uvm_swap.c revision 1.16 1 /* $NetBSD: uvm_swap.c,v 1.16 1998/08/29 13:27:51 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53
54 #include <vm/vm.h>
55 #include <vm/vm_swap.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241 static simple_lock_data_t swap_data_lock;
242
243 /*
244 * prototypes
245 */
246 static void swapdrum_add __P((struct swapdev *, int));
247 static struct swapdev *swapdrum_getsdp __P((int));
248
249 static struct swapdev *swaplist_find __P((struct vnode *, int));
250 static void swaplist_insert __P((struct swapdev *,
251 struct swappri *, int));
252 static void swaplist_trim __P((void));
253
254 static int swap_on __P((struct proc *, struct swapdev *));
255 #ifdef SWAP_OFF_WORKS
256 static int swap_off __P((struct proc *, struct swapdev *));
257 #endif
258
259 #ifdef SWAP_TO_FILES
260 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
261 static void sw_reg_iodone __P((struct buf *));
262 static void sw_reg_start __P((struct swapdev *));
263 #endif
264
265 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
266 static void uvm_swap_bufdone __P((struct buf *));
267 static int uvm_swap_io __P((struct vm_page **, int, int, int));
268
269 /*
270 * uvm_swap_init: init the swap system data structures and locks
271 *
272 * => called at boot time from init_main.c after the filesystems
273 * are brought up (which happens after uvm_init())
274 */
275 void
276 uvm_swap_init()
277 {
278 UVMHIST_FUNC("uvm_swap_init");
279
280 UVMHIST_CALLED(pdhist);
281 /*
282 * first, init the swap list, its counter, and its lock.
283 * then get a handle on the vnode for /dev/drum by using
284 * the its dev_t number ("swapdev", from MD conf.c).
285 */
286
287 LIST_INIT(&swap_priority);
288 uvmexp.nswapdev = 0;
289 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
290 simple_lock_init(&swap_data_lock);
291
292 if (bdevvp(swapdev, &swapdev_vp))
293 panic("uvm_swap_init: can't get vnode for swap device");
294
295 /*
296 * create swap block resource map to map /dev/drum. the range
297 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
298 * that block 0 is reserved (used to indicate an allocation
299 * failure, or no allocation).
300 */
301 swapmap = extent_create("swapmap", 1, INT_MAX,
302 M_VMSWAP, 0, 0, EX_NOWAIT);
303 if (swapmap == 0)
304 panic("uvm_swap_init: extent_create failed");
305
306 /*
307 * allocate our private pool of "swapbuf" structures (includes
308 * a "buf" structure). ["nswbuf" comes from param.c and can
309 * be adjusted by MD code before we get here].
310 */
311
312 swapbuf_pool =
313 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
314 NULL, NULL, 0);
315 if (swapbuf_pool == NULL)
316 panic("swapinit: pool_create failed");
317 /* XXX - set a maximum on swapbuf_pool? */
318
319 vndxfer_pool =
320 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
321 NULL, NULL, 0);
322 if (vndxfer_pool == NULL)
323 panic("swapinit: pool_create failed");
324
325 vndbuf_pool =
326 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
327 NULL, NULL, 0);
328 if (vndbuf_pool == NULL)
329 panic("swapinit: pool_create failed");
330 /*
331 * done!
332 */
333 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
334 }
335
336 /*
337 * swaplist functions: functions that operate on the list of swap
338 * devices on the system.
339 */
340
341 /*
342 * swaplist_insert: insert swap device "sdp" into the global list
343 *
344 * => caller must hold both swap_syscall_lock and swap_data_lock
345 * => caller must provide a newly malloc'd swappri structure (we will
346 * FREE it if we don't need it... this it to prevent malloc blocking
347 * here while adding swap)
348 */
349 static void
350 swaplist_insert(sdp, newspp, priority)
351 struct swapdev *sdp;
352 struct swappri *newspp;
353 int priority;
354 {
355 struct swappri *spp, *pspp;
356 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
357
358 /*
359 * find entry at or after which to insert the new device.
360 */
361 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
362 spp = spp->spi_swappri.le_next) {
363 if (priority <= spp->spi_priority)
364 break;
365 pspp = spp;
366 }
367
368 /*
369 * new priority?
370 */
371 if (spp == NULL || spp->spi_priority != priority) {
372 spp = newspp; /* use newspp! */
373 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
374
375 spp->spi_priority = priority;
376 CIRCLEQ_INIT(&spp->spi_swapdev);
377
378 if (pspp)
379 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
380 else
381 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
382 } else {
383 /* we don't need a new priority structure, free it */
384 FREE(newspp, M_VMSWAP);
385 }
386
387 /*
388 * priority found (or created). now insert on the priority's
389 * circleq list and bump the total number of swapdevs.
390 */
391 sdp->swd_priority = priority;
392 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
393 uvmexp.nswapdev++;
394
395 /*
396 * done!
397 */
398 }
399
400 /*
401 * swaplist_find: find and optionally remove a swap device from the
402 * global list.
403 *
404 * => caller must hold both swap_syscall_lock and swap_data_lock
405 * => we return the swapdev we found (and removed)
406 */
407 static struct swapdev *
408 swaplist_find(vp, remove)
409 struct vnode *vp;
410 boolean_t remove;
411 {
412 struct swapdev *sdp;
413 struct swappri *spp;
414
415 /*
416 * search the lists for the requested vp
417 */
418 for (spp = swap_priority.lh_first; spp != NULL;
419 spp = spp->spi_swappri.le_next) {
420 for (sdp = spp->spi_swapdev.cqh_first;
421 sdp != (void *)&spp->spi_swapdev;
422 sdp = sdp->swd_next.cqe_next)
423 if (sdp->swd_vp == vp) {
424 if (remove) {
425 CIRCLEQ_REMOVE(&spp->spi_swapdev,
426 sdp, swd_next);
427 uvmexp.nswapdev--;
428 }
429 return(sdp);
430 }
431 }
432 return (NULL);
433 }
434
435
436 /*
437 * swaplist_trim: scan priority list for empty priority entries and kill
438 * them.
