uvm_swap.c revision 1.160 1 /* $NetBSD: uvm_swap.c,v 1.160 2012/01/28 00:00:06 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.160 2012/01/28 00:00:06 rmind Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * CIRCLEQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226
227 /*
228 * prototypes
229 */
230 static struct swapdev *swapdrum_getsdp(int);
231
232 static struct swapdev *swaplist_find(struct vnode *, bool);
233 static void swaplist_insert(struct swapdev *,
234 struct swappri *, int);
235 static void swaplist_trim(void);
236
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239
240 static void uvm_swap_stats(int, struct swapent *, int, register_t *);
241
242 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
243 static void sw_reg_biodone(struct buf *);
244 static void sw_reg_iodone(struct work *wk, void *dummy);
245 static void sw_reg_start(struct swapdev *);
246
247 static int uvm_swap_io(struct vm_page **, int, int, int);
248
249 /*
250 * uvm_swap_init: init the swap system data structures and locks
251 *
252 * => called at boot time from init_main.c after the filesystems
253 * are brought up (which happens after uvm_init())
254 */
255 void
256 uvm_swap_init(void)
257 {
258 UVMHIST_FUNC("uvm_swap_init");
259
260 UVMHIST_CALLED(pdhist);
261 /*
262 * first, init the swap list, its counter, and its lock.
263 * then get a handle on the vnode for /dev/drum by using
264 * the its dev_t number ("swapdev", from MD conf.c).
265 */
266
267 LIST_INIT(&swap_priority);
268 uvmexp.nswapdev = 0;
269 rw_init(&swap_syscall_lock);
270 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
271
272 if (bdevvp(swapdev, &swapdev_vp))
273 panic("%s: can't get vnode for swap device", __func__);
274 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
275 panic("%s: can't lock swap device", __func__);
276 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
277 panic("%s: can't open swap device", __func__);
278 VOP_UNLOCK(swapdev_vp);
279
280 /*
281 * create swap block resource map to map /dev/drum. the range
282 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
283 * that block 0 is reserved (used to indicate an allocation
284 * failure, or no allocation).
285 */
286 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
287 VM_NOSLEEP, IPL_NONE);
288 if (swapmap == 0) {
289 panic("%s: vmem_create failed", __func__);
290 }
291
292 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
293 NULL, IPL_BIO);
294 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
295 NULL, IPL_BIO);
296
297 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
298 }
299
300 /*
301 * swaplist functions: functions that operate on the list of swap
302 * devices on the system.
303 */
304
305 /*
306 * swaplist_insert: insert swap device "sdp" into the global list
307 *
308 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
309 * => caller must provide a newly allocated swappri structure (we will
310 * FREE it if we don't need it... this it to prevent allocation
311 * blocking here while adding swap)
312 */
313 static void
314 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
315 {
316 struct swappri *spp, *pspp;
317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318
319 /*
320 * find entry at or after which to insert the new device.
321 */
322 pspp = NULL;
323 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
324 if (priority <= spp->spi_priority)
325 break;
326 pspp = spp;
327 }
328
329 /*
330 * new priority?
331 */
332 if (spp == NULL || spp->spi_priority != priority) {
333 spp = newspp; /* use newspp! */
334 UVMHIST_LOG(pdhist, "created new swappri = %d",
335 priority, 0, 0, 0);
336
337 spp->spi_priority = priority;
338 CIRCLEQ_INIT(&spp->spi_swapdev);
339
340 if (pspp)
341 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 else
343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 } else {
345 /* we don't need a new priority structure, free it */
346 kmem_free(newspp, sizeof(*newspp));
347 }
348
349 /*
350 * priority found (or created). now insert on the priority's
351 * circleq list and bump the total number of swapdevs.
352 */
353 sdp->swd_priority = priority;
354 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 uvmexp.nswapdev++;
356 }
357
358 /*
359 * swaplist_find: find and optionally remove a swap device from the
360 * global list.
361 *
362 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
363 * => we return the swapdev we found (and removed)
364 */
365 static struct swapdev *
366 swaplist_find(struct vnode *vp, bool remove)
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 CIRCLEQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390 /*
391 * swaplist_trim: scan priority list for empty priority entries and kill
392 * them.
393 *
394 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
395 */
396 static void
397 swaplist_trim(void)
398 {
399 struct swappri *spp, *nextspp;
400
401 for (spp = LIST_FIRST(&swap_priority); spp != NULL; spp = nextspp) {
402 nextspp = LIST_NEXT(spp, spi_swappri);
403 if (CIRCLEQ_FIRST(&spp->spi_swapdev) !=
404 (void *)&spp->spi_swapdev)
405 continue;
406 LIST_REMOVE(spp, spi_swappri);
407 kmem_free(spp, sizeof(*spp));
408 }
409 }
410
411 /*
412 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
413 * to the "swapdev" that maps that section of the drum.
414 *
415 * => each swapdev takes one big contig chunk of the drum
416 * => caller must hold uvm_swap_data_lock
417 */
418 static struct swapdev *
419 swapdrum_getsdp(int pgno)
420 {
421 struct swapdev *sdp;
422 struct swappri *spp;
423
424 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
425 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
426 if (sdp->swd_flags & SWF_FAKE)
427 continue;
428 if (pgno >= sdp->swd_drumoffset &&
429 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
430 return sdp;
431 }
432 }
433 }
434 return NULL;
435 }
436
437
438 /*
439 * sys_swapctl: main entry point for swapctl(2) system call
440 * [with two helper functions: swap_on and swap_off]
441 */
442 int
443 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
444 {
445 /* {
446 syscallarg(int) cmd;
447 syscallarg(void *) arg;
448 syscallarg(int) misc;
449 } */
450 struct vnode *vp;
451 struct nameidata nd;
452 struct swappri *spp;
453 struct swapdev *sdp;
454 struct swapent *sep;
455 #define SWAP_PATH_MAX (PATH_MAX + 1)
456 char *userpath;
457 size_t len;
458 int error, misc;
459 int priority;
460 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
461
462 misc = SCARG(uap, misc);
463
464 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
465
466 /*
467 * ensure serialized syscall access by grabbing the swap_syscall_lock
468 */
469 rw_enter(&swap_syscall_lock, RW_WRITER);
470
471 /*
472 * we handle the non-priv NSWAP and STATS request first.
