uvm_swap.c revision 1.151 1 /* $NetBSD: uvm_swap.c,v 1.151 2010/06/24 13:03:20 hannken Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.151 2010/06/24 13:03:20 hannken Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/malloc.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/vmem.h>
53 #include <sys/blist.h>
54 #include <sys/mount.h>
55 #include <sys/pool.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * CIRCLEQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats(9) function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 MALLOC_DEFINE(M_VMSWAP, "VM swap", "VM swap structures");
212 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
213
214 /* list of all active swap devices [by priority] */
215 LIST_HEAD(swap_priority, swappri);
216 static struct swap_priority swap_priority;
217
218 /* locks */
219 static krwlock_t swap_syscall_lock;
220
221 /* workqueue and use counter for swap to regular files */
222 static int sw_reg_count = 0;
223 static struct workqueue *sw_reg_workqueue;
224
225 /* tuneables */
226 u_int uvm_swapisfull_factor = 99;
227
228 /*
229 * prototypes
230 */
231 static struct swapdev *swapdrum_getsdp(int);
232
233 static struct swapdev *swaplist_find(struct vnode *, bool);
234 static void swaplist_insert(struct swapdev *,
235 struct swappri *, int);
236 static void swaplist_trim(void);
237
238 static int swap_on(struct lwp *, struct swapdev *);
239 static int swap_off(struct lwp *, struct swapdev *);
240
241 static void uvm_swap_stats_locked(int, struct swapent *, int, register_t *);
242
243 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
244 static void sw_reg_biodone(struct buf *);
245 static void sw_reg_iodone(struct work *wk, void *dummy);
246 static void sw_reg_start(struct swapdev *);
247
248 static int uvm_swap_io(struct vm_page **, int, int, int);
249
250 /*
251 * uvm_swap_init: init the swap system data structures and locks
252 *
253 * => called at boot time from init_main.c after the filesystems
254 * are brought up (which happens after uvm_init())
255 */
256 void
257 uvm_swap_init(void)
258 {
259 UVMHIST_FUNC("uvm_swap_init");
260
261 UVMHIST_CALLED(pdhist);
262 /*
263 * first, init the swap list, its counter, and its lock.
264 * then get a handle on the vnode for /dev/drum by using
265 * the its dev_t number ("swapdev", from MD conf.c).
266 */
267
268 LIST_INIT(&swap_priority);
269 uvmexp.nswapdev = 0;
270 rw_init(&swap_syscall_lock);
271 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
272
273 if (bdevvp(swapdev, &swapdev_vp))
274 panic("%s: can't get vnode for swap device", __func__);
275 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
276 panic("%s: can't lock swap device", __func__);
277 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
278 panic("%s: can't open swap device", __func__);
279 VOP_UNLOCK(swapdev_vp);
280
281 /*
282 * create swap block resource map to map /dev/drum. the range
283 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
284 * that block 0 is reserved (used to indicate an allocation
285 * failure, or no allocation).
286 */
287 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 VM_NOSLEEP, IPL_NONE);
289 if (swapmap == 0) {
290 panic("%s: vmem_create failed", __func__);
291 }
292
293 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
294 NULL, IPL_BIO);
295 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
296 NULL, IPL_BIO);
297
298 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
299 }
300
301 /*
302 * swaplist functions: functions that operate on the list of swap
303 * devices on the system.
304 */
305
306 /*
307 * swaplist_insert: insert swap device "sdp" into the global list
308 *
309 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
310 * => caller must provide a newly malloc'd swappri structure (we will
311 * FREE it if we don't need it... this it to prevent malloc blocking
312 * here while adding swap)
313 */
314 static void
315 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
316 {
317 struct swappri *spp, *pspp;
318 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
319
320 /*
321 * find entry at or after which to insert the new device.
322 */
323 pspp = NULL;
324 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
325 if (priority <= spp->spi_priority)
326 break;
327 pspp = spp;
328 }
329
330 /*
331 * new priority?
332 */
333 if (spp == NULL || spp->spi_priority != priority) {
334 spp = newspp; /* use newspp! */
335 UVMHIST_LOG(pdhist, "created new swappri = %d",
336 priority, 0, 0, 0);
337
338 spp->spi_priority = priority;
339 CIRCLEQ_INIT(&spp->spi_swapdev);
340
341 if (pspp)
342 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
343 else
344 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
345 } else {
346 /* we don't need a new priority structure, free it */
347 free(newspp, M_VMSWAP);
348 }
349
350 /*
351 * priority found (or created). now insert on the priority's
352 * circleq list and bump the total number of swapdevs.
353 */
354 sdp->swd_priority = priority;
355 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
356 uvmexp.nswapdev++;
357 }
358
359 /*
360 * swaplist_find: find and optionally remove a swap device from the
361 * global list.
362 *
363 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
364 * => we return the swapdev we found (and removed)
365 */
366 static struct swapdev *
367 swaplist_find(struct vnode *vp, bool remove)
368 {
369 struct swapdev *sdp;
370 struct swappri *spp;
371
372 /*
373 * search the lists for the requested vp
374 */
375
376 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
377 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
378 if (sdp->swd_vp == vp) {
379 if (remove) {
380 CIRCLEQ_REMOVE(&spp->spi_swapdev,
381 sdp, swd_next);
382 uvmexp.nswapdev--;
383 }
384 return(sdp);
385 }
386 }
387 }
388 return (NULL);
389 }
390
391 /*
392 * swaplist_trim: scan priority list for empty priority entries and kill
393 * them.
394 *
395 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
396 */
397 static void
398 swaplist_trim(void)
399 {
400 struct swappri *spp, *nextspp;
401
402 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
403 nextspp = LIST_NEXT(spp, spi_swappri);
404 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
405 (void *)&spp->spi_swapdev)
406 continue;
407 LIST_REMOVE(spp, spi_swappri);
408 free(spp, M_VMSWAP);
409 }
410 }
411
412 /*
413 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
414 * to the "swapdev" that maps that section of the drum.
