Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.163.4.1
      1 /*	$NetBSD: uvm_swap.c,v 1.163.4.1 2014/05/18 17:46:22 rmind Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.163.4.1 2014/05/18 17:46:22 rmind Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/bufq.h>
     43 #include <sys/conf.h>
     44 #include <sys/proc.h>
     45 #include <sys/namei.h>
     46 #include <sys/disklabel.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/vmem.h>
     52 #include <sys/blist.h>
     53 #include <sys/mount.h>
     54 #include <sys/pool.h>
     55 #include <sys/kmem.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/swap.h>
     58 #include <sys/kauth.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/workqueue.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 /*
     67  * uvm_swap.c: manage configuration and i/o to swap space.
     68  */
     69 
     70 /*
     71  * swap space is managed in the following way:
     72  *
     73  * each swap partition or file is described by a "swapdev" structure.
     74  * each "swapdev" structure contains a "swapent" structure which contains
     75  * information that is passed up to the user (via system calls).
     76  *
     77  * each swap partition is assigned a "priority" (int) which controls
     78  * swap parition usage.
     79  *
     80  * the system maintains a global data structure describing all swap
     81  * partitions/files.   there is a sorted LIST of "swappri" structures
     82  * which describe "swapdev"'s at that priority.   this LIST is headed
     83  * by the "swap_priority" global var.    each "swappri" contains a
     84  * TAILQ of "swapdev" structures at that priority.
     85  *
     86  * locking:
     87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88  *    system call and prevents the swap priority list from changing
     89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91  *    structures including the priority list, the swapdev structures,
     92  *    and the swapmap arena.
     93  *
     94  * each swap device has the following info:
     95  *  - swap device in use (could be disabled, preventing future use)
     96  *  - swap enabled (allows new allocations on swap)
     97  *  - map info in /dev/drum
     98  *  - vnode pointer
     99  * for swap files only:
    100  *  - block size
    101  *  - max byte count in buffer
    102  *  - buffer
    103  *
    104  * userland controls and configures swap with the swapctl(2) system call.
    105  * the sys_swapctl performs the following operations:
    106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109  *	the current swap config into the array. The actual work is done
    110  *	in the uvm_swap_stats() function.
    111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112  *	priority in "misc", start swapping on it.
    113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115  *	"misc")
    116  */
    117 
    118 /*
    119  * swapdev: describes a single swap partition/file
    120  *
    121  * note the following should be true:
    122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124  */
    125 struct swapdev {
    126 	dev_t			swd_dev;	/* device id */
    127 	int			swd_flags;	/* flags:inuse/enable/fake */
    128 	int			swd_priority;	/* our priority */
    129 	int			swd_nblks;	/* blocks in this device */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	blist_t			swd_blist;	/* blist for this swapdev */
    138 	struct vnode		*swd_vp;	/* backing vnode */
    139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    140 
    141 	int			swd_bsize;	/* blocksize (bytes) */
    142 	int			swd_maxactive;	/* max active i/o reqs */
    143 	struct bufq_state	*swd_tab;	/* buffer list */
    144 	int			swd_active;	/* number of active buffers */
    145 };
    146 
    147 /*
    148  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149  */
    150 struct swappri {
    151 	int			spi_priority;     /* priority */
    152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153 	/* tailq of swapdevs at this priority */
    154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155 };
    156 
    157 /*
    158  * The following two structures are used to keep track of data transfers
    159  * on swap devices associated with regular files.
    160  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161  * structure names here to ease porting..
    162  */
    163 struct vndxfer {
    164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165 	struct swapdev	*vx_sdp;
    166 	int		vx_error;
    167 	int		vx_pending;	/* # of pending aux buffers */
    168 	int		vx_flags;
    169 #define VX_BUSY		1
    170 #define VX_DEAD		2
    171 };
    172 
    173 struct vndbuf {
    174 	struct buf	vb_buf;
    175 	struct vndxfer	*vb_xfer;
    176 };
    177 
    178 /*
    179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180  * dev_t and has no se_path[] member.
    181  */
    182 struct swapent13 {
    183 	int32_t	se13_dev;		/* device id */
    184 	int	se13_flags;		/* flags */
    185 	int	se13_nblks;		/* total blocks */
    186 	int	se13_inuse;		/* blocks in use */
    187 	int	se13_priority;		/* priority of this device */
    188 };
    189 
    190 /*
    191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192  * dev_t.
    193  */
    194 struct swapent50 {
    195 	int32_t	se50_dev;		/* device id */
    196 	int	se50_flags;		/* flags */
    197 	int	se50_nblks;		/* total blocks */
    198 	int	se50_inuse;		/* blocks in use */
    199 	int	se50_priority;		/* priority of this device */
    200 	char	se50_path[PATH_MAX+1];	/* path name */
    201 };
    202 
    203 /*
    204  * We keep a of pool vndbuf's and vndxfer structures.
    205  */
    206 static struct pool vndxfer_pool, vndbuf_pool;
    207 
    208 /*
    209  * local variables
    210  */
    211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212 
    213 /* list of all active swap devices [by priority] */
    214 LIST_HEAD(swap_priority, swappri);
    215 static struct swap_priority swap_priority;
    216 
    217 /* locks */
    218 static krwlock_t swap_syscall_lock;
    219 
    220 /* workqueue and use counter for swap to regular files */
    221 static int sw_reg_count = 0;
    222 static struct workqueue *sw_reg_workqueue;
    223 
    224 /* tuneables */
    225 u_int uvm_swapisfull_factor = 99;
    226 
    227 /*
    228  * prototypes
    229  */
    230 static struct swapdev	*swapdrum_getsdp(int);
    231 
    232 static struct swapdev	*swaplist_find(struct vnode *, bool);
    233 static void		 swaplist_insert(struct swapdev *,
    234 					 struct swappri *, int);
    235 static void		 swaplist_trim(void);
    236 
    237 static int swap_on(struct lwp *, struct swapdev *);
    238 static int swap_off(struct lwp *, struct swapdev *);
    239 
    240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    241 static void sw_reg_biodone(struct buf *);
    242 static void sw_reg_iodone(struct work *wk, void *dummy);
    243 static void sw_reg_start(struct swapdev *);
    244 
    245 static int uvm_swap_io(struct vm_page **, int, int, int);
    246 
    247 /*
    248  * uvm_swap_init: init the swap system data structures and locks
    249  *
    250  * => called at boot time from init_main.c after the filesystems
    251  *	are brought up (which happens after uvm_init())
    252  */
    253 void
    254 uvm_swap_init(void)
    255 {
    256 	UVMHIST_FUNC("uvm_swap_init");
    257 
    258 	UVMHIST_CALLED(pdhist);
    259 	/*
    260 	 * first, init the swap list, its counter, and its lock.
    261 	 * then get a handle on the vnode for /dev/drum by using
    262 	 * the its dev_t number ("swapdev", from MD conf.c).
    263 	 */
    264 
    265 	LIST_INIT(&swap_priority);
    266 	uvmexp.nswapdev = 0;
    267 	rw_init(&swap_syscall_lock);
    268 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    269 
    270 	if (bdevvp(swapdev, &swapdev_vp))
    271 		panic("%s: can't get vnode for swap device", __func__);
    272 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    273 		panic("%s: can't lock swap device", __func__);
    274 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    275 		panic("%s: can't open swap device", __func__);
    276 	VOP_UNLOCK(swapdev_vp);
    277 
    278 	/*
    279 	 * create swap block resource map to map /dev/drum.   the range
    280 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    281 	 * that block 0 is reserved (used to indicate an allocation
    282 	 * failure, or no allocation).