473 *
474 * SWAP_NSWAP: return number of config'd swap devices
475 * [can also be obtained with uvmexp sysctl]
476 */
477 if (SCARG(uap, cmd) == SWAP_NSWAP) {
478 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
479 0, 0, 0);
480 *retval = uvmexp.nswapdev;
481 error = 0;
482 goto out;
483 }
484
485 /*
486 * SWAP_STATS: get stats on current # of configured swap devs
487 *
488 * note that the swap_priority list can't change as long
489 * as we are holding the swap_syscall_lock. we don't want
490 * to grab the uvm_swap_data_lock because we may fault&sleep during
491 * copyout() and we don't want to be holding that lock then!
492 */
493 if (SCARG(uap, cmd) == SWAP_STATS
494 #if defined(COMPAT_50)
495 || SCARG(uap, cmd) == SWAP_STATS50
496 #endif
497 #if defined(COMPAT_13)
498 || SCARG(uap, cmd) == SWAP_STATS13
499 #endif
500 ) {
501 if ((size_t)misc > (size_t)uvmexp.nswapdev)
502 misc = uvmexp.nswapdev;
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_STATS13)
505 len = sizeof(struct swapent13) * misc;
506 else
507 #endif
508 #if defined(COMPAT_50)
509 if (SCARG(uap, cmd) == SWAP_STATS50)
510 len = sizeof(struct swapent50) * misc;
511 else
512 #endif
513 len = sizeof(struct swapent) * misc;
514 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
515
516 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
517 error = copyout(sep, SCARG(uap, arg), len);
518
519 kmem_free(sep, len);
520 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 goto out;
522 }
523 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 dev_t *devp = (dev_t *)SCARG(uap, arg);
525
526 error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 goto out;
528 }
529
530 /*
531 * all other requests require superuser privs. verify.
532 */
533 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 0, NULL, NULL, NULL)))
535 goto out;
536
537 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 /* drop the current dump device */
539 dumpdev = NODEV;
540 dumpcdev = NODEV;
541 cpu_dumpconf();
542 goto out;
543 }
544
545 /*
546 * at this point we expect a path name in arg. we will
547 * use namei() to gain a vnode reference (vref), and lock
548 * the vnode (VOP_LOCK).
549 *
550 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 * miniroot)
552 */
553 if (SCARG(uap, arg) == NULL) {
554 vp = rootvp; /* miniroot */
555 vref(vp);
556 if (vn_lock(vp, LK_EXCLUSIVE)) {
557 vrele(vp);
558 error = EBUSY;
559 goto out;
560 }
561 if (SCARG(uap, cmd) == SWAP_ON &&
562 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
563 panic("swapctl: miniroot copy failed");
564 } else {
565 struct pathbuf *pb;
566
567 /*
568 * This used to allow copying in one extra byte
569 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
570 * This was completely pointless because if anyone
571 * used that extra byte namei would fail with
572 * ENAMETOOLONG anyway, so I've removed the excess
573 * logic. - dholland 20100215
574 */
575
576 error = pathbuf_copyin(SCARG(uap, arg), &pb);
577 if (error) {
578 goto out;
579 }
580 if (SCARG(uap, cmd) == SWAP_ON) {
581 /* get a copy of the string */
582 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
583 len = strlen(userpath) + 1;
584 }
585 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
586 if ((error = namei(&nd))) {
587 pathbuf_destroy(pb);
588 goto out;
589 }
590 vp = nd.ni_vp;
591 pathbuf_destroy(pb);
592 }
593 /* note: "vp" is referenced and locked */
594
595 error = 0; /* assume no error */
596 switch(SCARG(uap, cmd)) {
597
598 case SWAP_DUMPDEV:
599 if (vp->v_type != VBLK) {
600 error = ENOTBLK;
601 break;
602 }
603 if (bdevsw_lookup(vp->v_rdev)) {
604 dumpdev = vp->v_rdev;
605 dumpcdev = devsw_blk2chr(dumpdev);
606 } else
607 dumpdev = NODEV;
608 cpu_dumpconf();
609 break;
610
611 case SWAP_CTL:
612 /*
613 * get new priority, remove old entry (if any) and then
614 * reinsert it in the correct place. finally, prune out
615 * any empty priority structures.
616 */
617 priority = SCARG(uap, misc);
618 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
619 mutex_enter(&uvm_swap_data_lock);
620 if ((sdp = swaplist_find(vp, true)) == NULL) {
621 error = ENOENT;
622 } else {
623 swaplist_insert(sdp, spp, priority);
624 swaplist_trim();
625 }
626 mutex_exit(&uvm_swap_data_lock);
627 if (error)
628 kmem_free(spp, sizeof(*spp));
629 break;
630
631 case SWAP_ON:
632
633 /*
634 * check for duplicates. if none found, then insert a
635 * dummy entry on the list to prevent someone else from
636 * trying to enable this device while we are working on
637 * it.
638 */
639
640 priority = SCARG(uap, misc);
641 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
642 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
643 sdp->swd_flags = SWF_FAKE;
644 sdp->swd_vp = vp;
645 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
646 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
647 mutex_enter(&uvm_swap_data_lock);
648 if (swaplist_find(vp, false) != NULL) {
649 error = EBUSY;
650 mutex_exit(&uvm_swap_data_lock);
651 bufq_free(sdp->swd_tab);
652 kmem_free(sdp, sizeof(*sdp));
653 kmem_free(spp, sizeof(*spp));
654 break;
655 }
656 swaplist_insert(sdp, spp, priority);
657 mutex_exit(&uvm_swap_data_lock);
658
659 sdp->swd_pathlen = len;
660 sdp->swd_path = kmem_alloc(sdp->swd_pathlen, KM_SLEEP);
661 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
662 panic("swapctl: copystr");
663
664 /*
665 * we've now got a FAKE placeholder in the swap list.