415 *
416 * => each swapdev takes one big contig chunk of the drum
417 * => caller must hold uvm_swap_data_lock
418 */
419 static struct swapdev *
420 swapdrum_getsdp(int pgno)
421 {
422 struct swapdev *sdp;
423 struct swappri *spp;
424
425 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
426 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
427 if (sdp->swd_flags & SWF_FAKE)
428 continue;
429 if (pgno >= sdp->swd_drumoffset &&
430 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
431 return sdp;
432 }
433 }
434 }
435 return NULL;
436 }
437
438
439 /*
440 * sys_swapctl: main entry point for swapctl(2) system call
441 * [with two helper functions: swap_on and swap_off]
442 */
443 int
444 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
445 {
446 /* {
447 syscallarg(int) cmd;
448 syscallarg(void *) arg;
449 syscallarg(int) misc;
450 } */
451 struct vnode *vp;
452 struct nameidata nd;
453 struct swappri *spp;
454 struct swapdev *sdp;
455 struct swapent *sep;
456 #define SWAP_PATH_MAX (PATH_MAX + 1)
457 char *userpath;
458 size_t len;
459 int error, misc;
460 int priority;
461 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
462
463 misc = SCARG(uap, misc);
464
465 /*
466 * ensure serialized syscall access by grabbing the swap_syscall_lock
467 */
468 rw_enter(&swap_syscall_lock, RW_WRITER);
469
470 userpath = malloc(SWAP_PATH_MAX, M_TEMP, M_WAITOK);
471 /*
472 * we handle the non-priv NSWAP and STATS request first.
473 *
474 * SWAP_NSWAP: return number of config'd swap devices
475 * [can also be obtained with uvmexp sysctl]
476 */
477 if (SCARG(uap, cmd) == SWAP_NSWAP) {
478 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
479 0, 0, 0);
480 *retval = uvmexp.nswapdev;
481 error = 0;
482 goto out;
483 }
484
485 /*
486 * SWAP_STATS: get stats on current # of configured swap devs
487 *
488 * note that the swap_priority list can't change as long
489 * as we are holding the swap_syscall_lock. we don't want
490 * to grab the uvm_swap_data_lock because we may fault&sleep during
491 * copyout() and we don't want to be holding that lock then!
492 */
493 if (SCARG(uap, cmd) == SWAP_STATS
494 #if defined(COMPAT_50)
495 || SCARG(uap, cmd) == SWAP_STATS50
496 #endif
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_STATS13
499 #endif
500 ) {
501 if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_STATS13)
505 len = sizeof(struct swapent13) * misc;
506 else
507 #endif
508 #if defined(COMPAT_50)
509 if (SCARG(uap, cmd) == SWAP_STATS50)
510 len = sizeof(struct swapent50) * misc;
511 else
512 #endif
513 len = sizeof(struct swapent) * misc;
514 sep = (struct swapent *)malloc(len, M_TEMP, M_WAITOK);
515
516 uvm_swap_stats_locked(SCARG(uap, cmd), sep, misc, retval);
517 error = copyout(sep, SCARG(uap, arg), len);
518
519 free(sep, M_TEMP);
520 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 goto out;
522 }
523 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 dev_t *devp = (dev_t *)SCARG(uap, arg);
525
526 error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 goto out;
528 }
529
530 /*
531 * all other requests require superuser privs. verify.
532 */
533 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 0, NULL, NULL, NULL)))
535 goto out;
536
537 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 /* drop the current dump device */
539 dumpdev = NODEV;
540 dumpcdev = NODEV;
541 cpu_dumpconf();
542 goto out;
543 }
544
545 /*
546 * at this point we expect a path name in arg. we will
547 * use namei() to gain a vnode reference (vref), and lock
548 * the vnode (VOP_LOCK).
549 *
550 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 * miniroot)
552 */
553 if (SCARG(uap, arg) == NULL) {
554 vp = rootvp; /* miniroot */
555 if (vget(vp, LK_EXCLUSIVE)) {
556 error = EBUSY;
557 goto out;
558 }
559 if (SCARG(uap, cmd) == SWAP_ON &&
560 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
561 panic("swapctl: miniroot copy failed");
562 } else {
563 int space;
564 char *where;
565
566 if (SCARG(uap, cmd) == SWAP_ON) {
567 if ((error = copyinstr(SCARG(uap, arg), userpath,
568 SWAP_PATH_MAX, &len)))
569 goto out;
570 space = UIO_SYSSPACE;
571 where = userpath;
572 } else {
573 space = UIO_USERSPACE;
574 where = (char *)SCARG(uap, arg);
575 }
576 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT,
577 space, where);
578 if ((error = namei(&nd)))
579 goto out;
580 vp = nd.ni_vp;
581 }
582 /* note: "vp" is referenced and locked */
583
584 error = 0; /* assume no error */
585 switch(SCARG(uap, cmd)) {
586
587 case SWAP_DUMPDEV:
588 if (vp->v_type != VBLK) {
589 error = ENOTBLK;
590 break;
591 }
592 if (bdevsw_lookup(vp->v_rdev)) {
593 dumpdev = vp->v_rdev;
594 dumpcdev = devsw_blk2chr(dumpdev);
595 } else
596 dumpdev = NODEV;
597 cpu_dumpconf();
598 break;
599
600 case SWAP_CTL:
601 /*
602 * get new priority, remove old entry (if any) and then
603 * reinsert it in the correct place. finally, prune out
604 * any empty priority structures.
605 */
606 priority = SCARG(uap, misc);
607 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
608 mutex_enter(&uvm_swap_data_lock);
609 if ((sdp = swaplist_find(vp, true)) == NULL) {
610 error = ENOENT;
611 } else {
612 swaplist_insert(sdp, spp, priority);
613 swaplist_trim();
614 }
615 mutex_exit(&uvm_swap_data_lock);
616 if (error)
617 free(spp, M_VMSWAP);
618 break;
619
620 case SWAP_ON:
621
622 /*
623 * check for duplicates. if none found, then insert a
624 * dummy entry on the list to prevent someone else from
625 * trying to enable this device while we are working on
626 * it.