    283 	 */
    284 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    285 	    VM_NOSLEEP, IPL_NONE);
    286 	if (swapmap == 0) {
    287 		panic("%s: vmem_create failed", __func__);
    288 	}
    289 
    290 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    291 	    NULL, IPL_BIO);
    292 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    293 	    NULL, IPL_BIO);
    294 
    295 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    296 }
    297 
    298 /*
    299  * swaplist functions: functions that operate on the list of swap
    300  * devices on the system.
    301  */
    302 
    303 /*
    304  * swaplist_insert: insert swap device "sdp" into the global list
    305  *
    306  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    307  * => caller must provide a newly allocated swappri structure (we will
    308  *	FREE it if we don't need it... this it to prevent allocation
    309  *	blocking here while adding swap)
    310  */
    311 static void
    312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    313 {
    314 	struct swappri *spp, *pspp;
    315 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    316 
    317 	/*
    318 	 * find entry at or after which to insert the new device.
    319 	 */
    320 	pspp = NULL;
    321 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    322 		if (priority <= spp->spi_priority)
    323 			break;
    324 		pspp = spp;
    325 	}
    326 
    327 	/*
    328 	 * new priority?
    329 	 */
    330 	if (spp == NULL || spp->spi_priority != priority) {
    331 		spp = newspp;  /* use newspp! */
    332 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    333 			    priority, 0, 0, 0);
    334 
    335 		spp->spi_priority = priority;
    336 		TAILQ_INIT(&spp->spi_swapdev);
    337 
    338 		if (pspp)
    339 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    340 		else
    341 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    342 	} else {
    343 	  	/* we don't need a new priority structure, free it */
    344 		kmem_free(newspp, sizeof(*newspp));
    345 	}
    346 
    347 	/*
    348 	 * priority found (or created).   now insert on the priority's
    349 	 * tailq list and bump the total number of swapdevs.
    350 	 */
    351 	sdp->swd_priority = priority;
    352 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    353 	uvmexp.nswapdev++;
    354 }
    355 
    356 /*
    357  * swaplist_find: find and optionally remove a swap device from the
    358  *	global list.
    359  *
    360  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    361  * => we return the swapdev we found (and removed)
    362  */
    363 static struct swapdev *
    364 swaplist_find(struct vnode *vp, bool remove)
    365 {
    366 	struct swapdev *sdp;
    367 	struct swappri *spp;
    368 
    369 	/*
    370 	 * search the lists for the requested vp
    371 	 */
    372 
    373 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    374 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    375 			if (sdp->swd_vp == vp) {
    376 				if (remove) {
    377 					TAILQ_REMOVE(&spp->spi_swapdev,
    378 					    sdp, swd_next);
    379 					uvmexp.nswapdev--;
    380 				}
    381 				return(sdp);
    382 			}
    383 		}
    384 	}
    385 	return (NULL);
    386 }
    387 
    388 /*
    389  * swaplist_trim: scan priority list for empty priority entries and kill
    390  *	them.
    391  *
    392  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    393  */
    394 static void
    395 swaplist_trim(void)
    396 {
    397 	struct swappri *spp, *nextspp;
    398 
    399 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    400 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    401 			continue;
    402 		LIST_REMOVE(spp, spi_swappri);
    403 		kmem_free(spp, sizeof(*spp));
    404 	}
    405 }
    406 
    407 /*
    408  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    409  *	to the "swapdev" that maps that section of the drum.
    410  *
    411  * => each swapdev takes one big contig chunk of the drum
    412  * => caller must hold uvm_swap_data_lock
    413  */
    414 static struct swapdev *
    415 swapdrum_getsdp(int pgno)
    416 {
    417 	struct swapdev *sdp;
    418 	struct swappri *spp;
    419 
    420 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    421 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    422 			if (sdp->swd_flags & SWF_FAKE)
    423 				continue;
    424 			if (pgno >= sdp->swd_drumoffset &&
    425 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    426 				return sdp;
    427 			}
    428 		}
    429 	}
    430 	return NULL;
    431 }
    432 
    433 
    434 /*
    435  * sys_swapctl: main entry point for swapctl(2) system call
    436  * 	[with two helper functions: swap_on and swap_off]
    437  */
    438 int
    439 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    440 {
    441 	/* {
    442 		syscallarg(int) cmd;
    443 		syscallarg(void *) arg;
    444 		syscallarg(int) misc;
    445 	} */
    446 	struct vnode *vp;
    447 	struct nameidata nd;
    448 	struct swappri *spp;
    449 	struct swapdev *sdp;
    450 	struct swapent *sep;
    451 #define SWAP_PATH_MAX (PATH_MAX + 1)
    452 	char	*userpath;
    453 	size_t	len = 0;
    454 	int	error, misc;
    455 	int	priority;
    456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    457 
    458 	/*
    459 	 * we handle the non-priv NSWAP and STATS request first.
    460 	 *
    461 	 * SWAP_NSWAP: return number of config'd swap devices
    462 	 * [can also be obtained with uvmexp sysctl]
    463 	 */
    464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    465 		const int nswapdev = uvmexp.nswapdev;
    466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    467 		*retval = nswapdev;
    468 		return 0;
    469 	}
    470 
    471 	misc = SCARG(uap, misc);
    472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    473 
    474 	/*
    475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    476 	 */
    477 	rw_enter(&swap_syscall_lock, RW_WRITER);
    478 
    479 	/*
    480 	 * SWAP_STATS: get stats on current # of configured swap devs
    481 	 *
    482 	 * note that the swap_priority list can't change as long
    483 	 * as we are holding the swap_syscall_lock.  we don't want
    484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    485 	 * copyout() and we don't want to be holding that lock then!
    486 	 */
    487 	if (SCARG(uap, cmd) == SWAP_STATS
    488 #if defined(COMPAT_50)
    489 	    || SCARG(uap, cmd) == SWAP_STATS50
    490 #endif
    491 #if defined(COMPAT_13)
    492 	    || SCARG(uap, cmd) == SWAP_STATS13
    493 #endif
    494 	    ) {
    495 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    496 			misc = uvmexp.nswapdev;
    497 
    498 		if (misc == 0) {
    499 			error = EINVAL;
    500 			goto out;
    501 		}
    502 		KASSERT(misc > 0);
    503 #if defined(COMPAT_13)
    504 		if (SCARG(uap, cmd) == SWAP_STATS13)
    505 			len = sizeof(struct swapent13) * misc;
    506 		else
    507 #endif
    508 #if defined(COMPAT_50)
    509 		if (SCARG(uap, cmd) == SWAP_STATS50)
    510 			len = sizeof(struct swapent50) * misc;
    511 		else
    512 #endif
    513 			len = sizeof(struct swapent) * misc;
    514 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    515 
    516 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    517 		error = copyout(sep, SCARG(uap, arg), len);
    518 
    519 		kmem_free(sep, len);
    520 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    521 		goto out;
    522 	}
    523 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    524 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    525 
    526 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    527 		goto out;
    528 	}
    529 
    530 	/*
    531 	 * all other requests require superuser privs.   verify.
    532 	 */
    533 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    534 	    0, NULL, NULL, NULL)))
    535 		goto out;
    536 
    537 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    538 		/* drop the current dump device */
    539 		dumpdev = NODEV;
    540 		dumpcdev = NODEV;
    541 		cpu_dumpconf();
    542 		goto out;
    543 	}
    544 
    545 	/*
    546 	 * at this point we expect a path name in arg.   we will
    547 	 * use namei() to gain a vnode reference (vref), and lock
    548 	 * the vnode (VOP_LOCK).
