_lock);
1145 if (sdp == NULL) {
1146 bp->b_error = EINVAL;
1147 biodone(bp);
1148 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1149 return;
1150 }
1151
1152 /*
1153 * convert drum page number to block number on this swapdev.
1154 */
1155
1156 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1157 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1158
1159 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1160 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1161 sdp->swd_drumoffset, bn, bp->b_bcount);
1162
1163 /*
1164 * for block devices we finish up here.
1165 * for regular files we have to do more work which we delegate
1166 * to sw_reg_strategy().
1167 */
1168
1169 vp = sdp->swd_vp; /* swapdev vnode pointer */
1170 switch (vp->v_type) {
1171 default:
1172 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1173
1174 case VBLK:
1175
1176 /*
1177 * must convert "bp" from an I/O on /dev/drum to an I/O
1178 * on the swapdev (sdp).
1179 */
1180 bp->b_blkno = bn; /* swapdev block number */
1181 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1182
1183 /*
1184 * if we are doing a write, we have to redirect the i/o on
1185 * drum's v_numoutput counter to the swapdevs.
1186 */
1187 if ((bp->b_flags & B_READ) == 0) {
1188 mutex_enter(bp->b_objlock);
1189 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1190 mutex_exit(bp->b_objlock);
1191 mutex_enter(vp->v_interlock);
1192 vp->v_numoutput++; /* put it on swapdev */
1193 mutex_exit(vp->v_interlock);
1194 }
1195
1196 /*
1197 * finally plug in swapdev vnode and start I/O
1198 */
1199 bp->b_vp = vp;
1200 bp->b_objlock = vp->v_interlock;
1201 VOP_STRATEGY(vp, bp);
1202 return;
1203
1204 case VREG:
1205 /*
1206 * delegate to sw_reg_strategy function.
1207 */
1208 sw_reg_strategy(sdp, bp, bn);
1209 return;
1210 }
1211 /* NOTREACHED */
1212 }
1213
1214 /*
1215 * swread: the read function for the drum (just a call to physio)
1216 */
1217 /*ARGSUSED*/
1218 static int
1219 swread(dev_t dev, struct uio *uio, int ioflag)
1220 {
1221 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1222
1223 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1224 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1225 }
1226
1227 /*
1228 * swwrite: the write function for the drum (just a call to physio)
1229 */
1230 /*ARGSUSED*/
1231 static int
1232 swwrite(dev_t dev, struct uio *uio, int ioflag)
1233 {
1234 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1235
1236 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1237 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1238 }
1239
1240 const struct bdevsw swap_bdevsw = {
1241 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1242 };
1243
1244 const struct cdevsw swap_cdevsw = {
1245 nullopen, nullclose, swread, swwrite, noioctl,
1246 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1247 };
1248
1249 /*
1250 * sw_reg_strategy: handle swap i/o to regular files
1251 */
1252 static void
1253 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1254 {
1255 struct vnode *vp;
1256 struct vndxfer *vnx;
1257 daddr_t nbn;
1258 char *addr;
1259 off_t byteoff;
1260 int s, off, nra, error, sz, resid;
1261 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1262
1263 /*
1264 * allocate a vndxfer head for this transfer and point it to
1265 * our buffer.
1266 */
1267 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1268 vnx->vx_flags = VX_BUSY;
1269 vnx->vx_error = 0;
1270 vnx->vx_pending = 0;
1271 vnx->vx_bp = bp;
1272 vnx->vx_sdp = sdp;
1273
1274 /*
1275 * setup for main loop where we read filesystem blocks into
1276 * our buffer.
1277 */
1278 error = 0;
1279 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1280 addr = bp->b_data; /* current position in buffer */
1281 byteoff = dbtob((uint64_t)bn);
1282
1283 for (resid = bp->b_resid; resid; resid -= sz) {
1284 struct vndbuf *nbp;
1285
1286 /*
1287 * translate byteoffset into block number. return values:
1288 * vp = vnode of underlying device
1289 * nbn = new block number (on underlying vnode dev)
1290 * nra = num blocks we can read-ahead (excludes requested
1291 * block)
1292 */
1293 nra = 0;
1294 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1295 &vp, &nbn, &nra);
1296
1297 if (error == 0 && nbn == (daddr_t)-1) {
1298 /*
1299 * this used to just set error, but that doesn't
1300 * do the right thing. Instead, it causes random
1301 * memory errors. The panic() should remain until
1302 * this condition doesn't destabilize the system.