627 */
628
629 priority = SCARG(uap, misc);
630 sdp = malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
631 spp = malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
632 memset(sdp, 0, sizeof(*sdp));
633 sdp->swd_flags = SWF_FAKE;
634 sdp->swd_vp = vp;
635 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
636 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
637 mutex_enter(&uvm_swap_data_lock);
638 if (swaplist_find(vp, false) != NULL) {
639 error = EBUSY;
640 mutex_exit(&uvm_swap_data_lock);
641 bufq_free(sdp->swd_tab);
642 free(sdp, M_VMSWAP);
643 free(spp, M_VMSWAP);
644 break;
645 }
646 swaplist_insert(sdp, spp, priority);
647 mutex_exit(&uvm_swap_data_lock);
648
649 sdp->swd_pathlen = len;
650 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
651 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
652 panic("swapctl: copystr");
653
654 /*
655 * we've now got a FAKE placeholder in the swap list.
656 * now attempt to enable swap on it. if we fail, undo
657 * what we've done and kill the fake entry we just inserted.
658 * if swap_on is a success, it will clear the SWF_FAKE flag
659 */
660
661 if ((error = swap_on(l, sdp)) != 0) {
662 mutex_enter(&uvm_swap_data_lock);
663 (void) swaplist_find(vp, true); /* kill fake entry */
664 swaplist_trim();
665 mutex_exit(&uvm_swap_data_lock);
666 bufq_free(sdp->swd_tab);
667 free(sdp->swd_path, M_VMSWAP);
668 free(sdp, M_VMSWAP);
669 break;
670 }
671 break;
672
673 case SWAP_OFF:
674 mutex_enter(&uvm_swap_data_lock);
675 if ((sdp = swaplist_find(vp, false)) == NULL) {
676 mutex_exit(&uvm_swap_data_lock);
677 error = ENXIO;
678 break;
679 }
680
681 /*
682 * If a device isn't in use or enabled, we
683 * can't stop swapping from it (again).
684 */
685 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
686 mutex_exit(&uvm_swap_data_lock);
687 error = EBUSY;
688 break;
689 }
690
691 /*
692 * do the real work.
693 */
694 error = swap_off(l, sdp);
695 break;
696
697 default:
698 error = EINVAL;
699 }
700
701 /*
702 * done! release the ref gained by namei() and unlock.
703 */
704 vput(vp);
705
706 out:
707 free(userpath, M_TEMP);
708 rw_exit(&swap_syscall_lock);
709
710 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
711 return (error);
712 }
713
714 /*
715 * swap_stats: implements swapctl(SWAP_STATS). The function is kept
716 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
717 * emulation to use it directly without going through sys_swapctl().
718 * The problem with using sys_swapctl() there is that it involves
719 * copying the swapent array to the stackgap, and this array's size
720 * is not known at build time. Hence it would not be possible to
721 * ensure it would fit in the stackgap in any case.
722 */
723 void
724 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
725 {
726
727 rw_enter(&swap_syscall_lock, RW_READER);
728 uvm_swap_stats_locked(cmd, sep, sec, retval);
729 rw_exit(&swap_syscall_lock);
730 }
731
732 static void
733 uvm_swap_stats_locked(int cmd, struct swapent *sep, int sec, register_t *retval)
734 {
735 struct swappri *spp;
736 struct swapdev *sdp;
737 int count = 0;
738
739 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
740 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
741 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
742 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
743 int inuse;
744
745 /*
746 * backwards compatibility for system call.
747 * For NetBSD 1.3 and 5.0, we have to use
748 * the 32 bit dev_t. For 5.0 and -current
749 * we have to add the path.
750 */
751 inuse = btodb((uint64_t)sdp->swd_npginuse <<
752 PAGE_SHIFT);
753
754 #if defined(COMPAT_13) || defined(COMPAT_50)
755 if (cmd == SWAP_STATS) {
756 #endif
757 sep->se_dev = sdp->swd_dev;
758 sep->se_flags = sdp->swd_flags;
759 sep->se_nblks = sdp->swd_nblks;
760 sep->se_inuse = inuse;
761 sep->se_priority = sdp->swd_priority;
762 memcpy(&sep->se_path, sdp->swd_path,
763 sizeof sep->se_path);
764 sep++;
765 #if defined(COMPAT_13)
766 } else if (cmd == SWAP_STATS13) {
767 struct swapent13 *sep13 =
768 (struct swapent13 *)sep;
769
770 sep13->se13_dev = sdp->swd_dev;
771 sep13->se13_flags = sdp->swd_flags;
772 sep13->se13_nblks = sdp->swd_nblks;
773 sep13->se13_inuse = inuse;
774 sep13->se13_priority = sdp->swd_priority;
775 sep = (struct swapent *)(sep13 + 1);
776 #endif
777 #if defined(COMPAT_50)
778 } else if (cmd == SWAP_STATS50) {
779 struct swapent50 *sep50 =
780 (struct swapent50 *)sep;
781
782 sep50->se50_dev = sdp->swd_dev;
783 sep50->se50_flags = sdp->swd_flags;
784 sep50->se50_nblks = sdp->swd_nblks;
785 sep50->se50_inuse = inuse;
786 sep50->se50_priority = sdp->swd_priority;
787 memcpy(&sep50->se50_path, sdp->swd_path,
788 sizeof sep50->se50_path);
789 sep = (struct swapent *)(sep50 + 1);
790 #endif
791 #if defined(COMPAT_13) || defined(COMPAT_50)
792 }
793 #endif
794 count++;
795 }
796 }
797
798 *retval = count;
799 return;
800 }
801
802 /*
803 * swap_on: attempt to enable a swapdev for swapping. note that the
804 * swapdev is already on the global list, but disabled (marked
805 * SWF_FAKE).
806 *
807 * => we avoid the start of the disk (to protect disk labels)
808 * => we also avoid the miniroot, if we are swapping to root.
809 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
810 * if needed.