    549 	 *
    550 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    551 	 * miniroot)
    552 	 */
    553 	if (SCARG(uap, arg) == NULL) {
    554 		vp = rootvp;		/* miniroot */
    555 		vref(vp);
    556 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    557 			vrele(vp);
    558 			error = EBUSY;
    559 			goto out;
    560 		}
    561 		if (SCARG(uap, cmd) == SWAP_ON &&
    562 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    563 			panic("swapctl: miniroot copy failed");
    564 		KASSERT(len > 0);
    565 	} else {
    566 		struct pathbuf *pb;
    567 
    568 		/*
    569 		 * This used to allow copying in one extra byte
    570 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    571 		 * This was completely pointless because if anyone
    572 		 * used that extra byte namei would fail with
    573 		 * ENAMETOOLONG anyway, so I've removed the excess
    574 		 * logic. - dholland 20100215
    575 		 */
    576 
    577 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    578 		if (error) {
    579 			goto out;
    580 		}
    581 		if (SCARG(uap, cmd) == SWAP_ON) {
    582 			/* get a copy of the string */
    583 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    584 			len = strlen(userpath) + 1;
    585 		}
    586 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    587 		if ((error = namei(&nd))) {
    588 			pathbuf_destroy(pb);
    589 			goto out;
    590 		}
    591 		vp = nd.ni_vp;
    592 		pathbuf_destroy(pb);
    593 	}
    594 	/* note: "vp" is referenced and locked */
    595 
    596 	error = 0;		/* assume no error */
    597 	switch(SCARG(uap, cmd)) {
    598 
    599 	case SWAP_DUMPDEV:
    600 		if (vp->v_type != VBLK) {
    601 			error = ENOTBLK;
    602 			break;
    603 		}
    604 		if (bdevsw_lookup(vp->v_rdev)) {
    605 			dumpdev = vp->v_rdev;
    606 			dumpcdev = devsw_blk2chr(dumpdev);
    607 		} else
    608 			dumpdev = NODEV;
    609 		cpu_dumpconf();
    610 		break;
    611 
    612 	case SWAP_CTL:
    613 		/*
    614 		 * get new priority, remove old entry (if any) and then
    615 		 * reinsert it in the correct place.  finally, prune out
    616 		 * any empty priority structures.
    617 		 */
    618 		priority = SCARG(uap, misc);
    619 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    620 		mutex_enter(&uvm_swap_data_lock);
    621 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    622 			error = ENOENT;
    623 		} else {
    624 			swaplist_insert(sdp, spp, priority);
    625 			swaplist_trim();
    626 		}
    627 		mutex_exit(&uvm_swap_data_lock);
    628 		if (error)
    629 			kmem_free(spp, sizeof(*spp));
    630 		break;
    631 
    632 	case SWAP_ON:
    633 
    634 		/*
    635 		 * check for duplicates.   if none found, then insert a
    636 		 * dummy entry on the list to prevent someone else from
    637 		 * trying to enable this device while we are working on
    638 		 * it.
    639 		 */
    640 
    641 		priority = SCARG(uap, misc);
    642 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    643 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    644 		sdp->swd_flags = SWF_FAKE;
    645 		sdp->swd_vp = vp;
    646 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    647 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    648 		mutex_enter(&uvm_swap_data_lock);
    649 		if (swaplist_find(vp, false) != NULL) {
    650 			error = EBUSY;
    651 			mutex_exit(&uvm_swap_data_lock);
    652 			bufq_free(sdp->swd_tab);
    653 			kmem_free(sdp, sizeof(*sdp));
    654 			kmem_free(spp, sizeof(*spp));
    655 			break;
    656 		}
    657 		swaplist_insert(sdp, spp, priority);
    658 		mutex_exit(&uvm_swap_data_lock);
    659 
    660 		KASSERT(len > 0);
    661 		sdp->swd_pathlen = len;
    662 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    663 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    664 			panic("swapctl: copystr");
    665 
    666 		/*
    667 		 * we've now got a FAKE placeholder in the swap list.
    668 		 * now attempt to enable swap on it.  if we fail, undo
    669 		 * what we've done and kill the fake entry we just inserted.
    670 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    671 		 */
    672 
    673 		if ((error = swap_on(l, sdp)) != 0) {
    674 			mutex_enter(&uvm_swap_data_lock);
    675 			(void) swaplist_find(vp, true);  /* kill fake entry */
    676 			swaplist_trim();
    677 			mutex_exit(&uvm_swap_data_lock);
    678 			bufq_free(sdp->swd_tab);
    679 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    680 			kmem_free(sdp, sizeof(*sdp));
    681 			break;
    682 		}
    683 		break;
    684 
    685 	case SWAP_OFF:
    686 		mutex_enter(&uvm_swap_data_lock);
    687 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    688 			mutex_exit(&uvm_swap_data_lock);
    689 			error = ENXIO;
    690 			break;
    691 		}
    692 
    693 		/*
    694 		 * If a device isn't in use or enabled, we
    695 		 * can't stop swapping from it (again).
    696 		 */
    697 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    698 			mutex_exit(&uvm_swap_data_lock);
    699 			error = EBUSY;
    700 			break;
    701 		}
    702 
    703 		/*
    704 		 * do the real work.
    705 		 */
    706 		error = swap_off(l, sdp);
    707 		break;
    708 
    709 	default:
    710 		error = EINVAL;
    711 	}
    712 
    713 	/*
    714 	 * done!  release the ref gained by namei() and unlock.
    715 	 */
    716 	vput(vp);
    717 out:
    718 	rw_exit(&swap_syscall_lock);
    719 	kmem_free(userpath, SWAP_PATH_MAX);
    720 
    721 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    722 	return (error);
    723 }
    724 
    725 /*
    726  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    727  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    728  * emulation to use it directly without going through sys_swapctl().
    729  * The problem with using sys_swapctl() there is that it involves
    730  * copying the swapent array to the stackgap, and this array's size
    731  * is not known at build time. Hence it would not be possible to
    732  * ensure it would fit in the stackgap in any case.
    733  */
    734 void
    735 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    736 {
    737 	struct swappri *spp;
    738 	struct swapdev *sdp;
    739 	int count = 0;
    740 
    741 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    742 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    743 			int inuse;
    744 
    745 			if (sec-- <= 0)
    746 				break;
    747 
    748 			/*
    749 			 * backwards compatibility for system call.
    750 			 * For NetBSD 1.3 and 5.0, we have to use
    751 			 * the 32 bit dev_t.  For 5.0 and -current
    752 			 * we have to add the path.