1303 */
1304 #if 1
1305 panic("%s: swap to sparse file", __func__);
1306 #else
1307 error = EIO; /* failure */
1308 #endif
1309 }
1310
1311 /*
1312 * punt if there was an error or a hole in the file.
1313 * we must wait for any i/o ops we have already started
1314 * to finish before returning.
1315 *
1316 * XXX we could deal with holes here but it would be
1317 * a hassle (in the write case).
1318 */
1319 if (error) {
1320 s = splbio();
1321 vnx->vx_error = error; /* pass error up */
1322 goto out;
1323 }
1324
1325 /*
1326 * compute the size ("sz") of this transfer (in bytes).
1327 */
1328 off = byteoff % sdp->swd_bsize;
1329 sz = (1 + nra) * sdp->swd_bsize - off;
1330 if (sz > resid)
1331 sz = resid;
1332
1333 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1334 "vp %p/%p offset 0x%x/0x%x",
1335 sdp->swd_vp, vp, byteoff, nbn);
1336
1337 /*
1338 * now get a buf structure. note that the vb_buf is
1339 * at the front of the nbp structure so that you can
1340 * cast pointers between the two structure easily.
1341 */
1342 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1343 buf_init(&nbp->vb_buf);
1344 nbp->vb_buf.b_flags = bp->b_flags;
1345 nbp->vb_buf.b_cflags = bp->b_cflags;
1346 nbp->vb_buf.b_oflags = bp->b_oflags;
1347 nbp->vb_buf.b_bcount = sz;
1348 nbp->vb_buf.b_bufsize = sz;
1349 nbp->vb_buf.b_error = 0;
1350 nbp->vb_buf.b_data = addr;
1351 nbp->vb_buf.b_lblkno = 0;
1352 nbp->vb_buf.b_blkno = nbn + btodb(off);
1353 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1354 nbp->vb_buf.b_iodone = sw_reg_biodone;
1355 nbp->vb_buf.b_vp = vp;
1356 nbp->vb_buf.b_objlock = vp->v_interlock;
1357 if (vp->v_type == VBLK) {
1358 nbp->vb_buf.b_dev = vp->v_rdev;
1359 }
1360
1361 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1362
1363 /*
1364 * Just sort by block number
1365 */
1366 s = splbio();
1367 if (vnx->vx_error != 0) {
1368 buf_destroy(&nbp->vb_buf);
1369 pool_put(&vndbuf_pool, nbp);
1370 goto out;
1371 }
1372 vnx->vx_pending++;
1373
1374 /* sort it in and start I/O if we are not over our limit */
1375 /* XXXAD locking */
1376 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1377 sw_reg_start(sdp);
1378 splx(s);
1379
1380 /*
1381 * advance to the next I/O
1382 */
1383 byteoff += sz;
1384 addr += sz;
1385 }
1386
1387 s = splbio();
1388
1389 out: /* Arrive here at splbio */
1390 vnx->vx_flags &= ~VX_BUSY;
1391 if (vnx->vx_pending == 0) {
1392 error = vnx->vx_error;
1393 pool_put(&vndxfer_pool, vnx);
1394 bp->b_error = error;
1395 biodone(bp);
1396 }
1397 splx(s);
1398 }
1399
1400 /*
1401 * sw_reg_start: start an I/O request on the requested swapdev
1402 *
1403 * => reqs are sorted by b_rawblkno (above)
1404 */
1405 static void
1406 sw_reg_start(struct swapdev *sdp)
1407 {
1408 struct buf *bp;
1409 struct vnode *vp;
1410 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1411
1412 /* recursion control */
1413 if ((sdp->swd_flags & SWF_BUSY) != 0)
1414 return;
1415
1416 sdp->swd_flags |= SWF_BUSY;
1417
1418 while (sdp->swd_active < sdp->swd_maxactive) {
1419 bp = bufq_get(sdp->swd_tab);
1420 if (bp == NULL)
1421 break;
1422 sdp->swd_active++;
1423
1424 UVMHIST_LOG(pdhist,
1425 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1426 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1427 vp = bp->b_vp;
1428 KASSERT(bp->b_objlock == vp->v_interlock);
1429 if ((bp->b_flags & B_READ) == 0) {
1430 mutex_enter(vp->v_interlock);
1431 vp->v_numoutput++;
1432 mutex_exit(vp->v_interlock);
1433 }
1434 VOP_STRATEGY(vp, bp);
1435 }
1436 sdp->swd_flags &= ~SWF_BUSY;
1437 }
1438
1439 /*
1440 * sw_reg_biodone: one of our i/o's has completed
1441 */
1442 static void