811 */
812 static int
813 swap_on(struct lwp *l, struct swapdev *sdp)
814 {
815 struct vnode *vp;
816 int error, npages, nblocks, size;
817 long addr;
818 u_long result;
819 struct vattr va;
820 const struct bdevsw *bdev;
821 dev_t dev;
822 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
823
824 /*
825 * we want to enable swapping on sdp. the swd_vp contains
826 * the vnode we want (locked and ref'd), and the swd_dev
827 * contains the dev_t of the file, if it a block device.
828 */
829
830 vp = sdp->swd_vp;
831 dev = sdp->swd_dev;
832
833 /*
834 * open the swap file (mostly useful for block device files to
835 * let device driver know what is up).
836 *
837 * we skip the open/close for root on swap because the root
838 * has already been opened when root was mounted (mountroot).
839 */
840 if (vp != rootvp) {
841 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
842 return (error);
843 }
844
845 /* XXX this only works for block devices */
846 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
847
848 /*
849 * we now need to determine the size of the swap area. for
850 * block specials we can call the d_psize function.
851 * for normal files, we must stat [get attrs].
852 *
853 * we put the result in nblks.
854 * for normal files, we also want the filesystem block size
855 * (which we get with statfs).
856 */
857 switch (vp->v_type) {
858 case VBLK:
859 bdev = bdevsw_lookup(dev);
860 if (bdev == NULL || bdev->d_psize == NULL ||
861 (nblocks = (*bdev->d_psize)(dev)) == -1) {
862 error = ENXIO;
863 goto bad;
864 }
865 break;
866
867 case VREG:
868 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
869 goto bad;
870 nblocks = (int)btodb(va.va_size);
871 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
872 /*
873 * limit the max # of outstanding I/O requests we issue
874 * at any one time. take it easy on NFS servers.
875 */
876 if (vp->v_tag == VT_NFS)
877 sdp->swd_maxactive = 2; /* XXX */
878 else
879 sdp->swd_maxactive = 8; /* XXX */
880 break;
881
882 default:
883 error = ENXIO;
884 goto bad;
885 }
886
887 /*
888 * save nblocks in a safe place and convert to pages.
889 */
890
891 sdp->swd_nblks = nblocks;
892 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
893
894 /*
895 * for block special files, we want to make sure that leave
896 * the disklabel and bootblocks alone, so we arrange to skip
897 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
898 * note that because of this the "size" can be less than the
899 * actual number of blocks on the device.
900 */
901 if (vp->v_type == VBLK) {
902 /* we use pages 1 to (size - 1) [inclusive] */
903 size = npages - 1;
904 addr = 1;
905 } else {
906 /* we use pages 0 to (size - 1) [inclusive] */
907 size = npages;
908 addr = 0;
909 }
910
911 /*
912 * make sure we have enough blocks for a reasonable sized swap
913 * area. we want at least one page.
914 */
915
916 if (size < 1) {
917 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
918 error = EINVAL;
919 goto bad;
920 }
921
922 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
923
924 /*
925 * now we need to allocate an extent to manage this swap device
926 */
927
928 sdp->swd_blist = blist_create(npages);
929 /* mark all expect the `saved' region free. */
930 blist_free(sdp->swd_blist, addr, size);
931
932 /*
933 * if the vnode we are swapping to is the root vnode
934 * (i.e. we are swapping to the miniroot) then we want
935 * to make sure we don't overwrite it. do a statfs to
936 * find its size and skip over it.
937 */
938 if (vp == rootvp) {
939 struct mount *mp;
940 struct statvfs *sp;
941 int rootblocks, rootpages;
942
943 mp = rootvnode->v_mount;
944 sp = &mp->mnt_stat;
945 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
946 /*
947 * XXX: sp->f_blocks isn't the total number of
948 * blocks in the filesystem, it's the number of
949 * data blocks. so, our rootblocks almost
950 * definitely underestimates the total size
951 * of the filesystem - how badly depends on the
952 * details of the filesystem type. there isn't
953 * an obvious way to deal with this cleanly
954 * and perfectly, so for now we just pad our
955 * rootblocks estimate with an extra 5 percent.
956 */
957 rootblocks += (rootblocks >> 5) +
958 (rootblocks >> 6) +
959 (rootblocks >> 7);
960 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
961 if (rootpages > size)
962 panic("swap_on: miniroot larger than swap?");
963
964 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
965 panic("swap_on: unable to preserve miniroot");
966 }
967
968 size -= rootpages;
969 printf("Preserved %d pages of miniroot ", rootpages);
970 printf("leaving %d pages of swap\n", size);
971 }
972
973 /*
974 * add a ref to vp to reflect usage as a swap device.
975 */
976 vref(vp);
977
978 /*
979 * now add the new swapdev to the drum and enable.
980 */
981 result = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP);
982 if (result == 0)
983 panic("swapdrum_add");
984 /*
985 * If this is the first regular swap create the workqueue.
986 * => Protected by swap_syscall_lock.
987 */
988 if (vp->v_type != VBLK) {
989 if (sw_reg_count++ == 0) {
990 KASSERT(sw_reg_workqueue == NULL);
991 if (workqueue_create(&sw_reg_workqueue, "swapiod",
992 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
993 panic("%s: workqueue_create failed", __func__);
994 }
995 }
996
997 sdp->swd_drumoffset = (int)result;
998 sdp->swd_drumsize = npages;
999 sdp->swd_npages = size;
1000 mutex_enter(&uvm_swap_data_lock);
1001 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1002 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1003 uvmexp.swpages += size;
1004 uvmexp.swpgavail += size;
1005 mutex_exit(&uvm_swap_data_lock);
1006 return (0);
1007
1008 /*
1009 * failure: clean up and return error.
1010 */
1011
1012 bad:
1013 if (sdp->swd_blist) {
1014 blist_destroy(sdp->swd_blist);
1015 }
1016 if (vp != rootvp) {
1017 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1018 }
1019 return (error);
1020 }
1021
1022 /*
1023 * swap_off: stop swapping on swapdev
1024 *
1025 * => swap data should be locked, we will unlock.