    753 			 */
    754 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    755 			    PAGE_SHIFT);
    756 
    757 #if defined(COMPAT_13) || defined(COMPAT_50)
    758 			if (cmd == SWAP_STATS) {
    759 #endif
    760 				sep->se_dev = sdp->swd_dev;
    761 				sep->se_flags = sdp->swd_flags;
    762 				sep->se_nblks = sdp->swd_nblks;
    763 				sep->se_inuse = inuse;
    764 				sep->se_priority = sdp->swd_priority;
    765 				KASSERT(sdp->swd_pathlen <
    766 				    sizeof(sep->se_path));
    767 				strcpy(sep->se_path, sdp->swd_path);
    768 				sep++;
    769 #if defined(COMPAT_13)
    770 			} else if (cmd == SWAP_STATS13) {
    771 				struct swapent13 *sep13 =
    772 				    (struct swapent13 *)sep;
    773 
    774 				sep13->se13_dev = sdp->swd_dev;
    775 				sep13->se13_flags = sdp->swd_flags;
    776 				sep13->se13_nblks = sdp->swd_nblks;
    777 				sep13->se13_inuse = inuse;
    778 				sep13->se13_priority = sdp->swd_priority;
    779 				sep = (struct swapent *)(sep13 + 1);
    780 #endif
    781 #if defined(COMPAT_50)
    782 			} else if (cmd == SWAP_STATS50) {
    783 				struct swapent50 *sep50 =
    784 				    (struct swapent50 *)sep;
    785 
    786 				sep50->se50_dev = sdp->swd_dev;
    787 				sep50->se50_flags = sdp->swd_flags;
    788 				sep50->se50_nblks = sdp->swd_nblks;
    789 				sep50->se50_inuse = inuse;
    790 				sep50->se50_priority = sdp->swd_priority;
    791 				KASSERT(sdp->swd_pathlen <
    792 				    sizeof(sep50->se50_path));
    793 				strcpy(sep50->se50_path, sdp->swd_path);
    794 				sep = (struct swapent *)(sep50 + 1);
    795 #endif
    796 #if defined(COMPAT_13) || defined(COMPAT_50)
    797 			}
    798 #endif
    799 			count++;
    800 		}
    801 	}
    802 	*retval = count;
    803 }
    804 
    805 /*
    806  * swap_on: attempt to enable a swapdev for swapping.   note that the
    807  *	swapdev is already on the global list, but disabled (marked
    808  *	SWF_FAKE).
    809  *
    810  * => we avoid the start of the disk (to protect disk labels)
    811  * => we also avoid the miniroot, if we are swapping to root.
    812  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    813  *	if needed.
    814  */
    815 static int
    816 swap_on(struct lwp *l, struct swapdev *sdp)
    817 {
    818 	struct vnode *vp;
    819 	int error, npages, nblocks, size;
    820 	long addr;
    821 	vmem_addr_t result;
    822 	struct vattr va;
    823 	dev_t dev;
    824 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    825 
    826 	/*
    827 	 * we want to enable swapping on sdp.   the swd_vp contains
    828 	 * the vnode we want (locked and ref'd), and the swd_dev
    829 	 * contains the dev_t of the file, if it a block device.
    830 	 */
    831 
    832 	vp = sdp->swd_vp;
    833 	dev = sdp->swd_dev;
    834 
    835 	/*
    836 	 * open the swap file (mostly useful for block device files to
    837 	 * let device driver know what is up).
    838 	 *
    839 	 * we skip the open/close for root on swap because the root
    840 	 * has already been opened when root was mounted (mountroot).
    841 	 */
    842 	if (vp != rootvp) {
    843 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    844 			return (error);
    845 	}
    846 
    847 	/* XXX this only works for block devices */
    848 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    849 
    850 	/*
    851 	 * we now need to determine the size of the swap area.   for
    852 	 * block specials we can call the d_psize function.
    853 	 * for normal files, we must stat [get attrs].
    854 	 *
    855 	 * we put the result in nblks.
    856 	 * for normal files, we also want the filesystem block size
    857 	 * (which we get with statfs).
    858 	 */
    859 	switch (vp->v_type) {
    860 	case VBLK:
    861 		if ((nblocks = bdev_size(dev)) == -1) {
    862 			error = ENXIO;
    863 			goto bad;
    864 		}
    865 		break;
    866 
    867 	case VREG:
    868 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    869 			goto bad;
    870 		nblocks = (int)btodb(va.va_size);
    871 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    872 		/*
    873 		 * limit the max # of outstanding I/O requests we issue
    874 		 * at any one time.   take it easy on NFS servers.
    875 		 */
    876 		if (vp->v_tag == VT_NFS)
    877 			sdp->swd_maxactive = 2; /* XXX */
    878 		else
    879 			sdp->swd_maxactive = 8; /* XXX */
    880 		break;
    881 
    882 	default:
    883 		error = ENXIO;
    884 		goto bad;
    885 	}
    886 
    887 	/*
    888 	 * save nblocks in a safe place and convert to pages.
    889 	 */
    890 
    891 	sdp->swd_nblks = nblocks;
    892 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    893 
    894 	/*
    895 	 * for block special files, we want to make sure that leave
    896 	 * the disklabel and bootblocks alone, so we arrange to skip
    897 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    898 	 * note that because of this the "size" can be less than the
    899 	 * actual number of blocks on the device.
    900 	 */
    901 	if (vp->v_type == VBLK) {
    902 		/* we use pages 1 to (size - 1) [inclusive] */
    903 		size = npages - 1;
    904 		addr = 1;
    905 	} else {
    906 		/* we use pages 0 to (size - 1) [inclusive] */
    907 		size = npages;
    908 		addr = 0;
    909 	}
    910 
    911 	/*
    912 	 * make sure we have enough blocks for a reasonable sized swap
    913 	 * area.   we want at least one page.
    914 	 */
    915 
    916 	if (size < 1) {
    917 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    918 		error = EINVAL;
    919 		goto bad;
    920 	}
    921 
    922 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    923 
    924 	/*
    925 	 * now we need to allocate an extent to manage this swap device
    926 	 */
    927 
    928 	sdp->swd_blist = blist_create(npages);
    929 	/* mark all expect the `saved' region free. */
    930 	blist_free(sdp->swd_blist, addr, size);
    931 
    932 	/*
    933 	 * if the vnode we are swapping to is the root vnode
    934 	 * (i.e. we are swapping to the miniroot) then we want
    935 	 * to make sure we don't overwrite it.   do a statfs to
    936 	 * find its size and skip over it.
    937 	 */
    938 	if (vp == rootvp) {
    939 		struct mount *mp;
    940 		struct statvfs *sp;
    941 		int rootblocks, rootpages;
    942 
    943 		mp = rootvnode->v_mount;
    944 		sp = &mp->mnt_stat;
    945 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    946 		/*
    947 		 * XXX: sp->f_blocks isn't the total number of
    948 		 * blocks in the filesystem, it's the number of
    949 		 * data blocks.  so, our rootblocks almost
    950 		 * definitely underestimates the total size
    951 		 * of the filesystem - how badly depends on the
    952 		 * details of the filesystem type.  there isn't
    953 		 * an obvious way to deal with this cleanly
    954 		 * and perfectly, so for now we just pad our
    955 		 * rootblocks estimate with an extra 5 percent.
    956 		 */
    957 		rootblocks += (rootblocks >> 5) +
    958 			(rootblocks >> 6) +
    959 			(rootblocks >> 7);
    960 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    961 		if (rootpages > size)
    962 			panic("swap_on: miniroot larger than swap?");
    963 
    964 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    965 			panic("swap_on: unable to preserve miniroot");
    966 		}
    967 
    968 		size -= rootpages;
    969 		printf("Preserved %d pages of miniroot ", rootpages);
    970 		printf("leaving %d pages of swap\n", size);
    971 	}
    972 
    973 	/*
    974 	 * add a ref to vp to reflect usage as a swap device.
    975 	 */
    976 	vref(vp);
    977 
    978 	/*
    979 	 * now add the new swapdev to the drum and enable.
    980 	 */
    981 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    982 	if (error != 0)
    983 		panic("swapdrum_add");
    984 	/*
    985 	 * If this is the first regular swap create the workqueue.
    986 	 * => Protected by swap_syscall_lock.