1443 sw_reg_biodone(struct buf *bp)
1444 {
1445 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1446 }
1447
1448 /*
1449 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1450 *
1451 * => note that we can recover the vndbuf struct by casting the buf ptr
1452 */
1453 static void
1454 sw_reg_iodone(struct work *wk, void *dummy)
1455 {
1456 struct vndbuf *vbp = (void *)wk;
1457 struct vndxfer *vnx = vbp->vb_xfer;
1458 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1459 struct swapdev *sdp = vnx->vx_sdp;
1460 int s, resid, error;
1461 KASSERT(&vbp->vb_buf.b_work == wk);
1462 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1463
1464 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1465 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1466 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1467 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1468
1469 /*
1470 * protect vbp at splbio and update.
1471 */
1472
1473 s = splbio();
1474 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1475 pbp->b_resid -= resid;
1476 vnx->vx_pending--;
1477
1478 if (vbp->vb_buf.b_error != 0) {
1479 /* pass error upward */
1480 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1481 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1482 vnx->vx_error = error;
1483 }
1484
1485 /*
1486 * kill vbp structure
1487 */
1488 buf_destroy(&vbp->vb_buf);
1489 pool_put(&vndbuf_pool, vbp);
1490
1491 /*
1492 * wrap up this transaction if it has run to completion or, in
1493 * case of an error, when all auxiliary buffers have returned.
1494 */
1495 if (vnx->vx_error != 0) {
1496 /* pass error upward */
1497 error = vnx->vx_error;
1498 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1499 pbp->b_error = error;
1500 biodone(pbp);
1501 pool_put(&vndxfer_pool, vnx);
1502 }
1503 } else if (pbp->b_resid == 0) {
1504 KASSERT(vnx->vx_pending == 0);
1505 if ((vnx->vx_flags & VX_BUSY) == 0) {
1506 UVMHIST_LOG(pdhist, " iodone error=%d !",
1507 pbp, vnx->vx_error, 0, 0);
1508 biodone(pbp);
1509 pool_put(&vndxfer_pool, vnx);
1510 }
1511 }
1512
1513 /*
1514 * done! start next swapdev I/O if one is pending
1515 */
1516 sdp->swd_active--;
1517 sw_reg_start(sdp);
1518 splx(s);
1519 }
1520
1521
1522 /*
1523 * uvm_swap_alloc: allocate space on swap
1524 *
1525 * => allocation is done "round robin" down the priority list, as we
1526 * allocate in a priority we "rotate" the circle queue.
1527 * => space can be freed with uvm_swap_free
1528 * => we return the page slot number in /dev/drum (0 == invalid slot)
1529 * => we lock uvm_swap_data_lock
1530 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1531 */
1532 int
1533 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1534 {
1535 struct swapdev *sdp;
1536 struct swappri *spp;
1537 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1538
1539 /*
1540 * no swap devices configured yet? definite failure.
1541 */
1542 if (uvmexp.nswapdev < 1)
1543 return 0;
1544
1545 /*
1546 * lock data lock, convert slots into blocks, and enter loop
1547 */
1548 mutex_enter(&uvm_swap_data_lock);
1549
1550 ReTry: /* XXXMRG */
1551 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1552 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1553 uint64_t result;
1554
1555 /* if it's not enabled, then we can't swap from it */
1556 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1557 continue;
1558 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1559 continue;
1560 result = blist_alloc(sdp->swd_blist, *nslots);
1561 if (result == BLIST_NONE) {
1562 continue;
1563 }
1564 KASSERT(result < sdp->swd_drumsize);
1565
1566 /*
1567 * successful allocation! now rotate the circleq.
