Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.164
      1 /*	$NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/bufq.h>
     43 #include <sys/conf.h>
     44 #include <sys/proc.h>
     45 #include <sys/namei.h>
     46 #include <sys/disklabel.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/vmem.h>
     52 #include <sys/blist.h>
     53 #include <sys/mount.h>
     54 #include <sys/pool.h>
     55 #include <sys/kmem.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/swap.h>
     58 #include <sys/kauth.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/workqueue.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 /*
     67  * uvm_swap.c: manage configuration and i/o to swap space.
     68  */
     69 
     70 /*
     71  * swap space is managed in the following way:
     72  *
     73  * each swap partition or file is described by a "swapdev" structure.
     74  * each "swapdev" structure contains a "swapent" structure which contains
     75  * information that is passed up to the user (via system calls).
     76  *
     77  * each swap partition is assigned a "priority" (int) which controls
     78  * swap parition usage.
     79  *
     80  * the system maintains a global data structure describing all swap
     81  * partitions/files.   there is a sorted LIST of "swappri" structures
     82  * which describe "swapdev"'s at that priority.   this LIST is headed
     83  * by the "swap_priority" global var.    each "swappri" contains a
     84  * TAILQ of "swapdev" structures at that priority.
     85  *
     86  * locking:
     87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88  *    system call and prevents the swap priority list from changing
     89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91  *    structures including the priority list, the swapdev structures,
     92  *    and the swapmap arena.
     93  *
     94  * each swap device has the following info:
     95  *  - swap device in use (could be disabled, preventing future use)
     96  *  - swap enabled (allows new allocations on swap)
     97  *  - map info in /dev/drum
     98  *  - vnode pointer
     99  * for swap files only:
    100  *  - block size
    101  *  - max byte count in buffer
    102  *  - buffer
    103  *
    104  * userland controls and configures swap with the swapctl(2) system call.
    105  * the sys_swapctl performs the following operations:
    106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109  *	the current swap config into the array. The actual work is done
    110  *	in the uvm_swap_stats() function.
    111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112  *	priority in "misc", start swapping on it.
    113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115  *	"misc")
    116  */
    117 
    118 /*
    119  * swapdev: describes a single swap partition/file
    120  *
    121  * note the following should be true:
    122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124  */
    125 struct swapdev {
    126 	dev_t			swd_dev;	/* device id */
    127 	int			swd_flags;	/* flags:inuse/enable/fake */
    128 	int			swd_priority;	/* our priority */
    129 	int			swd_nblks;	/* blocks in this device */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	blist_t			swd_blist;	/* blist for this swapdev */
    138 	struct vnode		*swd_vp;	/* backing vnode */
    139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority circleq */
    140 
    141 	int			swd_bsize;	/* blocksize (bytes) */
    142 	int			swd_maxactive;	/* max active i/o reqs */
    143 	struct bufq_state	*swd_tab;	/* buffer list */
    144 	int			swd_active;	/* number of active buffers */
    145 };
    146 
    147 /*
    148  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149  */
    150 struct swappri {
    151 	int			spi_priority;     /* priority */
    152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153 	/* circleq of swapdevs at this priority */
    154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155 };
    156 
    157 /*
    158  * The following two structures are used to keep track of data transfers
    159  * on swap devices associated with regular files.
    160  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161  * structure names here to ease porting..
    162  */
    163 struct vndxfer {
    164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165 	struct swapdev	*vx_sdp;
    166 	int		vx_error;
    167 	int		vx_pending;	/* # of pending aux buffers */
    168 	int		vx_flags;
    169 #define VX_BUSY		1
    170 #define VX_DEAD		2
    171 };
    172 
    173 struct vndbuf {
    174 	struct buf	vb_buf;
    175 	struct vndxfer	*vb_xfer;
    176 };
    177 
    178 /*
    179  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    180  * dev_t and has no se_path[] member.
    181  */
    182 struct swapent13 {
    183 	int32_t	se13_dev;		/* device id */
    184 	int	se13_flags;		/* flags */
    185 	int	se13_nblks;		/* total blocks */
    186 	int	se13_inuse;		/* blocks in use */
    187 	int	se13_priority;		/* priority of this device */
    188 };
    189 
    190 /*
    191  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    192  * dev_t.
    193  */
    194 struct swapent50 {
    195 	int32_t	se50_dev;		/* device id */
    196 	int	se50_flags;		/* flags */
    197 	int	se50_nblks;		/* total blocks */
    198 	int	se50_inuse;		/* blocks in use */
    199 	int	se50_priority;		/* priority of this device */
    200 	char	se50_path[PATH_MAX+1];	/* path name */
    201 };
    202 
    203 /*
    204  * We keep a of pool vndbuf's and vndxfer structures.
    205  */
    206 static struct pool vndxfer_pool, vndbuf_pool;
    207 
    208 /*
    209  * local variables
    210  */
    211 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    212 
    213 /* list of all active swap devices [by priority] */
    214 LIST_HEAD(swap_priority, swappri);
    215 static struct swap_priority swap_priority;
    216 
    217 /* locks */
    218 static krwlock_t swap_syscall_lock;
    219 
    220 /* workqueue and use counter for swap to regular files */
    221 static int sw_reg_count = 0;
    222 static struct workqueue *sw_reg_workqueue;
    223 
    224 /* tuneables */
    225 u_int uvm_swapisfull_factor = 99;
    226 
    227 /*
    228  * prototypes
    229  */
    230 static struct swapdev	*swapdrum_getsdp(int);
    231 
    232 static struct swapdev	*swaplist_find(struct vnode *, bool);
    233 static void		 swaplist_insert(struct swapdev *,
    234 					 struct swappri *, int);
    235 static void		 swaplist_trim(void);
    236 
    237 static int swap_on(struct lwp *, struct swapdev *);
    238 static int swap_off(struct lwp *, struct swapdev *);
    239 
    240 static void uvm_swap_stats(int, struct swapent *, int, register_t *);
    241 
    242 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    243 static void sw_reg_biodone(struct buf *);
    244 static void sw_reg_iodone(struct work *wk, void *dummy);
    245 static void sw_reg_start(struct swapdev *);
    246 
    247 static int uvm_swap_io(struct vm_page **, int, int, int);
    248 
    249 /*
    250  * uvm_swap_init: init the swap system data structures and locks
    251  *
    252  * => called at boot time from init_main.c after the filesystems
    253  *	are brought up (which happens after uvm_init())
    254  */
    255 void
    256 uvm_swap_init(void)
    257 {
    258 	UVMHIST_FUNC("uvm_swap_init");
    259 
    260 	UVMHIST_CALLED(pdhist);
    261 	/*
    262 	 * first, init the swap list, its counter, and its lock.
    263 	 * then get a handle on the vnode for /dev/drum by using
    264 	 * the its dev_t number ("swapdev", from MD conf.c).
    265 	 */
    266 
    267 	LIST_INIT(&swap_priority);
    268 	uvmexp.nswapdev = 0;
    269 	rw_init(&swap_syscall_lock);
    270 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    271 
    272 	if (bdevvp(swapdev, &swapdev_vp))
    273 		panic("%s: can't get vnode for swap device", __func__);
    274 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    275 		panic("%s: can't lock swap device", __func__);
    276 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    277 		panic("%s: can't open swap device", __func__);
    278 	VOP_UNLOCK(swapdev_vp);
    279 
    280 	/*
    281 	 * create swap block resource map to map /dev/drum.   the range
    282 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    283 	 * that block 0 is reserved (used to indicate an allocation
    284 	 * failure, or no allocation).