    987 	 */
    988 	if (vp->v_type != VBLK) {
    989 		if (sw_reg_count++ == 0) {
    990 			KASSERT(sw_reg_workqueue == NULL);
    991 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    992 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    993 				panic("%s: workqueue_create failed", __func__);
    994 		}
    995 	}
    996 
    997 	sdp->swd_drumoffset = (int)result;
    998 	sdp->swd_drumsize = npages;
    999 	sdp->swd_npages = size;
   1000 	mutex_enter(&uvm_swap_data_lock);
   1001 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1002 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1003 	uvmexp.swpages += size;
   1004 	uvmexp.swpgavail += size;
   1005 	mutex_exit(&uvm_swap_data_lock);
   1006 	return (0);
   1007 
   1008 	/*
   1009 	 * failure: clean up and return error.
   1010 	 */
   1011 
   1012 bad:
   1013 	if (sdp->swd_blist) {
   1014 		blist_destroy(sdp->swd_blist);
   1015 	}
   1016 	if (vp != rootvp) {
   1017 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1018 	}
   1019 	return (error);
   1020 }
   1021 
   1022 /*
   1023  * swap_off: stop swapping on swapdev
   1024  *
   1025  * => swap data should be locked, we will unlock.
   1026  */
   1027 static int
   1028 swap_off(struct lwp *l, struct swapdev *sdp)
   1029 {
   1030 	int npages = sdp->swd_npages;
   1031 	int error = 0;
   1032 
   1033 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1034 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1035 
   1036 	/* disable the swap area being removed */
   1037 	sdp->swd_flags &= ~SWF_ENABLE;
   1038 	uvmexp.swpgavail -= npages;
   1039 	mutex_exit(&uvm_swap_data_lock);
   1040 
   1041 	/*
   1042 	 * the idea is to find all the pages that are paged out to this
   1043 	 * device, and page them all in.  in uvm, swap-backed pageable
   1044 	 * memory can take two forms: aobjs and anons.  call the
   1045 	 * swapoff hook for each subsystem to bring in pages.
   1046 	 */
   1047 
   1048 	if (uao_swap_off(sdp->swd_drumoffset,
   1049 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1050 	    amap_swap_off(sdp->swd_drumoffset,
   1051 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1052 		error = ENOMEM;
   1053 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1054 		error = EBUSY;
   1055 	}
   1056 
   1057 	if (error) {
   1058 		mutex_enter(&uvm_swap_data_lock);
   1059 		sdp->swd_flags |= SWF_ENABLE;
   1060 		uvmexp.swpgavail += npages;
   1061 		mutex_exit(&uvm_swap_data_lock);
   1062 
   1063 		return error;
   1064 	}
   1065 
   1066 	/*
   1067 	 * If this is the last regular swap destroy the workqueue.
   1068 	 * => Protected by swap_syscall_lock.
   1069 	 */
   1070 	if (sdp->swd_vp->v_type != VBLK) {
   1071 		KASSERT(sw_reg_count > 0);
   1072 		KASSERT(sw_reg_workqueue != NULL);
   1073 		if (--sw_reg_count == 0) {
   1074 			workqueue_destroy(sw_reg_workqueue);
   1075 			sw_reg_workqueue = NULL;
   1076 		}
   1077 	}
   1078 
   1079 	/*
   1080 	 * done with the vnode.
   1081 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1082 	 * so that spec_close() can tell if this is the last close.
   1083 	 */
   1084 	vrele(sdp->swd_vp);
   1085 	if (sdp->swd_vp != rootvp) {
   1086 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1087 	}
   1088 
   1089 	mutex_enter(&uvm_swap_data_lock);
   1090 	uvmexp.swpages -= npages;
   1091 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1092 
   1093 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1094 		panic("%s: swapdev not in list", __func__);
   1095 	swaplist_trim();
   1096 	mutex_exit(&uvm_swap_data_lock);
   1097 
   1098 	/*
   1099 	 * free all resources!
   1100 	 */
   1101 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1102 	blist_destroy(sdp->swd_blist);
   1103 	bufq_free(sdp->swd_tab);
   1104 	kmem_free(sdp, sizeof(*sdp));
   1105 	return (0);
   1106 }
   1107 
   1108 void
   1109 uvm_swap_shutdown(struct lwp *l)
   1110 {
   1111 	struct swapdev *sdp;
   1112 	struct swappri *spp;
   1113 	struct vnode *vp;
   1114 	int error;
   1115 
   1116 	printf("turning of swap...");
   1117 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1118 	mutex_enter(&uvm_swap_data_lock);
   1119 again:
   1120 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1121 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1122 			if (sdp->swd_flags & SWF_FAKE)
   1123 				continue;
   1124 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1125 				continue;
   1126 #ifdef DEBUG
   1127 			printf("\nturning off swap on %s...",
   1128 			    sdp->swd_path);
   1129 #endif
   1130 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1131 				error = EBUSY;
   1132 				vp = NULL;
   1133 			} else
   1134 				error = 0;
   1135 			if (!error) {
   1136 				error = swap_off(l, sdp);
   1137 				mutex_enter(&uvm_swap_data_lock);
   1138 			}
   1139 			if (error) {
   1140 				printf("stopping swap on %s failed "
   1141 				    "with error %d\n", sdp->swd_path, error);
   1142 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1143 				    swd_next);
   1144 				uvmexp.nswapdev--;
   1145 				swaplist_trim();
   1146 				if (vp)
   1147 					vput(vp);
   1148 			}
   1149 			goto again;
   1150 		}
   1151 	printf(" done\n");
   1152 	mutex_exit(&uvm_swap_data_lock);
   1153 	rw_exit(&swap_syscall_lock);
   1154 }
   1155 
   1156 
   1157 /*
   1158  * /dev/drum interface and i/o functions
   1159  */
   1160 
   1161 /*
   1162  * swstrategy: perform I/O on the drum
   1163  *
   1164  * => we must map the i/o request from the drum to the correct swapdev.
   1165  */
   1166 static void
   1167 swstrategy(struct buf *bp)
   1168 {
   1169 	struct swapdev *sdp;
   1170 	struct vnode *vp;
   1171 	int pageno, bn;
   1172 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1173 
   1174 	/*
   1175 	 * convert block number to swapdev.   note that swapdev can't
   1176 	 * be yanked out from under us because we are holding resources
   1177 	 * in it (i.e. the blocks we are doing I/O on).
   1178 	 */
   1179 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1180 	mutex_enter(&uvm_swap_data_lock);
   1181 	sdp = swapdrum_getsdp(pageno);
   1182 	mutex_exit(&uvm_swap_data_lock);
   1183 	if (sdp == NULL) {
   1184 		bp->b_error = EINVAL;
   1185 		bp->b_resid = bp->b_bcount;
   1186 		biodone(bp);
   1187 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1188 		return;
   1189 	}
   1190 
   1191 	/*
   1192 	 * convert drum page number to block number on this swapdev.
   1193 	 */
   1194 
   1195 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1196 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1197 
   1198 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1199 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1200 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1201 
   1202 	/*
   1203 	 * for block devices we finish up here.
   1204 	 * for regular files we have to do more work which we delegate
   1205 	 * to sw_reg_strategy().
   1206 	 */
   1207 
   1208 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1209 	switch (vp->v_type) {
   1210 	default:
   1211 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1212 
   1213 	case VBLK:
   1214 
   1215 		/*
   1216 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1217 		 * on the swapdev (sdp).
   1218 		 */
   1219 		bp->b_blkno = bn;		/* swapdev block number */
   1220 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1221 
   1222 		/*
   1223 		 * if we are doing a write, we have to redirect the i/o on
   1224 		 * drum's v_numoutput counter to the swapdevs.