1568 */
1569 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1570 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1571 sdp->swd_npginuse += *nslots;
1572 uvmexp.swpginuse += *nslots;
1573 mutex_exit(&uvm_swap_data_lock);
1574 /* done! return drum slot number */
1575 UVMHIST_LOG(pdhist,
1576 "success! returning %d slots starting at %d",
1577 *nslots, result + sdp->swd_drumoffset, 0, 0);
1578 return (result + sdp->swd_drumoffset);
1579 }
1580 }
1581
1582 /* XXXMRG: BEGIN HACK */
1583 if (*nslots > 1 && lessok) {
1584 *nslots = 1;
1585 /* XXXMRG: ugh! blist should support this for us */
1586 goto ReTry;
1587 }
1588 /* XXXMRG: END HACK */
1589
1590 mutex_exit(&uvm_swap_data_lock);
1591 return 0;
1592 }
1593
1594 /*
1595 * uvm_swapisfull: return true if most of available swap is allocated
1596 * and in use. we don't count some small portion as it may be inaccessible
1597 * to us at any given moment, for example if there is lock contention or if
1598 * pages are busy.
1599 */
1600 bool
1601 uvm_swapisfull(void)
1602 {
1603 int swpgonly;
1604 bool rv;
1605
1606 mutex_enter(&uvm_swap_data_lock);
1607 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1608 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1609 uvm_swapisfull_factor);
1610 rv = (swpgonly >= uvmexp.swpgavail);
1611 mutex_exit(&uvm_swap_data_lock);
1612
1613 return (rv);
1614 }
1615
1616 /*
1617 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1618 *
1619 * => we lock uvm_swap_data_lock
1620 */
1621 void
1622 uvm_swap_markbad(int startslot, int nslots)
1623 {
1624 struct swapdev *sdp;
1625 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1626
1627 mutex_enter(&uvm_swap_data_lock);
1628 sdp = swapdrum_getsdp(startslot);
1629 KASSERT(sdp != NULL);
1630
1631 /*
1632 * we just keep track of how many pages have been marked bad
1633 * in this device, to make everything add up in swap_off().
1634 * we assume here that the range of slots will all be within
1635 * one swap device.
1636 */
1637
1638 KASSERT(uvmexp.swpgonly >= nslots);
1639 uvmexp.swpgonly -= nslots;
1640 sdp->swd_npgbad += nslots;
1641 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1642 mutex_exit(&uvm_swap_data_lock);
1643 }
1644
1645 /*
1646 * uvm_swap_free: free swap slots
1647 *
1648 * => this can be all or part of an allocation made by uvm_swap_alloc
1649 * => we lock uvm_swap_data_lock
1650 */
1651 void
1652 uvm_swap_free(int startslot, int nslots)
1653 {
1654 struct swapdev *sdp;
1655 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1656
1657 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1658 startslot, 0, 0);
1659
1660 /*
1661 * ignore attempts to free the "bad" slot.
1662 */
1663
1664 if (startslot == SWSLOT_BAD) {
1665 return;
1666 }
1667
1668 /*
1669 * convert drum slot offset back to sdp, free the blocks
1670 * in the extent, and return. must hold pri lock to do
1671 * lookup and access the extent.