439 *
440 * => caller must hold both swap_syscall_lock and swap_data_lock
441 */
442 static void
443 swaplist_trim()
444 {
445 struct swappri *spp, *nextspp;
446
447 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
448 nextspp = spp->spi_swappri.le_next;
449 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
450 continue;
451 LIST_REMOVE(spp, spi_swappri);
452 free((caddr_t)spp, M_VMSWAP);
453 }
454 }
455
456 /*
457 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
458 *
459 * => caller must hold swap_syscall_lock
460 * => swap_data_lock should be unlocked (we may sleep)
461 */
462 static void
463 swapdrum_add(sdp, npages)
464 struct swapdev *sdp;
465 int npages;
466 {
467 u_long result;
468
469 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
470 EX_WAITOK, &result))
471 panic("swapdrum_add");
472
473 sdp->swd_drumoffset = result;
474 sdp->swd_drumsize = npages;
475 }
476
477 /*
478 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
479 * to the "swapdev" that maps that section of the drum.
480 *
481 * => each swapdev takes one big contig chunk of the drum
482 * => caller must hold swap_data_lock
483 */
484 static struct swapdev *
485 swapdrum_getsdp(pgno)
486 int pgno;
487 {
488 struct swapdev *sdp;
489 struct swappri *spp;
490
491 for (spp = swap_priority.lh_first; spp != NULL;
492 spp = spp->spi_swappri.le_next)
493 for (sdp = spp->spi_swapdev.cqh_first;
494 sdp != (void *)&spp->spi_swapdev;
495 sdp = sdp->swd_next.cqe_next)
496 if (pgno >= sdp->swd_drumoffset &&
497 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
498 return sdp;
499 }
500 return NULL;
501 }
502
503
504 /*
505 * sys_swapctl: main entry point for swapctl(2) system call
506 * [with two helper functions: swap_on and swap_off]
507 */
508 int
509 sys_swapctl(p, v, retval)
510 struct proc *p;
511 void *v;
512 register_t *retval;
513 {
514 struct sys_swapctl_args /* {
515 syscallarg(int) cmd;
516 syscallarg(void *) arg;
517 syscallarg(int) misc;
518 } */ *uap = (struct sys_swapctl_args *)v;
519 struct vnode *vp;
520 struct nameidata nd;
521 struct swappri *spp;
522 struct swapdev *sdp;
523 struct swapent *sep;
524 char userpath[PATH_MAX + 1];
525 int count, error, misc, len;
526 int priority;
527 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
528
529 misc = SCARG(uap, misc);
530
531 /*
532 * ensure serialized syscall access by grabbing the swap_syscall_lock
533 */
534 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
535
536 /*
537 * we handle the non-priv NSWAP and STATS request first.
538 *
539 * SWAP_NSWAP: return number of config'd swap devices
540 * [can also be obtained with uvmexp sysctl]
541 */
542 if (SCARG(uap, cmd) == SWAP_NSWAP) {
543 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
544 0, 0, 0);
545 *retval = uvmexp.nswapdev;
546 error = 0;
547 goto out;
548 }
549
550 /*
551 * SWAP_STATS: get stats on current # of configured swap devs
552 *
553 * note that the swap_priority list can't change as long
554 * as we are holding the swap_syscall_lock. we don't want
555 * to grab the swap_data_lock because we may fault&sleep during
556 * copyout() and we don't want to be holding that lock then!
557 */
558 if (SCARG(uap, cmd) == SWAP_STATS
559 #if defined(COMPAT_13)
560 || SCARG(uap, cmd) == SWAP_OSTATS
561 #endif
562 ) {
563 sep = (struct swapent *)SCARG(uap, arg);
564 count = 0;
565
566 for (spp = swap_priority.lh_first; spp != NULL;
567 spp = spp->spi_swappri.le_next) {
568 for (sdp = spp->spi_swapdev.cqh_first;
569 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
570 sdp = sdp->swd_next.cqe_next) {
571 /*
572 * backwards compatibility for system call.
573 * note that we use 'struct oswapent' as an
574 * overlay into both 'struct swapdev' and
575 * the userland 'struct swapent', as we
576 * want to retain backwards compatibility
577 * with NetBSD 1.3.
578 */
579 sdp->swd_ose.ose_inuse =
580 btodb(sdp->swd_npginuse * PAGE_SIZE);
581 error = copyout((caddr_t)&sdp->swd_ose,
582 (caddr_t)sep, sizeof(struct oswapent));
583
584 /* now copy out the path if necessary */
585 #if defined(COMPAT_13)
586 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
587 #else
588 if (error == 0)
589 #endif
590 error = copyout((caddr_t)sdp->swd_path,
591 (caddr_t)&sep->se_path,
592 sdp->swd_pathlen);
593
594 if (error)
595 goto out;
596 count++;
597 #if defined(COMPAT_13)
598 if (SCARG(uap, cmd) == SWAP_OSTATS)
599 ((struct oswapent *)sep)++;
600 else
601 #endif
602 sep++;
603 }
604 }
605
606 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
607
608 *retval = count;
609 error = 0;
610 goto out;
611 }
612
613 /*
614 * all other requests require superuser privs. verify.
615 */
616 if ((error = suser(p->p_ucred, &p->p_acflag)))
617 goto out;
618
619 /*
620 * at this point we expect a path name in arg. we will
621 * use namei() to gain a vnode reference (vref), and lock
622 * the vnode (VOP_LOCK).
623 *
624 * XXX: a NULL arg means use the root vnode pointer (e.g. for
625 * miniroot)
626 */
627 if (SCARG(uap, arg) == NULL) {
628 vp = rootvp; /* miniroot */
629 if (vget(vp, LK_EXCLUSIVE)) {
630 error = EBUSY;
631 goto out;
632 }
633 if (SCARG(uap, cmd) == SWAP_ON &&
634 copystr("miniroot", userpath, sizeof userpath, &len))
635 panic("swapctl: miniroot copy failed");
636 } else {
637 int space;
638 char *where;
639
640 if (SCARG(uap, cmd) == SWAP_ON) {
641 if ((error = copyinstr(SCARG(uap, arg), userpath,
642 sizeof userpath, &len)))
643 goto out;
644 space = UIO_SYSSPACE;
645 where = userpath;
646 } else {
647 space = UIO_USERSPACE;
648 where = (char *)SCARG(uap, arg);
649 }
650 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
651 if ((error = namei(&nd)))
652 goto out;
653 vp = nd.ni_vp;
654 }
655 /* note: "vp" is referenced and locked */
656
657 error = 0; /* assume no error */
658 switch(SCARG(uap, cmd)) {
659 case SWAP_CTL:
660 /*
661 * get new priority, remove old entry (if any) and then
662 * reinsert it in the correct place. finally, prune out
663 * any empty priority structures.