    285 	 */
    286 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    287 	    VM_NOSLEEP, IPL_NONE);
    288 	if (swapmap == 0) {
    289 		panic("%s: vmem_create failed", __func__);
    290 	}
    291 
    292 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    293 	    NULL, IPL_BIO);
    294 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    295 	    NULL, IPL_BIO);
    296 
    297 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    298 }
    299 
    300 /*
    301  * swaplist functions: functions that operate on the list of swap
    302  * devices on the system.
    303  */
    304 
    305 /*
    306  * swaplist_insert: insert swap device "sdp" into the global list
    307  *
    308  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    309  * => caller must provide a newly allocated swappri structure (we will
    310  *	FREE it if we don't need it... this it to prevent allocation
    311  *	blocking here while adding swap)
    312  */
    313 static void
    314 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    315 {
    316 	struct swappri *spp, *pspp;
    317 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    318 
    319 	/*
    320 	 * find entry at or after which to insert the new device.
    321 	 */
    322 	pspp = NULL;
    323 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    324 		if (priority <= spp->spi_priority)
    325 			break;
    326 		pspp = spp;
    327 	}
    328 
    329 	/*
    330 	 * new priority?
    331 	 */
    332 	if (spp == NULL || spp->spi_priority != priority) {
    333 		spp = newspp;  /* use newspp! */
    334 		UVMHIST_LOG(pdhist, "created new swappri = %d",
    335 			    priority, 0, 0, 0);
    336 
    337 		spp->spi_priority = priority;
    338 		TAILQ_INIT(&spp->spi_swapdev);
    339 
    340 		if (pspp)
    341 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    342 		else
    343 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    344 	} else {
    345 	  	/* we don't need a new priority structure, free it */
    346 		kmem_free(newspp, sizeof(*newspp));
    347 	}
    348 
    349 	/*
    350 	 * priority found (or created).   now insert on the priority's
    351 	 * circleq list and bump the total number of swapdevs.
    352 	 */
    353 	sdp->swd_priority = priority;
    354 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    355 	uvmexp.nswapdev++;
    356 }
    357 
    358 /*
    359  * swaplist_find: find and optionally remove a swap device from the
    360  *	global list.
    361  *
    362  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    363  * => we return the swapdev we found (and removed)
    364  */
    365 static struct swapdev *
    366 swaplist_find(struct vnode *vp, bool remove)
    367 {
    368 	struct swapdev *sdp;
    369 	struct swappri *spp;
    370 
    371 	/*
    372 	 * search the lists for the requested vp
    373 	 */
    374 
    375 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    376 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    377 			if (sdp->swd_vp == vp) {
    378 				if (remove) {
    379 					TAILQ_REMOVE(&spp->spi_swapdev,
    380 					    sdp, swd_next);
    381 					uvmexp.nswapdev--;
    382 				}
    383 				return(sdp);
    384 			}
    385 		}
    386 	}
    387 	return (NULL);
    388 }
    389 
    390 /*
    391  * swaplist_trim: scan priority list for empty priority entries and kill
    392  *	them.
    393  *
    394  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    395  */
    396 static void
    397 swaplist_trim(void)
    398 {
    399 	struct swappri *spp, *nextspp;
    400 
    401 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    402 		if (TAILQ_EMPTY(&spp->spi_swapdev))
    403 			continue;
    404 		LIST_REMOVE(spp, spi_swappri);
    405 		kmem_free(spp, sizeof(*spp));
    406 	}
    407 }
    408 
    409 /*
    410  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    411  *	to the "swapdev" that maps that section of the drum.
    412  *
    413  * => each swapdev takes one big contig chunk of the drum
    414  * => caller must hold uvm_swap_data_lock
    415  */
    416 static struct swapdev *
    417 swapdrum_getsdp(int pgno)
    418 {
    419 	struct swapdev *sdp;
    420 	struct swappri *spp;
    421 
    422 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    423 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    424 			if (sdp->swd_flags & SWF_FAKE)
    425 				continue;
    426 			if (pgno >= sdp->swd_drumoffset &&
    427 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    428 				return sdp;
    429 			}
    430 		}
    431 	}
    432 	return NULL;
    433 }
    434 
    435 
    436 /*
    437  * sys_swapctl: main entry point for swapctl(2) system call
    438  * 	[with two helper functions: swap_on and swap_off]
    439  */
    440 int
    441 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    442 {
    443 	/* {
    444 		syscallarg(int) cmd;
    445 		syscallarg(void *) arg;
    446 		syscallarg(int) misc;
    447 	} */
    448 	struct vnode *vp;
    449 	struct nameidata nd;
    450 	struct swappri *spp;
    451 	struct swapdev *sdp;
    452 	struct swapent *sep;
    453 #define SWAP_PATH_MAX (PATH_MAX + 1)
    454 	char	*userpath;
    455 	size_t	len = 0;
    456 	int	error, misc;
    457 	int	priority;
    458 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    459 
    460 	/*
    461 	 * we handle the non-priv NSWAP and STATS request first.
    462 	 *
    463 	 * SWAP_NSWAP: return number of config'd swap devices
    464 	 * [can also be obtained with uvmexp sysctl]
    465 	 */
    466 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    467 		const int nswapdev = uvmexp.nswapdev;
    468 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
    469 		*retval = nswapdev;
    470 		return 0;
    471 	}
    472 
    473 	misc = SCARG(uap, misc);
    474 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    475 
    476 	/*
    477 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    478 	 */
    479 	rw_enter(&swap_syscall_lock, RW_WRITER);
    480 
    481 	/*
    482 	 * SWAP_STATS: get stats on current # of configured swap devs
    483 	 *
    484 	 * note that the swap_priority list can't change as long
    485 	 * as we are holding the swap_syscall_lock.  we don't want
    486 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    487 	 * copyout() and we don't want to be holding that lock then!
    488 	 */
    489 	if (SCARG(uap, cmd) == SWAP_STATS
    490 #if defined(COMPAT_50)
    491 	    || SCARG(uap, cmd) == SWAP_STATS50
    492 #endif
    493 #if defined(COMPAT_13)
    494 	    || SCARG(uap, cmd) == SWAP_STATS13
    495 #endif
    496 	    ) {
    497 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    498 			misc = uvmexp.nswapdev;
    499 
    500 		if (misc == 0) {
    501 			error = EINVAL;
    502 			goto out;
    503 		}
    504 		KASSERT(misc > 0);
    505 #if defined(COMPAT_13)
    506 		if (SCARG(uap, cmd) == SWAP_STATS13)
    507 			len = sizeof(struct swapent13) * misc;
    508 		else
    509 #endif
    510 #if defined(COMPAT_50)
    511 		if (SCARG(uap, cmd) == SWAP_STATS50)
    512 			len = sizeof(struct swapent50) * misc;
    513 		else
    514 #endif
    515 			len = sizeof(struct swapent) * misc;
    516 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    517 
    518 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    519 		error = copyout(sep, SCARG(uap, arg), len);
    520 
    521 		kmem_free(sep, len);
    522 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    523 		goto out;
    524 	}
    525 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    526 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    527 
    528 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    529 		goto out;
    530 	}
    531 
    532 	/*
    533 	 * all other requests require superuser privs.   verify.
    534 	 */
    535 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    536 	    0, NULL, NULL, NULL)))
    537 		goto out;
    538 
    539 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    540 		/* drop the current dump device */
    541 		dumpdev = NODEV;
    542 		dumpcdev = NODEV;
    543 		cpu_dumpconf();
    544 		goto out;
    545 	}
    546 
    547 	/*
    548 	 * at this point we expect a path name in arg.   we will
    549 	 * use namei() to gain a vnode reference (vref), and lock
    550 	 * the vnode (VOP_LOCK).
