uvm_swap.c revision 1.163.4.1 1 /* $NetBSD: uvm_swap.c,v 1.163.4.1 2014/05/18 17:46:22 rmind Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.163.4.1 2014/05/18 17:46:22 rmind Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * TAILQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* tailq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226
227 /*
228 * prototypes
229 */
230 static struct swapdev *swapdrum_getsdp(int);
231
232 static struct swapdev *swaplist_find(struct vnode *, bool);
233 static void swaplist_insert(struct swapdev *,
234 struct swappri *, int);
235 static void swaplist_trim(void);
236
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246
247 /*
248 * uvm_swap_init: init the swap system data structures and locks
249 *
250 * => called at boot time from init_main.c after the filesystems
251 * are brought up (which happens after uvm_init())
252 */
253 void
254 uvm_swap_init(void)
255 {
256 UVMHIST_FUNC("uvm_swap_init");
257
258 UVMHIST_CALLED(pdhist);
259 /*
260 * first, init the swap list, its counter, and its lock.
261 * then get a handle on the vnode for /dev/drum by using
262 * the its dev_t number ("swapdev", from MD conf.c).
263 */
264
265 LIST_INIT(&swap_priority);
266 uvmexp.nswapdev = 0;
267 rw_init(&swap_syscall_lock);
268 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269
270 if (bdevvp(swapdev, &swapdev_vp))
271 panic("%s: can't get vnode for swap device", __func__);
272 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 panic("%s: can't lock swap device", __func__);
274 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 panic("%s: can't open swap device", __func__);
276 VOP_UNLOCK(swapdev_vp);
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 VM_NOSLEEP, IPL_NONE);
286 if (swapmap == 0) {
287 panic("%s: vmem_create failed", __func__);
288 }
289
290 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 NULL, IPL_BIO);
292 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 NULL, IPL_BIO);
294
295 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297
298 /*
299 * swaplist functions: functions that operate on the list of swap
300 * devices on the system.
301 */
302
303 /*
304 * swaplist_insert: insert swap device "sdp" into the global list
305 *
306 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307 * => caller must provide a newly allocated swappri structure (we will
308 * FREE it if we don't need it... this it to prevent allocation
309 * blocking here while adding swap)
310 */
311 static void
312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %d",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 TAILQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 kmem_free(newspp, sizeof(*newspp));
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * tailq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372
373 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 TAILQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 }
385 return (NULL);
386 }
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393 */
394 static void
395 swaplist_trim(void)
396 {
397 struct swappri *spp, *nextspp;
398
399 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 continue;
402 LIST_REMOVE(spp, spi_swappri);
403 kmem_free(spp, sizeof(*spp));
404 }
405 }
406
407 /*
408 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409 * to the "swapdev" that maps that section of the drum.
410 *
411 * => each swapdev takes one big contig chunk of the drum
412 * => caller must hold uvm_swap_data_lock
413 */
414 static struct swapdev *
415 swapdrum_getsdp(int pgno)
416 {
417 struct swapdev *sdp;
418 struct swappri *spp;
419
420 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 if (sdp->swd_flags & SWF_FAKE)
423 continue;
424 if (pgno >= sdp->swd_drumoffset &&
425 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 return sdp;
427 }
428 }
429 }
430 return NULL;
431 }
432
433
434 /*
435 * sys_swapctl: main entry point for swapctl(2) system call
436 * [with two helper functions: swap_on and swap_off]
437 */
438 int
439 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
440 {
441 /* {
442 syscallarg(int) cmd;
443 syscallarg(void *) arg;
444 syscallarg(int) misc;
445 } */
446 struct vnode *vp;
447 struct nameidata nd;
448 struct swappri *spp;
449 struct swapdev *sdp;
450 struct swapent *sep;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 char *userpath;
453 size_t len = 0;
454 int error, misc;
455 int priority;
456 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457
458 /*
459 * we handle the non-priv NSWAP and STATS request first.
460 *
461 * SWAP_NSWAP: return number of config'd swap devices
462 * [can also be obtained with uvmexp sysctl]
463 */
464 if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 const int nswapdev = uvmexp.nswapdev;
466 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
467 *retval = nswapdev;
468 return 0;
469 }
470
471 misc = SCARG(uap, misc);
472 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473
474 /*
475 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 */
477 rw_enter(&swap_syscall_lock, RW_WRITER);
478
479 /*
480 * SWAP_STATS: get stats on current # of configured swap devs
481 *
482 * note that the swap_priority list can't change as long
483 * as we are holding the swap_syscall_lock. we don't want
484 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 * copyout() and we don't want to be holding that lock then!
486 */
487 if (SCARG(uap, cmd) == SWAP_STATS
488 #if defined(COMPAT_50)
489 || SCARG(uap, cmd) == SWAP_STATS50
490 #endif
491 #if defined(COMPAT_13)
492 || SCARG(uap, cmd) == SWAP_STATS13
493 #endif
494 ) {
495 if ((size_t)misc > (size_t)uvmexp.nswapdev)
496 misc = uvmexp.nswapdev;
497
498 if (misc == 0) {
499 error = EINVAL;
500 goto out;
501 }
502 KASSERT(misc > 0);
503 #if defined(COMPAT_13)
504 if (SCARG(uap, cmd) == SWAP_STATS13)
505 len = sizeof(struct swapent13) * misc;
506 else
507 #endif
508 #if defined(COMPAT_50)
509 if (SCARG(uap, cmd) == SWAP_STATS50)
510 len = sizeof(struct swapent50) * misc;
511 else
512 #endif
513 len = sizeof(struct swapent) * misc;
514 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
515
516 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
517 error = copyout(sep, SCARG(uap, arg), len);
518
519 kmem_free(sep, len);
520 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
521 goto out;
522 }
523 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
524 dev_t *devp = (dev_t *)SCARG(uap, arg);
525
526 error = copyout(&dumpdev, devp, sizeof(dumpdev));
527 goto out;
528 }
529
530 /*
531 * all other requests require superuser privs. verify.