664 */
665 priority = SCARG(uap, misc);
666 spp = (struct swappri *)
667 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
668 simple_lock(&swap_data_lock);
669 if ((sdp = swaplist_find(vp, 1)) == NULL) {
670 error = ENOENT;
671 } else {
672 swaplist_insert(sdp, spp, priority);
673 swaplist_trim();
674 }
675 simple_unlock(&swap_data_lock);
676 if (error)
677 free(spp, M_VMSWAP);
678 break;
679
680 case SWAP_ON:
681 /*
682 * check for duplicates. if none found, then insert a
683 * dummy entry on the list to prevent someone else from
684 * trying to enable this device while we are working on
685 * it.
686 */
687 priority = SCARG(uap, misc);
688 simple_lock(&swap_data_lock);
689 if ((sdp = swaplist_find(vp, 0)) != NULL) {
690 error = EBUSY;
691 simple_unlock(&swap_data_lock);
692 break;
693 }
694 sdp = (struct swapdev *)
695 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
696 spp = (struct swappri *)
697 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
698 memset(sdp, 0, sizeof(*sdp));
699 sdp->swd_flags = SWF_FAKE; /* placeholder only */
700 sdp->swd_vp = vp;
701 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
702 #ifdef SWAP_TO_FILES
703 /*
704 * XXX Is NFS elaboration necessary?
705 */
706 if (vp->v_type == VREG)
707 sdp->swd_cred = crdup(p->p_ucred);
708 #endif
709 swaplist_insert(sdp, spp, priority);
710 simple_unlock(&swap_data_lock);
711
712 sdp->swd_pathlen = len;
713 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
714 if ((error = copystr(userpath, sdp->swd_path,
715 sdp->swd_pathlen, 0)))
716 break;
717 /*
718 * we've now got a FAKE placeholder in the swap list.
719 * now attempt to enable swap on it. if we fail, undo
720 * what we've done and kill the fake entry we just inserted.
721 * if swap_on is a success, it will clear the SWF_FAKE flag
722 */
723 if ((error = swap_on(p, sdp)) != 0) {
724 simple_lock(&swap_data_lock);
725 (void) swaplist_find(vp, 1); /* kill fake entry */
726 swaplist_trim();
727 simple_unlock(&swap_data_lock);
728 #ifdef SWAP_TO_FILES
729 if (vp->v_type == VREG)
730 crfree(sdp->swd_cred);
731 #endif
732 free((caddr_t)sdp, M_VMSWAP);
733 break;
734 }
735
736 /*
737 * got it! now add a second reference to vp so that
738 * we keep a reference to the vnode after we return.
739 */
740 vref(vp);
741 break;
742
743 case SWAP_OFF:
744 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
745 #ifdef SWAP_OFF_WORKS
746 /*
747 * find the entry of interest and ensure it is enabled.
748 */
749 simple_lock(&swap_data_lock);
750 if ((sdp = swaplist_find(vp, 0)) == NULL) {
751 simple_unlock(&swap_data_lock);
752 error = ENXIO;
753 break;
754 }
755 /*
756 * If a device isn't in use or enabled, we
757 * can't stop swapping from it (again).
758 */
759 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
760 simple_unlock(&swap_data_lock);
761 error = EBUSY;
762 break;
763 }
764 /* XXXCDC: should we call with list locked or unlocked? */
765 if ((error = swap_off(p, sdp)) != 0)
766 break;
767 /* XXXCDC: might need relock here */
768
769 /*
770 * now we can kill the entry.
771 */
772 if ((sdp = swaplist_find(vp, 1)) == NULL) {
773 error = ENXIO;
774 break;
775 }
776 simple_unlock(&swap_data_lock);
777 free((caddr_t)sdp, M_VMSWAP);
778 #else
779 error = EINVAL;
780 #endif
781 break;
782
783 default:
784 UVMHIST_LOG(pdhist, "unhandled command: %#x",
785 SCARG(uap, cmd), 0, 0, 0);
786 error = EINVAL;
787 }
788
789 /*
790 * done! use vput to drop our reference and unlock
791 */
792 vput(vp);
793 out:
794 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
795
796 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
797 return (error);
798 }
799
800 /*
801 * swap_on: attempt to enable a swapdev for swapping. note that the
802 * swapdev is already on the global list, but disabled (marked
803 * SWF_FAKE).
804 *
805 * => we avoid the start of the disk (to protect disk labels)
806 * => we also avoid the miniroot, if we are swapping to root.
807 * => caller should leave swap_data_lock unlocked, we may lock it
808 * if needed.
809 */
810 static int
811 swap_on(p, sdp)
812 struct proc *p;
813 struct swapdev *sdp;
814 {
815 static int count = 0; /* static */
816 struct vnode *vp;
817 int error, npages, nblocks, size;
818 long addr;
819 #ifdef SWAP_TO_FILES
820 struct vattr va;
821 #endif
822 #ifdef NFS
823 extern int (**nfsv2_vnodeop_p) __P((void *));
824 #endif /* NFS */
825 dev_t dev;
826 char *name;
827 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
828
829 /*
830 * we want to enable swapping on sdp. the swd_vp contains
831 * the vnode we want (locked and ref'd), and the swd_dev
832 * contains the dev_t of the file, if it a block device.
833 */
834
835 vp = sdp->swd_vp;
836 dev = sdp->swd_dev;
837
838 /*
839 * open the swap file (mostly useful for block device files to
840 * let device driver know what is up).
841 *
842 * we skip the open/close for root on swap because the root
843 * has already been opened when root was mounted (mountroot).
844 */
845 if (vp != rootvp) {
846 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
847 return (error);
848 }
849
850 /* XXX this only works for block devices */
851 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
852
853 /*
854 * we now need to determine the size of the swap area. for
855 * block specials we can call the d_psize function.
856 * for normal files, we must stat [get attrs].
857 *
858 * we put the result in nblks.
859 * for normal files, we also want the filesystem block size
860 * (which we get with statfs).
861 */
862 switch (vp->v_type) {
863 case VBLK:
864 if (bdevsw[major(dev)].d_psize == 0 ||
865 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
866 error = ENXIO;
867 goto bad;
868 }
869 break;
870
871 #ifdef SWAP_TO_FILES
872 case VREG:
873 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
874 goto bad;
875 nblocks = (int)btodb(va.va_size);
876 if ((error =
877 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
878 goto bad;
879
880 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
881 /*
882 * limit the max # of outstanding I/O requests we issue
883 * at any one time. take it easy on NFS servers.