666 * now attempt to enable swap on it. if we fail, undo
667 * what we've done and kill the fake entry we just inserted.
668 * if swap_on is a success, it will clear the SWF_FAKE flag
669 */
670
671 if ((error = swap_on(l, sdp)) != 0) {
672 mutex_enter(&uvm_swap_data_lock);
673 (void) swaplist_find(vp, true); /* kill fake entry */
674 swaplist_trim();
675 mutex_exit(&uvm_swap_data_lock);
676 bufq_free(sdp->swd_tab);
677 kmem_free(sdp->swd_path, sdp->swd_pathlen);
678 kmem_free(sdp, sizeof(*sdp));
679 break;
680 }
681 break;
682
683 case SWAP_OFF:
684 mutex_enter(&uvm_swap_data_lock);
685 if ((sdp = swaplist_find(vp, false)) == NULL) {
686 mutex_exit(&uvm_swap_data_lock);
687 error = ENXIO;
688 break;
689 }
690
691 /*
692 * If a device isn't in use or enabled, we
693 * can't stop swapping from it (again).
694 */
695 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
696 mutex_exit(&uvm_swap_data_lock);
697 error = EBUSY;
698 break;
699 }
700
701 /*
702 * do the real work.
703 */
704 error = swap_off(l, sdp);
705 break;
706
707 default:
708 error = EINVAL;
709 }
710
711 /*
712 * done! release the ref gained by namei() and unlock.
713 */
714 vput(vp);
715 out:
716 rw_exit(&swap_syscall_lock);
717 kmem_free(userpath, SWAP_PATH_MAX);
718
719 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
720 return (error);
721 }
722
723 /*
724 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
725 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
726 * emulation to use it directly without going through sys_swapctl().
727 * The problem with using sys_swapctl() there is that it involves
728 * copying the swapent array to the stackgap, and this array's size
729 * is not known at build time. Hence it would not be possible to
730 * ensure it would fit in the stackgap in any case.
731 */
732 static void
733 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
734 {
735 struct swappri *spp;
736 struct swapdev *sdp;
737 int count = 0;
738
739 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
740 for (sdp = CIRCLEQ_FIRST(&spp->spi_swapdev);
741 sdp != (void *)&spp->spi_swapdev && sec-- > 0;
742 sdp = CIRCLEQ_NEXT(sdp, swd_next)) {
743 int inuse;
744
745 /*
746 * backwards compatibility for system call.
747 * For NetBSD 1.3 and 5.0, we have to use
748 * the 32 bit dev_t. For 5.0 and -current
749 * we have to add the path.
750 */
751 inuse = btodb((uint64_t)sdp->swd_npginuse <<
752 PAGE_SHIFT);
753
754 #if defined(COMPAT_13) || defined(COMPAT_50)
755 if (cmd == SWAP_STATS) {
756 #endif
757 sep->se_dev = sdp->swd_dev;
758 sep->se_flags = sdp->swd_flags;
759 sep->se_nblks = sdp->swd_nblks;
760 sep->se_inuse = inuse;
761 sep->se_priority = sdp->swd_priority;
762 memcpy(&sep->se_path, sdp->swd_path,
763 sizeof sep->se_path);
764 sep++;
765 #if defined(COMPAT_13)
766 } else if (cmd == SWAP_STATS13) {
767 struct swapent13 *sep13 =
768 (struct swapent13 *)sep;
769
770 sep13->se13_dev = sdp->swd_dev;
771 sep13->se13_flags = sdp->swd_flags;
772 sep13->se13_nblks = sdp->swd_nblks;
773 sep13->se13_inuse = inuse;
774 sep13->se13_priority = sdp->swd_priority;
775 sep = (struct swapent *)(sep13 + 1);
776 #endif
777 #if defined(COMPAT_50)
778 } else if (cmd == SWAP_STATS50) {
779 struct swapent50 *sep50 =
780 (struct swapent50 *)sep;
781
782 sep50->se50_dev = sdp->swd_dev;
783 sep50->se50_flags = sdp->swd_flags;
784 sep50->se50_nblks = sdp->swd_nblks;
785 sep50->se50_inuse = inuse;
786 sep50->se50_priority = sdp->swd_priority;
787 memcpy(&sep50->se50_path, sdp->swd_path,
788 sizeof sep50->se50_path);
789 sep = (struct swapent *)(sep50 + 1);
790 #endif
791 #if defined(COMPAT_13) || defined(COMPAT_50)
792 }
793 #endif
794 count++;
795 }
796 }
797
798 *retval = count;
799 return;
800 }
801
802 /*
803 * swap_on: attempt to enable a swapdev for swapping. note that the
804 * swapdev is already on the global list, but disabled (marked
805 * SWF_FAKE).
806 *
807 * => we avoid the start of the disk (to protect disk labels)
808 * => we also avoid the miniroot, if we are swapping to root.
809 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
810 * if needed.
811 */
812 static int
813 swap_on(struct lwp *l, struct swapdev *sdp)
814 {
815 struct vnode *vp;
816 int error, npages, nblocks, size;
817 long addr;
818 vmem_addr_t result;
819 struct vattr va;
820 dev_t dev;
821 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
822
823 /*
824 * we want to enable swapping on sdp. the swd_vp contains
825 * the vnode we want (locked and ref'd), and the swd_dev
826 * contains the dev_t of the file, if it a block device.
827 */
828
829 vp = sdp->swd_vp;
830 dev = sdp->swd_dev;
831
832 /*
833 * open the swap file (mostly useful for block device files to
834 * let device driver know what is up).