1672 */
1673
1674 mutex_enter(&uvm_swap_data_lock);
1675 sdp = swapdrum_getsdp(startslot);
1676 KASSERT(uvmexp.nswapdev >= 1);
1677 KASSERT(sdp != NULL);
1678 KASSERT(sdp->swd_npginuse >= nslots);
1679 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1680 sdp->swd_npginuse -= nslots;
1681 uvmexp.swpginuse -= nslots;
1682 mutex_exit(&uvm_swap_data_lock);
1683 }
1684
1685 /*
1686 * uvm_swap_put: put any number of pages into a contig place on swap
1687 *
1688 * => can be sync or async
1689 */
1690
1691 int
1692 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1693 {
1694 int error;
1695
1696 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1697 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1698 return error;
1699 }
1700
1701 /*
1702 * uvm_swap_get: get a single page from swap
1703 *
1704 * => usually a sync op (from fault)
1705 */
1706
1707 int
1708 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1709 {
1710 int error;
1711
1712 uvmexp.nswget++;
1713 KASSERT(flags & PGO_SYNCIO);
1714 if (swslot == SWSLOT_BAD) {
1715 return EIO;
1716 }
1717
1718 error = uvm_swap_io(&page, swslot, 1, B_READ |
1719 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1720 if (error == 0) {
1721
1722 /*
1723 * this page is no longer only in swap.
1724 */
1725
1726 mutex_enter(&uvm_swap_data_lock);
1727 KASSERT(uvmexp.swpgonly > 0);
1728 uvmexp.swpgonly--;
1729 mutex_exit(&uvm_swap_data_lock);
1730 }
1731 return error;
1732 }
1733
1734 /*
1735 * uvm_swap_io: do an i/o operation to swap
1736 */
1737
1738 static int
1739 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1740 {
1741 daddr_t startblk;
1742 struct buf *bp;
1743 vaddr_t kva;
1744 int error, mapinflags;
1745 bool write, async;
1746 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1747
1748 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1749 startslot, npages, flags, 0);
1750
1751 write = (flags & B_READ) == 0;
1752 async = (flags & B_ASYNC) != 0;
1753
1754 /*
1755 * allocate a buf for the i/o.
1756 */
1757
1758 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1759 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1760 if (bp == NULL) {
1761 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1762 return ENOMEM;
1763 }
1764
1765 /*
1766 * convert starting drum slot to block number
1767 */
1768
1769 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1770
1771 /*
1772 * first, map the pages into the kernel.
1773 */
1774
1775 mapinflags = !write ?
1776 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1777 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1778 kva = uvm_pagermapin(pps, npages, mapinflags);
1779
1780 /*
1781 * fill in the bp/sbp. we currently route our i/o through
1782 * /dev/drum's vnode [swapdev_vp].
1783 */
1784
1785 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1786 bp->b_flags = (flags & (B_READ|B_ASYNC));
1787 bp->b_proc = &proc0; /* XXX */
1788 bp->b_vnbufs.le_next = NOLIST;
1789 bp->b_data = (void *)kva;
1790 bp->b_blkno = startblk;
1791 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1792
1793 /*
1794 * bump v_numoutput (counter of number of active outputs).
1795 */
1796
1797 if (write) {
1798 mutex_enter(swapdev_vp->v_interlock);
1799 swapdev_vp->v_numoutput++;
1800 mutex_exit(swapdev_vp->v_interlock);
1801 }
1802
1803 /*
1804 * for async ops we must set up the iodone handler.
1805 */
1806
1807 if (async) {
1808 bp->b_iodone = uvm_aio_biodone;
1809 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1810 if (curlwp == uvm.pagedaemon_lwp)
1811 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1812 else
1813 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1814 } else {
1815 bp->b_iodone = NULL;
1816 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1817 }
1818 UVMHIST_LOG(pdhist,
1819 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1820 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1821
1822 /*
1823 * now we start the I/O, and if async, return.
1824 */
1825
1826 VOP_STRATEGY(swapdev_vp, bp);
1827 if (async)
1828 return 0;
1829
1830 /*
1831 * must be sync i/o. wait for it to finish
1832 */
1833
1834 error = biowait(bp);
1835
1836 /*
1837 * kill the pager mapping
1838 */
1839
1840 uvm_pagermapout(kva, npages);
1841
1842 /*
1843 * now dispose of the buf and we're done.
1844 */
1845
1846 if (write) {
1847 mutex_enter(swapdev_vp->v_interlock);
1848 vwakeup(bp);
1849 mutex_exit(swapdev_vp->v_interlock);
1850 }
1851 putiobuf(bp);
1852 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1853
1854 return (error);
1855 }
1856