884 */
885 #ifdef NFS
886 if (vp->v_op == nfsv2_vnodeop_p)
887 sdp->swd_maxactive = 2; /* XXX */
888 else
889 #endif /* NFS */
890 sdp->swd_maxactive = 8; /* XXX */
891 break;
892 #endif
893
894 default:
895 error = ENXIO;
896 goto bad;
897 }
898
899 /*
900 * save nblocks in a safe place and convert to pages.
901 */
902
903 sdp->swd_ose.ose_nblks = nblocks;
904 npages = dbtob((u_int64_t)nblocks) / PAGE_SIZE;
905
906 /*
907 * for block special files, we want to make sure that leave
908 * the disklabel and bootblocks alone, so we arrange to skip
909 * over them (randomly choosing to skip PAGE_SIZE bytes).
910 * note that because of this the "size" can be less than the
911 * actual number of blocks on the device.
912 */
913 if (vp->v_type == VBLK) {
914 /* we use pages 1 to (size - 1) [inclusive] */
915 size = npages - 1;
916 addr = 1;
917 } else {
918 /* we use pages 0 to (size - 1) [inclusive] */
919 size = npages;
920 addr = 0;
921 }
922
923 /*
924 * make sure we have enough blocks for a reasonable sized swap
925 * area. we want at least one page.
926 */
927
928 if (size < 1) {
929 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
930 error = EINVAL;
931 goto bad;
932 }
933
934 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
935
936 /*
937 * now we need to allocate an extent to manage this swap device
938 */
939 name = malloc(12, M_VMSWAP, M_WAITOK);
940 sprintf(name, "swap0x%04x", count++);
941
942 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
943 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
944 0, 0, EX_WAITOK);
945 /* allocate the `saved' region from the extent so it won't be used */
946 if (addr) {
947 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
948 panic("disklabel region");
949 sdp->swd_npginuse += addr;
950 uvmexp.swpginuse += addr;
951 }
952
953
954 /*
955 * if the vnode we are swapping to is the root vnode
956 * (i.e. we are swapping to the miniroot) then we want
957 * to make sure we don't overwrite it. do a statfs to
958 * find its size and skip over it.
959 */
960 if (vp == rootvp) {
961 struct mount *mp;
962 struct statfs *sp;
963 int rootblocks, rootpages;
964
965 mp = rootvnode->v_mount;
966 sp = &mp->mnt_stat;
967 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
968 rootpages = round_page(dbtob(rootblocks)) / PAGE_SIZE;
969 if (rootpages > npages)
970 panic("swap_on: miniroot larger than swap?");
971
972 if (extent_alloc_region(sdp->swd_ex, addr,
973 rootpages, EX_WAITOK))
974 panic("swap_on: unable to preserve miniroot");
975
976 sdp->swd_npginuse += (rootpages - addr);
977 uvmexp.swpginuse += (rootpages - addr);
978
979 printf("Preserved %d pages of miniroot ", rootpages);
980 printf("leaving %d pages of swap\n", size - rootpages);
981 }
982
983 /*
984 * now add the new swapdev to the drum and enable.
985 */
986 simple_lock(&swap_data_lock);
987 swapdrum_add(sdp, npages);
988 sdp->swd_npages = npages;
989 sdp->swd_flags &= ~SWF_FAKE; /* going live */
990 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
991 simple_unlock(&swap_data_lock);
992 uvmexp.swpages += npages;
993
994 /*
995 * add anon's to reflect the swap space we added
996 */
997 uvm_anon_add(size);
998
999 #if 0
1000 /*
1001 * At this point we could arrange to reserve memory for the
1002 * swap buffer pools.
1003 *
1004 * I don't think this is necessary, since swapping starts well
1005 * ahead of serious memory deprivation and the memory resource
1006 * pools hold on to actively used memory. This should ensure
1007 * we always have some resources to continue operation.
1008 */
1009
1010 int s = splbio();
1011 int n = 8 * sdp->swd_maxactive;
1012
1013 (void)pool_prime(swapbuf_pool, n, 0);
1014
1015 if (vp->v_type == VREG) {
1016 /* Allocate additional vnx and vnd buffers */
1017 /*
1018 * Allocation Policy:
1019 * (8 * swd_maxactive) vnx headers per swap dev
1020 * (16 * swd_maxactive) vnd buffers per swap dev
1021 */
1022
1023 n = 8 * sdp->swd_maxactive;
1024 (void)pool_prime(vndxfer_pool, n, 0);
1025
1026 n = 16 * sdp->swd_maxactive;
1027 (void)pool_prime(vndbuf_pool, n, 0);
1028 }
1029 splx(s);
1030 #endif
1031
1032 return (0);
1033
1034 bad:
1035 /*
1036 * failure: close device if necessary and return error.
1037 */
1038 if (vp != rootvp)
1039 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1040 return (error);
1041 }
1042
1043 #ifdef SWAP_OFF_WORKS
1044 /*
1045 * swap_off: stop swapping on swapdev
1046 *
1047 * XXXCDC: what conditions go here?
1048 */
1049 static int
1050 swap_off(p, sdp)
1051 struct proc *p;
1052 struct swapdev *sdp;
1053 {
1054 char *name;
1055 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1056
1057 /* turn off the enable flag */
1058 sdp->swd_flags &= ~SWF_ENABLE;
1059
1060 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1061
1062 /*
1063 * XXX write me
1064 *
1065 * the idea is to find out which processes are using this swap
1066 * device, and page them all in.
1067 *
1068 * eventually, we should try to move them out to other swap areas
1069 * if available.
1070 *
1071 * The alternative is to create a redirection map for this swap
1072 * device. This should work by moving all the pages of data from
1073 * the ex-swap device to another one, and making an entry in the
1074 * redirection map for it. locking is going to be important for
1075 * this!