835 *
836 * we skip the open/close for root on swap because the root
837 * has already been opened when root was mounted (mountroot).
838 */
839 if (vp != rootvp) {
840 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
841 return (error);
842 }
843
844 /* XXX this only works for block devices */
845 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
846
847 /*
848 * we now need to determine the size of the swap area. for
849 * block specials we can call the d_psize function.
850 * for normal files, we must stat [get attrs].
851 *
852 * we put the result in nblks.
853 * for normal files, we also want the filesystem block size
854 * (which we get with statfs).
855 */
856 switch (vp->v_type) {
857 case VBLK:
858 if ((nblocks = bdev_size(dev)) == -1) {
859 error = ENXIO;
860 goto bad;
861 }
862 break;
863
864 case VREG:
865 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
866 goto bad;
867 nblocks = (int)btodb(va.va_size);
868 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
869 /*
870 * limit the max # of outstanding I/O requests we issue
871 * at any one time. take it easy on NFS servers.
872 */
873 if (vp->v_tag == VT_NFS)
874 sdp->swd_maxactive = 2; /* XXX */
875 else
876 sdp->swd_maxactive = 8; /* XXX */
877 break;
878
879 default:
880 error = ENXIO;
881 goto bad;
882 }
883
884 /*
885 * save nblocks in a safe place and convert to pages.
886 */
887
888 sdp->swd_nblks = nblocks;
889 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
890
891 /*
892 * for block special files, we want to make sure that leave
893 * the disklabel and bootblocks alone, so we arrange to skip
894 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
895 * note that because of this the "size" can be less than the
896 * actual number of blocks on the device.
897 */
898 if (vp->v_type == VBLK) {
899 /* we use pages 1 to (size - 1) [inclusive] */
900 size = npages - 1;
901 addr = 1;
902 } else {
903 /* we use pages 0 to (size - 1) [inclusive] */
904 size = npages;
905 addr = 0;
906 }
907
908 /*
909 * make sure we have enough blocks for a reasonable sized swap
910 * area. we want at least one page.
911 */
912
913 if (size < 1) {
914 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
915 error = EINVAL;
916 goto bad;
917 }
918
919 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
920
921 /*
922 * now we need to allocate an extent to manage this swap device
923 */
924
925 sdp->swd_blist = blist_create(npages);
926 /* mark all expect the `saved' region free. */
927 blist_free(sdp->swd_blist, addr, size);
928
929 /*
930 * if the vnode we are swapping to is the root vnode
931 * (i.e. we are swapping to the miniroot) then we want
932 * to make sure we don't overwrite it. do a statfs to
933 * find its size and skip over it.
934 */
935 if (vp == rootvp) {
936 struct mount *mp;
937 struct statvfs *sp;
938 int rootblocks, rootpages;
939
940 mp = rootvnode->v_mount;
941 sp = &mp->mnt_stat;
942 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
943 /*
944 * XXX: sp->f_blocks isn't the total number of
945 * blocks in the filesystem, it's the number of
946 * data blocks. so, our rootblocks almost
947 * definitely underestimates the total size
948 * of the filesystem - how badly depends on the
949 * details of the filesystem type. there isn't
950 * an obvious way to deal with this cleanly
951 * and perfectly, so for now we just pad our
952 * rootblocks estimate with an extra 5 percent.
953 */
954 rootblocks += (rootblocks >> 5) +
955 (rootblocks >> 6) +
956 (rootblocks >> 7);
957 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
958 if (rootpages > size)
959 panic("swap_on: miniroot larger than swap?");
960
961 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
962 panic("swap_on: unable to preserve miniroot");
963 }
964
965 size -= rootpages;
966 printf("Preserved %d pages of miniroot ", rootpages);
967 printf("leaving %d pages of swap\n", size);
968 }
969
970 /*
971 * add a ref to vp to reflect usage as a swap device.
972 */
973 vref(vp);
974
975 /*
976 * now add the new swapdev to the drum and enable.
977 */
978 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
979 if (error != 0)
980 panic("swapdrum_add");
981 /*
982 * If this is the first regular swap create the workqueue.
983 * => Protected by swap_syscall_lock.
984 */
985 if (vp->v_type != VBLK) {
986 if (sw_reg_count++ == 0) {
987 KASSERT(sw_reg_workqueue == NULL);
988 if (workqueue_create(&sw_reg_workqueue, "swapiod",
989 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
990 panic("%s: workqueue_create failed", __func__);
991 }
992 }
993
994 sdp->swd_drumoffset = (int)result;
995 sdp->swd_drumsize = npages;
996 sdp->swd_npages = size;
997 mutex_enter(&uvm_swap_data_lock);
998 sdp->swd_flags &= ~SWF_FAKE; /* going live */
999 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1000 uvmexp.swpages += size;
1001 uvmexp.swpgavail += size;
1002 mutex_exit(&uvm_swap_data_lock);
1003 return (0);
1004
1005 /*
1006 * failure: clean up and return error.
1007 */
1008
1009 bad:
1010 if (sdp->swd_blist) {
1011 blist_destroy(sdp->swd_blist);
1012 }
1013 if (vp != rootvp) {
1014 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1015 }
1016 return (error);
1017 }
1018
1019 /*
1020 * swap_off: stop swapping on swapdev
1021 *
1022 * => swap data should be locked, we will unlock.
1023 */
1024 static int
1025 swap_off(struct lwp *l, struct swapdev *sdp)
1026 {
1027 int npages = sdp->swd_npages;
1028 int error = 0;
1029
1030 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1031 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1032
1033 /* disable the swap area being removed */
1034 sdp->swd_flags &= ~SWF_ENABLE;
1035 uvmexp.swpgavail -= npages;
1036 mutex_exit(&uvm_swap_data_lock);
1037
1038 /*
1039 * the idea is to find all the pages that are paged out to this
1040 * device, and page them all in. in uvm, swap-backed pageable
1041 * memory can take two forms: aobjs and anons. call the
1042 * swapoff hook for each subsystem to bring in pages.