    551 	 *
    552 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    553 	 * miniroot)
    554 	 */
    555 	if (SCARG(uap, arg) == NULL) {
    556 		vp = rootvp;		/* miniroot */
    557 		vref(vp);
    558 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    559 			vrele(vp);
    560 			error = EBUSY;
    561 			goto out;
    562 		}
    563 		if (SCARG(uap, cmd) == SWAP_ON &&
    564 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    565 			panic("swapctl: miniroot copy failed");
    566 		KASSERT(len > 0);
    567 	} else {
    568 		struct pathbuf *pb;
    569 
    570 		/*
    571 		 * This used to allow copying in one extra byte
    572 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    573 		 * This was completely pointless because if anyone
    574 		 * used that extra byte namei would fail with
    575 		 * ENAMETOOLONG anyway, so I've removed the excess
    576 		 * logic. - dholland 20100215
    577 		 */
    578 
    579 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    580 		if (error) {
    581 			goto out;
    582 		}
    583 		if (SCARG(uap, cmd) == SWAP_ON) {
    584 			/* get a copy of the string */
    585 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    586 			len = strlen(userpath) + 1;
    587 		}
    588 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    589 		if ((error = namei(&nd))) {
    590 			pathbuf_destroy(pb);
    591 			goto out;
    592 		}
    593 		vp = nd.ni_vp;
    594 		pathbuf_destroy(pb);
    595 	}
    596 	/* note: "vp" is referenced and locked */
    597 
    598 	error = 0;		/* assume no error */
    599 	switch(SCARG(uap, cmd)) {
    600 
    601 	case SWAP_DUMPDEV:
    602 		if (vp->v_type != VBLK) {
    603 			error = ENOTBLK;
    604 			break;
    605 		}
    606 		if (bdevsw_lookup(vp->v_rdev)) {
    607 			dumpdev = vp->v_rdev;
    608 			dumpcdev = devsw_blk2chr(dumpdev);
    609 		} else
    610 			dumpdev = NODEV;
    611 		cpu_dumpconf();
    612 		break;
    613 
    614 	case SWAP_CTL:
    615 		/*
    616 		 * get new priority, remove old entry (if any) and then
    617 		 * reinsert it in the correct place.  finally, prune out
    618 		 * any empty priority structures.
    619 		 */
    620 		priority = SCARG(uap, misc);
    621 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    622 		mutex_enter(&uvm_swap_data_lock);
    623 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    624 			error = ENOENT;
    625 		} else {
    626 			swaplist_insert(sdp, spp, priority);
    627 			swaplist_trim();
    628 		}
    629 		mutex_exit(&uvm_swap_data_lock);
    630 		if (error)
    631 			kmem_free(spp, sizeof(*spp));
    632 		break;
    633 
    634 	case SWAP_ON:
    635 
    636 		/*
    637 		 * check for duplicates.   if none found, then insert a
    638 		 * dummy entry on the list to prevent someone else from
    639 		 * trying to enable this device while we are working on
    640 		 * it.
    641 		 */
    642 
    643 		priority = SCARG(uap, misc);
    644 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    645 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    646 		sdp->swd_flags = SWF_FAKE;
    647 		sdp->swd_vp = vp;
    648 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    649 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    650 		mutex_enter(&uvm_swap_data_lock);
    651 		if (swaplist_find(vp, false) != NULL) {
    652 			error = EBUSY;
    653 			mutex_exit(&uvm_swap_data_lock);
    654 			bufq_free(sdp->swd_tab);
    655 			kmem_free(sdp, sizeof(*sdp));
    656 			kmem_free(spp, sizeof(*spp));
    657 			break;
    658 		}
    659 		swaplist_insert(sdp, spp, priority);
    660 		mutex_exit(&uvm_swap_data_lock);
    661 
    662 		KASSERT(len > 0);
    663 		sdp->swd_pathlen = len;
    664 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    665 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    666 			panic("swapctl: copystr");
    667 
    668 		/*
    669 		 * we've now got a FAKE placeholder in the swap list.
    670 		 * now attempt to enable swap on it.  if we fail, undo
    671 		 * what we've done and kill the fake entry we just inserted.
    672 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    673 		 */
    674 
    675 		if ((error = swap_on(l, sdp)) != 0) {
    676 			mutex_enter(&uvm_swap_data_lock);
    677 			(void) swaplist_find(vp, true);  /* kill fake entry */
    678 			swaplist_trim();
    679 			mutex_exit(&uvm_swap_data_lock);
    680 			bufq_free(sdp->swd_tab);
    681 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    682 			kmem_free(sdp, sizeof(*sdp));
    683 			break;
    684 		}
    685 		break;
    686 
    687 	case SWAP_OFF:
    688 		mutex_enter(&uvm_swap_data_lock);
    689 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    690 			mutex_exit(&uvm_swap_data_lock);
    691 			error = ENXIO;
    692 			break;
    693 		}
    694 
    695 		/*
    696 		 * If a device isn't in use or enabled, we
    697 		 * can't stop swapping from it (again).
    698 		 */
    699 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    700 			mutex_exit(&uvm_swap_data_lock);
    701 			error = EBUSY;
    702 			break;
    703 		}
    704 
    705 		/*
    706 		 * do the real work.
    707 		 */
    708 		error = swap_off(l, sdp);
    709 		break;
    710 
    711 	default:
    712 		error = EINVAL;
    713 	}
    714 
    715 	/*
    716 	 * done!  release the ref gained by namei() and unlock.
    717 	 */
    718 	vput(vp);
    719 out:
    720 	rw_exit(&swap_syscall_lock);
    721 	kmem_free(userpath, SWAP_PATH_MAX);
    722 
    723 	UVMHIST_LOG(pdhist, "<- done!  error=%d", error, 0, 0, 0);
    724 	return (error);
    725 }
    726 
    727 /*
    728  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    729  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    730  * emulation to use it directly without going through sys_swapctl().
    731  * The problem with using sys_swapctl() there is that it involves
    732  * copying the swapent array to the stackgap, and this array's size
    733  * is not known at build time. Hence it would not be possible to
    734  * ensure it would fit in the stackgap in any case.
    735  */
    736 static void
    737 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    738 {
    739 	struct swappri *spp;
    740 	struct swapdev *sdp;
    741 	int count = 0;
    742 
    743 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    744 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    745 			int inuse;
    746 
    747 			if (sec-- <= 0)
    748 				break;
    749 
    750 			/*
    751 			 * backwards compatibility for system call.
    752 			 * For NetBSD 1.3 and 5.0, we have to use
    753 			 * the 32 bit dev_t.  For 5.0 and -current
    754 			 * we have to add the path.