532 */
533 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
534 0, NULL, NULL, NULL)))
535 goto out;
536
537 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
538 /* drop the current dump device */
539 dumpdev = NODEV;
540 dumpcdev = NODEV;
541 cpu_dumpconf();
542 goto out;
543 }
544
545 /*
546 * at this point we expect a path name in arg. we will
547 * use namei() to gain a vnode reference (vref), and lock
548 * the vnode (VOP_LOCK).
549 *
550 * XXX: a NULL arg means use the root vnode pointer (e.g. for
551 * miniroot)
552 */
553 if (SCARG(uap, arg) == NULL) {
554 vp = rootvp; /* miniroot */
555 vref(vp);
556 if (vn_lock(vp, LK_EXCLUSIVE)) {
557 vrele(vp);
558 error = EBUSY;
559 goto out;
560 }
561 if (SCARG(uap, cmd) == SWAP_ON &&
562 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
563 panic("swapctl: miniroot copy failed");
564 KASSERT(len > 0);
565 } else {
566 struct pathbuf *pb;
567
568 /*
569 * This used to allow copying in one extra byte
570 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
571 * This was completely pointless because if anyone
572 * used that extra byte namei would fail with
573 * ENAMETOOLONG anyway, so I've removed the excess
574 * logic. - dholland 20100215
575 */
576
577 error = pathbuf_copyin(SCARG(uap, arg), &pb);
578 if (error) {
579 goto out;
580 }
581 if (SCARG(uap, cmd) == SWAP_ON) {
582 /* get a copy of the string */
583 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
584 len = strlen(userpath) + 1;
585 }
586 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
587 if ((error = namei(&nd))) {
588 pathbuf_destroy(pb);
589 goto out;
590 }
591 vp = nd.ni_vp;
592 pathbuf_destroy(pb);
593 }
594 /* note: "vp" is referenced and locked */
595
596 error = 0; /* assume no error */
597 switch(SCARG(uap, cmd)) {
598
599 case SWAP_DUMPDEV:
600 if (vp->v_type != VBLK) {
601 error = ENOTBLK;
602 break;
603 }
604 if (bdevsw_lookup(vp->v_rdev)) {
605 dumpdev = vp->v_rdev;
606 dumpcdev = devsw_blk2chr(dumpdev);
607 } else
608 dumpdev = NODEV;
609 cpu_dumpconf();
610 break;
611
612 case SWAP_CTL:
613 /*
614 * get new priority, remove old entry (if any) and then
615 * reinsert it in the correct place. finally, prune out
616 * any empty priority structures.
617 */
618 priority = SCARG(uap, misc);
619 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
620 mutex_enter(&uvm_swap_data_lock);
621 if ((sdp = swaplist_find(vp, true)) == NULL) {
622 error = ENOENT;
623 } else {
624 swaplist_insert(sdp, spp, priority);
625 swaplist_trim();
626 }
627 mutex_exit(&uvm_swap_data_lock);
628 if (error)
629 kmem_free(spp, sizeof(*spp));
630 break;
631
632 case SWAP_ON:
633
634 /*
635 * check for duplicates. if none found, then insert a
636 * dummy entry on the list to prevent someone else from
637 * trying to enable this device while we are working on
638 * it.
639 */
640
641 priority = SCARG(uap, misc);
642 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
643 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
644 sdp->swd_flags = SWF_FAKE;
645 sdp->swd_vp = vp;
646 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
647 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
648 mutex_enter(&uvm_swap_data_lock);
649 if (swaplist_find(vp, false) != NULL) {
650 error = EBUSY;
651 mutex_exit(&uvm_swap_data_lock);
652 bufq_free(sdp->swd_tab);
653 kmem_free(sdp, sizeof(*sdp));
654 kmem_free(spp, sizeof(*spp));
655 break;
656 }
657 swaplist_insert(sdp, spp, priority);
658 mutex_exit(&uvm_swap_data_lock);
659
660 KASSERT(len > 0);
661 sdp->swd_pathlen = len;
662 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
663 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
664 panic("swapctl: copystr");
665
666 /*
667 * we've now got a FAKE placeholder in the swap list.
668 * now attempt to enable swap on it. if we fail, undo
669 * what we've done and kill the fake entry we just inserted.
670 * if swap_on is a success, it will clear the SWF_FAKE flag
671 */
672
673 if ((error = swap_on(l, sdp)) != 0) {
674 mutex_enter(&uvm_swap_data_lock);
675 (void) swaplist_find(vp, true); /* kill fake entry */
676 swaplist_trim();
677 mutex_exit(&uvm_swap_data_lock);
678 bufq_free(sdp->swd_tab);
679 kmem_free(sdp->swd_path, sdp->swd_pathlen);
680 kmem_free(sdp, sizeof(*sdp));
681 break;
682 }
683 break;
684
685 case SWAP_OFF:
686 mutex_enter(&uvm_swap_data_lock);
687 if ((sdp = swaplist_find(vp, false)) == NULL) {
688 mutex_exit(&uvm_swap_data_lock);
689 error = ENXIO;
690 break;
691 }
692
693 /*
694 * If a device isn't in use or enabled, we
695 * can't stop swapping from it (again).
696 */
697 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
698 mutex_exit(&uvm_swap_data_lock);
699 error = EBUSY;
700 break;
701 }
702
703 /*
704 * do the real work.
705 */
706 error = swap_off(l, sdp);
707 break;
708
709 default:
710 error = EINVAL;
711 }
712
713 /*
714 * done! release the ref gained by namei() and unlock.
715 */
716 vput(vp);
717 out:
718 rw_exit(&swap_syscall_lock);
719 kmem_free(userpath, SWAP_PATH_MAX);
720
721 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
722 return (error);
723 }
724
725 /*
726 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
727 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
728 * emulation to use it directly without going through sys_swapctl().