1043 */
1044
1045 if (uao_swap_off(sdp->swd_drumoffset,
1046 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1047 amap_swap_off(sdp->swd_drumoffset,
1048 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1049 error = ENOMEM;
1050 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1051 error = EBUSY;
1052 }
1053
1054 if (error) {
1055 mutex_enter(&uvm_swap_data_lock);
1056 sdp->swd_flags |= SWF_ENABLE;
1057 uvmexp.swpgavail += npages;
1058 mutex_exit(&uvm_swap_data_lock);
1059
1060 return error;
1061 }
1062
1063 /*
1064 * If this is the last regular swap destroy the workqueue.
1065 * => Protected by swap_syscall_lock.
1066 */
1067 if (sdp->swd_vp->v_type != VBLK) {
1068 KASSERT(sw_reg_count > 0);
1069 KASSERT(sw_reg_workqueue != NULL);
1070 if (--sw_reg_count == 0) {
1071 workqueue_destroy(sw_reg_workqueue);
1072 sw_reg_workqueue = NULL;
1073 }
1074 }
1075
1076 /*
1077 * done with the vnode.
1078 * drop our ref on the vnode before calling VOP_CLOSE()
1079 * so that spec_close() can tell if this is the last close.
1080 */
1081 vrele(sdp->swd_vp);
1082 if (sdp->swd_vp != rootvp) {
1083 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1084 }
1085
1086 mutex_enter(&uvm_swap_data_lock);
1087 uvmexp.swpages -= npages;
1088 uvmexp.swpginuse -= sdp->swd_npgbad;
1089
1090 if (swaplist_find(sdp->swd_vp, true) == NULL)
1091 panic("%s: swapdev not in list", __func__);
1092 swaplist_trim();
1093 mutex_exit(&uvm_swap_data_lock);
1094
1095 /*
1096 * free all resources!
1097 */
1098 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1099 blist_destroy(sdp->swd_blist);
1100 bufq_free(sdp->swd_tab);
1101 kmem_free(sdp, sizeof(*sdp));
1102 return (0);
1103 }
1104
1105 /*
1106 * /dev/drum interface and i/o functions
1107 */
1108
1109 /*
1110 * swstrategy: perform I/O on the drum
1111 *
1112 * => we must map the i/o request from the drum to the correct swapdev.
1113 */
1114 static void
1115 swstrategy(struct buf *bp)
1116 {
1117 struct swapdev *sdp;
1118 struct vnode *vp;
1119 int pageno, bn;
1120 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1121
1122 /*
1123 * convert block number to swapdev. note that swapdev can't
1124 * be yanked out from under us because we are holding resources
1125 * in it (i.e. the blocks we are doing I/O on).
1126 */
1127 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1128 mutex_enter(&uvm_swap_data_lock);
1129 sdp = swapdrum_getsdp(pageno);
1130 mutex_exit(&uvm_swap_data_lock);
1131 if (sdp == NULL) {
1132 bp->b_error = EINVAL;
1133 biodone(bp);
1134 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1135 return;
1136 }
1137
1138 /*
1139 * convert drum page number to block number on this swapdev.
1140 */
1141
1142 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1143 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1144
1145 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1146 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1147 sdp->swd_drumoffset, bn, bp->b_bcount);
1148
1149 /*
1150 * for block devices we finish up here.
1151 * for regular files we have to do more work which we delegate
1152 * to sw_reg_strategy().
1153 */
1154
1155 vp = sdp->swd_vp; /* swapdev vnode pointer */
1156 switch (vp->v_type) {
1157 default:
1158 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1159
1160 case VBLK:
1161
1162 /*
1163 * must convert "bp" from an I/O on /dev/drum to an I/O
1164 * on the swapdev (sdp).
1165 */
1166 bp->b_blkno = bn; /* swapdev block number */
1167 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1168
1169 /*
1170 * if we are doing a write, we have to redirect the i/o on
1171 * drum's v_numoutput counter to the swapdevs.
1172 */
1173 if ((bp->b_flags & B_READ) == 0) {
1174 mutex_enter(bp->b_objlock);
1175 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1176 mutex_exit(bp->b_objlock);
1177 mutex_enter(vp->v_interlock);
1178 vp->v_numoutput++; /* put it on swapdev */
1179 mutex_exit(vp->v_interlock);
1180 }
1181
1182 /*
1183 * finally plug in swapdev vnode and start I/O
1184 */
1185 bp->b_vp = vp;
1186 bp->b_objlock = vp->v_interlock;
1187 VOP_STRATEGY(vp, bp);
1188 return;
1189
1190 case VREG:
1191 /*
1192 * delegate to sw_reg_strategy function.
1193 */
1194 sw_reg_strategy(sdp, bp, bn);
1195 return;
1196 }
1197 /* NOTREACHED */
1198 }
1199
1200 /*
1201 * swread: the read function for the drum (just a call to physio)
1202 */
1203 /*ARGSUSED*/
1204 static int
1205 swread(dev_t dev, struct uio *uio, int ioflag)
1206 {
1207 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1208
1209 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1210 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1211 }
1212
1213 /*
1214 * swwrite: the write function for the drum (just a call to physio)
1215 */
1216 /*ARGSUSED*/
1217 static int
1218 swwrite(dev_t dev, struct uio *uio, int ioflag)
1219 {
1220 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1221
1222 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1223 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1224 }
1225
1226 const struct bdevsw swap_bdevsw = {
1227 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1228 };
1229
1230 const struct cdevsw swap_cdevsw = {
1231 nullopen, nullclose, swread, swwrite, noioctl,
1232 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1233 };
1234
1235 /*
1236 * sw_reg_strategy: handle swap i/o to regular files
1237 */
1238 static void
1239 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1240 {
1241 struct vnode *vp;
1242 struct vndxfer *vnx;
1243 daddr_t nbn;
1244 char *addr;
1245 off_t byteoff;
1246 int s, off, nra, error, sz, resid;
1247 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1248
1249 /*
1250 * allocate a vndxfer head for this transfer and point it to
1251 * our buffer.