1076 *
1077 * XXXCDC: also need to shrink anon pool
1078 */
1079
1080 /* until the above code is written, we must ENODEV */
1081 return ENODEV;
1082
1083 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1084 name = sdp->swd_ex->ex_name;
1085 extent_destroy(sdp->swd_ex);
1086 free(name, M_VMSWAP);
1087 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1088 if (sdp->swp_vp != rootvp)
1089 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1090 if (sdp->swd_vp)
1091 vrele(sdp->swd_vp);
1092 free((caddr_t)sdp, M_VMSWAP);
1093 return (0);
1094 }
1095 #endif
1096
1097 /*
1098 * /dev/drum interface and i/o functions
1099 */
1100
1101 /*
1102 * swread: the read function for the drum (just a call to physio)
1103 */
1104 /*ARGSUSED*/
1105 int
1106 swread(dev, uio, ioflag)
1107 dev_t dev;
1108 struct uio *uio;
1109 int ioflag;
1110 {
1111 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1112
1113 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1114 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1115 }
1116
1117 /*
1118 * swwrite: the write function for the drum (just a call to physio)
1119 */
1120 /*ARGSUSED*/
1121 int
1122 swwrite(dev, uio, ioflag)
1123 dev_t dev;
1124 struct uio *uio;
1125 int ioflag;
1126 {
1127 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1128
1129 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1130 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1131 }
1132
1133 /*
1134 * swstrategy: perform I/O on the drum
1135 *
1136 * => we must map the i/o request from the drum to the correct swapdev.
1137 */
1138 void
1139 swstrategy(bp)
1140 struct buf *bp;
1141 {
1142 struct swapdev *sdp;
1143 struct vnode *vp;
1144 int pageno;
1145 int bn;
1146 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1147
1148 /*
1149 * convert block number to swapdev. note that swapdev can't
1150 * be yanked out from under us because we are holding resources
1151 * in it (i.e. the blocks we are doing I/O on).
1152 */
1153 pageno = dbtob(bp->b_blkno) / PAGE_SIZE;
1154 simple_lock(&swap_data_lock);
1155 sdp = swapdrum_getsdp(pageno);
1156 simple_unlock(&swap_data_lock);
1157 if (sdp == NULL) {
1158 bp->b_error = EINVAL;
1159 bp->b_flags |= B_ERROR;
1160 biodone(bp);
1161 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1162 return;
1163 }
1164
1165 /*
1166 * convert drum page number to block number on this swapdev.
1167 */
1168
1169 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1170 bn = btodb(pageno * PAGE_SIZE); /* convert to diskblock */
1171
1172 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1173 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1174 sdp->swd_drumoffset, bn, bp->b_bcount);
1175
1176
1177 /*
1178 * for block devices we finish up here.
1179 * for regular files we have to do more work which we deligate
1180 * to sw_reg_strategy().
1181 */
1182
1183 switch (sdp->swd_vp->v_type) {
1184 default:
1185 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1186 case VBLK:
1187
1188 /*
1189 * must convert "bp" from an I/O on /dev/drum to an I/O
1190 * on the swapdev (sdp).
1191 */
1192 bp->b_blkno = bn; /* swapdev block number */
1193 vp = sdp->swd_vp; /* swapdev vnode pointer */
1194 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1195 VHOLD(vp); /* "hold" swapdev vp for i/o */
1196
1197 /*
1198 * if we are doing a write, we have to redirect the i/o on
1199 * drum's v_numoutput counter to the swapdevs.
1200 */
1201 if ((bp->b_flags & B_READ) == 0) {
1202 int s = splbio();
1203 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1204 vp->v_numoutput++; /* put it on swapdev */
1205 splx(s);
1206 }
1207
1208 /*
1209 * dissassocate buffer with /dev/drum vnode
1210 * [could be null if buf was from physio]
1211 */
1212 if (bp->b_vp != NULLVP)
1213 brelvp(bp);
1214
1215 /*
1216 * finally plug in swapdev vnode and start I/O
1217 */
1218 bp->b_vp = vp;
1219 VOP_STRATEGY(bp);
1220 return;
1221 #ifdef SWAP_TO_FILES
1222 case VREG:
1223 /*
1224 * deligate to sw_reg_strategy function.
1225 */
1226 sw_reg_strategy(sdp, bp, bn);
1227 return;
1228 #endif
1229 }
1230 /* NOTREACHED */
1231 }
1232
1233 #ifdef SWAP_TO_FILES
1234 /*
1235 * sw_reg_strategy: handle swap i/o to regular files
1236 */
1237 static void
1238 sw_reg_strategy(sdp, bp, bn)
1239 struct swapdev *sdp;
1240 struct buf *bp;
1241 int bn;
1242 {
1243 struct vnode *vp;
1244 struct vndxfer *vnx;
1245 daddr_t nbn, byteoff;
1246 caddr_t addr;
1247 int s, off, nra, error, sz, resid;
1248 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1249
1250 /*
1251 * allocate a vndxfer head for this transfer and point it to
1252 * our buffer.
1253 */
1254 getvndxfer(vnx);
1255 vnx->vx_flags = VX_BUSY;
1256 vnx->vx_error = 0;
1257 vnx->vx_pending = 0;
1258 vnx->vx_bp = bp;
1259 vnx->vx_sdp = sdp;
1260
1261 /*
1262 * setup for main loop where we read filesystem blocks into
1263 * our buffer.
1264 */
1265 error = 0;
1266 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1267 addr = bp->b_data; /* current position in buffer */
1268 byteoff = dbtob(bn);
1269
1270 for (resid = bp->b_resid; resid; resid -= sz) {
1271 struct vndbuf *nbp;
1272
1273 /*
1274 * translate byteoffset into block number. return values:
1275 * vp = vnode of underlying device
1276 * nbn = new block number (on underlying vnode dev)
1277 * nra = num blocks we can read-ahead (excludes requested
1278 * block)
1279 */
1280 nra = 0;
1281 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1282 &vp, &nbn, &nra);
1283
1284 if (error == 0 && (long)nbn == -1)
1285 error = EIO; /* failure */
1286
1287 /*
1288 * punt if there was an error or a hole in the file.
1289 * we must wait for any i/o ops we have already started
1290 * to finish before returning.
1291 *
1292 * XXX we could deal with holes here but it would be
1293 * a hassle (in the write case).
1294 */
1295 if (error) {
1296 s = splbio();
1297 vnx->vx_error = error; /* pass error up */
1298 goto out;
1299 }
1300
1301 /*
1302 * compute the size ("sz") of this transfer (in bytes).
1303 * XXXCDC: ignores read-ahead for non-zero offset
1304 */
1305 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1306 sz = sdp->swd_bsize - off;
1307 else
1308 sz = (1 + nra) * sdp->swd_bsize;
1309
1310 if (resid < sz)
1311 sz = resid;
1312
1313 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1314 sdp->swd_vp, vp, byteoff, nbn);
1315
1316 /*
1317 * now get a buf structure. note that the vb_buf is
1318 * at the front of the nbp structure so that you can
1319 * cast pointers between the two structure easily.