729 * The problem with using sys_swapctl() there is that it involves
730 * copying the swapent array to the stackgap, and this array's size
731 * is not known at build time. Hence it would not be possible to
732 * ensure it would fit in the stackgap in any case.
733 */
734 void
735 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
736 {
737 struct swappri *spp;
738 struct swapdev *sdp;
739 int count = 0;
740
741 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
742 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
743 int inuse;
744
745 if (sec-- <= 0)
746 break;
747
748 /*
749 * backwards compatibility for system call.
750 * For NetBSD 1.3 and 5.0, we have to use
751 * the 32 bit dev_t. For 5.0 and -current
752 * we have to add the path.
753 */
754 inuse = btodb((uint64_t)sdp->swd_npginuse <<
755 PAGE_SHIFT);
756
757 #if defined(COMPAT_13) || defined(COMPAT_50)
758 if (cmd == SWAP_STATS) {
759 #endif
760 sep->se_dev = sdp->swd_dev;
761 sep->se_flags = sdp->swd_flags;
762 sep->se_nblks = sdp->swd_nblks;
763 sep->se_inuse = inuse;
764 sep->se_priority = sdp->swd_priority;
765 KASSERT(sdp->swd_pathlen <
766 sizeof(sep->se_path));
767 strcpy(sep->se_path, sdp->swd_path);
768 sep++;
769 #if defined(COMPAT_13)
770 } else if (cmd == SWAP_STATS13) {
771 struct swapent13 *sep13 =
772 (struct swapent13 *)sep;
773
774 sep13->se13_dev = sdp->swd_dev;
775 sep13->se13_flags = sdp->swd_flags;
776 sep13->se13_nblks = sdp->swd_nblks;
777 sep13->se13_inuse = inuse;
778 sep13->se13_priority = sdp->swd_priority;
779 sep = (struct swapent *)(sep13 + 1);
780 #endif
781 #if defined(COMPAT_50)
782 } else if (cmd == SWAP_STATS50) {
783 struct swapent50 *sep50 =
784 (struct swapent50 *)sep;
785
786 sep50->se50_dev = sdp->swd_dev;
787 sep50->se50_flags = sdp->swd_flags;
788 sep50->se50_nblks = sdp->swd_nblks;
789 sep50->se50_inuse = inuse;
790 sep50->se50_priority = sdp->swd_priority;
791 KASSERT(sdp->swd_pathlen <
792 sizeof(sep50->se50_path));
793 strcpy(sep50->se50_path, sdp->swd_path);
794 sep = (struct swapent *)(sep50 + 1);
795 #endif
796 #if defined(COMPAT_13) || defined(COMPAT_50)
797 }
798 #endif
799 count++;
800 }
801 }
802 *retval = count;
803 }
804
805 /*
806 * swap_on: attempt to enable a swapdev for swapping. note that the
807 * swapdev is already on the global list, but disabled (marked
808 * SWF_FAKE).
809 *
810 * => we avoid the start of the disk (to protect disk labels)
811 * => we also avoid the miniroot, if we are swapping to root.
812 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
813 * if needed.
814 */
815 static int
816 swap_on(struct lwp *l, struct swapdev *sdp)
817 {
818 struct vnode *vp;
819 int error, npages, nblocks, size;
820 long addr;
821 vmem_addr_t result;
822 struct vattr va;
823 dev_t dev;
824 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
825
826 /*
827 * we want to enable swapping on sdp. the swd_vp contains
828 * the vnode we want (locked and ref'd), and the swd_dev
829 * contains the dev_t of the file, if it a block device.
830 */
831
832 vp = sdp->swd_vp;
833 dev = sdp->swd_dev;
834
835 /*
836 * open the swap file (mostly useful for block device files to
837 * let device driver know what is up).
838 *
839 * we skip the open/close for root on swap because the root
840 * has already been opened when root was mounted (mountroot).
841 */
842 if (vp != rootvp) {
843 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
844 return (error);
845 }
846
847 /* XXX this only works for block devices */
848 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
849
850 /*
851 * we now need to determine the size of the swap area. for
852 * block specials we can call the d_psize function.
853 * for normal files, we must stat [get attrs].
854 *
855 * we put the result in nblks.
856 * for normal files, we also want the filesystem block size
857 * (which we get with statfs).
858 */
859 switch (vp->v_type) {
860 case VBLK:
861 if ((nblocks = bdev_size(dev)) == -1) {
862 error = ENXIO;
863 goto bad;
864 }
865 break;
866
867 case VREG:
868 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
869 goto bad;
870 nblocks = (int)btodb(va.va_size);
871 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
872 /*
873 * limit the max # of outstanding I/O requests we issue
874 * at any one time. take it easy on NFS servers.
875 */
876 if (vp->v_tag == VT_NFS)
877 sdp->swd_maxactive = 2; /* XXX */
878 else
879 sdp->swd_maxactive = 8; /* XXX */
880 break;
881
882 default:
883 error = ENXIO;
884 goto bad;
885 }
886
887 /*
888 * save nblocks in a safe place and convert to pages.
889 */
890
891 sdp->swd_nblks = nblocks;
892 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
893
894 /*
895 * for block special files, we want to make sure that leave
896 * the disklabel and bootblocks alone, so we arrange to skip
897 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
898 * note that because of this the "size" can be less than the
899 * actual number of blocks on the device.
900 */
901 if (vp->v_type == VBLK) {
902 /* we use pages 1 to (size - 1) [inclusive] */
903 size = npages - 1;
904 addr = 1;
905 } else {
906 /* we use pages 0 to (size - 1) [inclusive] */
907 size = npages;
908 addr = 0;
909 }
910
911 /*
912 * make sure we have enough blocks for a reasonable sized swap
913 * area. we want at least one page.
