uvm_swap.c revision 1.164 1 /* $NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.164 2013/11/23 14:32:13 christos Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * TAILQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 TAILQ_ENTRY(swapdev) swd_next; /* priority circleq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* circleq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226
227 /*
228 * prototypes
229 */
230 static struct swapdev *swapdrum_getsdp(int);
231
232 static struct swapdev *swaplist_find(struct vnode *, bool);
233 static void swaplist_insert(struct swapdev *,
234 struct swappri *, int);
235 static void swaplist_trim(void);
236
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239
240 static void uvm_swap_stats(int, struct swapent *, int, register_t *);
241
242 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
243 static void sw_reg_biodone(struct buf *);
244 static void sw_reg_iodone(struct work *wk, void *dummy);
245 static void sw_reg_start(struct swapdev *);
246
247 static int uvm_swap_io(struct vm_page **, int, int, int);
248
249 /*
250 * uvm_swap_init: init the swap system data structures and locks
251 *
252 * => called at boot time from init_main.c after the filesystems
253 * are brought up (which happens after uvm_init())
254 */
255 void
256 uvm_swap_init(void)
257 {
258 UVMHIST_FUNC("uvm_swap_init");
259
260 UVMHIST_CALLED(pdhist);
261 /*
262 * first, init the swap list, its counter, and its lock.
263 * then get a handle on the vnode for /dev/drum by using
264 * the its dev_t number ("swapdev", from MD conf.c).
265 */
266
267 LIST_INIT(&swap_priority);
268 uvmexp.nswapdev = 0;
269 rw_init(&swap_syscall_lock);
270 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
271
272 if (bdevvp(swapdev, &swapdev_vp))
273 panic("%s: can't get vnode for swap device", __func__);
274 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
275 panic("%s: can't lock swap device", __func__);
276 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
277 panic("%s: can't open swap device", __func__);
278 VOP_UNLOCK(swapdev_vp);
279
280 /*
281 * create swap block resource map to map /dev/drum. the range
282 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
283 * that block 0 is reserved (used to indicate an allocation
284 * failure, or no allocation).
285 */
286 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
287 VM_NOSLEEP, IPL_NONE);
288 if (swapmap == 0) {
289 panic("%s: vmem_create failed", __func__);
290 }
291
292 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
293 NULL, IPL_BIO);
294 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
295 NULL, IPL_BIO);
296
297 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
298 }
299
300 /*
301 * swaplist functions: functions that operate on the list of swap
302 * devices on the system.
303 */
304
305 /*
306 * swaplist_insert: insert swap device "sdp" into the global list
307 *
308 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
309 * => caller must provide a newly allocated swappri structure (we will
310 * FREE it if we don't need it... this it to prevent allocation
311 * blocking here while adding swap)
312 */
313 static void
314 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
315 {
316 struct swappri *spp, *pspp;
317 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
318
319 /*
320 * find entry at or after which to insert the new device.
321 */
322 pspp = NULL;
323 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
324 if (priority <= spp->spi_priority)
325 break;
326 pspp = spp;
327 }
328
329 /*
330 * new priority?
331 */
332 if (spp == NULL || spp->spi_priority != priority) {
333 spp = newspp; /* use newspp! */
334 UVMHIST_LOG(pdhist, "created new swappri = %d",
335 priority, 0, 0, 0);
336
337 spp->spi_priority = priority;
338 TAILQ_INIT(&spp->spi_swapdev);
339
340 if (pspp)
341 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
342 else
343 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
344 } else {
345 /* we don't need a new priority structure, free it */
346 kmem_free(newspp, sizeof(*newspp));
347 }
348
349 /*
350 * priority found (or created). now insert on the priority's
351 * circleq list and bump the total number of swapdevs.
352 */
353 sdp->swd_priority = priority;
354 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
355 uvmexp.nswapdev++;
356 }
357
358 /*
359 * swaplist_find: find and optionally remove a swap device from the
360 * global list.