    755 			 */
    756 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    757 			    PAGE_SHIFT);
    758 
    759 #if defined(COMPAT_13) || defined(COMPAT_50)
    760 			if (cmd == SWAP_STATS) {
    761 #endif
    762 				sep->se_dev = sdp->swd_dev;
    763 				sep->se_flags = sdp->swd_flags;
    764 				sep->se_nblks = sdp->swd_nblks;
    765 				sep->se_inuse = inuse;
    766 				sep->se_priority = sdp->swd_priority;
    767 				KASSERT(sdp->swd_pathlen <
    768 				    sizeof(sep->se_path));
    769 				strcpy(sep->se_path, sdp->swd_path);
    770 				sep++;
    771 #if defined(COMPAT_13)
    772 			} else if (cmd == SWAP_STATS13) {
    773 				struct swapent13 *sep13 =
    774 				    (struct swapent13 *)sep;
    775 
    776 				sep13->se13_dev = sdp->swd_dev;
    777 				sep13->se13_flags = sdp->swd_flags;
    778 				sep13->se13_nblks = sdp->swd_nblks;
    779 				sep13->se13_inuse = inuse;
    780 				sep13->se13_priority = sdp->swd_priority;
    781 				sep = (struct swapent *)(sep13 + 1);
    782 #endif
    783 #if defined(COMPAT_50)
    784 			} else if (cmd == SWAP_STATS50) {
    785 				struct swapent50 *sep50 =
    786 				    (struct swapent50 *)sep;
    787 
    788 				sep50->se50_dev = sdp->swd_dev;
    789 				sep50->se50_flags = sdp->swd_flags;
    790 				sep50->se50_nblks = sdp->swd_nblks;
    791 				sep50->se50_inuse = inuse;
    792 				sep50->se50_priority = sdp->swd_priority;
    793 				KASSERT(sdp->swd_pathlen <
    794 				    sizeof(sep50->se50_path));
    795 				strcpy(sep50->se50_path, sdp->swd_path);
    796 				sep = (struct swapent *)(sep50 + 1);
    797 #endif
    798 #if defined(COMPAT_13) || defined(COMPAT_50)
    799 			}
    800 #endif
    801 			count++;
    802 		}
    803 	}
    804 	*retval = count;
    805 }
    806 
    807 /*
    808  * swap_on: attempt to enable a swapdev for swapping.   note that the
    809  *	swapdev is already on the global list, but disabled (marked
    810  *	SWF_FAKE).
    811  *
    812  * => we avoid the start of the disk (to protect disk labels)
    813  * => we also avoid the miniroot, if we are swapping to root.
    814  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    815  *	if needed.
    816  */
    817 static int
    818 swap_on(struct lwp *l, struct swapdev *sdp)
    819 {
    820 	struct vnode *vp;
    821 	int error, npages, nblocks, size;
    822 	long addr;
    823 	vmem_addr_t result;
    824 	struct vattr va;
    825 	dev_t dev;
    826 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    827 
    828 	/*
    829 	 * we want to enable swapping on sdp.   the swd_vp contains
    830 	 * the vnode we want (locked and ref'd), and the swd_dev
    831 	 * contains the dev_t of the file, if it a block device.
    832 	 */
    833 
    834 	vp = sdp->swd_vp;
    835 	dev = sdp->swd_dev;
    836 
    837 	/*
    838 	 * open the swap file (mostly useful for block device files to
    839 	 * let device driver know what is up).
    840 	 *
    841 	 * we skip the open/close for root on swap because the root
    842 	 * has already been opened when root was mounted (mountroot).
    843 	 */
    844 	if (vp != rootvp) {
    845 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    846 			return (error);
    847 	}
    848 
    849 	/* XXX this only works for block devices */
    850 	UVMHIST_LOG(pdhist, "  dev=%d, major(dev)=%d", dev, major(dev), 0,0);
    851 
    852 	/*
    853 	 * we now need to determine the size of the swap area.   for
    854 	 * block specials we can call the d_psize function.
    855 	 * for normal files, we must stat [get attrs].
    856 	 *
    857 	 * we put the result in nblks.
    858 	 * for normal files, we also want the filesystem block size
    859 	 * (which we get with statfs).
    860 	 */
    861 	switch (vp->v_type) {
    862 	case VBLK:
    863 		if ((nblocks = bdev_size(dev)) == -1) {
    864 			error = ENXIO;
    865 			goto bad;
    866 		}
    867 		break;
    868 
    869 	case VREG:
    870 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    871 			goto bad;
    872 		nblocks = (int)btodb(va.va_size);
    873 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    874 		/*
    875 		 * limit the max # of outstanding I/O requests we issue
    876 		 * at any one time.   take it easy on NFS servers.
    877 		 */
    878 		if (vp->v_tag == VT_NFS)
    879 			sdp->swd_maxactive = 2; /* XXX */
    880 		else
    881 			sdp->swd_maxactive = 8; /* XXX */
    882 		break;
    883 
    884 	default:
    885 		error = ENXIO;
    886 		goto bad;
    887 	}
    888 
    889 	/*
    890 	 * save nblocks in a safe place and convert to pages.
    891 	 */
    892 
    893 	sdp->swd_nblks = nblocks;
    894 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    895 
    896 	/*
    897 	 * for block special files, we want to make sure that leave
    898 	 * the disklabel and bootblocks alone, so we arrange to skip
    899 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    900 	 * note that because of this the "size" can be less than the
    901 	 * actual number of blocks on the device.
    902 	 */
    903 	if (vp->v_type == VBLK) {
    904 		/* we use pages 1 to (size - 1) [inclusive] */
    905 		size = npages - 1;
    906 		addr = 1;
    907 	} else {
    908 		/* we use pages 0 to (size - 1) [inclusive] */
    909 		size = npages;
    910 		addr = 0;
    911 	}
    912 
    913 	/*
    914 	 * make sure we have enough blocks for a reasonable sized swap
    915 	 * area.   we want at least one page.
    916 	 */
    917 
    918 	if (size < 1) {
    919 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    920 		error = EINVAL;
    921 		goto bad;
    922 	}
    923 
    924 	UVMHIST_LOG(pdhist, "  dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
    925 
    926 	/*
    927 	 * now we need to allocate an extent to manage this swap device
    928 	 */
    929 
    930 	sdp->swd_blist = blist_create(npages);
    931 	/* mark all expect the `saved' region free. */
    932 	blist_free(sdp->swd_blist, addr, size);
    933 
    934 	/*
    935 	 * if the vnode we are swapping to is the root vnode
    936 	 * (i.e. we are swapping to the miniroot) then we want
    937 	 * to make sure we don't overwrite it.   do a statfs to
    938 	 * find its size and skip over it.
    939 	 */
    940 	if (vp == rootvp) {
    941 		struct mount *mp;
    942 		struct statvfs *sp;
    943 		int rootblocks, rootpages;
    944 
    945 		mp = rootvnode->v_mount;
    946 		sp = &mp->mnt_stat;
    947 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    948 		/*
    949 		 * XXX: sp->f_blocks isn't the total number of
    950 		 * blocks in the filesystem, it's the number of
    951 		 * data blocks.  so, our rootblocks almost
    952 		 * definitely underestimates the total size
    953 		 * of the filesystem - how badly depends on the
    954 		 * details of the filesystem type.  there isn't
    955 		 * an obvious way to deal with this cleanly
    956 		 * and perfectly, so for now we just pad our
    957 		 * rootblocks estimate with an extra 5 percent.
    958 		 */
    959 		rootblocks += (rootblocks >> 5) +
    960 			(rootblocks >> 6) +
    961 			(rootblocks >> 7);
    962 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    963 		if (rootpages > size)
    964 			panic("swap_on: miniroot larger than swap?");
    965 
    966 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    967 			panic("swap_on: unable to preserve miniroot");
    968 		}
    969 
    970 		size -= rootpages;
    971 		printf("Preserved %d pages of miniroot ", rootpages);
    972 		printf("leaving %d pages of swap\n", size);
    973 	}
    974 
    975 	/*
    976 	 * add a ref to vp to reflect usage as a swap device.
    977 	 */
    978 	vref(vp);
    979 
    980 	/*
    981 	 * now add the new swapdev to the drum and enable.
    982 	 */
    983 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    984 	if (error != 0)
    985 		panic("swapdrum_add");
    986 	/*
    987 	 * If this is the first regular swap create the workqueue.
    988 	 * => Protected by swap_syscall_lock.