1026 */
1027 static int
1028 swap_off(struct lwp *l, struct swapdev *sdp)
1029 {
1030 int npages = sdp->swd_npages;
1031 int error = 0;
1032
1033 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1034 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1035
1036 /* disable the swap area being removed */
1037 sdp->swd_flags &= ~SWF_ENABLE;
1038 uvmexp.swpgavail -= npages;
1039 mutex_exit(&uvm_swap_data_lock);
1040
1041 /*
1042 * the idea is to find all the pages that are paged out to this
1043 * device, and page them all in. in uvm, swap-backed pageable
1044 * memory can take two forms: aobjs and anons. call the
1045 * swapoff hook for each subsystem to bring in pages.
1046 */
1047
1048 if (uao_swap_off(sdp->swd_drumoffset,
1049 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1050 amap_swap_off(sdp->swd_drumoffset,
1051 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1052 error = ENOMEM;
1053 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1054 error = EBUSY;
1055 }
1056
1057 if (error) {
1058 mutex_enter(&uvm_swap_data_lock);
1059 sdp->swd_flags |= SWF_ENABLE;
1060 uvmexp.swpgavail += npages;
1061 mutex_exit(&uvm_swap_data_lock);
1062
1063 return error;
1064 }
1065
1066 /*
1067 * If this is the last regular swap destroy the workqueue.
1068 * => Protected by swap_syscall_lock.
1069 */
1070 if (sdp->swd_vp->v_type != VBLK) {
1071 KASSERT(sw_reg_count > 0);
1072 KASSERT(sw_reg_workqueue != NULL);
1073 if (--sw_reg_count == 0) {
1074 workqueue_destroy(sw_reg_workqueue);
1075 sw_reg_workqueue = NULL;
1076 }
1077 }
1078
1079 /*
1080 * done with the vnode.
1081 * drop our ref on the vnode before calling VOP_CLOSE()
1082 * so that spec_close() can tell if this is the last close.
1083 */
1084 vrele(sdp->swd_vp);
1085 if (sdp->swd_vp != rootvp) {
1086 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1087 }
1088
1089 mutex_enter(&uvm_swap_data_lock);
1090 uvmexp.swpages -= npages;
1091 uvmexp.swpginuse -= sdp->swd_npgbad;
1092
1093 if (swaplist_find(sdp->swd_vp, true) == NULL)
1094 panic("%s: swapdev not in list", __func__);
1095 swaplist_trim();
1096 mutex_exit(&uvm_swap_data_lock);
1097
1098 /*
1099 * free all resources!
1100 */
1101 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1102 blist_destroy(sdp->swd_blist);
1103 bufq_free(sdp->swd_tab);
1104 free(sdp, M_VMSWAP);
1105 return (0);
1106 }
1107
1108 /*
1109 * /dev/drum interface and i/o functions
1110 */
1111
1112 /*
1113 * swstrategy: perform I/O on the drum
1114 *
1115 * => we must map the i/o request from the drum to the correct swapdev.
1116 */
1117 static void
1118 swstrategy(struct buf *bp)
1119 {
1120 struct swapdev *sdp;
1121 struct vnode *vp;
1122 int pageno, bn;
1123 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1124
1125 /*
1126 * convert block number to swapdev. note that swapdev can't
1127 * be yanked out from under us because we are holding resources
1128 * in it (i.e. the blocks we are doing I/O on).
1129 */
1130 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1131 mutex_enter(&uvm_swap_data_lock);
1132 sdp = swapdrum_getsdp(pageno);
1133 mutex_exit(&uvm_swap_data_lock);
1134 if (sdp == NULL) {
1135 bp->b_error = EINVAL;
1136 biodone(bp);
1137 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1138 return;
1139 }
1140
1141 /*
1142 * convert drum page number to block number on this swapdev.
1143 */
1144
1145 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1146 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1147
1148 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1149 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1150 sdp->swd_drumoffset, bn, bp->b_bcount);
1151
1152 /*
1153 * for block devices we finish up here.
1154 * for regular files we have to do more work which we delegate
1155 * to sw_reg_strategy().
1156 */
1157
1158 vp = sdp->swd_vp; /* swapdev vnode pointer */
1159 switch (vp->v_type) {
1160 default:
1161 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1162
1163 case VBLK:
1164
1165 /*
1166 * must convert "bp" from an I/O on /dev/drum to an I/O
1167 * on the swapdev (sdp).
1168 */
1169 bp->b_blkno = bn; /* swapdev block number */
1170 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1171
1172 /*
1173 * if we are doing a write, we have to redirect the i/o on
1174 * drum's v_numoutput counter to the swapdevs.
1175 */
1176 if ((bp->b_flags & B_READ) == 0) {
1177 mutex_enter(bp->b_objlock);
1178 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1179 mutex_exit(bp->b_objlock);
1180 mutex_enter(&vp->v_interlock);
1181 vp->v_numoutput++; /* put it on swapdev */
1182 mutex_exit(&vp->v_interlock);
1183 }
1184
1185 /*
1186 * finally plug in swapdev vnode and start I/O
1187 */
1188 bp->b_vp = vp;
1189 bp->b_objlock = &vp->v_interlock;
1190 VOP_STRATEGY(vp, bp);
1191 return;
1192
1193 case VREG:
1194 /*
1195 * delegate to sw_reg_strategy function.