1252 */
1253 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1254 vnx->vx_flags = VX_BUSY;
1255 vnx->vx_error = 0;
1256 vnx->vx_pending = 0;
1257 vnx->vx_bp = bp;
1258 vnx->vx_sdp = sdp;
1259
1260 /*
1261 * setup for main loop where we read filesystem blocks into
1262 * our buffer.
1263 */
1264 error = 0;
1265 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1266 addr = bp->b_data; /* current position in buffer */
1267 byteoff = dbtob((uint64_t)bn);
1268
1269 for (resid = bp->b_resid; resid; resid -= sz) {
1270 struct vndbuf *nbp;
1271
1272 /*
1273 * translate byteoffset into block number. return values:
1274 * vp = vnode of underlying device
1275 * nbn = new block number (on underlying vnode dev)
1276 * nra = num blocks we can read-ahead (excludes requested
1277 * block)
1278 */
1279 nra = 0;
1280 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1281 &vp, &nbn, &nra);
1282
1283 if (error == 0 && nbn == (daddr_t)-1) {
1284 /*
1285 * this used to just set error, but that doesn't
1286 * do the right thing. Instead, it causes random
1287 * memory errors. The panic() should remain until
1288 * this condition doesn't destabilize the system.
1289 */
1290 #if 1
1291 panic("%s: swap to sparse file", __func__);
1292 #else
1293 error = EIO; /* failure */
1294 #endif
1295 }
1296
1297 /*
1298 * punt if there was an error or a hole in the file.
1299 * we must wait for any i/o ops we have already started
1300 * to finish before returning.
1301 *
1302 * XXX we could deal with holes here but it would be
1303 * a hassle (in the write case).
1304 */
1305 if (error) {
1306 s = splbio();
1307 vnx->vx_error = error; /* pass error up */
1308 goto out;
1309 }
1310
1311 /*
1312 * compute the size ("sz") of this transfer (in bytes).
1313 */
1314 off = byteoff % sdp->swd_bsize;
1315 sz = (1 + nra) * sdp->swd_bsize - off;
1316 if (sz > resid)
1317 sz = resid;
1318
1319 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1320 "vp %p/%p offset 0x%x/0x%x",
1321 sdp->swd_vp, vp, byteoff, nbn);
1322
1323 /*
1324 * now get a buf structure. note that the vb_buf is
1325 * at the front of the nbp structure so that you can
1326 * cast pointers between the two structure easily.
1327 */
1328 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1329 buf_init(&nbp->vb_buf);
1330 nbp->vb_buf.b_flags = bp->b_flags;
1331 nbp->vb_buf.b_cflags = bp->b_cflags;
1332 nbp->vb_buf.b_oflags = bp->b_oflags;
1333 nbp->vb_buf.b_bcount = sz;
1334 nbp->vb_buf.b_bufsize = sz;
1335 nbp->vb_buf.b_error = 0;
1336 nbp->vb_buf.b_data = addr;
1337 nbp->vb_buf.b_lblkno = 0;
1338 nbp->vb_buf.b_blkno = nbn + btodb(off);
1339 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1340 nbp->vb_buf.b_iodone = sw_reg_biodone;
1341 nbp->vb_buf.b_vp = vp;
1342 nbp->vb_buf.b_objlock = vp->v_interlock;
1343 if (vp->v_type == VBLK) {
1344 nbp->vb_buf.b_dev = vp->v_rdev;
1345 }
1346
1347 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1348
1349 /*
1350 * Just sort by block number
1351 */
1352 s = splbio();
1353 if (vnx->vx_error != 0) {
1354 buf_destroy(&nbp->vb_buf);
1355 pool_put(&vndbuf_pool, nbp);
1356 goto out;
1357 }
1358 vnx->vx_pending++;
1359
1360 /* sort it in and start I/O if we are not over our limit */
1361 /* XXXAD locking */
1362 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1363 sw_reg_start(sdp);
1364 splx(s);
1365
1366 /*
1367 * advance to the next I/O
1368 */
1369 byteoff += sz;
1370 addr += sz;
1371 }
1372
1373 s = splbio();
1374
1375 out: /* Arrive here at splbio */
1376 vnx->vx_flags &= ~VX_BUSY;
1377 if (vnx->vx_pending == 0) {
1378 error = vnx->vx_error;
1379 pool_put(&vndxfer_pool, vnx);
1380 bp->b_error = error;
1381 biodone(bp);
1382 }
1383 splx(s);
1384 }
1385
1386 /*
1387 * sw_reg_start: start an I/O request on the requested swapdev
1388 *
1389 * => reqs are sorted by b_rawblkno (above)
1390 */
1391 static void
1392 sw_reg_start(struct swapdev *sdp)
1393 {
1394 struct buf *bp;
1395 struct vnode *vp;
1396 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1397
1398 /* recursion control */
1399 if ((sdp->swd_flags & SWF_BUSY) != 0)
1400 return;
1401
1402 sdp->swd_flags |= SWF_BUSY;
1403
1404 while (sdp->swd_active < sdp->swd_maxactive) {
1405 bp = bufq_get(sdp->swd_tab);
1406 if (bp == NULL)
1407 break;
1408 sdp->swd_active++;
1409
1410 UVMHIST_LOG(pdhist,
1411 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1412 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1413 vp = bp->b_vp;
1414 KASSERT(bp->b_objlock == vp->v_interlock);
1415 if ((bp->b_flags & B_READ) == 0) {
1416 mutex_enter(vp->v_interlock);
1417 vp->v_numoutput++;
1418 mutex_exit(vp->v_interlock);
1419 }
1420 VOP_STRATEGY(vp, bp);
1421 }
1422 sdp->swd_flags &= ~SWF_BUSY;
1423 }
1424
1425 /*
1426 * sw_reg_biodone: one of our i/o's has completed
1427 */
1428 static void
1429 sw_reg_biodone(struct buf *bp)
1430 {
1431 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1432 }
1433
1434 /*
1435 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1436 *
1437 * => note that we can recover the vndbuf struct by casting the buf ptr
1438 */
1439 static void
1440 sw_reg_iodone(struct work *wk, void *dummy)
1441 {
1442 struct vndbuf *vbp = (void *)wk;
1443 struct vndxfer *vnx = vbp->vb_xfer;
1444 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1445 struct swapdev *sdp = vnx->vx_sdp;
1446 int s, resid, error;
1447 KASSERT(&vbp->vb_buf.b_work == wk);
1448 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1449
1450 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1451 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1452 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1453 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1454
1455 /*
1456 * protect vbp at splbio and update.