914 */
915
916 if (size < 1) {
917 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
918 error = EINVAL;
919 goto bad;
920 }
921
922 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
923
924 /*
925 * now we need to allocate an extent to manage this swap device
926 */
927
928 sdp->swd_blist = blist_create(npages);
929 /* mark all expect the `saved' region free. */
930 blist_free(sdp->swd_blist, addr, size);
931
932 /*
933 * if the vnode we are swapping to is the root vnode
934 * (i.e. we are swapping to the miniroot) then we want
935 * to make sure we don't overwrite it. do a statfs to
936 * find its size and skip over it.
937 */
938 if (vp == rootvp) {
939 struct mount *mp;
940 struct statvfs *sp;
941 int rootblocks, rootpages;
942
943 mp = rootvnode->v_mount;
944 sp = &mp->mnt_stat;
945 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
946 /*
947 * XXX: sp->f_blocks isn't the total number of
948 * blocks in the filesystem, it's the number of
949 * data blocks. so, our rootblocks almost
950 * definitely underestimates the total size
951 * of the filesystem - how badly depends on the
952 * details of the filesystem type. there isn't
953 * an obvious way to deal with this cleanly
954 * and perfectly, so for now we just pad our
955 * rootblocks estimate with an extra 5 percent.
956 */
957 rootblocks += (rootblocks >> 5) +
958 (rootblocks >> 6) +
959 (rootblocks >> 7);
960 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
961 if (rootpages > size)
962 panic("swap_on: miniroot larger than swap?");
963
964 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
965 panic("swap_on: unable to preserve miniroot");
966 }
967
968 size -= rootpages;
969 printf("Preserved %d pages of miniroot ", rootpages);
970 printf("leaving %d pages of swap\n", size);
971 }
972
973 /*
974 * add a ref to vp to reflect usage as a swap device.
975 */
976 vref(vp);
977
978 /*
979 * now add the new swapdev to the drum and enable.
980 */
981 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
982 if (error != 0)
983 panic("swapdrum_add");
984 /*
985 * If this is the first regular swap create the workqueue.
986 * => Protected by swap_syscall_lock.
987 */
988 if (vp->v_type != VBLK) {
989 if (sw_reg_count++ == 0) {
990 KASSERT(sw_reg_workqueue == NULL);
991 if (workqueue_create(&sw_reg_workqueue, "swapiod",
992 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
993 panic("%s: workqueue_create failed", __func__);
994 }
995 }
996
997 sdp->swd_drumoffset = (int)result;
998 sdp->swd_drumsize = npages;
999 sdp->swd_npages = size;
1000 mutex_enter(&uvm_swap_data_lock);
1001 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1002 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1003 uvmexp.swpages += size;
1004 uvmexp.swpgavail += size;
1005 mutex_exit(&uvm_swap_data_lock);
1006 return (0);
1007
1008 /*
1009 * failure: clean up and return error.
1010 */
1011
1012 bad:
1013 if (sdp->swd_blist) {
1014 blist_destroy(sdp->swd_blist);
1015 }
1016 if (vp != rootvp) {
1017 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1018 }
1019 return (error);
1020 }
1021
1022 /*
1023 * swap_off: stop swapping on swapdev
1024 *
1025 * => swap data should be locked, we will unlock.
1026 */
1027 static int
1028 swap_off(struct lwp *l, struct swapdev *sdp)
1029 {
1030 int npages = sdp->swd_npages;
1031 int error = 0;
1032
1033 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1034 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1035
1036 /* disable the swap area being removed */
1037 sdp->swd_flags &= ~SWF_ENABLE;
1038 uvmexp.swpgavail -= npages;
1039 mutex_exit(&uvm_swap_data_lock);
1040
1041 /*
1042 * the idea is to find all the pages that are paged out to this
1043 * device, and page them all in. in uvm, swap-backed pageable
1044 * memory can take two forms: aobjs and anons. call the
1045 * swapoff hook for each subsystem to bring in pages.
1046 */
1047
1048 if (uao_swap_off(sdp->swd_drumoffset,
1049 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1050 amap_swap_off(sdp->swd_drumoffset,
1051 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1052 error = ENOMEM;
1053 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1054 error = EBUSY;
1055 }
1056
1057 if (error) {
1058 mutex_enter(&uvm_swap_data_lock);
1059 sdp->swd_flags |= SWF_ENABLE;
1060 uvmexp.swpgavail += npages;
1061 mutex_exit(&uvm_swap_data_lock);
1062
1063 return error;
1064 }
1065
1066 /*
1067 * If this is the last regular swap destroy the workqueue.
1068 * => Protected by swap_syscall_lock.
1069 */
1070 if (sdp->swd_vp->v_type != VBLK) {
1071 KASSERT(sw_reg_count > 0);
1072 KASSERT(sw_reg_workqueue != NULL);
1073 if (--sw_reg_count == 0) {
1074 workqueue_destroy(sw_reg_workqueue);
1075 sw_reg_workqueue = NULL;
1076 }
1077 }
1078
1079 /*
1080 * done with the vnode.
1081 * drop our ref on the vnode before calling VOP_CLOSE()
1082 * so that spec_close() can tell if this is the last close.
1083 */
1084 vrele(sdp->swd_vp);
1085 if (sdp->swd_vp != rootvp) {
1086 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1087 }
1088
1089 mutex_enter(&uvm_swap_data_lock);
1090 uvmexp.swpages -= npages;
1091 uvmexp.swpginuse -= sdp->swd_npgbad;
1092
1093 if (swaplist_find(sdp->swd_vp, true) == NULL)
1094 panic("%s: swapdev not in list", __func__);
1095 swaplist_trim();
1096 mutex_exit(&uvm_swap_data_lock);
1097
1098 /*
1099 * free all resources!