    989 	 */
    990 	if (vp->v_type != VBLK) {
    991 		if (sw_reg_count++ == 0) {
    992 			KASSERT(sw_reg_workqueue == NULL);
    993 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    994 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    995 				panic("%s: workqueue_create failed", __func__);
    996 		}
    997 	}
    998 
    999 	sdp->swd_drumoffset = (int)result;
   1000 	sdp->swd_drumsize = npages;
   1001 	sdp->swd_npages = size;
   1002 	mutex_enter(&uvm_swap_data_lock);
   1003 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1004 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1005 	uvmexp.swpages += size;
   1006 	uvmexp.swpgavail += size;
   1007 	mutex_exit(&uvm_swap_data_lock);
   1008 	return (0);
   1009 
   1010 	/*
   1011 	 * failure: clean up and return error.
   1012 	 */
   1013 
   1014 bad:
   1015 	if (sdp->swd_blist) {
   1016 		blist_destroy(sdp->swd_blist);
   1017 	}
   1018 	if (vp != rootvp) {
   1019 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1020 	}
   1021 	return (error);
   1022 }
   1023 
   1024 /*
   1025  * swap_off: stop swapping on swapdev
   1026  *
   1027  * => swap data should be locked, we will unlock.
   1028  */
   1029 static int
   1030 swap_off(struct lwp *l, struct swapdev *sdp)
   1031 {
   1032 	int npages = sdp->swd_npages;
   1033 	int error = 0;
   1034 
   1035 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1036 	UVMHIST_LOG(pdhist, "  dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
   1037 
   1038 	/* disable the swap area being removed */
   1039 	sdp->swd_flags &= ~SWF_ENABLE;
   1040 	uvmexp.swpgavail -= npages;
   1041 	mutex_exit(&uvm_swap_data_lock);
   1042 
   1043 	/*
   1044 	 * the idea is to find all the pages that are paged out to this
   1045 	 * device, and page them all in.  in uvm, swap-backed pageable
   1046 	 * memory can take two forms: aobjs and anons.  call the
   1047 	 * swapoff hook for each subsystem to bring in pages.
   1048 	 */
   1049 
   1050 	if (uao_swap_off(sdp->swd_drumoffset,
   1051 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1052 	    amap_swap_off(sdp->swd_drumoffset,
   1053 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1054 		error = ENOMEM;
   1055 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1056 		error = EBUSY;
   1057 	}
   1058 
   1059 	if (error) {
   1060 		mutex_enter(&uvm_swap_data_lock);
   1061 		sdp->swd_flags |= SWF_ENABLE;
   1062 		uvmexp.swpgavail += npages;
   1063 		mutex_exit(&uvm_swap_data_lock);
   1064 
   1065 		return error;
   1066 	}
   1067 
   1068 	/*
   1069 	 * If this is the last regular swap destroy the workqueue.
   1070 	 * => Protected by swap_syscall_lock.
   1071 	 */
   1072 	if (sdp->swd_vp->v_type != VBLK) {
   1073 		KASSERT(sw_reg_count > 0);
   1074 		KASSERT(sw_reg_workqueue != NULL);
   1075 		if (--sw_reg_count == 0) {
   1076 			workqueue_destroy(sw_reg_workqueue);
   1077 			sw_reg_workqueue = NULL;
   1078 		}
   1079 	}
   1080 
   1081 	/*
   1082 	 * done with the vnode.
   1083 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1084 	 * so that spec_close() can tell if this is the last close.
   1085 	 */
   1086 	vrele(sdp->swd_vp);
   1087 	if (sdp->swd_vp != rootvp) {
   1088 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1089 	}
   1090 
   1091 	mutex_enter(&uvm_swap_data_lock);
   1092 	uvmexp.swpages -= npages;
   1093 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1094 
   1095 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1096 		panic("%s: swapdev not in list", __func__);
   1097 	swaplist_trim();
   1098 	mutex_exit(&uvm_swap_data_lock);
   1099 
   1100 	/*
   1101 	 * free all resources!
   1102 	 */
   1103 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1104 	blist_destroy(sdp->swd_blist);
   1105 	bufq_free(sdp->swd_tab);
   1106 	kmem_free(sdp, sizeof(*sdp));
   1107 	return (0);
   1108 }
   1109 
   1110 void
   1111 uvm_swap_shutdown(struct lwp *l)
   1112 {
   1113 	struct swapdev *sdp;
   1114 	struct swappri *spp;
   1115 	struct vnode *vp;
   1116 	int error;
   1117 
   1118 	printf("turning of swap...");
   1119 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1120 	mutex_enter(&uvm_swap_data_lock);
   1121 again:
   1122 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1123 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1124 			if (sdp->swd_flags & SWF_FAKE)
   1125 				continue;
   1126 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1127 				continue;
   1128 #ifdef DEBUG
   1129 			printf("\nturning off swap on %s...",
   1130 			    sdp->swd_path);
   1131 #endif
   1132 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1133 				error = EBUSY;
   1134 				vp = NULL;
   1135 			} else
   1136 				error = 0;
   1137 			if (!error) {
   1138 				error = swap_off(l, sdp);
   1139 				mutex_enter(&uvm_swap_data_lock);
   1140 			}
   1141 			if (error) {
   1142 				printf("stopping swap on %s failed "
   1143 				    "with error %d\n", sdp->swd_path, error);
   1144 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1145 				    swd_next);
   1146 				uvmexp.nswapdev--;
   1147 				swaplist_trim();
   1148 				if (vp)
   1149 					vput(vp);
   1150 			}
   1151 			goto again;
   1152 		}
   1153 	printf(" done\n");
   1154 	mutex_exit(&uvm_swap_data_lock);
   1155 	rw_exit(&swap_syscall_lock);
   1156 }
   1157 
   1158 
   1159 /*
   1160  * /dev/drum interface and i/o functions
   1161  */
   1162 
   1163 /*
   1164  * swstrategy: perform I/O on the drum
   1165  *
   1166  * => we must map the i/o request from the drum to the correct swapdev.
   1167  */
   1168 static void
   1169 swstrategy(struct buf *bp)
   1170 {
   1171 	struct swapdev *sdp;
   1172 	struct vnode *vp;
   1173 	int pageno, bn;
   1174 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1175 
   1176 	/*
   1177 	 * convert block number to swapdev.   note that swapdev can't
   1178 	 * be yanked out from under us because we are holding resources
   1179 	 * in it (i.e. the blocks we are doing I/O on).
   1180 	 */
   1181 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1182 	mutex_enter(&uvm_swap_data_lock);
   1183 	sdp = swapdrum_getsdp(pageno);
   1184 	mutex_exit(&uvm_swap_data_lock);
   1185 	if (sdp == NULL) {
   1186 		bp->b_error = EINVAL;
   1187 		bp->b_resid = bp->b_bcount;
   1188 		biodone(bp);
   1189 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1190 		return;
   1191 	}
   1192 
   1193 	/*
   1194 	 * convert drum page number to block number on this swapdev.
   1195 	 */
   1196 
   1197 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1198 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1199 
   1200 	UVMHIST_LOG(pdhist, "  %s: mapoff=%x bn=%x bcount=%ld",
   1201 		((bp->b_flags & B_READ) == 0) ? "write" : "read",
   1202 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1203 
   1204 	/*
   1205 	 * for block devices we finish up here.
   1206 	 * for regular files we have to do more work which we delegate
   1207 	 * to sw_reg_strategy().
   1208 	 */
   1209 
   1210 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1211 	switch (vp->v_type) {
   1212 	default:
   1213 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1214 
   1215 	case VBLK:
   1216 
   1217 		/*
   1218 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1219 		 * on the swapdev (sdp).