361 *
362 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
363 * => we return the swapdev we found (and removed)
364 */
365 static struct swapdev *
366 swaplist_find(struct vnode *vp, bool remove)
367 {
368 struct swapdev *sdp;
369 struct swappri *spp;
370
371 /*
372 * search the lists for the requested vp
373 */
374
375 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
376 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
377 if (sdp->swd_vp == vp) {
378 if (remove) {
379 TAILQ_REMOVE(&spp->spi_swapdev,
380 sdp, swd_next);
381 uvmexp.nswapdev--;
382 }
383 return(sdp);
384 }
385 }
386 }
387 return (NULL);
388 }
389
390 /*
391 * swaplist_trim: scan priority list for empty priority entries and kill
392 * them.
393 *
394 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
395 */
396 static void
397 swaplist_trim(void)
398 {
399 struct swappri *spp, *nextspp;
400
401 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
402 if (TAILQ_EMPTY(&spp->spi_swapdev))
403 continue;
404 LIST_REMOVE(spp, spi_swappri);
405 kmem_free(spp, sizeof(*spp));
406 }
407 }
408
409 /*
410 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
411 * to the "swapdev" that maps that section of the drum.
412 *
413 * => each swapdev takes one big contig chunk of the drum
414 * => caller must hold uvm_swap_data_lock
415 */
416 static struct swapdev *
417 swapdrum_getsdp(int pgno)
418 {
419 struct swapdev *sdp;
420 struct swappri *spp;
421
422 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
423 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
424 if (sdp->swd_flags & SWF_FAKE)
425 continue;
426 if (pgno >= sdp->swd_drumoffset &&
427 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
428 return sdp;
429 }
430 }
431 }
432 return NULL;
433 }
434
435
436 /*
437 * sys_swapctl: main entry point for swapctl(2) system call
438 * [with two helper functions: swap_on and swap_off]
439 */
440 int
441 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
442 {
443 /* {
444 syscallarg(int) cmd;
445 syscallarg(void *) arg;
446 syscallarg(int) misc;
447 } */
448 struct vnode *vp;
449 struct nameidata nd;
450 struct swappri *spp;
451 struct swapdev *sdp;
452 struct swapent *sep;
453 #define SWAP_PATH_MAX (PATH_MAX + 1)
454 char *userpath;
455 size_t len = 0;
456 int error, misc;
457 int priority;
458 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
459
460 /*
461 * we handle the non-priv NSWAP and STATS request first.
462 *
463 * SWAP_NSWAP: return number of config'd swap devices
464 * [can also be obtained with uvmexp sysctl]
465 */
466 if (SCARG(uap, cmd) == SWAP_NSWAP) {
467 const int nswapdev = uvmexp.nswapdev;
468 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
469 *retval = nswapdev;
470 return 0;
471 }
472
473 misc = SCARG(uap, misc);
474 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
475
476 /*
477 * ensure serialized syscall access by grabbing the swap_syscall_lock
478 */
479 rw_enter(&swap_syscall_lock, RW_WRITER);
480
481 /*
482 * SWAP_STATS: get stats on current # of configured swap devs
483 *
484 * note that the swap_priority list can't change as long
485 * as we are holding the swap_syscall_lock. we don't want
486 * to grab the uvm_swap_data_lock because we may fault&sleep during
487 * copyout() and we don't want to be holding that lock then!
488 */
489 if (SCARG(uap, cmd) == SWAP_STATS
490 #if defined(COMPAT_50)
491 || SCARG(uap, cmd) == SWAP_STATS50
492 #endif
493 #if defined(COMPAT_13)
494 || SCARG(uap, cmd) == SWAP_STATS13
495 #endif
496 ) {
497 if ((size_t)misc > (size_t)uvmexp.nswapdev)
498 misc = uvmexp.nswapdev;
499
500 if (misc == 0) {
501 error = EINVAL;
502 goto out;
503 }
504 KASSERT(misc > 0);
505 #if defined(COMPAT_13)
506 if (SCARG(uap, cmd) == SWAP_STATS13)
507 len = sizeof(struct swapent13) * misc;
508 else
509 #endif
510 #if defined(COMPAT_50)
511 if (SCARG(uap, cmd) == SWAP_STATS50)
512 len = sizeof(struct swapent50) * misc;
513 else
514 #endif
515 len = sizeof(struct swapent) * misc;
516 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
517
518 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
519 error = copyout(sep, SCARG(uap, arg), len);
520
521 kmem_free(sep, len);
522 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
523 goto out;
524 }
525 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
526 dev_t *devp = (dev_t *)SCARG(uap, arg);
527
528 error = copyout(&dumpdev, devp, sizeof(dumpdev));
529 goto out;
530 }
531
532 /*
533 * all other requests require superuser privs. verify.