1196 */
1197 sw_reg_strategy(sdp, bp, bn);
1198 return;
1199 }
1200 /* NOTREACHED */
1201 }
1202
1203 /*
1204 * swread: the read function for the drum (just a call to physio)
1205 */
1206 /*ARGSUSED*/
1207 static int
1208 swread(dev_t dev, struct uio *uio, int ioflag)
1209 {
1210 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1211
1212 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1213 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1214 }
1215
1216 /*
1217 * swwrite: the write function for the drum (just a call to physio)
1218 */
1219 /*ARGSUSED*/
1220 static int
1221 swwrite(dev_t dev, struct uio *uio, int ioflag)
1222 {
1223 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1224
1225 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1226 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1227 }
1228
1229 const struct bdevsw swap_bdevsw = {
1230 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1231 };
1232
1233 const struct cdevsw swap_cdevsw = {
1234 nullopen, nullclose, swread, swwrite, noioctl,
1235 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1236 };
1237
1238 /*
1239 * sw_reg_strategy: handle swap i/o to regular files
1240 */
1241 static void
1242 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1243 {
1244 struct vnode *vp;
1245 struct vndxfer *vnx;
1246 daddr_t nbn;
1247 char *addr;
1248 off_t byteoff;
1249 int s, off, nra, error, sz, resid;
1250 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1251
1252 /*
1253 * allocate a vndxfer head for this transfer and point it to
1254 * our buffer.
1255 */
1256 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1257 vnx->vx_flags = VX_BUSY;
1258 vnx->vx_error = 0;
1259 vnx->vx_pending = 0;
1260 vnx->vx_bp = bp;
1261 vnx->vx_sdp = sdp;
1262
1263 /*
1264 * setup for main loop where we read filesystem blocks into
1265 * our buffer.
1266 */
1267 error = 0;
1268 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1269 addr = bp->b_data; /* current position in buffer */
1270 byteoff = dbtob((uint64_t)bn);
1271
1272 for (resid = bp->b_resid; resid; resid -= sz) {
1273 struct vndbuf *nbp;
1274
1275 /*
1276 * translate byteoffset into block number. return values:
1277 * vp = vnode of underlying device
1278 * nbn = new block number (on underlying vnode dev)
1279 * nra = num blocks we can read-ahead (excludes requested
1280 * block)
1281 */
1282 nra = 0;
1283 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1284 &vp, &nbn, &nra);
1285
1286 if (error == 0 && nbn == (daddr_t)-1) {
1287 /*
1288 * this used to just set error, but that doesn't
1289 * do the right thing. Instead, it causes random
1290 * memory errors. The panic() should remain until
1291 * this condition doesn't destabilize the system.
1292 */
1293 #if 1
1294 panic("%s: swap to sparse file", __func__);
1295 #else
1296 error = EIO; /* failure */
1297 #endif
1298 }
1299
1300 /*
1301 * punt if there was an error or a hole in the file.
1302 * we must wait for any i/o ops we have already started
1303 * to finish before returning.
1304 *
1305 * XXX we could deal with holes here but it would be
1306 * a hassle (in the write case).
1307 */
1308 if (error) {
1309 s = splbio();
1310 vnx->vx_error = error; /* pass error up */
1311 goto out;
1312 }
1313
1314 /*
1315 * compute the size ("sz") of this transfer (in bytes).
1316 */
1317 off = byteoff % sdp->swd_bsize;
1318 sz = (1 + nra) * sdp->swd_bsize - off;
1319 if (sz > resid)
1320 sz = resid;
1321
1322 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1323 "vp %p/%p offset 0x%x/0x%x",
1324 sdp->swd_vp, vp, byteoff, nbn);
1325
1326 /*
1327 * now get a buf structure. note that the vb_buf is
1328 * at the front of the nbp structure so that you can
1329 * cast pointers between the two structure easily.
1330 */
1331 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1332 buf_init(&nbp->vb_buf);
1333 nbp->vb_buf.b_flags = bp->b_flags;
1334 nbp->vb_buf.b_cflags = bp->b_cflags;
1335 nbp->vb_buf.b_oflags = bp->b_oflags;
1336 nbp->vb_buf.b_bcount = sz;
1337 nbp->vb_buf.b_bufsize = sz;
1338 nbp->vb_buf.b_error = 0;
1339 nbp->vb_buf.b_data = addr;
1340 nbp->vb_buf.b_lblkno = 0;
1341 nbp->vb_buf.b_blkno = nbn + btodb(off);
1342 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1343 nbp->vb_buf.b_iodone = sw_reg_biodone;
1344 nbp->vb_buf.b_vp = vp;
1345 nbp->vb_buf.b_objlock = &vp->v_interlock;
1346 if (vp->v_type == VBLK) {
1347 nbp->vb_buf.b_dev = vp->v_rdev;
1348 }
1349
1350 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1351
1352 /*
1353 * Just sort by block number
1354 */
1355 s = splbio();
1356 if (vnx->vx_error != 0) {
1357 buf_destroy(&nbp->vb_buf);
1358 pool_put(&vndbuf_pool, nbp);
1359 goto out;
1360 }
1361 vnx->vx_pending++;
1362
1363 /* sort it in and start I/O if we are not over our limit */
1364 /* XXXAD locking */
1365 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1366 sw_reg_start(sdp);
1367 splx(s);
1368
1369 /*
1370 * advance to the next I/O
1371 */
1372 byteoff += sz;
1373 addr += sz;
1374 }
1375
1376 s = splbio();
1377
1378 out: /* Arrive here at splbio */
1379 vnx->vx_flags &= ~VX_BUSY;
1380 if (vnx->vx_pending == 0) {
1381 error = vnx->vx_error;
1382 pool_put(&vndxfer_pool, vnx);
1383 bp->b_error = error;
1384 biodone(bp);
1385 }
1386 splx(s);
1387 }
1388
1389 /*
1390 * sw_reg_start: start an I/O request on the requested swapdev
1391 *
1392 * => reqs are sorted by b_rawblkno (above)
1393 */
1394 static void
1395 sw_reg_start(struct swapdev *sdp)
1396 {
1397 struct buf *bp;
1398 struct vnode *vp;
1399 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1400
1401 /* recursion control */
1402 if ((sdp->swd_flags & SWF_BUSY) != 0)
1403 return;
1404
1405 sdp->swd_flags |= SWF_BUSY;
1406
1407 while (sdp->swd_active < sdp->swd_maxactive) {
1408 bp = bufq_get(sdp->swd_tab);
1409 if (bp == NULL)
1410 break;
1411 sdp->swd_active++;
1412
1413 UVMHIST_LOG(pdhist,
1414 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1415 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1416 vp = bp->b_vp;
1417 KASSERT(bp->b_objlock == &vp->v_interlock);
1418 if ((bp->b_flags & B_READ) == 0) {
1419 mutex_enter(&vp->v_interlock);
1420 vp->v_numoutput++;
1421 mutex_exit(&vp->v_interlock);
1422 }
1423 VOP_STRATEGY(vp, bp);
1424 }
1425 sdp->swd_flags &= ~SWF_BUSY;
1426 }
1427
1428 /*
1429 * sw_reg_biodone: one of our i/o's has completed
1430 */
1431 static void
1432 sw_reg_biodone(struct buf *bp)
1433 {
1434 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1435 }
1436
1437 /*
1438 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1439 *
1440 * => note that we can recover the vndbuf struct by casting the buf ptr
1441 */
1442 static void
1443 sw_reg_iodone(struct work *wk, void *dummy)
1444 {
1445 struct vndbuf *vbp = (void *)wk;
1446 struct vndxfer *vnx = vbp->vb_xfer;
1447 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1448 struct swapdev *sdp = vnx->vx_sdp;
1449 int s, resid, error;
1450 KASSERT(&vbp->vb_buf.b_work == wk);
1451 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1452
1453 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1454 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1455 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1456 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1457
1458 /*
1459 * protect vbp at splbio and update.