1100 */
1101 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1102 blist_destroy(sdp->swd_blist);
1103 bufq_free(sdp->swd_tab);
1104 kmem_free(sdp, sizeof(*sdp));
1105 return (0);
1106 }
1107
1108 void
1109 uvm_swap_shutdown(struct lwp *l)
1110 {
1111 struct swapdev *sdp;
1112 struct swappri *spp;
1113 struct vnode *vp;
1114 int error;
1115
1116 printf("turning of swap...");
1117 rw_enter(&swap_syscall_lock, RW_WRITER);
1118 mutex_enter(&uvm_swap_data_lock);
1119 again:
1120 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1121 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1122 if (sdp->swd_flags & SWF_FAKE)
1123 continue;
1124 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1125 continue;
1126 #ifdef DEBUG
1127 printf("\nturning off swap on %s...",
1128 sdp->swd_path);
1129 #endif
1130 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1131 error = EBUSY;
1132 vp = NULL;
1133 } else
1134 error = 0;
1135 if (!error) {
1136 error = swap_off(l, sdp);
1137 mutex_enter(&uvm_swap_data_lock);
1138 }
1139 if (error) {
1140 printf("stopping swap on %s failed "
1141 "with error %d\n", sdp->swd_path, error);
1142 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1143 swd_next);
1144 uvmexp.nswapdev--;
1145 swaplist_trim();
1146 if (vp)
1147 vput(vp);
1148 }
1149 goto again;
1150 }
1151 printf(" done\n");
1152 mutex_exit(&uvm_swap_data_lock);
1153 rw_exit(&swap_syscall_lock);
1154 }
1155
1156
1157 /*
1158 * /dev/drum interface and i/o functions
1159 */
1160
1161 /*
1162 * swstrategy: perform I/O on the drum
1163 *
1164 * => we must map the i/o request from the drum to the correct swapdev.
1165 */
1166 static void
1167 swstrategy(struct buf *bp)
1168 {
1169 struct swapdev *sdp;
1170 struct vnode *vp;
1171 int pageno, bn;
1172 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1173
1174 /*
1175 * convert block number to swapdev. note that swapdev can't
1176 * be yanked out from under us because we are holding resources
1177 * in it (i.e. the blocks we are doing I/O on).
1178 */
1179 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1180 mutex_enter(&uvm_swap_data_lock);
1181 sdp = swapdrum_getsdp(pageno);
1182 mutex_exit(&uvm_swap_data_lock);
1183 if (sdp == NULL) {
1184 bp->b_error = EINVAL;
1185 bp->b_resid = bp->b_bcount;
1186 biodone(bp);
1187 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1188 return;
1189 }
1190
1191 /*
1192 * convert drum page number to block number on this swapdev.
1193 */
1194
1195 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1196 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1197
1198 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1199 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1200 sdp->swd_drumoffset, bn, bp->b_bcount);
1201
1202 /*
1203 * for block devices we finish up here.
1204 * for regular files we have to do more work which we delegate
1205 * to sw_reg_strategy().
1206 */
1207
1208 vp = sdp->swd_vp; /* swapdev vnode pointer */
1209 switch (vp->v_type) {
1210 default:
1211 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1212
1213 case VBLK:
1214
1215 /*
1216 * must convert "bp" from an I/O on /dev/drum to an I/O
1217 * on the swapdev (sdp).
1218 */
1219 bp->b_blkno = bn; /* swapdev block number */
1220 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1221
1222 /*
1223 * if we are doing a write, we have to redirect the i/o on
1224 * drum's v_numoutput counter to the swapdevs.
1225 */
1226 if ((bp->b_flags & B_READ) == 0) {
1227 mutex_enter(bp->b_objlock);
1228 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1229 mutex_exit(bp->b_objlock);
1230 mutex_enter(vp->v_interlock);
1231 vp->v_numoutput++; /* put it on swapdev */
1232 mutex_exit(vp->v_interlock);
1233 }
1234
1235 /*
1236 * finally plug in swapdev vnode and start I/O
1237 */
1238 bp->b_vp = vp;
1239 bp->b_objlock = vp->v_interlock;
1240 VOP_STRATEGY(vp, bp);
1241 return;
1242
1243 case VREG:
1244 /*
1245 * delegate to sw_reg_strategy function.
1246 */
1247 sw_reg_strategy(sdp, bp, bn);
1248 return;
1249 }
1250 /* NOTREACHED */
1251 }
1252
1253 /*
1254 * swread: the read function for the drum (just a call to physio)
1255 */
1256 /*ARGSUSED*/
1257 static int
1258 swread(dev_t dev, struct uio *uio, int ioflag)
1259 {
1260 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1261
1262 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1263 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1264 }
1265
1266 /*
1267 * swwrite: the write function for the drum (just a call to physio)
1268 */
1269 /*ARGSUSED*/
1270 static int
1271 swwrite(dev_t dev, struct uio *uio, int ioflag)
1272 {
1273 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1274
1275 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1276 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1277 }
1278
1279 const struct bdevsw swap_bdevsw = {
1280 .d_open = nullopen,
1281 .d_close = nullclose,
1282 .d_strategy = swstrategy,
1283 .d_ioctl = noioctl,
1284 .d_dump = nodump,
1285 .d_psize = nosize,
1286 .d_flag = D_OTHER
1287 };
1288
1289 const struct cdevsw swap_cdevsw = {
1290 .d_open = nullopen,
1291 .d_close = nullclose,
1292 .d_read = swread,
1293 .d_write = swwrite,
1294 .d_ioctl = noioctl,
1295 .d_stop = nostop,
1296 .d_tty = notty,
1297 .d_poll = nopoll,
1298 .d_mmap = nommap,
1299 .d_kqfilter = nokqfilter,
1300 .d_flag = D_OTHER,
1301 };
1302
1303 /*
1304 * sw_reg_strategy: handle swap i/o to regular files
1305 */
1306 static void
1307 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1308 {
1309 struct vnode *vp;
1310 struct vndxfer *vnx;
1311 daddr_t nbn;
1312 char *addr;
1313 off_t byteoff;
1314 int s, off, nra, error, sz, resid;
1315 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1316
1317 /*
1318 * allocate a vndxfer head for this transfer and point it to
1319 * our buffer.