534 */
535 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
536 0, NULL, NULL, NULL)))
537 goto out;
538
539 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
540 /* drop the current dump device */
541 dumpdev = NODEV;
542 dumpcdev = NODEV;
543 cpu_dumpconf();
544 goto out;
545 }
546
547 /*
548 * at this point we expect a path name in arg. we will
549 * use namei() to gain a vnode reference (vref), and lock
550 * the vnode (VOP_LOCK).
551 *
552 * XXX: a NULL arg means use the root vnode pointer (e.g. for
553 * miniroot)
554 */
555 if (SCARG(uap, arg) == NULL) {
556 vp = rootvp; /* miniroot */
557 vref(vp);
558 if (vn_lock(vp, LK_EXCLUSIVE)) {
559 vrele(vp);
560 error = EBUSY;
561 goto out;
562 }
563 if (SCARG(uap, cmd) == SWAP_ON &&
564 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
565 panic("swapctl: miniroot copy failed");
566 KASSERT(len > 0);
567 } else {
568 struct pathbuf *pb;
569
570 /*
571 * This used to allow copying in one extra byte
572 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
573 * This was completely pointless because if anyone
574 * used that extra byte namei would fail with
575 * ENAMETOOLONG anyway, so I've removed the excess
576 * logic. - dholland 20100215
577 */
578
579 error = pathbuf_copyin(SCARG(uap, arg), &pb);
580 if (error) {
581 goto out;
582 }
583 if (SCARG(uap, cmd) == SWAP_ON) {
584 /* get a copy of the string */
585 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
586 len = strlen(userpath) + 1;
587 }
588 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
589 if ((error = namei(&nd))) {
590 pathbuf_destroy(pb);
591 goto out;
592 }
593 vp = nd.ni_vp;
594 pathbuf_destroy(pb);
595 }
596 /* note: "vp" is referenced and locked */
597
598 error = 0; /* assume no error */
599 switch(SCARG(uap, cmd)) {
600
601 case SWAP_DUMPDEV:
602 if (vp->v_type != VBLK) {
603 error = ENOTBLK;
604 break;
605 }
606 if (bdevsw_lookup(vp->v_rdev)) {
607 dumpdev = vp->v_rdev;
608 dumpcdev = devsw_blk2chr(dumpdev);
609 } else
610 dumpdev = NODEV;
611 cpu_dumpconf();
612 break;
613
614 case SWAP_CTL:
615 /*
616 * get new priority, remove old entry (if any) and then
617 * reinsert it in the correct place. finally, prune out
618 * any empty priority structures.
619 */
620 priority = SCARG(uap, misc);
621 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
622 mutex_enter(&uvm_swap_data_lock);
623 if ((sdp = swaplist_find(vp, true)) == NULL) {
624 error = ENOENT;
625 } else {
626 swaplist_insert(sdp, spp, priority);
627 swaplist_trim();
628 }
629 mutex_exit(&uvm_swap_data_lock);
630 if (error)
631 kmem_free(spp, sizeof(*spp));
632 break;
633
634 case SWAP_ON:
635
636 /*
637 * check for duplicates. if none found, then insert a
638 * dummy entry on the list to prevent someone else from
639 * trying to enable this device while we are working on
640 * it.
641 */
642
643 priority = SCARG(uap, misc);
644 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
645 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
646 sdp->swd_flags = SWF_FAKE;
647 sdp->swd_vp = vp;
648 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
649 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
650 mutex_enter(&uvm_swap_data_lock);
651 if (swaplist_find(vp, false) != NULL) {
652 error = EBUSY;
653 mutex_exit(&uvm_swap_data_lock);
654 bufq_free(sdp->swd_tab);
655 kmem_free(sdp, sizeof(*sdp));
656 kmem_free(spp, sizeof(*spp));
657 break;
658 }
659 swaplist_insert(sdp, spp, priority);
660 mutex_exit(&uvm_swap_data_lock);
661
662 KASSERT(len > 0);
663 sdp->swd_pathlen = len;
664 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
665 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
666 panic("swapctl: copystr");
667
668 /*
669 * we've now got a FAKE placeholder in the swap list.