1460 */
1461
1462 s = splbio();
1463 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1464 pbp->b_resid -= resid;
1465 vnx->vx_pending--;
1466
1467 if (vbp->vb_buf.b_error != 0) {
1468 /* pass error upward */
1469 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1470 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1471 vnx->vx_error = error;
1472 }
1473
1474 /*
1475 * kill vbp structure
1476 */
1477 buf_destroy(&vbp->vb_buf);
1478 pool_put(&vndbuf_pool, vbp);
1479
1480 /*
1481 * wrap up this transaction if it has run to completion or, in
1482 * case of an error, when all auxiliary buffers have returned.
1483 */
1484 if (vnx->vx_error != 0) {
1485 /* pass error upward */
1486 error = vnx->vx_error;
1487 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1488 pbp->b_error = error;
1489 biodone(pbp);
1490 pool_put(&vndxfer_pool, vnx);
1491 }
1492 } else if (pbp->b_resid == 0) {
1493 KASSERT(vnx->vx_pending == 0);
1494 if ((vnx->vx_flags & VX_BUSY) == 0) {
1495 UVMHIST_LOG(pdhist, " iodone error=%d !",
1496 pbp, vnx->vx_error, 0, 0);
1497 biodone(pbp);
1498 pool_put(&vndxfer_pool, vnx);
1499 }
1500 }
1501
1502 /*
1503 * done! start next swapdev I/O if one is pending
1504 */
1505 sdp->swd_active--;
1506 sw_reg_start(sdp);
1507 splx(s);
1508 }
1509
1510
1511 /*
1512 * uvm_swap_alloc: allocate space on swap
1513 *
1514 * => allocation is done "round robin" down the priority list, as we
1515 * allocate in a priority we "rotate" the circle queue.
1516 * => space can be freed with uvm_swap_free
1517 * => we return the page slot number in /dev/drum (0 == invalid slot)
1518 * => we lock uvm_swap_data_lock
1519 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1520 */
1521 int
1522 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1523 {
1524 struct swapdev *sdp;
1525 struct swappri *spp;
1526 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1527
1528 /*
1529 * no swap devices configured yet? definite failure.
1530 */
1531 if (uvmexp.nswapdev < 1)
1532 return 0;
1533
1534 /*
1535 * lock data lock, convert slots into blocks, and enter loop
1536 */
1537 mutex_enter(&uvm_swap_data_lock);
1538
1539 ReTry: /* XXXMRG */
1540 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1541 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1542 uint64_t result;
1543
1544 /* if it's not enabled, then we can't swap from it */
1545 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1546 continue;
1547 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1548 continue;
1549 result = blist_alloc(sdp->swd_blist, *nslots);
1550 if (result == BLIST_NONE) {
1551 continue;
1552 }
1553 KASSERT(result < sdp->swd_drumsize);
1554
1555 /*
1556 * successful allocation! now rotate the circleq.
1557 */
1558 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1559 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1560 sdp->swd_npginuse += *nslots;
1561 uvmexp.swpginuse += *nslots;
1562 mutex_exit(&uvm_swap_data_lock);
1563 /* done! return drum slot number */
1564 UVMHIST_LOG(pdhist,
1565 "success! returning %d slots starting at %d",
1566 *nslots, result + sdp->swd_drumoffset, 0, 0);
1567 return (result + sdp->swd_drumoffset);
1568 }
1569 }
1570
1571 /* XXXMRG: BEGIN HACK */
1572 if (*nslots > 1 && lessok) {
1573 *nslots = 1;
1574 /* XXXMRG: ugh! blist should support this for us */
1575 goto ReTry;
1576 }
1577 /* XXXMRG: END HACK */
1578
1579 mutex_exit(&uvm_swap_data_lock);
1580 return 0;
1581 }
1582
1583 /*
1584 * uvm_swapisfull: return true if most of available swap is allocated
1585 * and in use. we don't count some small portion as it may be inaccessible
1586 * to us at any given moment, for example if there is lock contention or if
1587 * pages are busy.
1588 */
1589 bool
1590 uvm_swapisfull(void)
1591 {
1592 int swpgonly;
1593 bool rv;
1594
1595 mutex_enter(&uvm_swap_data_lock);
1596 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1597 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1598 uvm_swapisfull_factor);
1599 rv = (swpgonly >= uvmexp.swpgavail);
1600 mutex_exit(&uvm_swap_data_lock);
1601
1602 return (rv);
1603 }
1604
1605 /*
1606 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1607 *
1608 * => we lock uvm_swap_data_lock
1609 */
1610 void
1611 uvm_swap_markbad(int startslot, int nslots)
1612 {
1613 struct swapdev *sdp;
1614 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1615
1616 mutex_enter(&uvm_swap_data_lock);
1617 sdp = swapdrum_getsdp(startslot);
1618 KASSERT(sdp != NULL);
1619
1620 /*
1621 * we just keep track of how many pages have been marked bad
1622 * in this device, to make everything add up in swap_off().