   1220 		 */
   1221 		bp->b_blkno = bn;		/* swapdev block number */
   1222 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1223 
   1224 		/*
   1225 		 * if we are doing a write, we have to redirect the i/o on
   1226 		 * drum's v_numoutput counter to the swapdevs.
   1227 		 */
   1228 		if ((bp->b_flags & B_READ) == 0) {
   1229 			mutex_enter(bp->b_objlock);
   1230 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1231 			mutex_exit(bp->b_objlock);
   1232 			mutex_enter(vp->v_interlock);
   1233 			vp->v_numoutput++;	/* put it on swapdev */
   1234 			mutex_exit(vp->v_interlock);
   1235 		}
   1236 
   1237 		/*
   1238 		 * finally plug in swapdev vnode and start I/O
   1239 		 */
   1240 		bp->b_vp = vp;
   1241 		bp->b_objlock = vp->v_interlock;
   1242 		VOP_STRATEGY(vp, bp);
   1243 		return;
   1244 
   1245 	case VREG:
   1246 		/*
   1247 		 * delegate to sw_reg_strategy function.
   1248 		 */
   1249 		sw_reg_strategy(sdp, bp, bn);
   1250 		return;
   1251 	}
   1252 	/* NOTREACHED */
   1253 }
   1254 
   1255 /*
   1256  * swread: the read function for the drum (just a call to physio)
   1257  */
   1258 /*ARGSUSED*/
   1259 static int
   1260 swread(dev_t dev, struct uio *uio, int ioflag)
   1261 {
   1262 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1263 
   1264 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1265 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1266 }
   1267 
   1268 /*
   1269  * swwrite: the write function for the drum (just a call to physio)
   1270  */
   1271 /*ARGSUSED*/
   1272 static int
   1273 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1274 {
   1275 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1276 
   1277 	UVMHIST_LOG(pdhist, "  dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
   1278 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1279 }
   1280 
   1281 const struct bdevsw swap_bdevsw = {
   1282 	nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
   1283 };
   1284 
   1285 const struct cdevsw swap_cdevsw = {
   1286 	nullopen, nullclose, swread, swwrite, noioctl,
   1287 	nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
   1288 };
   1289 
   1290 /*
   1291  * sw_reg_strategy: handle swap i/o to regular files
   1292  */
   1293 static void
   1294 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1295 {
   1296 	struct vnode	*vp;
   1297 	struct vndxfer	*vnx;
   1298 	daddr_t		nbn;
   1299 	char 		*addr;
   1300 	off_t		byteoff;
   1301 	int		s, off, nra, error, sz, resid;
   1302 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1303 
   1304 	/*
   1305 	 * allocate a vndxfer head for this transfer and point it to
   1306 	 * our buffer.
   1307 	 */
   1308 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1309 	vnx->vx_flags = VX_BUSY;
   1310 	vnx->vx_error = 0;
   1311 	vnx->vx_pending = 0;
   1312 	vnx->vx_bp = bp;
   1313 	vnx->vx_sdp = sdp;
   1314 
   1315 	/*
   1316 	 * setup for main loop where we read filesystem blocks into
   1317 	 * our buffer.
   1318 	 */
   1319 	error = 0;
   1320 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1321 	addr = bp->b_data;		/* current position in buffer */
   1322 	byteoff = dbtob((uint64_t)bn);
   1323 
   1324 	for (resid = bp->b_resid; resid; resid -= sz) {
   1325 		struct vndbuf	*nbp;
   1326 
   1327 		/*
   1328 		 * translate byteoffset into block number.  return values:
   1329 		 *   vp = vnode of underlying device
   1330 		 *  nbn = new block number (on underlying vnode dev)
   1331 		 *  nra = num blocks we can read-ahead (excludes requested
   1332 		 *	block)
   1333 		 */
   1334 		nra = 0;
   1335 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1336 				 	&vp, &nbn, &nra);
   1337 
   1338 		if (error == 0 && nbn == (daddr_t)-1) {
   1339 			/*
   1340 			 * this used to just set error, but that doesn't
   1341 			 * do the right thing.  Instead, it causes random
   1342 			 * memory errors.  The panic() should remain until
   1343 			 * this condition doesn't destabilize the system.
   1344 			 */
   1345 #if 1
   1346 			panic("%s: swap to sparse file", __func__);
   1347 #else
   1348 			error = EIO;	/* failure */
   1349 #endif
   1350 		}
   1351 
   1352 		/*
   1353 		 * punt if there was an error or a hole in the file.
   1354 		 * we must wait for any i/o ops we have already started
   1355 		 * to finish before returning.
   1356 		 *
   1357 		 * XXX we could deal with holes here but it would be
   1358 		 * a hassle (in the write case).
   1359 		 */
   1360 		if (error) {
   1361 			s = splbio();
   1362 			vnx->vx_error = error;	/* pass error up */
   1363 			goto out;
   1364 		}
   1365 
   1366 		/*
   1367 		 * compute the size ("sz") of this transfer (in bytes).
   1368 		 */
   1369 		off = byteoff % sdp->swd_bsize;
   1370 		sz = (1 + nra) * sdp->swd_bsize - off;
   1371 		if (sz > resid)
   1372 			sz = resid;
   1373 
   1374 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1375 			    "vp %p/%p offset 0x%x/0x%x",
   1376 			    sdp->swd_vp, vp, byteoff, nbn);
   1377 
   1378 		/*
   1379 		 * now get a buf structure.   note that the vb_buf is
   1380 		 * at the front of the nbp structure so that you can
   1381 		 * cast pointers between the two structure easily.