670 * now attempt to enable swap on it. if we fail, undo
671 * what we've done and kill the fake entry we just inserted.
672 * if swap_on is a success, it will clear the SWF_FAKE flag
673 */
674
675 if ((error = swap_on(l, sdp)) != 0) {
676 mutex_enter(&uvm_swap_data_lock);
677 (void) swaplist_find(vp, true); /* kill fake entry */
678 swaplist_trim();
679 mutex_exit(&uvm_swap_data_lock);
680 bufq_free(sdp->swd_tab);
681 kmem_free(sdp->swd_path, sdp->swd_pathlen);
682 kmem_free(sdp, sizeof(*sdp));
683 break;
684 }
685 break;
686
687 case SWAP_OFF:
688 mutex_enter(&uvm_swap_data_lock);
689 if ((sdp = swaplist_find(vp, false)) == NULL) {
690 mutex_exit(&uvm_swap_data_lock);
691 error = ENXIO;
692 break;
693 }
694
695 /*
696 * If a device isn't in use or enabled, we
697 * can't stop swapping from it (again).
698 */
699 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
700 mutex_exit(&uvm_swap_data_lock);
701 error = EBUSY;
702 break;
703 }
704
705 /*
706 * do the real work.
707 */
708 error = swap_off(l, sdp);
709 break;
710
711 default:
712 error = EINVAL;
713 }
714
715 /*
716 * done! release the ref gained by namei() and unlock.
717 */
718 vput(vp);
719 out:
720 rw_exit(&swap_syscall_lock);
721 kmem_free(userpath, SWAP_PATH_MAX);
722
723 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
724 return (error);
725 }
726
727 /*
728 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
729 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
730 * emulation to use it directly without going through sys_swapctl().
731 * The problem with using sys_swapctl() there is that it involves
732 * copying the swapent array to the stackgap, and this array's size
733 * is not known at build time. Hence it would not be possible to
734 * ensure it would fit in the stackgap in any case.
735 */
736 static void
737 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
738 {
739 struct swappri *spp;
740 struct swapdev *sdp;
741 int count = 0;
742
743 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
744 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
745 int inuse;
746
747 if (sec-- <= 0)
748 break;
749
750 /*
751 * backwards compatibility for system call.
752 * For NetBSD 1.3 and 5.0, we have to use
753 * the 32 bit dev_t. For 5.0 and -current
754 * we have to add the path.
755 */
756 inuse = btodb((uint64_t)sdp->swd_npginuse <<
757 PAGE_SHIFT);
758
759 #if defined(COMPAT_13) || defined(COMPAT_50)
760 if (cmd == SWAP_STATS) {
761 #endif
762 sep->se_dev = sdp->swd_dev;
763 sep->se_flags = sdp->swd_flags;
764 sep->se_nblks = sdp->swd_nblks;
765 sep->se_inuse = inuse;
766 sep->se_priority = sdp->swd_priority;
767 KASSERT(sdp->swd_pathlen <
768 sizeof(sep->se_path));
769 strcpy(sep->se_path, sdp->swd_path);
770 sep++;
771 #if defined(COMPAT_13)
772 } else if (cmd == SWAP_STATS13) {
773 struct swapent13 *sep13 =
774 (struct swapent13 *)sep;
775
776 sep13->se13_dev = sdp->swd_dev;
777 sep13->se13_flags = sdp->swd_flags;
778 sep13->se13_nblks = sdp->swd_nblks;
779 sep13->se13_inuse = inuse;
780 sep13->se13_priority = sdp->swd_priority;
781 sep = (struct swapent *)(sep13 + 1);
782 #endif
783 #if defined(COMPAT_50)
784 } else if (cmd == SWAP_STATS50) {
785 struct swapent50 *sep50 =
786 (struct swapent50 *)sep;
787
788 sep50->se50_dev = sdp->swd_dev;
789 sep50->se50_flags = sdp->swd_flags;
790 sep50->se50_nblks = sdp->swd_nblks;
791 sep50->se50_inuse = inuse;
792 sep50->se50_priority = sdp->swd_priority;
793 KASSERT(sdp->swd_pathlen <
794 sizeof(sep50->se50_path));
795 strcpy(sep50->se50_path, sdp->swd_path);
796 sep = (struct swapent *)(sep50 + 1);
797 #endif
798 #if defined(COMPAT_13) || defined(COMPAT_50)
799 }
800 #endif
801 count++;
802 }
803 }
804 *retval = count;
805 }
806
807 /*
808 * swap_on: attempt to enable a swapdev for swapping. note that the
809 * swapdev is already on the global list, but disabled (marked
810 * SWF_FAKE).