1320 */
1321 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1322 vnx->vx_flags = VX_BUSY;
1323 vnx->vx_error = 0;
1324 vnx->vx_pending = 0;
1325 vnx->vx_bp = bp;
1326 vnx->vx_sdp = sdp;
1327
1328 /*
1329 * setup for main loop where we read filesystem blocks into
1330 * our buffer.
1331 */
1332 error = 0;
1333 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1334 addr = bp->b_data; /* current position in buffer */
1335 byteoff = dbtob((uint64_t)bn);
1336
1337 for (resid = bp->b_resid; resid; resid -= sz) {
1338 struct vndbuf *nbp;
1339
1340 /*
1341 * translate byteoffset into block number. return values:
1342 * vp = vnode of underlying device
1343 * nbn = new block number (on underlying vnode dev)
1344 * nra = num blocks we can read-ahead (excludes requested
1345 * block)
1346 */
1347 nra = 0;
1348 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1349 &vp, &nbn, &nra);
1350
1351 if (error == 0 && nbn == (daddr_t)-1) {
1352 /*
1353 * this used to just set error, but that doesn't
1354 * do the right thing. Instead, it causes random
1355 * memory errors. The panic() should remain until
1356 * this condition doesn't destabilize the system.
1357 */
1358 #if 1
1359 panic("%s: swap to sparse file", __func__);
1360 #else
1361 error = EIO; /* failure */
1362 #endif
1363 }
1364
1365 /*
1366 * punt if there was an error or a hole in the file.
1367 * we must wait for any i/o ops we have already started
1368 * to finish before returning.
1369 *
1370 * XXX we could deal with holes here but it would be
1371 * a hassle (in the write case).
1372 */
1373 if (error) {
1374 s = splbio();
1375 vnx->vx_error = error; /* pass error up */
1376 goto out;
1377 }
1378
1379 /*
1380 * compute the size ("sz") of this transfer (in bytes).
1381 */
1382 off = byteoff % sdp->swd_bsize;
1383 sz = (1 + nra) * sdp->swd_bsize - off;
1384 if (sz > resid)
1385 sz = resid;
1386
1387 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1388 "vp %p/%p offset 0x%x/0x%x",
1389 sdp->swd_vp, vp, byteoff, nbn);
1390
1391 /*
1392 * now get a buf structure. note that the vb_buf is
1393 * at the front of the nbp structure so that you can
1394 * cast pointers between the two structure easily.
1395 */
1396 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1397 buf_init(&nbp->vb_buf);
1398 nbp->vb_buf.b_flags = bp->b_flags;
1399 nbp->vb_buf.b_cflags = bp->b_cflags;
1400 nbp->vb_buf.b_oflags = bp->b_oflags;
1401 nbp->vb_buf.b_bcount = sz;
1402 nbp->vb_buf.b_bufsize = sz;
1403 nbp->vb_buf.b_error = 0;
1404 nbp->vb_buf.b_data = addr;
1405 nbp->vb_buf.b_lblkno = 0;
1406 nbp->vb_buf.b_blkno = nbn + btodb(off);
1407 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1408 nbp->vb_buf.b_iodone = sw_reg_biodone;
1409 nbp->vb_buf.b_vp = vp;
1410 nbp->vb_buf.b_objlock = vp->v_interlock;
1411 if (vp->v_type == VBLK) {
1412 nbp->vb_buf.b_dev = vp->v_rdev;
1413 }
1414
1415 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1416
1417 /*
1418 * Just sort by block number
1419 */
1420 s = splbio();
1421 if (vnx->vx_error != 0) {
1422 buf_destroy(&nbp->vb_buf);
1423 pool_put(&vndbuf_pool, nbp);
1424 goto out;
1425 }
1426 vnx->vx_pending++;
1427
1428 /* sort it in and start I/O if we are not over our limit */
1429 /* XXXAD locking */
1430 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1431 sw_reg_start(sdp);
1432 splx(s);
1433
1434 /*
1435 * advance to the next I/O
1436 */
1437 byteoff += sz;
1438 addr += sz;
1439 }
1440
1441 s = splbio();
1442
1443 out: /* Arrive here at splbio */
1444 vnx->vx_flags &= ~VX_BUSY;
1445 if (vnx->vx_pending == 0) {
1446 error = vnx->vx_error;
1447 pool_put(&vndxfer_pool, vnx);
1448 bp->b_error = error;
1449 biodone(bp);
1450 }
1451 splx(s);
1452 }
1453
1454 /*
1455 * sw_reg_start: start an I/O request on the requested swapdev
1456 *
1457 * => reqs are sorted by b_rawblkno (above)
1458 */
1459 static void
1460 sw_reg_start(struct swapdev *sdp)
1461 {
1462 struct buf *bp;
1463 struct vnode *vp;
1464 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1465
1466 /* recursion control */
1467 if ((sdp->swd_flags & SWF_BUSY) != 0)
1468 return;
1469
1470 sdp->swd_flags |= SWF_BUSY;
1471
1472 while (sdp->swd_active < sdp->swd_maxactive) {
1473 bp = bufq_get(sdp->swd_tab);
1474 if (bp == NULL)
1475 break;
1476 sdp->swd_active++;
1477
1478 UVMHIST_LOG(pdhist,
1479 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1480 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1481 vp = bp->b_vp;
1482 KASSERT(bp->b_objlock == vp->v_interlock);
1483 if ((bp->b_flags & B_READ) == 0) {
1484 mutex_enter(vp->v_interlock);
1485 vp->v_numoutput++;
1486 mutex_exit(vp->v_interlock);
1487 }
1488 VOP_STRATEGY(vp, bp);
1489 }
1490 sdp->swd_flags &= ~SWF_BUSY;
1491 }
1492
1493 /*
1494 * sw_reg_biodone: one of our i/o's has completed
1495 */
1496 static void
1497 sw_reg_biodone(struct buf *bp)
1498 {
1499 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1500 }
1501
1502 /*
1503 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1504 *
1505 * => note that we can recover the vndbuf struct by casting the buf ptr
1506 */
1507 static void
1508 sw_reg_iodone(struct work *wk, void *dummy)
1509 {
1510 struct vndbuf *vbp = (void *)wk;
1511 struct vndxfer *vnx = vbp->vb_xfer;
1512 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1513 struct swapdev *sdp = vnx->vx_sdp;
1514 int s, resid, error;
1515 KASSERT(&vbp->vb_buf.b_work == wk);
1516 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1517
1518 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1519 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1520 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1521 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1522
1523 /*
1524 * protect vbp at splbio and update.