1320 */
1321 getvndbuf(nbp);
1322 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1323 nbp->vb_buf.b_bcount = sz;
1324 #if 0
1325 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1326 #endif
1327 nbp->vb_buf.b_bufsize = sz;
1328 nbp->vb_buf.b_error = 0;
1329 nbp->vb_buf.b_data = addr;
1330 nbp->vb_buf.b_blkno = nbn + btodb(off);
1331 nbp->vb_buf.b_proc = bp->b_proc;
1332 nbp->vb_buf.b_iodone = sw_reg_iodone;
1333 nbp->vb_buf.b_vp = NULLVP;
1334 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1335 nbp->vb_buf.b_rcred = sdp->swd_cred;
1336 nbp->vb_buf.b_wcred = sdp->swd_cred;
1337
1338 /*
1339 * set b_dirtyoff/end and b_validoff/end. this is
1340 * required by the NFS client code (otherwise it will
1341 * just discard our I/O request).
1342 */
1343 if (bp->b_dirtyend == 0) {
1344 nbp->vb_buf.b_dirtyoff = 0;
1345 nbp->vb_buf.b_dirtyend = sz;
1346 } else {
1347 nbp->vb_buf.b_dirtyoff =
1348 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1349 nbp->vb_buf.b_dirtyend =
1350 min(sz,
1351 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1352 }
1353 if (bp->b_validend == 0) {
1354 nbp->vb_buf.b_validoff = 0;
1355 nbp->vb_buf.b_validend = sz;
1356 } else {
1357 nbp->vb_buf.b_validoff =
1358 max(0, bp->b_validoff - (bp->b_bcount-resid));
1359 nbp->vb_buf.b_validend =
1360 min(sz,
1361 max(0, bp->b_validend - (bp->b_bcount-resid)));
1362 }
1363
1364 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1365
1366 /*
1367 * Just sort by block number
1368 */
1369 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1370 s = splbio();
1371 if (vnx->vx_error != 0) {
1372 putvndbuf(nbp);
1373 goto out;
1374 }
1375 vnx->vx_pending++;
1376
1377 /* assoc new buffer with underlying vnode */
1378 bgetvp(vp, &nbp->vb_buf);
1379
1380 /* sort it in and start I/O if we are not over our limit */
1381 disksort(&sdp->swd_tab, &nbp->vb_buf);
1382 sw_reg_start(sdp);
1383 splx(s);
1384
1385 /*
1386 * advance to the next I/O
1387 */
1388 byteoff += sz;
1389 addr += sz;
1390 }
1391
1392 s = splbio();
1393
1394 out: /* Arrive here at splbio */
1395 vnx->vx_flags &= ~VX_BUSY;
1396 if (vnx->vx_pending == 0) {
1397 if (vnx->vx_error != 0) {
1398 bp->b_error = vnx->vx_error;
1399 bp->b_flags |= B_ERROR;
1400 }
1401 putvndxfer(vnx);
1402 biodone(bp);
1403 }
1404 splx(s);
1405 }
1406
1407 /*
1408 * sw_reg_start: start an I/O request on the requested swapdev
1409 *
1410 * => reqs are sorted by disksort (above)
1411 */
1412 static void
1413 sw_reg_start(sdp)
1414 struct swapdev *sdp;
1415 {
1416 struct buf *bp;
1417 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1418
1419 /* recursion control */
1420 if ((sdp->swd_flags & SWF_BUSY) != 0)
1421 return;
1422
1423 sdp->swd_flags |= SWF_BUSY;
1424
1425 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1426 bp = sdp->swd_tab.b_actf;
1427 if (bp == NULL)
1428 break;
1429 sdp->swd_tab.b_actf = bp->b_actf;
1430 sdp->swd_tab.b_active++;
1431
1432 UVMHIST_LOG(pdhist,
1433 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1434 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1435 if ((bp->b_flags & B_READ) == 0)
1436 bp->b_vp->v_numoutput++;
1437 VOP_STRATEGY(bp);
1438 }
1439 sdp->swd_flags &= ~SWF_BUSY;
1440 }
1441
1442 /*
1443 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1444 *
1445 * => note that we can recover the vndbuf struct by casting the buf ptr
1446 */
1447 static void
1448 sw_reg_iodone(bp)
1449 struct buf *bp;
1450 {
1451 struct vndbuf *vbp = (struct vndbuf *) bp;
1452 struct vndxfer *vnx = vbp->vb_xfer;
1453 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1454 struct swapdev *sdp = vnx->vx_sdp;
1455 int s, resid;
1456 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1457
1458 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1459 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1460 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1461 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1462
1463 /*
1464 * protect vbp at splbio and update.
1465 */
1466
1467 s = splbio();
1468 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1469 pbp->b_resid -= resid;
1470 vnx->vx_pending--;
1471
1472 if (vbp->vb_buf.b_error) {
1473 UVMHIST_LOG(pdhist, " got error=%d !",
1474 vbp->vb_buf.b_error, 0, 0, 0);
1475
1476 /* pass error upward */
1477 vnx->vx_error = vbp->vb_buf.b_error;
1478 }
1479
1480 /*
1481 * drop "hold" reference to vnode (if one)
1482 * XXXCDC: always set to NULLVP, this is useless, right?
1483 */
1484 if (vbp->vb_buf.b_vp != NULLVP)
1485 brelvp(&vbp->vb_buf);
1486
1487 /*
1488 * kill vbp structure
1489 */
1490 putvndbuf(vbp);
1491
1492 /*
1493 * wrap up this transaction if it has run to completion or, in
1494 * case of an error, when all auxiliary buffers have returned.
1495 */
1496 if (vnx->vx_error != 0) {
1497 /* pass error upward */
1498 pbp->b_flags |= B_ERROR;
1499 pbp->b_error = vnx->vx_error;
1500 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1501 putvndxfer(vnx);
1502 biodone(pbp);
1503 }
1504 } else if (pbp->b_resid == 0) {
1505 #ifdef DIAGNOSTIC
1506 if (vnx->vx_pending != 0)
1507 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1508 #endif
1509
1510 if ((vnx->vx_flags & VX_BUSY) == 0) {
1511 UVMHIST_LOG(pdhist, " iodone error=%d !",
1512 pbp, vnx->vx_error, 0, 0);
1513 putvndxfer(vnx);
1514 biodone(pbp);
1515 }
1516 }
1517
1518 /*
1519 * done! start next swapdev I/O if one is pending
1520 */
1521 sdp->swd_tab.b_active--;
1522 sw_reg_start(sdp);
1523
1524 splx(s);
1525 }
1526 #endif /* SWAP_TO_FILES */
1527
1528
1529 /*
1530 * uvm_swap_alloc: allocate space on swap
1531 *
1532 * => allocation is done "round robin" down the priority list, as we
1533 * allocate in a priority we "rotate" the circle queue.