811 *
812 * => we avoid the start of the disk (to protect disk labels)
813 * => we also avoid the miniroot, if we are swapping to root.
814 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
815 * if needed.
816 */
817 static int
818 swap_on(struct lwp *l, struct swapdev *sdp)
819 {
820 struct vnode *vp;
821 int error, npages, nblocks, size;
822 long addr;
823 vmem_addr_t result;
824 struct vattr va;
825 dev_t dev;
826 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
827
828 /*
829 * we want to enable swapping on sdp. the swd_vp contains
830 * the vnode we want (locked and ref'd), and the swd_dev
831 * contains the dev_t of the file, if it a block device.
832 */
833
834 vp = sdp->swd_vp;
835 dev = sdp->swd_dev;
836
837 /*
838 * open the swap file (mostly useful for block device files to
839 * let device driver know what is up).
840 *
841 * we skip the open/close for root on swap because the root
842 * has already been opened when root was mounted (mountroot).
843 */
844 if (vp != rootvp) {
845 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
846 return (error);
847 }
848
849 /* XXX this only works for block devices */
850 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
851
852 /*
853 * we now need to determine the size of the swap area. for
854 * block specials we can call the d_psize function.
855 * for normal files, we must stat [get attrs].
856 *
857 * we put the result in nblks.
858 * for normal files, we also want the filesystem block size
859 * (which we get with statfs).
860 */
861 switch (vp->v_type) {
862 case VBLK:
863 if ((nblocks = bdev_size(dev)) == -1) {
864 error = ENXIO;
865 goto bad;
866 }
867 break;
868
869 case VREG:
870 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
871 goto bad;
872 nblocks = (int)btodb(va.va_size);
873 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
874 /*
875 * limit the max # of outstanding I/O requests we issue
876 * at any one time. take it easy on NFS servers.
877 */
878 if (vp->v_tag == VT_NFS)
879 sdp->swd_maxactive = 2; /* XXX */
880 else
881 sdp->swd_maxactive = 8; /* XXX */
882 break;
883
884 default:
885 error = ENXIO;
886 goto bad;
887 }
888
889 /*
890 * save nblocks in a safe place and convert to pages.
891 */
892
893 sdp->swd_nblks = nblocks;
894 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
895
896 /*
897 * for block special files, we want to make sure that leave
898 * the disklabel and bootblocks alone, so we arrange to skip
899 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
900 * note that because of this the "size" can be less than the
901 * actual number of blocks on the device.
902 */
903 if (vp->v_type == VBLK) {
904 /* we use pages 1 to (size - 1) [inclusive] */
905 size = npages - 1;
906 addr = 1;
907 } else {
908 /* we use pages 0 to (size - 1) [inclusive] */
909 size = npages;
910 addr = 0;
911 }
912
913 /*
914 * make sure we have enough blocks for a reasonable sized swap
915 * area. we want at least one page.
916 */
917
918 if (size < 1) {
919 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
920 error = EINVAL;
921 goto bad;
922 }
923
924 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
925
926 /*
927 * now we need to allocate an extent to manage this swap device
928 */
929
930 sdp->swd_blist = blist_create(npages);
931 /* mark all expect the `saved' region free. */
932 blist_free(sdp->swd_blist, addr, size);
933
934 /*
935 * if the vnode we are swapping to is the root vnode
936 * (i.e. we are swapping to the miniroot) then we want
937 * to make sure we don't overwrite it. do a statfs to
938 * find its size and skip over it.
939 */
940 if (vp == rootvp) {
941 struct mount *mp;
942 struct statvfs *sp;
943 int rootblocks, rootpages;
944
945 mp = rootvnode->v_mount;
946 sp = &mp->mnt_stat;
947 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
948 /*
949 * XXX: sp->f_blocks isn't the total number of
950 * blocks in the filesystem, it's the number of
951 * data blocks. so, our rootblocks almost
952 * definitely underestimates the total size
953 * of the filesystem - how badly depends on the
954 * details of the filesystem type. there isn't
955 * an obvious way to deal with this cleanly
956 * and perfectly, so for now we just pad our
957 * rootblocks estimate with an extra 5 percent.