   1225 		 */
   1226 		if ((bp->b_flags & B_READ) == 0) {
   1227 			mutex_enter(bp->b_objlock);
   1228 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1229 			mutex_exit(bp->b_objlock);
   1230 			mutex_enter(vp->v_interlock);
   1231 			vp->v_numoutput++;	/* put it on swapdev */
   1232 			mutex_exit(vp->v_interlock);
   1233 		}
   1234 
   1235 		/*
   1236 		 * finally plug in swapdev vnode and start I/O
   1237 		 */
   1238 		bp->b_vp = vp;
   1239 		bp->b_objlock = vp->v_interlock;
   1240 		VOP_STRATEGY(vp, bp);
   1241 		return;
   1242 
   1243 	case VREG:
   1244 		/*
   1245 		 * delegate to sw_reg_strategy function.
   1246 		 */
   1247 		sw_reg_strategy(sdp, bp, bn);
   1248 		return;
   1249 	}
   1250 	/* NOTREACHED */
   1251 }
   1252 
   1253 /*
   1254  * swread: the read function for the drum (just a call to physio)
   1255  */
   1256 /*ARGSUSED*/
   1257 static int
   1258 swread(dev_t dev, struct uio *uio, int ioflag)
   1259 {
   1260 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1261 
   1262 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1263 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1264 }
   1265 
   1266 /*
   1267  * swwrite: the write function for the drum (just a call to physio)
   1268  */
   1269 /*ARGSUSED*/
   1270 static int
   1271 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1272 {
   1273 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1274 
   1275 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1276 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1277 }
   1278 
   1279 const struct bdevsw swap_bdevsw = {
   1280 	.d_open = nullopen,
   1281 	.d_close = nullclose,
   1282 	.d_strategy = swstrategy,
   1283 	.d_ioctl = noioctl,
   1284 	.d_dump = nodump,
   1285 	.d_psize = nosize,
   1286 	.d_flag = D_OTHER
   1287 };
   1288 
   1289 const struct cdevsw swap_cdevsw = {
   1290 	.d_open = nullopen,
   1291 	.d_close = nullclose,
   1292 	.d_read = swread,
   1293 	.d_write = swwrite,
   1294 	.d_ioctl = noioctl,
   1295 	.d_stop = nostop,
   1296 	.d_tty = notty,
   1297 	.d_poll = nopoll,
   1298 	.d_mmap = nommap,
   1299 	.d_kqfilter = nokqfilter,
   1300 	.d_flag = D_OTHER,
   1301 };
   1302 
   1303 /*
   1304  * sw_reg_strategy: handle swap i/o to regular files
   1305  */
   1306 static void
   1307 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1308 {
   1309 	struct vnode	*vp;
   1310 	struct vndxfer	*vnx;
   1311 	daddr_t		nbn;
   1312 	char 		*addr;
   1313 	off_t		byteoff;
   1314 	int		s, off, nra, error, sz, resid;
   1315 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1316 
   1317 	/*
   1318 	 * allocate a vndxfer head for this transfer and point it to
   1319 	 * our buffer.
   1320 	 */
   1321 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1322 	vnx->vx_flags = VX_BUSY;
   1323 	vnx->vx_error = 0;
   1324 	vnx->vx_pending = 0;
   1325 	vnx->vx_bp = bp;
   1326 	vnx->vx_sdp = sdp;
   1327 
   1328 	/*
   1329 	 * setup for main loop where we read filesystem blocks into
   1330 	 * our buffer.
   1331 	 */
   1332 	error = 0;
   1333 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1334 	addr = bp->b_data;		/* current position in buffer */
   1335 	byteoff = dbtob((uint64_t)bn);
   1336 
   1337 	for (resid = bp->b_resid; resid; resid -= sz) {
   1338 		struct vndbuf	*nbp;
   1339 
   1340 		/*
   1341 		 * translate byteoffset into block number.  return values:
   1342 		 *   vp = vnode of underlying device
   1343 		 *  nbn = new block number (on underlying vnode dev)
   1344 		 *  nra = num blocks we can read-ahead (excludes requested
   1345 		 *	block)
   1346 		 */
   1347 		nra = 0;
   1348 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1349 				 	&vp, &nbn, &nra);
   1350 
   1351 		if (error == 0 && nbn == (daddr_t)-1) {
   1352 			/*
   1353 			 * this used to just set error, but that doesn't
   1354 			 * do the right thing.  Instead, it causes random
   1355 			 * memory errors.  The panic() should remain until
   1356 			 * this condition doesn't destabilize the system.
   1357 			 */
   1358 #if 1
   1359 			panic("%s: swap to sparse file", __func__);
   1360 #else
   1361 			error = EIO;	/* failure */
   1362 #endif
   1363 		}
   1364 
   1365 		/*
   1366 		 * punt if there was an error or a hole in the file.
   1367 		 * we must wait for any i/o ops we have already started
   1368 		 * to finish before returning.
   1369 		 *
   1370 		 * XXX we could deal with holes here but it would be
   1371 		 * a hassle (in the write case).
   1372 		 */
   1373 		if (error) {
   1374 			s = splbio();
   1375 			vnx->vx_error = error;	/* pass error up */
   1376 			goto out;
   1377 		}
   1378 
   1379 		/*
   1380 		 * compute the size ("sz") of this transfer (in bytes).
   1381 		 */
   1382 		off = byteoff % sdp->swd_bsize;
   1383 		sz = (1 + nra) * sdp->swd_bsize - off;
   1384 		if (sz > resid)
   1385 			sz = resid;
   1386 
   1387 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1388 			    "vp %p/%p offset 0x%x/0x%x",
   1389 			    sdp->swd_vp, vp, byteoff, nbn);
   1390 
   1391 		/*
   1392 		 * now get a buf structure.   note that the vb_buf is
   1393 		 * at the front of the nbp structure so that you can
   1394 		 * cast pointers between the two structure easily.