1525 */
1526
1527 s = splbio();
1528 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1529 pbp->b_resid -= resid;
1530 vnx->vx_pending--;
1531
1532 if (vbp->vb_buf.b_error != 0) {
1533 /* pass error upward */
1534 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1535 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1536 vnx->vx_error = error;
1537 }
1538
1539 /*
1540 * kill vbp structure
1541 */
1542 buf_destroy(&vbp->vb_buf);
1543 pool_put(&vndbuf_pool, vbp);
1544
1545 /*
1546 * wrap up this transaction if it has run to completion or, in
1547 * case of an error, when all auxiliary buffers have returned.
1548 */
1549 if (vnx->vx_error != 0) {
1550 /* pass error upward */
1551 error = vnx->vx_error;
1552 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1553 pbp->b_error = error;
1554 biodone(pbp);
1555 pool_put(&vndxfer_pool, vnx);
1556 }
1557 } else if (pbp->b_resid == 0) {
1558 KASSERT(vnx->vx_pending == 0);
1559 if ((vnx->vx_flags & VX_BUSY) == 0) {
1560 UVMHIST_LOG(pdhist, " iodone error=%d !",
1561 pbp, vnx->vx_error, 0, 0);
1562 biodone(pbp);
1563 pool_put(&vndxfer_pool, vnx);
1564 }
1565 }
1566
1567 /*
1568 * done! start next swapdev I/O if one is pending
1569 */
1570 sdp->swd_active--;
1571 sw_reg_start(sdp);
1572 splx(s);
1573 }
1574
1575
1576 /*
1577 * uvm_swap_alloc: allocate space on swap
1578 *
1579 * => allocation is done "round robin" down the priority list, as we
1580 * allocate in a priority we "rotate" the circle queue.
1581 * => space can be freed with uvm_swap_free
1582 * => we return the page slot number in /dev/drum (0 == invalid slot)
1583 * => we lock uvm_swap_data_lock
1584 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1585 */
1586 int
1587 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1588 {
1589 struct swapdev *sdp;
1590 struct swappri *spp;
1591 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1592
1593 /*
1594 * no swap devices configured yet? definite failure.
1595 */
1596 if (uvmexp.nswapdev < 1)
1597 return 0;
1598
1599 /*
1600 * XXXJAK: BEGIN HACK
1601 *
1602 * blist_alloc() in subr_blist.c will panic if we try to allocate
1603 * too many slots.
1604 */
1605 if (*nslots > BLIST_MAX_ALLOC) {
1606 if (__predict_false(lessok == false))
1607 return 0;
1608 *nslots = BLIST_MAX_ALLOC;
1609 }
1610 /* XXXJAK: END HACK */
1611
1612 /*
1613 * lock data lock, convert slots into blocks, and enter loop
1614 */
1615 mutex_enter(&uvm_swap_data_lock);
1616
1617 ReTry: /* XXXMRG */
1618 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1619 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1620 uint64_t result;
1621
1622 /* if it's not enabled, then we can't swap from it */
1623 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1624 continue;
1625 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1626 continue;
1627 result = blist_alloc(sdp->swd_blist, *nslots);
1628 if (result == BLIST_NONE) {
1629 continue;
1630 }
1631 KASSERT(result < sdp->swd_drumsize);
1632
1633 /*
1634 * successful allocation! now rotate the tailq.
1635 */
1636 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1637 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1638 sdp->swd_npginuse += *nslots;
1639 uvmexp.swpginuse += *nslots;
1640 mutex_exit(&uvm_swap_data_lock);
1641 /* done! return drum slot number */
1642 UVMHIST_LOG(pdhist,
1643 "success! returning %d slots starting at %d",
1644 *nslots, result + sdp->swd_drumoffset, 0, 0);
1645 return (result + sdp->swd_drumoffset);
1646 }
1647 }
1648
1649 /* XXXMRG: BEGIN HACK */
1650 if (*nslots > 1 && lessok) {
1651 *nslots = 1;
1652 /* XXXMRG: ugh! blist should support this for us */
1653 goto ReTry;
1654 }
1655 /* XXXMRG: END HACK */
1656
1657 mutex_exit(&uvm_swap_data_lock);
1658 return 0;
1659 }
1660
1661 /*
1662 * uvm_swapisfull: return true if most of available swap is allocated
1663 * and in use. we don't count some small portion as it may be inaccessible
1664 * to us at any given moment, for example if there is lock contention or if
1665 * pages are busy.
1666 */
1667 bool
1668 uvm_swapisfull(void)
1669 {
1670 int swpgonly;
1671 bool rv;
1672
1673 mutex_enter(&uvm_swap_data_lock);
1674 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1675 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1676 uvm_swapisfull_factor);
1677 rv = (swpgonly >= uvmexp.swpgavail);
1678 mutex_exit(&uvm_swap_data_lock);
1679
1680 return (rv);
1681 }
1682
1683 /*
1684 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1685 *
1686 * => we lock uvm_swap_data_lock
1687 */
1688 void
1689 uvm_swap_markbad(int startslot, int nslots)
1690 {
1691 struct swapdev *sdp;
1692 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1693
1694 mutex_enter(&uvm_swap_data_lock);
1695 sdp = swapdrum_getsdp(startslot);
1696 KASSERT(sdp != NULL);
1697
1698 /*
1699 * we just keep track of how many pages have been marked bad
1700 * in this device, to make everything add up in swap_off().