958 */
959 rootblocks += (rootblocks >> 5) +
960 (rootblocks >> 6) +
961 (rootblocks >> 7);
962 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
963 if (rootpages > size)
964 panic("swap_on: miniroot larger than swap?");
965
966 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
967 panic("swap_on: unable to preserve miniroot");
968 }
969
970 size -= rootpages;
971 printf("Preserved %d pages of miniroot ", rootpages);
972 printf("leaving %d pages of swap\n", size);
973 }
974
975 /*
976 * add a ref to vp to reflect usage as a swap device.
977 */
978 vref(vp);
979
980 /*
981 * now add the new swapdev to the drum and enable.
982 */
983 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
984 if (error != 0)
985 panic("swapdrum_add");
986 /*
987 * If this is the first regular swap create the workqueue.
988 * => Protected by swap_syscall_lock.
989 */
990 if (vp->v_type != VBLK) {
991 if (sw_reg_count++ == 0) {
992 KASSERT(sw_reg_workqueue == NULL);
993 if (workqueue_create(&sw_reg_workqueue, "swapiod",
994 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
995 panic("%s: workqueue_create failed", __func__);
996 }
997 }
998
999 sdp->swd_drumoffset = (int)result;
1000 sdp->swd_drumsize = npages;
1001 sdp->swd_npages = size;
1002 mutex_enter(&uvm_swap_data_lock);
1003 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1004 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1005 uvmexp.swpages += size;
1006 uvmexp.swpgavail += size;
1007 mutex_exit(&uvm_swap_data_lock);
1008 return (0);
1009
1010 /*
1011 * failure: clean up and return error.
1012 */
1013
1014 bad:
1015 if (sdp->swd_blist) {
1016 blist_destroy(sdp->swd_blist);
1017 }
1018 if (vp != rootvp) {
1019 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1020 }
1021 return (error);
1022 }
1023
1024 /*
1025 * swap_off: stop swapping on swapdev
1026 *
1027 * => swap data should be locked, we will unlock.
1028 */
1029 static int
1030 swap_off(struct lwp *l, struct swapdev *sdp)
1031 {
1032 int npages = sdp->swd_npages;
1033 int error = 0;
1034
1035 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1036 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1037
1038 /* disable the swap area being removed */
1039 sdp->swd_flags &= ~SWF_ENABLE;
1040 uvmexp.swpgavail -= npages;
1041 mutex_exit(&uvm_swap_data_lock);
1042
1043 /*
1044 * the idea is to find all the pages that are paged out to this
1045 * device, and page them all in. in uvm, swap-backed pageable
1046 * memory can take two forms: aobjs and anons. call the
1047 * swapoff hook for each subsystem to bring in pages.
1048 */
1049
1050 if (uao_swap_off(sdp->swd_drumoffset,
1051 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1052 amap_swap_off(sdp->swd_drumoffset,
1053 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1054 error = ENOMEM;
1055 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1056 error = EBUSY;
1057 }
1058
1059 if (error) {
1060 mutex_enter(&uvm_swap_data_lock);
1061 sdp->swd_flags |= SWF_ENABLE;
1062 uvmexp.swpgavail += npages;
1063 mutex_exit(&uvm_swap_data_lock);
1064
1065 return error;
1066 }
1067
1068 /*
1069 * If this is the last regular swap destroy the workqueue.
1070 * => Protected by swap_syscall_lock.
1071 */
1072 if (sdp->swd_vp->v_type != VBLK) {
1073 KASSERT(sw_reg_count > 0);
1074 KASSERT(sw_reg_workqueue != NULL);
1075 if (--sw_reg_count == 0) {
1076 workqueue_destroy(sw_reg_workqueue);
1077 sw_reg_workqueue = NULL;
1078 }
1079 }
1080
1081 /*
1082 * done with the vnode.
1083 * drop our ref on the vnode before calling VOP_CLOSE()
1084 * so that spec_close() can tell if this is the last close.