   1395 		 */
   1396 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1397 		buf_init(&nbp->vb_buf);
   1398 		nbp->vb_buf.b_flags    = bp->b_flags;
   1399 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1400 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1401 		nbp->vb_buf.b_bcount   = sz;
   1402 		nbp->vb_buf.b_bufsize  = sz;
   1403 		nbp->vb_buf.b_error    = 0;
   1404 		nbp->vb_buf.b_data     = addr;
   1405 		nbp->vb_buf.b_lblkno   = 0;
   1406 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1407 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1408 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1409 		nbp->vb_buf.b_vp       = vp;
   1410 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1411 		if (vp->v_type == VBLK) {
   1412 			nbp->vb_buf.b_dev = vp->v_rdev;
   1413 		}
   1414 
   1415 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1416 
   1417 		/*
   1418 		 * Just sort by block number
   1419 		 */
   1420 		s = splbio();
   1421 		if (vnx->vx_error != 0) {
   1422 			buf_destroy(&nbp->vb_buf);
   1423 			pool_put(&vndbuf_pool, nbp);
   1424 			goto out;
   1425 		}
   1426 		vnx->vx_pending++;
   1427 
   1428 		/* sort it in and start I/O if we are not over our limit */
   1429 		/* XXXAD locking */
   1430 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1431 		sw_reg_start(sdp);
   1432 		splx(s);
   1433 
   1434 		/*
   1435 		 * advance to the next I/O
   1436 		 */
   1437 		byteoff += sz;
   1438 		addr += sz;
   1439 	}
   1440 
   1441 	s = splbio();
   1442 
   1443 out: /* Arrive here at splbio */
   1444 	vnx->vx_flags &= ~VX_BUSY;
   1445 	if (vnx->vx_pending == 0) {
   1446 		error = vnx->vx_error;
   1447 		pool_put(&vndxfer_pool, vnx);
   1448 		bp->b_error = error;
   1449 		biodone(bp);
   1450 	}
   1451 	splx(s);
   1452 }
   1453 
   1454 /*
   1455  * sw_reg_start: start an I/O request on the requested swapdev
   1456  *
   1457  * => reqs are sorted by b_rawblkno (above)
   1458  */
   1459 static void
   1460 sw_reg_start(struct swapdev *sdp)
   1461 {
   1462 	struct buf	*bp;
   1463 	struct vnode	*vp;
   1464 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1465 
   1466 	/* recursion control */
   1467 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1468 		return;
   1469 
   1470 	sdp->swd_flags |= SWF_BUSY;
   1471 
   1472 	while (sdp->swd_active < sdp->swd_maxactive) {
   1473 		bp = bufq_get(sdp->swd_tab);
   1474 		if (bp == NULL)
   1475 			break;
   1476 		sdp->swd_active++;
   1477 
   1478 		UVMHIST_LOG(pdhist,
   1479 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1480 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1481 		vp = bp->b_vp;
   1482 		KASSERT(bp->b_objlock == vp->v_interlock);
   1483 		if ((bp->b_flags & B_READ) == 0) {
   1484 			mutex_enter(vp->v_interlock);
   1485 			vp->v_numoutput++;
   1486 			mutex_exit(vp->v_interlock);
   1487 		}
   1488 		VOP_STRATEGY(vp, bp);
   1489 	}
   1490 	sdp->swd_flags &= ~SWF_BUSY;
   1491 }
   1492 
   1493 /*
   1494  * sw_reg_biodone: one of our i/o's has completed
   1495  */
   1496 static void
   1497 sw_reg_biodone(struct buf *bp)
   1498 {
   1499 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1500 }
   1501 
   1502 /*
   1503  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1504  *
   1505  * => note that we can recover the vndbuf struct by casting the buf ptr
   1506  */
   1507 static void
   1508 sw_reg_iodone(struct work *wk, void *dummy)
   1509 {
   1510 	struct vndbuf *vbp = (void *)wk;
   1511 	struct vndxfer *vnx = vbp->vb_xfer;
   1512 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1513 	struct swapdev	*sdp = vnx->vx_sdp;
   1514 	int s, resid, error;
   1515 	KASSERT(&vbp->vb_buf.b_work == wk);
   1516 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1517 
   1518 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1519 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1520 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1521 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1522 
   1523 	/*
   1524 	 * protect vbp at splbio and update.
   1525 	 */
   1526 
   1527 	s = splbio();
   1528 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1529 	pbp->b_resid -= resid;
   1530 	vnx->vx_pending--;
   1531 
   1532 	if (vbp->vb_buf.b_error != 0) {
   1533 		/* pass error upward */
   1534 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1535 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1536 		vnx->vx_error = error;
   1537 	}
   1538 
   1539 	/*
   1540 	 * kill vbp structure
   1541 	 */
   1542 	buf_destroy(&vbp->vb_buf);
   1543 	pool_put(&vndbuf_pool, vbp);
   1544 
   1545 	/*
   1546 	 * wrap up this transaction if it has run to completion or, in
   1547 	 * case of an error, when all auxiliary buffers have returned.
   1548 	 */
   1549 	if (vnx->vx_error != 0) {
   1550 		/* pass error upward */
   1551 		error = vnx->vx_error;
   1552 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1553 			pbp->b_error = error;
   1554 			biodone(pbp);
   1555 			pool_put(&vndxfer_pool, vnx);
   1556 		}
   1557 	} else if (pbp->b_resid == 0) {
   1558 		KASSERT(vnx->vx_pending == 0);
   1559 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1560 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1561 			    pbp, vnx->vx_error, 0, 0);
   1562 			biodone(pbp);
   1563 			pool_put(&vndxfer_pool, vnx);
   1564 		}
   1565 	}
   1566 
   1567 	/*
   1568 	 * done!   start next swapdev I/O if one is pending
   1569 	 */
   1570 	sdp->swd_active--;
   1571 	sw_reg_start(sdp);
   1572 	splx(s);
   1573 }
   1574 
   1575 
   1576 /*
   1577  * uvm_swap_alloc: allocate space on swap
   1578  *
   1579  * => allocation is done "round robin" down the priority list, as we
   1580  *	allocate in a priority we "rotate" the circle queue.
   1581  * => space can be freed with uvm_swap_free
   1582  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1583  * => we lock uvm_swap_data_lock
   1584  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1585  */
   1586 int
   1587 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1588 {
   1589 	struct swapdev *sdp;
   1590 	struct swappri *spp;
   1591 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1592 
   1593 	/*
   1594 	 * no swap devices configured yet?   definite failure.
   1595 	 */
   1596 	if (uvmexp.nswapdev < 1)
   1597 		return 0;
   1598 
   1599 	/*
   1600 	 * XXXJAK: BEGIN HACK
   1601 	 *
   1602 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1603 	 * too many slots.
   1604 	 */
   1605 	if (*nslots > BLIST_MAX_ALLOC) {
   1606 		if (__predict_false(lessok == false))
   1607 			return 0;
   1608 		*nslots = BLIST_MAX_ALLOC;
   1609 	}
   1610 	/* XXXJAK: END HACK */
   1611 
   1612 	/*
   1613 	 * lock data lock, convert slots into blocks, and enter loop
   1614 	 */
   1615 	mutex_enter(&uvm_swap_data_lock);
   1616 
   1617 ReTry:	/* XXXMRG */
   1618 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1619 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1620 			uint64_t result;
   1621 
   1622 			/* if it's not enabled, then we can't swap from it */
   1623 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1624 				continue;
   1625 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1626 				continue;
   1627 			result = blist_alloc(sdp->swd_blist, *nslots);
   1628 			if (result == BLIST_NONE) {
   1629 				continue;
   1630 			}
   1631 			KASSERT(result < sdp->swd_drumsize);
   1632 
   1633 			/*
   1634 			 * successful allocation!  now rotate the tailq.
   1635 			 */
   1636 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1637 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1638 			sdp->swd_npginuse += *nslots;
   1639 			uvmexp.swpginuse += *nslots;
   1640 			mutex_exit(&uvm_swap_data_lock);
   1641 			/* done!  return drum slot number */
   1642 			UVMHIST_LOG(pdhist,
   1643 			    "success!  returning %d slots starting at %d",
   1644 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1645 			return (result + sdp->swd_drumoffset);
   1646 		}
   1647 	}
   1648 
   1649 	/* XXXMRG: BEGIN HACK */
   1650 	if (*nslots > 1 && lessok) {
   1651 		*nslots = 1;
   1652 		/* XXXMRG: ugh!  blist should support this for us */
   1653 		goto ReTry;
   1654 	}
   1655 	/* XXXMRG: END HACK */
   1656 
   1657 	mutex_exit(&uvm_swap_data_lock);
   1658 	return 0;
   1659 }
   1660 
   1661 /*
   1662  * uvm_swapisfull: return true if most of available swap is allocated
   1663  * and in use.  we don't count some small portion as it may be inaccessible
   1664  * to us at any given moment, for example if there is lock contention or if
   1665  * pages are busy.