1623 * we assume here that the range of slots will all be within
1624 * one swap device.
1625 */
1626
1627 KASSERT(uvmexp.swpgonly >= nslots);
1628 uvmexp.swpgonly -= nslots;
1629 sdp->swd_npgbad += nslots;
1630 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1631 mutex_exit(&uvm_swap_data_lock);
1632 }
1633
1634 /*
1635 * uvm_swap_free: free swap slots
1636 *
1637 * => this can be all or part of an allocation made by uvm_swap_alloc
1638 * => we lock uvm_swap_data_lock
1639 */
1640 void
1641 uvm_swap_free(int startslot, int nslots)
1642 {
1643 struct swapdev *sdp;
1644 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1645
1646 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1647 startslot, 0, 0);
1648
1649 /*
1650 * ignore attempts to free the "bad" slot.
1651 */
1652
1653 if (startslot == SWSLOT_BAD) {
1654 return;
1655 }
1656
1657 /*
1658 * convert drum slot offset back to sdp, free the blocks
1659 * in the extent, and return. must hold pri lock to do
1660 * lookup and access the extent.
1661 */
1662
1663 mutex_enter(&uvm_swap_data_lock);
1664 sdp = swapdrum_getsdp(startslot);
1665 KASSERT(uvmexp.nswapdev >= 1);
1666 KASSERT(sdp != NULL);
1667 KASSERT(sdp->swd_npginuse >= nslots);
1668 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1669 sdp->swd_npginuse -= nslots;
1670 uvmexp.swpginuse -= nslots;
1671 mutex_exit(&uvm_swap_data_lock);
1672 }
1673
1674 /*
1675 * uvm_swap_put: put any number of pages into a contig place on swap
1676 *
1677 * => can be sync or async
1678 */
1679
1680 int
1681 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1682 {
1683 int error;
1684
1685 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1686 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1687 return error;
1688 }
1689
1690 /*
1691 * uvm_swap_get: get a single page from swap
1692 *
1693 * => usually a sync op (from fault)
1694 */
1695
1696 int
1697 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1698 {
1699 int error;
1700
1701 uvmexp.nswget++;
1702 KASSERT(flags & PGO_SYNCIO);
1703 if (swslot == SWSLOT_BAD) {
1704 return EIO;
1705 }
1706
1707 error = uvm_swap_io(&page, swslot, 1, B_READ |
1708 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1709 if (error == 0) {
1710
1711 /*
1712 * this page is no longer only in swap.
1713 */
1714
1715 mutex_enter(&uvm_swap_data_lock);
1716 KASSERT(uvmexp.swpgonly > 0);
1717 uvmexp.swpgonly--;
1718 mutex_exit(&uvm_swap_data_lock);
1719 }
1720 return error;
1721 }
1722
1723 /*
1724 * uvm_swap_io: do an i/o operation to swap
1725 */
1726
1727 static int
1728 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1729 {
1730 daddr_t startblk;
1731 struct buf *bp;
1732 vaddr_t kva;
1733 int error, mapinflags;
1734 bool write, async;
1735 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1736
1737 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1738 startslot, npages, flags, 0);
1739
1740 write = (flags & B_READ) == 0;
1741 async = (flags & B_ASYNC) != 0;
1742
1743 /*
1744 * allocate a buf for the i/o.
1745 */
1746
1747 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1748 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1749 if (bp == NULL) {
1750 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1751 return ENOMEM;
1752 }
1753
1754 /*
1755 * convert starting drum slot to block number
1756 */
1757
1758 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1759
1760 /*
1761 * first, map the pages into the kernel.
1762 */
1763
1764 mapinflags = !write ?
1765 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1766 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1767 kva = uvm_pagermapin(pps, npages, mapinflags);
1768
1769 /*
1770 * fill in the bp/sbp. we currently route our i/o through
1771 * /dev/drum's vnode [swapdev_vp].
1772 */
1773
1774 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1775 bp->b_flags = (flags & (B_READ|B_ASYNC));
1776 bp->b_proc = &proc0; /* XXX */
1777 bp->b_vnbufs.le_next = NOLIST;
1778 bp->b_data = (void *)kva;
1779 bp->b_blkno = startblk;
1780 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1781
1782 /*
1783 * bump v_numoutput (counter of number of active outputs).
1784 */
1785
1786 if (write) {
1787 mutex_enter(&swapdev_vp->v_interlock);
1788 swapdev_vp->v_numoutput++;
1789 mutex_exit(&swapdev_vp->v_interlock);
1790 }
1791
1792 /*
1793 * for async ops we must set up the iodone handler.
1794 */
1795
1796 if (async) {
1797 bp->b_iodone = uvm_aio_biodone;
1798 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1799 if (curlwp == uvm.pagedaemon_lwp)
1800 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1801 else
1802 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1803 } else {
1804 bp->b_iodone = NULL;
1805 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1806 }
1807 UVMHIST_LOG(pdhist,
1808 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1809 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1810
1811 /*
1812 * now we start the I/O, and if async, return.
1813 */
1814
1815 VOP_STRATEGY(swapdev_vp, bp);
1816 if (async)
1817 return 0;
1818
1819 /*
1820 * must be sync i/o. wait for it to finish
1821 */
1822
1823 error = biowait(bp);
1824
1825 /*
1826 * kill the pager mapping
1827 */
1828
1829 uvm_pagermapout(kva, npages);
1830
1831 /*
1832 * now dispose of the buf and we're done.
1833 */
1834
1835 if (write) {
1836 mutex_enter(&swapdev_vp->v_interlock);
1837 vwakeup(bp);
1838 mutex_exit(&swapdev_vp->v_interlock);
1839 }
1840 putiobuf(bp);
1841 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1842
1843 return (error);
1844 }
1845