   1382 		 */
   1383 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1384 		buf_init(&nbp->vb_buf);
   1385 		nbp->vb_buf.b_flags    = bp->b_flags;
   1386 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1387 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1388 		nbp->vb_buf.b_bcount   = sz;
   1389 		nbp->vb_buf.b_bufsize  = sz;
   1390 		nbp->vb_buf.b_error    = 0;
   1391 		nbp->vb_buf.b_data     = addr;
   1392 		nbp->vb_buf.b_lblkno   = 0;
   1393 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1394 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1395 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1396 		nbp->vb_buf.b_vp       = vp;
   1397 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1398 		if (vp->v_type == VBLK) {
   1399 			nbp->vb_buf.b_dev = vp->v_rdev;
   1400 		}
   1401 
   1402 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1403 
   1404 		/*
   1405 		 * Just sort by block number
   1406 		 */
   1407 		s = splbio();
   1408 		if (vnx->vx_error != 0) {
   1409 			buf_destroy(&nbp->vb_buf);
   1410 			pool_put(&vndbuf_pool, nbp);
   1411 			goto out;
   1412 		}
   1413 		vnx->vx_pending++;
   1414 
   1415 		/* sort it in and start I/O if we are not over our limit */
   1416 		/* XXXAD locking */
   1417 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1418 		sw_reg_start(sdp);
   1419 		splx(s);
   1420 
   1421 		/*
   1422 		 * advance to the next I/O
   1423 		 */
   1424 		byteoff += sz;
   1425 		addr += sz;
   1426 	}
   1427 
   1428 	s = splbio();
   1429 
   1430 out: /* Arrive here at splbio */
   1431 	vnx->vx_flags &= ~VX_BUSY;
   1432 	if (vnx->vx_pending == 0) {
   1433 		error = vnx->vx_error;
   1434 		pool_put(&vndxfer_pool, vnx);
   1435 		bp->b_error = error;
   1436 		biodone(bp);
   1437 	}
   1438 	splx(s);
   1439 }
   1440 
   1441 /*
   1442  * sw_reg_start: start an I/O request on the requested swapdev
   1443  *
   1444  * => reqs are sorted by b_rawblkno (above)
   1445  */
   1446 static void
   1447 sw_reg_start(struct swapdev *sdp)
   1448 {
   1449 	struct buf	*bp;
   1450 	struct vnode	*vp;
   1451 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1452 
   1453 	/* recursion control */
   1454 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1455 		return;
   1456 
   1457 	sdp->swd_flags |= SWF_BUSY;
   1458 
   1459 	while (sdp->swd_active < sdp->swd_maxactive) {
   1460 		bp = bufq_get(sdp->swd_tab);
   1461 		if (bp == NULL)
   1462 			break;
   1463 		sdp->swd_active++;
   1464 
   1465 		UVMHIST_LOG(pdhist,
   1466 		    "sw_reg_start:  bp %p vp %p blkno %p cnt %lx",
   1467 		    bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
   1468 		vp = bp->b_vp;
   1469 		KASSERT(bp->b_objlock == vp->v_interlock);
   1470 		if ((bp->b_flags & B_READ) == 0) {
   1471 			mutex_enter(vp->v_interlock);
   1472 			vp->v_numoutput++;
   1473 			mutex_exit(vp->v_interlock);
   1474 		}
   1475 		VOP_STRATEGY(vp, bp);
   1476 	}
   1477 	sdp->swd_flags &= ~SWF_BUSY;
   1478 }
   1479 
   1480 /*
   1481  * sw_reg_biodone: one of our i/o's has completed
   1482  */
   1483 static void
   1484 sw_reg_biodone(struct buf *bp)
   1485 {
   1486 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1487 }
   1488 
   1489 /*
   1490  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1491  *
   1492  * => note that we can recover the vndbuf struct by casting the buf ptr
   1493  */
   1494 static void
   1495 sw_reg_iodone(struct work *wk, void *dummy)
   1496 {
   1497 	struct vndbuf *vbp = (void *)wk;
   1498 	struct vndxfer *vnx = vbp->vb_xfer;
   1499 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1500 	struct swapdev	*sdp = vnx->vx_sdp;
   1501 	int s, resid, error;
   1502 	KASSERT(&vbp->vb_buf.b_work == wk);
   1503 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1504 
   1505 	UVMHIST_LOG(pdhist, "  vbp=%p vp=%p blkno=%x addr=%p",
   1506 	    vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
   1507 	UVMHIST_LOG(pdhist, "  cnt=%lx resid=%lx",
   1508 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1509 
   1510 	/*
   1511 	 * protect vbp at splbio and update.
   1512 	 */
   1513 
   1514 	s = splbio();
   1515 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1516 	pbp->b_resid -= resid;
   1517 	vnx->vx_pending--;
   1518 
   1519 	if (vbp->vb_buf.b_error != 0) {
   1520 		/* pass error upward */
   1521 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1522 		UVMHIST_LOG(pdhist, "  got error=%d !", error, 0, 0, 0);
   1523 		vnx->vx_error = error;
   1524 	}
   1525 
   1526 	/*
   1527 	 * kill vbp structure
   1528 	 */
   1529 	buf_destroy(&vbp->vb_buf);
   1530 	pool_put(&vndbuf_pool, vbp);
   1531 
   1532 	/*
   1533 	 * wrap up this transaction if it has run to completion or, in
   1534 	 * case of an error, when all auxiliary buffers have returned.
   1535 	 */
   1536 	if (vnx->vx_error != 0) {
   1537 		/* pass error upward */
   1538 		error = vnx->vx_error;
   1539 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1540 			pbp->b_error = error;
   1541 			biodone(pbp);
   1542 			pool_put(&vndxfer_pool, vnx);
   1543 		}
   1544 	} else if (pbp->b_resid == 0) {
   1545 		KASSERT(vnx->vx_pending == 0);
   1546 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1547 			UVMHIST_LOG(pdhist, "  iodone error=%d !",
   1548 			    pbp, vnx->vx_error, 0, 0);
   1549 			biodone(pbp);
   1550 			pool_put(&vndxfer_pool, vnx);
   1551 		}
   1552 	}
   1553 
   1554 	/*
   1555 	 * done!   start next swapdev I/O if one is pending
   1556 	 */
   1557 	sdp->swd_active--;
   1558 	sw_reg_start(sdp);
   1559 	splx(s);
   1560 }
   1561 
   1562 
   1563 /*
   1564  * uvm_swap_alloc: allocate space on swap
   1565  *
   1566  * => allocation is done "round robin" down the priority list, as we
   1567  *	allocate in a priority we "rotate" the circle queue.
   1568  * => space can be freed with uvm_swap_free
   1569  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1570  * => we lock uvm_swap_data_lock
   1571  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1572  */
   1573 int
   1574 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1575 {
   1576 	struct swapdev *sdp;
   1577 	struct swappri *spp;
   1578 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1579 
   1580 	/*
   1581 	 * no swap devices configured yet?   definite failure.
   1582 	 */
   1583 	if (uvmexp.nswapdev < 1)
   1584 		return 0;
   1585 
   1586 	/*
   1587 	 * XXXJAK: BEGIN HACK
   1588 	 *
   1589 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1590 	 * too many slots.
   1591 	 */
   1592 	if (*nslots > BLIST_MAX_ALLOC) {
   1593 		if (__predict_false(lessok == false))
   1594 			return 0;
   1595 		*nslots = BLIST_MAX_ALLOC;
   1596 	}
   1597 	/* XXXJAK: END HACK */
   1598 
   1599 	/*
   1600 	 * lock data lock, convert slots into blocks, and enter loop
   1601 	 */
   1602 	mutex_enter(&uvm_swap_data_lock);
   1603 
   1604 ReTry:	/* XXXMRG */
   1605 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1606 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1607 			uint64_t result;
   1608 
   1609 			/* if it's not enabled, then we can't swap from it */
   1610 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1611 				continue;
   1612 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1613 				continue;
   1614 			result = blist_alloc(sdp->swd_blist, *nslots);
   1615 			if (result == BLIST_NONE) {
   1616 				continue;
   1617 			}
   1618 			KASSERT(result < sdp->swd_drumsize);
   1619 
   1620 			/*
   1621 			 * successful allocation!  now rotate the circleq.
   1622 			 */
   1623 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1624 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1625 			sdp->swd_npginuse += *nslots;
   1626 			uvmexp.swpginuse += *nslots;
   1627 			mutex_exit(&uvm_swap_data_lock);
   1628 			/* done!  return drum slot number */
   1629 			UVMHIST_LOG(pdhist,
   1630 			    "success!  returning %d slots starting at %d",
   1631 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1632 			return (result + sdp->swd_drumoffset);
   1633 		}
   1634 	}
   1635 
   1636 	/* XXXMRG: BEGIN HACK */
   1637 	if (*nslots > 1 && lessok) {
   1638 		*nslots = 1;
   1639 		/* XXXMRG: ugh!  blist should support this for us */
   1640 		goto ReTry;
   1641 	}
   1642 	/* XXXMRG: END HACK */
   1643 
   1644 	mutex_exit(&uvm_swap_data_lock);
   1645 	return 0;
   1646 }
   1647 
   1648 /*
   1649  * uvm_swapisfull: return true if most of available swap is allocated
   1650  * and in use.  we don't count some small portion as it may be inaccessible
   1651  * to us at any given moment, for example if there is lock contention or if
   1652  * pages are busy.