   1666  */
   1667 bool
   1668 uvm_swapisfull(void)
   1669 {
   1670 	int swpgonly;
   1671 	bool rv;
   1672 
   1673 	mutex_enter(&uvm_swap_data_lock);
   1674 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1675 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1676 	    uvm_swapisfull_factor);
   1677 	rv = (swpgonly >= uvmexp.swpgavail);
   1678 	mutex_exit(&uvm_swap_data_lock);
   1679 
   1680 	return (rv);
   1681 }
   1682 
   1683 /*
   1684  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1685  *
   1686  * => we lock uvm_swap_data_lock
   1687  */
   1688 void
   1689 uvm_swap_markbad(int startslot, int nslots)
   1690 {
   1691 	struct swapdev *sdp;
   1692 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1693 
   1694 	mutex_enter(&uvm_swap_data_lock);
   1695 	sdp = swapdrum_getsdp(startslot);
   1696 	KASSERT(sdp != NULL);
   1697 
   1698 	/*
   1699 	 * we just keep track of how many pages have been marked bad
   1700 	 * in this device, to make everything add up in swap_off().
   1701 	 * we assume here that the range of slots will all be within
   1702 	 * one swap device.
   1703 	 */
   1704 
   1705 	KASSERT(uvmexp.swpgonly >= nslots);
   1706 	uvmexp.swpgonly -= nslots;
   1707 	sdp->swd_npgbad += nslots;
   1708 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1709 	mutex_exit(&uvm_swap_data_lock);
   1710 }
   1711 
   1712 /*
   1713  * uvm_swap_free: free swap slots
   1714  *
   1715  * => this can be all or part of an allocation made by uvm_swap_alloc
   1716  * => we lock uvm_swap_data_lock
   1717  */
   1718 void
   1719 uvm_swap_free(int startslot, int nslots)
   1720 {
   1721 	struct swapdev *sdp;
   1722 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1723 
   1724 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1725 	    startslot, 0, 0);
   1726 
   1727 	/*
   1728 	 * ignore attempts to free the "bad" slot.
   1729 	 */
   1730 
   1731 	if (startslot == SWSLOT_BAD) {
   1732 		return;
   1733 	}
   1734 
   1735 	/*
   1736 	 * convert drum slot offset back to sdp, free the blocks
   1737 	 * in the extent, and return.   must hold pri lock to do
   1738 	 * lookup and access the extent.
   1739 	 */
   1740 
   1741 	mutex_enter(&uvm_swap_data_lock);
   1742 	sdp = swapdrum_getsdp(startslot);
   1743 	KASSERT(uvmexp.nswapdev >= 1);
   1744 	KASSERT(sdp != NULL);
   1745 	KASSERT(sdp->swd_npginuse >= nslots);
   1746 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1747 	sdp->swd_npginuse -= nslots;
   1748 	uvmexp.swpginuse -= nslots;
   1749 	mutex_exit(&uvm_swap_data_lock);
   1750 }
   1751 
   1752 /*
   1753  * uvm_swap_put: put any number of pages into a contig place on swap
   1754  *
   1755  * => can be sync or async
   1756  */
   1757 
   1758 int
   1759 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1760 {
   1761 	int error;
   1762 
   1763 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1764 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1765 	return error;
   1766 }
   1767 
   1768 /*
   1769  * uvm_swap_get: get a single page from swap
   1770  *
   1771  * => usually a sync op (from fault)
   1772  */
   1773 
   1774 int
   1775 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1776 {
   1777 	int error;
   1778 
   1779 	uvmexp.nswget++;
   1780 	KASSERT(flags & PGO_SYNCIO);
   1781 	if (swslot == SWSLOT_BAD) {
   1782 		return EIO;
   1783 	}
   1784 
   1785 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1786 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1787 	if (error == 0) {
   1788 
   1789 		/*
   1790 		 * this page is no longer only in swap.
   1791 		 */
   1792 
   1793 		mutex_enter(&uvm_swap_data_lock);
   1794 		KASSERT(uvmexp.swpgonly > 0);
   1795 		uvmexp.swpgonly--;
   1796 		mutex_exit(&uvm_swap_data_lock);
   1797 	}
   1798 	return error;
   1799 }
   1800 
   1801 /*
   1802  * uvm_swap_io: do an i/o operation to swap
   1803  */
   1804 
   1805 static int
   1806 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1807 {
   1808 	daddr_t startblk;
   1809 	struct	buf *bp;
   1810 	vaddr_t kva;
   1811 	int	error, mapinflags;
   1812 	bool write, async;
   1813 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1814 
   1815 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1816 	    startslot, npages, flags, 0);
   1817 
   1818 	write = (flags & B_READ) == 0;
   1819 	async = (flags & B_ASYNC) != 0;
   1820 
   1821 	/*
   1822 	 * allocate a buf for the i/o.
   1823 	 */
   1824 
   1825 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1826 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1827 	if (bp == NULL) {
   1828 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1829 		return ENOMEM;
   1830 	}
   1831 
   1832 	/*
   1833 	 * convert starting drum slot to block number
   1834 	 */
   1835 
   1836 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1837 
   1838 	/*
   1839 	 * first, map the pages into the kernel.
   1840 	 */
   1841 
   1842 	mapinflags = !write ?
   1843 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1844 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1845 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1846 
   1847 	/*
   1848 	 * fill in the bp/sbp.   we currently route our i/o through
   1849 	 * /dev/drum's vnode [swapdev_vp].
   1850 	 */
   1851 
   1852 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1853 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1854 	bp->b_proc = &proc0;	/* XXX */
   1855 	bp->b_vnbufs.le_next = NOLIST;
   1856 	bp->b_data = (void *)kva;
   1857 	bp->b_blkno = startblk;
   1858 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1859 
   1860 	/*
   1861 	 * bump v_numoutput (counter of number of active outputs).
   1862 	 */
   1863 
   1864 	if (write) {
   1865 		mutex_enter(swapdev_vp->v_interlock);
   1866 		swapdev_vp->v_numoutput++;
   1867 		mutex_exit(swapdev_vp->v_interlock);
   1868 	}
   1869 
   1870 	/*
   1871 	 * for async ops we must set up the iodone handler.
   1872 	 */
   1873 
   1874 	if (async) {
   1875 		bp->b_iodone = uvm_aio_biodone;
   1876 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1877 		if (curlwp == uvm.pagedaemon_lwp)
   1878 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1879 		else
   1880 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1881 	} else {
   1882 		bp->b_iodone = NULL;
   1883 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1884 	}
   1885 	UVMHIST_LOG(pdhist,
   1886 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1887 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1888 
   1889 	/*
   1890 	 * now we start the I/O, and if async, return.
   1891 	 */
   1892 
   1893 	VOP_STRATEGY(swapdev_vp, bp);
   1894 	if (async)
   1895 		return 0;
   1896 
   1897 	/*
   1898 	 * must be sync i/o.   wait for it to finish
   1899 	 */
   1900 
   1901 	error = biowait(bp);
   1902 
   1903 	/*
   1904 	 * kill the pager mapping
   1905 	 */
   1906 
   1907 	uvm_pagermapout(kva, npages);
   1908 
   1909 	/*
   1910 	 * now dispose of the buf and we're done.
   1911 	 */
   1912 
   1913 	if (write) {
   1914 		mutex_enter(swapdev_vp->v_interlock);
   1915 		vwakeup(bp);
   1916 		mutex_exit(swapdev_vp->v_interlock);
   1917 	}
   1918 	putiobuf(bp);
   1919 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1920 
   1921 	return (error);
   1922 }
   1923