1457 */
1458
1459 s = splbio();
1460 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1461 pbp->b_resid -= resid;
1462 vnx->vx_pending--;
1463
1464 if (vbp->vb_buf.b_error != 0) {
1465 /* pass error upward */
1466 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1467 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1468 vnx->vx_error = error;
1469 }
1470
1471 /*
1472 * kill vbp structure
1473 */
1474 buf_destroy(&vbp->vb_buf);
1475 pool_put(&vndbuf_pool, vbp);
1476
1477 /*
1478 * wrap up this transaction if it has run to completion or, in
1479 * case of an error, when all auxiliary buffers have returned.
1480 */
1481 if (vnx->vx_error != 0) {
1482 /* pass error upward */
1483 error = vnx->vx_error;
1484 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1485 pbp->b_error = error;
1486 biodone(pbp);
1487 pool_put(&vndxfer_pool, vnx);
1488 }
1489 } else if (pbp->b_resid == 0) {
1490 KASSERT(vnx->vx_pending == 0);
1491 if ((vnx->vx_flags & VX_BUSY) == 0) {
1492 UVMHIST_LOG(pdhist, " iodone error=%d !",
1493 pbp, vnx->vx_error, 0, 0);
1494 biodone(pbp);
1495 pool_put(&vndxfer_pool, vnx);
1496 }
1497 }
1498
1499 /*
1500 * done! start next swapdev I/O if one is pending
1501 */
1502 sdp->swd_active--;
1503 sw_reg_start(sdp);
1504 splx(s);
1505 }
1506
1507
1508 /*
1509 * uvm_swap_alloc: allocate space on swap
1510 *
1511 * => allocation is done "round robin" down the priority list, as we
1512 * allocate in a priority we "rotate" the circle queue.
1513 * => space can be freed with uvm_swap_free
1514 * => we return the page slot number in /dev/drum (0 == invalid slot)
1515 * => we lock uvm_swap_data_lock
1516 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1517 */
1518 int
1519 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1520 {
1521 struct swapdev *sdp;
1522 struct swappri *spp;
1523 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1524
1525 /*
1526 * no swap devices configured yet? definite failure.
1527 */
1528 if (uvmexp.nswapdev < 1)
1529 return 0;
1530
1531 /*
1532 * lock data lock, convert slots into blocks, and enter loop
1533 */
1534 mutex_enter(&uvm_swap_data_lock);
1535
1536 ReTry: /* XXXMRG */
1537 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1538 CIRCLEQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1539 uint64_t result;
1540
1541 /* if it's not enabled, then we can't swap from it */
1542 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1543 continue;
1544 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1545 continue;
1546 result = blist_alloc(sdp->swd_blist, *nslots);
1547 if (result == BLIST_NONE) {
1548 continue;
1549 }
1550 KASSERT(result < sdp->swd_drumsize);
1551
1552 /*
1553 * successful allocation! now rotate the circleq.
1554 */
1555 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1556 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1557 sdp->swd_npginuse += *nslots;
1558 uvmexp.swpginuse += *nslots;
1559 mutex_exit(&uvm_swap_data_lock);
1560 /* done! return drum slot number */
1561 UVMHIST_LOG(pdhist,
1562 "success! returning %d slots starting at %d",
1563 *nslots, result + sdp->swd_drumoffset, 0, 0);
1564 return (result + sdp->swd_drumoffset);
1565 }
1566 }
1567
1568 /* XXXMRG: BEGIN HACK */
1569 if (*nslots > 1 && lessok) {
1570 *nslots = 1;
1571 /* XXXMRG: ugh! blist should support this for us */
1572 goto ReTry;
1573 }
1574 /* XXXMRG: END HACK */
1575
1576 mutex_exit(&uvm_swap_data_lock);
1577 return 0;
1578 }
1579
1580 /*
1581 * uvm_swapisfull: return true if most of available swap is allocated
1582 * and in use. we don't count some small portion as it may be inaccessible
1583 * to us at any given moment, for example if there is lock contention or if
1584 * pages are busy.
1585 */
1586 bool
1587 uvm_swapisfull(void)
1588 {
1589 int swpgonly;
1590 bool rv;
1591
1592 mutex_enter(&uvm_swap_data_lock);
1593 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1594 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1595 uvm_swapisfull_factor);
1596 rv = (swpgonly >= uvmexp.swpgavail);
1597 mutex_exit(&uvm_swap_data_lock);
1598
1599 return (rv);
1600 }
1601
1602 /*
1603 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1604 *
1605 * => we lock uvm_swap_data_lock
1606 */
1607 void
1608 uvm_swap_markbad(int startslot, int nslots)
1609 {
1610 struct swapdev *sdp;
1611 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1612
1613 mutex_enter(&uvm_swap_data_lock);
1614 sdp = swapdrum_getsdp(startslot);
1615 KASSERT(sdp != NULL);
1616
1617 /*
1618 * we just keep track of how many pages have been marked bad
1619 * in this device, to make everything add up in swap_off().