1701 * we assume here that the range of slots will all be within
1702 * one swap device.
1703 */
1704
1705 KASSERT(uvmexp.swpgonly >= nslots);
1706 uvmexp.swpgonly -= nslots;
1707 sdp->swd_npgbad += nslots;
1708 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1709 mutex_exit(&uvm_swap_data_lock);
1710 }
1711
1712 /*
1713 * uvm_swap_free: free swap slots
1714 *
1715 * => this can be all or part of an allocation made by uvm_swap_alloc
1716 * => we lock uvm_swap_data_lock
1717 */
1718 void
1719 uvm_swap_free(int startslot, int nslots)
1720 {
1721 struct swapdev *sdp;
1722 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1723
1724 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1725 startslot, 0, 0);
1726
1727 /*
1728 * ignore attempts to free the "bad" slot.
1729 */
1730
1731 if (startslot == SWSLOT_BAD) {
1732 return;
1733 }
1734
1735 /*
1736 * convert drum slot offset back to sdp, free the blocks
1737 * in the extent, and return. must hold pri lock to do
1738 * lookup and access the extent.
1739 */
1740
1741 mutex_enter(&uvm_swap_data_lock);
1742 sdp = swapdrum_getsdp(startslot);
1743 KASSERT(uvmexp.nswapdev >= 1);
1744 KASSERT(sdp != NULL);
1745 KASSERT(sdp->swd_npginuse >= nslots);
1746 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1747 sdp->swd_npginuse -= nslots;
1748 uvmexp.swpginuse -= nslots;
1749 mutex_exit(&uvm_swap_data_lock);
1750 }
1751
1752 /*
1753 * uvm_swap_put: put any number of pages into a contig place on swap
1754 *
1755 * => can be sync or async
1756 */
1757
1758 int
1759 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1760 {
1761 int error;
1762
1763 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1764 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1765 return error;
1766 }
1767
1768 /*
1769 * uvm_swap_get: get a single page from swap
1770 *
1771 * => usually a sync op (from fault)
1772 */
1773
1774 int
1775 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1776 {
1777 int error;
1778
1779 uvmexp.nswget++;
1780 KASSERT(flags & PGO_SYNCIO);
1781 if (swslot == SWSLOT_BAD) {
1782 return EIO;
1783 }
1784
1785 error = uvm_swap_io(&page, swslot, 1, B_READ |
1786 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1787 if (error == 0) {
1788
1789 /*
1790 * this page is no longer only in swap.
1791 */
1792
1793 mutex_enter(&uvm_swap_data_lock);
1794 KASSERT(uvmexp.swpgonly > 0);
1795 uvmexp.swpgonly--;
1796 mutex_exit(&uvm_swap_data_lock);
1797 }
1798 return error;
1799 }
1800
1801 /*
1802 * uvm_swap_io: do an i/o operation to swap
1803 */
1804
1805 static int
1806 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1807 {
1808 daddr_t startblk;
1809 struct buf *bp;
1810 vaddr_t kva;
1811 int error, mapinflags;
1812 bool write, async;
1813 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1814
1815 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1816 startslot, npages, flags, 0);
1817
1818 write = (flags & B_READ) == 0;
1819 async = (flags & B_ASYNC) != 0;
1820
1821 /*
1822 * allocate a buf for the i/o.
1823 */
1824
1825 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1826 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1827 if (bp == NULL) {
1828 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1829 return ENOMEM;
1830 }
1831
1832 /*
1833 * convert starting drum slot to block number
1834 */
1835
1836 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1837
1838 /*
1839 * first, map the pages into the kernel.
1840 */
1841
1842 mapinflags = !write ?
1843 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1844 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1845 kva = uvm_pagermapin(pps, npages, mapinflags);
1846
1847 /*
1848 * fill in the bp/sbp. we currently route our i/o through
1849 * /dev/drum's vnode [swapdev_vp].
1850 */
1851
1852 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1853 bp->b_flags = (flags & (B_READ|B_ASYNC));
1854 bp->b_proc = &proc0; /* XXX */
1855 bp->b_vnbufs.le_next = NOLIST;
1856 bp->b_data = (void *)kva;
1857 bp->b_blkno = startblk;
1858 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1859
1860 /*
1861 * bump v_numoutput (counter of number of active outputs).
1862 */
1863
1864 if (write) {
1865 mutex_enter(swapdev_vp->v_interlock);
1866 swapdev_vp->v_numoutput++;
1867 mutex_exit(swapdev_vp->v_interlock);
1868 }
1869
1870 /*
1871 * for async ops we must set up the iodone handler.
1872 */
1873
1874 if (async) {
1875 bp->b_iodone = uvm_aio_biodone;
1876 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1877 if (curlwp == uvm.pagedaemon_lwp)
1878 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1879 else
1880 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1881 } else {
1882 bp->b_iodone = NULL;
1883 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1884 }
1885 UVMHIST_LOG(pdhist,
1886 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1887 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1888
1889 /*
1890 * now we start the I/O, and if async, return.
1891 */
1892
1893 VOP_STRATEGY(swapdev_vp, bp);
1894 if (async)
1895 return 0;
1896
1897 /*
1898 * must be sync i/o. wait for it to finish
1899 */
1900
1901 error = biowait(bp);
1902
1903 /*
1904 * kill the pager mapping
1905 */
1906
1907 uvm_pagermapout(kva, npages);
1908
1909 /*
1910 * now dispose of the buf and we're done.
1911 */
1912
1913 if (write) {
1914 mutex_enter(swapdev_vp->v_interlock);
1915 vwakeup(bp);
1916 mutex_exit(swapdev_vp->v_interlock);
1917 }
1918 putiobuf(bp);
1919 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1920
1921 return (error);
1922 }
1923