1534 * => space can be freed with uvm_swap_free
1535 * => we return the page slot number in /dev/drum (0 == invalid slot)
1536 * => we lock swap_data_lock
1537 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1538 */
1539 int
1540 uvm_swap_alloc(nslots, lessok)
1541 int *nslots; /* IN/OUT */
1542 boolean_t lessok;
1543 {
1544 struct swapdev *sdp;
1545 struct swappri *spp;
1546 u_long result;
1547 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1548
1549 /*
1550 * no swap devices configured yet? definite failure.
1551 */
1552 if (uvmexp.nswapdev < 1)
1553 return 0;
1554
1555 /*
1556 * lock data lock, convert slots into blocks, and enter loop
1557 */
1558 simple_lock(&swap_data_lock);
1559
1560 ReTry: /* XXXMRG */
1561 for (spp = swap_priority.lh_first; spp != NULL;
1562 spp = spp->spi_swappri.le_next) {
1563 for (sdp = spp->spi_swapdev.cqh_first;
1564 sdp != (void *)&spp->spi_swapdev;
1565 sdp = sdp->swd_next.cqe_next) {
1566 /* if it's not enabled, then we can't swap from it */
1567 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1568 continue;
1569 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1570 continue;
1571 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1572 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1573 &result) != 0) {
1574 continue;
1575 }
1576
1577 /*
1578 * successful allocation! now rotate the circleq.
1579 */
1580 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1581 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1582 sdp->swd_npginuse += *nslots;
1583 uvmexp.swpginuse += *nslots;
1584 simple_unlock(&swap_data_lock);
1585 /* done! return drum slot number */
1586 UVMHIST_LOG(pdhist,
1587 "success! returning %d slots starting at %d",
1588 *nslots, result + sdp->swd_drumoffset, 0, 0);
1589 #if 0
1590 {
1591 struct swapdev *sdp2;
1592
1593 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1594 if (sdp2 == NULL) {
1595 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1596 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1597 panic("uvm_swap_alloc: allocating unmapped swap block!");
1598 }
1599 }
1600 #endif
1601 return(result + sdp->swd_drumoffset);
1602 }
1603 }
1604
1605 /* XXXMRG: BEGIN HACK */
1606 if (*nslots > 1 && lessok) {
1607 *nslots = 1;
1608 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1609 }
1610 /* XXXMRG: END HACK */
1611
1612 simple_unlock(&swap_data_lock);
1613 return 0; /* failed */
1614 }
1615
1616 /*
1617 * uvm_swap_free: free swap slots
1618 *
1619 * => this can be all or part of an allocation made by uvm_swap_alloc
1620 * => we lock swap_data_lock
1621 */
1622 void
1623 uvm_swap_free(startslot, nslots)
1624 int startslot;
1625 int nslots;
1626 {
1627 struct swapdev *sdp;
1628 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1629
1630 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1631 startslot, 0, 0);
1632 /*
1633 * convert drum slot offset back to sdp, free the blocks
1634 * in the extent, and return. must hold pri lock to do
1635 * lookup and access the extent.
1636 */
1637 simple_lock(&swap_data_lock);
1638 sdp = swapdrum_getsdp(startslot);
1639
1640 #ifdef DIAGNOSTIC
1641 if (uvmexp.nswapdev < 1)
1642 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1643 if (sdp == NULL) {
1644 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1645 nslots);
1646 panic("uvm_swap_free: unmapped address\n");
1647 }
1648 #endif
1649 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1650 EX_MALLOCOK|EX_NOWAIT) != 0)
1651 printf("warning: resource shortage: %d slots of swap lost\n",
1652 nslots);
1653
1654 sdp->swd_npginuse -= nslots;
1655 uvmexp.swpginuse -= nslots;
1656 #ifdef DIAGNOSTIC
1657 if (sdp->swd_npginuse < 0)
1658 panic("uvm_swap_free: inuse < 0");
1659 #endif
1660 simple_unlock(&swap_data_lock);
1661 }
1662
1663 /*
1664 * uvm_swap_put: put any number of pages into a contig place on swap
1665 *
1666 * => can be sync or async
1667 * => XXXMRG: consider making it an inline or macro
1668 */
1669 int
1670 uvm_swap_put(swslot, ppsp, npages, flags)
1671 int swslot;
1672 struct vm_page **ppsp;
1673 int npages;
1674 int flags;
1675 {
1676 int result;
1677
1678 #if 0
1679 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1680 #endif
1681
1682 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1683 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1684
1685 return (result);
1686 }
1687
1688 /*
1689 * uvm_swap_get: get a single page from swap
1690 *
1691 * => usually a sync op (from fault)
1692 * => XXXMRG: consider making it an inline or macro
1693 */
1694 int
1695 uvm_swap_get(page, swslot, flags)
1696 struct vm_page *page;
1697 int swslot, flags;
1698 {
1699 int result;
1700
1701 uvmexp.nswget++;
1702 #ifdef DIAGNOSTIC
1703 if ((flags & PGO_SYNCIO) == 0)
1704 printf("uvm_swap_get: ASYNC get requested?\n");
1705 #endif
1706
1707 result = uvm_swap_io(&page, swslot, 1, B_READ |
1708 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1709
1710 return (result);
1711 }
1712
1713 /*
1714 * uvm_swap_io: do an i/o operation to swap
1715 */
1716
1717 static int
1718 uvm_swap_io(pps, startslot, npages, flags)
1719 struct vm_page **pps;
1720 int startslot, npages, flags;
1721 {
1722 daddr_t startblk;
1723 struct swapbuf *sbp;
1724 struct buf *bp;
1725 vaddr_t kva;
1726 int result, s, waitf, pflag;
1727 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1728
1729 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1730 startslot, npages, flags, 0);
1731 /*
1732 * convert starting drum slot to block number
1733 */
1734 startblk = btodb(startslot * PAGE_SIZE);
1735
1736 /*
1737 * first, map the pages into the kernel (XXX: currently required
1738 * by buffer system). note that we don't let pagermapin alloc
1739 * an aiodesc structure because we don't want to chance a malloc.