   1653  */
   1654 bool
   1655 uvm_swapisfull(void)
   1656 {
   1657 	int swpgonly;
   1658 	bool rv;
   1659 
   1660 	mutex_enter(&uvm_swap_data_lock);
   1661 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1662 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1663 	    uvm_swapisfull_factor);
   1664 	rv = (swpgonly >= uvmexp.swpgavail);
   1665 	mutex_exit(&uvm_swap_data_lock);
   1666 
   1667 	return (rv);
   1668 }
   1669 
   1670 /*
   1671  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1672  *
   1673  * => we lock uvm_swap_data_lock
   1674  */
   1675 void
   1676 uvm_swap_markbad(int startslot, int nslots)
   1677 {
   1678 	struct swapdev *sdp;
   1679 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1680 
   1681 	mutex_enter(&uvm_swap_data_lock);
   1682 	sdp = swapdrum_getsdp(startslot);
   1683 	KASSERT(sdp != NULL);
   1684 
   1685 	/*
   1686 	 * we just keep track of how many pages have been marked bad
   1687 	 * in this device, to make everything add up in swap_off().
   1688 	 * we assume here that the range of slots will all be within
   1689 	 * one swap device.
   1690 	 */
   1691 
   1692 	KASSERT(uvmexp.swpgonly >= nslots);
   1693 	uvmexp.swpgonly -= nslots;
   1694 	sdp->swd_npgbad += nslots;
   1695 	UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
   1696 	mutex_exit(&uvm_swap_data_lock);
   1697 }
   1698 
   1699 /*
   1700  * uvm_swap_free: free swap slots
   1701  *
   1702  * => this can be all or part of an allocation made by uvm_swap_alloc
   1703  * => we lock uvm_swap_data_lock
   1704  */
   1705 void
   1706 uvm_swap_free(int startslot, int nslots)
   1707 {
   1708 	struct swapdev *sdp;
   1709 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1710 
   1711 	UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
   1712 	    startslot, 0, 0);
   1713 
   1714 	/*
   1715 	 * ignore attempts to free the "bad" slot.
   1716 	 */
   1717 
   1718 	if (startslot == SWSLOT_BAD) {
   1719 		return;
   1720 	}
   1721 
   1722 	/*
   1723 	 * convert drum slot offset back to sdp, free the blocks
   1724 	 * in the extent, and return.   must hold pri lock to do
   1725 	 * lookup and access the extent.
   1726 	 */
   1727 
   1728 	mutex_enter(&uvm_swap_data_lock);
   1729 	sdp = swapdrum_getsdp(startslot);
   1730 	KASSERT(uvmexp.nswapdev >= 1);
   1731 	KASSERT(sdp != NULL);
   1732 	KASSERT(sdp->swd_npginuse >= nslots);
   1733 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1734 	sdp->swd_npginuse -= nslots;
   1735 	uvmexp.swpginuse -= nslots;
   1736 	mutex_exit(&uvm_swap_data_lock);
   1737 }
   1738 
   1739 /*
   1740  * uvm_swap_put: put any number of pages into a contig place on swap
   1741  *
   1742  * => can be sync or async
   1743  */
   1744 
   1745 int
   1746 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1747 {
   1748 	int error;
   1749 
   1750 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1751 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1752 	return error;
   1753 }
   1754 
   1755 /*
   1756  * uvm_swap_get: get a single page from swap
   1757  *
   1758  * => usually a sync op (from fault)
   1759  */
   1760 
   1761 int
   1762 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1763 {
   1764 	int error;
   1765 
   1766 	uvmexp.nswget++;
   1767 	KASSERT(flags & PGO_SYNCIO);
   1768 	if (swslot == SWSLOT_BAD) {
   1769 		return EIO;
   1770 	}
   1771 
   1772 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1773 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1774 	if (error == 0) {
   1775 
   1776 		/*
   1777 		 * this page is no longer only in swap.
   1778 		 */
   1779 
   1780 		mutex_enter(&uvm_swap_data_lock);
   1781 		KASSERT(uvmexp.swpgonly > 0);
   1782 		uvmexp.swpgonly--;
   1783 		mutex_exit(&uvm_swap_data_lock);
   1784 	}
   1785 	return error;
   1786 }
   1787 
   1788 /*
   1789  * uvm_swap_io: do an i/o operation to swap
   1790  */
   1791 
   1792 static int
   1793 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1794 {
   1795 	daddr_t startblk;
   1796 	struct	buf *bp;
   1797 	vaddr_t kva;
   1798 	int	error, mapinflags;
   1799 	bool write, async;
   1800 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1801 
   1802 	UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
   1803 	    startslot, npages, flags, 0);
   1804 
   1805 	write = (flags & B_READ) == 0;
   1806 	async = (flags & B_ASYNC) != 0;
   1807 
   1808 	/*
   1809 	 * allocate a buf for the i/o.
   1810 	 */
   1811 
   1812 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1813 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1814 	if (bp == NULL) {
   1815 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1816 		return ENOMEM;
   1817 	}
   1818 
   1819 	/*
   1820 	 * convert starting drum slot to block number
   1821 	 */
   1822 
   1823 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1824 
   1825 	/*
   1826 	 * first, map the pages into the kernel.
   1827 	 */
   1828 
   1829 	mapinflags = !write ?
   1830 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1831 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1832 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1833 
   1834 	/*
   1835 	 * fill in the bp/sbp.   we currently route our i/o through
   1836 	 * /dev/drum's vnode [swapdev_vp].
   1837 	 */
   1838 
   1839 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1840 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1841 	bp->b_proc = &proc0;	/* XXX */
   1842 	bp->b_vnbufs.le_next = NOLIST;
   1843 	bp->b_data = (void *)kva;
   1844 	bp->b_blkno = startblk;
   1845 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1846 
   1847 	/*
   1848 	 * bump v_numoutput (counter of number of active outputs).
   1849 	 */
   1850 
   1851 	if (write) {
   1852 		mutex_enter(swapdev_vp->v_interlock);
   1853 		swapdev_vp->v_numoutput++;
   1854 		mutex_exit(swapdev_vp->v_interlock);
   1855 	}
   1856 
   1857 	/*
   1858 	 * for async ops we must set up the iodone handler.
   1859 	 */
   1860 
   1861 	if (async) {
   1862 		bp->b_iodone = uvm_aio_biodone;
   1863 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1864 		if (curlwp == uvm.pagedaemon_lwp)
   1865 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1866 		else
   1867 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1868 	} else {
   1869 		bp->b_iodone = NULL;
   1870 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1871 	}
   1872 	UVMHIST_LOG(pdhist,
   1873 	    "about to start io: data = %p blkno = 0x%x, bcount = %ld",
   1874 	    bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1875 
   1876 	/*
   1877 	 * now we start the I/O, and if async, return.
   1878 	 */
   1879 
   1880 	VOP_STRATEGY(swapdev_vp, bp);
   1881 	if (async)
   1882 		return 0;
   1883 
   1884 	/*
   1885 	 * must be sync i/o.   wait for it to finish
   1886 	 */
   1887 
   1888 	error = biowait(bp);
   1889 
   1890 	/*
   1891 	 * kill the pager mapping
   1892 	 */
   1893 
   1894 	uvm_pagermapout(kva, npages);
   1895 
   1896 	/*
   1897 	 * now dispose of the buf and we're done.
   1898 	 */
   1899 
   1900 	if (write) {
   1901 		mutex_enter(swapdev_vp->v_interlock);
   1902 		vwakeup(bp);
   1903 		mutex_exit(swapdev_vp->v_interlock);
   1904 	}
   1905 	putiobuf(bp);
   1906 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%d", error, 0, 0, 0);
   1907 
   1908 	return (error);
   1909 }
   1910