1620 * we assume here that the range of slots will all be within
1621 * one swap device.
1622 */
1623
1624 KASSERT(uvmexp.swpgonly >= nslots);
1625 uvmexp.swpgonly -= nslots;
1626 sdp->swd_npgbad += nslots;
1627 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1628 mutex_exit(&uvm_swap_data_lock);
1629 }
1630
1631 /*
1632 * uvm_swap_free: free swap slots
1633 *
1634 * => this can be all or part of an allocation made by uvm_swap_alloc
1635 * => we lock uvm_swap_data_lock
1636 */
1637 void
1638 uvm_swap_free(int startslot, int nslots)
1639 {
1640 struct swapdev *sdp;
1641 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1642
1643 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1644 startslot, 0, 0);
1645
1646 /*
1647 * ignore attempts to free the "bad" slot.
1648 */
1649
1650 if (startslot == SWSLOT_BAD) {
1651 return;
1652 }
1653
1654 /*
1655 * convert drum slot offset back to sdp, free the blocks
1656 * in the extent, and return. must hold pri lock to do
1657 * lookup and access the extent.
1658 */
1659
1660 mutex_enter(&uvm_swap_data_lock);
1661 sdp = swapdrum_getsdp(startslot);
1662 KASSERT(uvmexp.nswapdev >= 1);
1663 KASSERT(sdp != NULL);
1664 KASSERT(sdp->swd_npginuse >= nslots);
1665 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1666 sdp->swd_npginuse -= nslots;
1667 uvmexp.swpginuse -= nslots;
1668 mutex_exit(&uvm_swap_data_lock);
1669 }
1670
1671 /*
1672 * uvm_swap_put: put any number of pages into a contig place on swap
1673 *
1674 * => can be sync or async
1675 */
1676
1677 int
1678 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1679 {
1680 int error;
1681
1682 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1683 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1684 return error;
1685 }
1686
1687 /*
1688 * uvm_swap_get: get a single page from swap
1689 *
1690 * => usually a sync op (from fault)
1691 */
1692
1693 int
1694 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1695 {
1696 int error;
1697
1698 uvmexp.nswget++;
1699 KASSERT(flags & PGO_SYNCIO);
1700 if (swslot == SWSLOT_BAD) {
1701 return EIO;
1702 }
1703
1704 error = uvm_swap_io(&page, swslot, 1, B_READ |
1705 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1706 if (error == 0) {
1707
1708 /*
1709 * this page is no longer only in swap.
1710 */
1711
1712 mutex_enter(&uvm_swap_data_lock);
1713 KASSERT(uvmexp.swpgonly > 0);
1714 uvmexp.swpgonly--;
1715 mutex_exit(&uvm_swap_data_lock);
1716 }
1717 return error;
1718 }
1719
1720 /*
1721 * uvm_swap_io: do an i/o operation to swap
1722 */
1723
1724 static int
1725 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1726 {
1727 daddr_t startblk;
1728 struct buf *bp;
1729 vaddr_t kva;
1730 int error, mapinflags;
1731 bool write, async;
1732 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1733
1734 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1735 startslot, npages, flags, 0);
1736
1737 write = (flags & B_READ) == 0;
1738 async = (flags & B_ASYNC) != 0;
1739
1740 /*
1741 * allocate a buf for the i/o.
1742 */
1743
1744 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1745 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1746 if (bp == NULL) {
1747 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1748 return ENOMEM;
1749 }
1750
1751 /*
1752 * convert starting drum slot to block number
1753 */
1754
1755 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1756
1757 /*
1758 * first, map the pages into the kernel.
1759 */
1760
1761 mapinflags = !write ?
1762 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1763 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1764 kva = uvm_pagermapin(pps, npages, mapinflags);
1765
1766 /*
1767 * fill in the bp/sbp. we currently route our i/o through
1768 * /dev/drum's vnode [swapdev_vp].
1769 */
1770
1771 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1772 bp->b_flags = (flags & (B_READ|B_ASYNC));
1773 bp->b_proc = &proc0; /* XXX */
1774 bp->b_vnbufs.le_next = NOLIST;
1775 bp->b_data = (void *)kva;
1776 bp->b_blkno = startblk;
1777 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1778
1779 /*
1780 * bump v_numoutput (counter of number of active outputs).
1781 */
1782
1783 if (write) {
1784 mutex_enter(swapdev_vp->v_interlock);
1785 swapdev_vp->v_numoutput++;
1786 mutex_exit(swapdev_vp->v_interlock);
1787 }
1788
1789 /*
1790 * for async ops we must set up the iodone handler.
1791 */
1792
1793 if (async) {
1794 bp->b_iodone = uvm_aio_biodone;
1795 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1796 if (curlwp == uvm.pagedaemon_lwp)
1797 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1798 else
1799 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1800 } else {
1801 bp->b_iodone = NULL;
1802 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1803 }
1804 UVMHIST_LOG(pdhist,
1805 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1806 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1807
1808 /*
1809 * now we start the I/O, and if async, return.
1810 */
1811
1812 VOP_STRATEGY(swapdev_vp, bp);
1813 if (async)
1814 return 0;
1815
1816 /*
1817 * must be sync i/o. wait for it to finish
1818 */
1819
1820 error = biowait(bp);
1821
1822 /*
1823 * kill the pager mapping
1824 */
1825
1826 uvm_pagermapout(kva, npages);
1827
1828 /*
1829 * now dispose of the buf and we're done.
1830 */
1831
1832 if (write) {
1833 mutex_enter(swapdev_vp->v_interlock);
1834 vwakeup(bp);
1835 mutex_exit(swapdev_vp->v_interlock);
1836 }
1837 putiobuf(bp);
1838 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1839
1840 return (error);
1841 }
1842