1740 * we've got our own pool of aiodesc structures (in swapbuf).
1741 */
1742 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1743 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1744 if (kva == NULL)
1745 return (VM_PAGER_AGAIN);
1746
1747 /*
1748 * now allocate a swap buffer off of freesbufs
1749 * [make sure we don't put the pagedaemon to sleep...]
1750 */
1751 s = splbio();
1752 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1753 ? 0
1754 : PR_WAITOK;
1755 sbp = pool_get(swapbuf_pool, pflag);
1756 splx(s); /* drop splbio */
1757
1758 /*
1759 * if we failed to get a swapbuf, return "try again"
1760 */
1761 if (sbp == NULL)
1762 return (VM_PAGER_AGAIN);
1763
1764 /*
1765 * fill in the bp/sbp. we currently route our i/o through
1766 * /dev/drum's vnode [swapdev_vp].
1767 */
1768 bp = &sbp->sw_buf;
1769 bp->b_flags = B_BUSY | (flags & (B_READ|B_ASYNC));
1770 bp->b_proc = &proc0; /* XXX */
1771 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1772 bp->b_vnbufs.le_next = NOLIST;
1773 bp->b_data = (caddr_t)kva;
1774 bp->b_blkno = startblk;
1775 VHOLD(swapdev_vp);
1776 bp->b_vp = swapdev_vp;
1777 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1778 /* XXXMRG: probably -- this is obviously something inherited... */
1779 if (swapdev_vp->v_type == VBLK)
1780 bp->b_dev = swapdev_vp->v_rdev;
1781 bp->b_bcount = npages * PAGE_SIZE;
1782
1783 /*
1784 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1785 * and we bump v_numoutput (counter of number of active outputs).
1786 */
1787 if ((bp->b_flags & B_READ) == 0) {
1788 bp->b_dirtyoff = 0;
1789 bp->b_dirtyend = npages * PAGE_SIZE;
1790 s = splbio();
1791 swapdev_vp->v_numoutput++;
1792 splx(s);
1793 }
1794
1795 /*
1796 * for async ops we must set up the aiodesc and setup the callback
1797 * XXX: we expect no async-reads, but we don't prevent it here.
1798 */
1799 if (flags & B_ASYNC) {
1800 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1801 sbp->sw_aio.kva = kva;
1802 sbp->sw_aio.npages = npages;
1803 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1804 bp->b_flags |= B_CALL; /* set callback */
1805 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1806 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1807 }
1808 UVMHIST_LOG(pdhist,
1809 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1810 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1811
1812 /*
1813 * now we start the I/O, and if async, return.
1814 */
1815 VOP_STRATEGY(bp);
1816 if (flags & B_ASYNC)
1817 return (VM_PAGER_PEND);
1818
1819 /*
1820 * must be sync i/o. wait for it to finish
1821 */
1822 bp->b_error = biowait(bp);
1823 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1824
1825 /*
1826 * kill the pager mapping
1827 */
1828 uvm_pagermapout(kva, npages);
1829
1830 /*
1831 * now dispose of the swap buffer
1832 */
1833 s = splbio();
1834 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1835 if (bp->b_vp)
1836 brelvp(bp);
1837
1838 pool_put(swapbuf_pool, sbp);
1839 splx(s);
1840
1841 /*
1842 * finally return.
1843 */
1844 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1845 return (result);
1846 }
1847
1848 /*
1849 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1850 */
1851 static void
1852 uvm_swap_bufdone(bp)
1853 struct buf *bp;
1854 {
1855 struct swapbuf *sbp = (struct swapbuf *) bp;
1856 int s = splbio();
1857 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1858
1859 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1860 #ifdef DIAGNOSTIC
1861 /*
1862 * sanity check: swapbufs are private, so they shouldn't be wanted
1863 */
1864 if (bp->b_flags & B_WANTED)
1865 panic("uvm_swap_bufdone: private buf wanted");
1866 #endif
1867
1868 /*
1869 * drop buffers reference to the vnode and its flags.
1870 */
1871 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY);
1872 if (bp->b_vp)
1873 brelvp(bp);
1874
1875 /*
1876 * now put the aio on the uvm.aio_done list and wake the
1877 * pagedaemon (which will finish up our job in its context).
1878 */
1879 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1880 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1881 simple_unlock(&uvm.pagedaemon_lock);
1882
1883 thread_wakeup(&uvm.pagedaemon);
1884 splx(s);
1885 }
1886
1887 /*
1888 * uvm_swap_aiodone: aiodone function for anonymous memory
1889 *
1890 * => this is called in the context of the pagedaemon (but with the
1891 * page queues unlocked!)
1892 * => our "aio" structure must be part of a "swapbuf"
1893 */
1894 static void
1895 uvm_swap_aiodone(aio)
1896 struct uvm_aiodesc *aio;
1897 {
1898 struct swapbuf *sbp = aio->pd_ptr;
1899 /* XXXMRG: does this work if PAGE_SIZE is a variable, eg SUN4C&&SUN4 */
1900 /* XXX it does with GCC */
1901 struct vm_page *pps[MAXBSIZE/PAGE_SIZE];
1902 int lcv, s;
1903 vaddr_t addr;
1904 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1905
1906 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1907 #ifdef DIAGNOSTIC
1908 /*
1909 * sanity check
1910 */
1911 if (aio->npages > (MAXBSIZE/PAGE_SIZE))
1912 panic("uvm_swap_aiodone: aio too big!");
1913 #endif
1914
1915 /*
1916 * first, we have to recover the page pointers (pps) by poking in the
1917 * kernel pmap (XXX: should be saved in the buf structure).
1918 */
1919 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1920 addr += PAGE_SIZE, lcv++) {
1921 pps[lcv] = uvm_pageratop(addr);
1922 }
1923
1924 /*
1925 * now we can dispose of the kernel mappings of the buffer
1926 */
1927 uvm_pagermapout(aio->kva, aio->npages);
1928
1929 /*
1930 * now we can dispose of the pages by using the dropcluster function
1931 * [note that we have no "page of interest" so we pass in null]
1932 */
1933 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1934 PGO_PDFREECLUST, 0);
1935
1936 /*
1937 * finally, we can dispose of the swapbuf
1938 */
1939 s = splbio();
1940 pool_put(swapbuf_pool, sbp);
1941 splx(s);
1942
1943 /*
1944 * done!
1945 */
1946 }
1947