1085 */
1086 vrele(sdp->swd_vp);
1087 if (sdp->swd_vp != rootvp) {
1088 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1089 }
1090
1091 mutex_enter(&uvm_swap_data_lock);
1092 uvmexp.swpages -= npages;
1093 uvmexp.swpginuse -= sdp->swd_npgbad;
1094
1095 if (swaplist_find(sdp->swd_vp, true) == NULL)
1096 panic("%s: swapdev not in list", __func__);
1097 swaplist_trim();
1098 mutex_exit(&uvm_swap_data_lock);
1099
1100 /*
1101 * free all resources!
1102 */
1103 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1104 blist_destroy(sdp->swd_blist);
1105 bufq_free(sdp->swd_tab);
1106 kmem_free(sdp, sizeof(*sdp));
1107 return (0);
1108 }
1109
1110 void
1111 uvm_swap_shutdown(struct lwp *l)
1112 {
1113 struct swapdev *sdp;
1114 struct swappri *spp;
1115 struct vnode *vp;
1116 int error;
1117
1118 printf("turning of swap...");
1119 rw_enter(&swap_syscall_lock, RW_WRITER);
1120 mutex_enter(&uvm_swap_data_lock);
1121 again:
1122 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1123 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1124 if (sdp->swd_flags & SWF_FAKE)
1125 continue;
1126 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1127 continue;
1128 #ifdef DEBUG
1129 printf("\nturning off swap on %s...",
1130 sdp->swd_path);
1131 #endif
1132 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1133 error = EBUSY;
1134 vp = NULL;
1135 } else
1136 error = 0;
1137 if (!error) {
1138 error = swap_off(l, sdp);
1139 mutex_enter(&uvm_swap_data_lock);
1140 }
1141 if (error) {
1142 printf("stopping swap on %s failed "
1143 "with error %d\n", sdp->swd_path, error);
1144 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1145 swd_next);
1146 uvmexp.nswapdev--;
1147 swaplist_trim();
1148 if (vp)
1149 vput(vp);
1150 }
1151 goto again;
1152 }
1153 printf(" done\n");
1154 mutex_exit(&uvm_swap_data_lock);
1155 rw_exit(&swap_syscall_lock);
1156 }
1157
1158
1159 /*
1160 * /dev/drum interface and i/o functions
1161 */
1162
1163 /*
1164 * swstrategy: perform I/O on the drum
1165 *
1166 * => we must map the i/o request from the drum to the correct swapdev.
1167 */
1168 static void
1169 swstrategy(struct buf *bp)
1170 {
1171 struct swapdev *sdp;
1172 struct vnode *vp;
1173 int pageno, bn;
1174 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1175
1176 /*
1177 * convert block number to swapdev. note that swapdev can't
1178 * be yanked out from under us because we are holding resources
1179 * in it (i.e. the blocks we are doing I/O on).
1180 */
1181 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1182 mutex_enter(&uvm_swap_data_lock);
1183 sdp = swapdrum_getsdp(pageno);
1184 mutex_exit(&uvm_swap_data_lock);
1185 if (sdp == NULL) {
1186 bp->b_error = EINVAL;
1187 bp->b_resid = bp->b_bcount;
1188 biodone(bp);
1189 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1190 return;
1191 }
1192
1193 /*
1194 * convert drum page number to block number on this swapdev.
1195 */
1196
1197 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1198 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1199
1200 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1201 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1202 sdp->swd_drumoffset, bn, bp->b_bcount);
1203
1204 /*
1205 * for block devices we finish up here.
1206 * for regular files we have to do more work which we delegate
1207 * to sw_reg_strategy().
1208 */
1209
1210 vp = sdp->swd_vp; /* swapdev vnode pointer */
1211 switch (vp->v_type) {
1212 default:
1213 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1214
1215 case VBLK:
1216
1217 /*
1218 * must convert "bp" from an I/O on /dev/drum to an I/O
1219 * on the swapdev (sdp).
1220 */
1221 bp->b_blkno = bn; /* swapdev block number */
1222 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1223
1224 /*
1225 * if we are doing a write, we have to redirect the i/o on
1226 * drum's v_numoutput counter to the swapdevs.
1227 */
1228 if ((bp->b_flags & B_READ) == 0) {
1229 mutex_enter(bp->b_objlock);
1230 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1231 mutex_exit(bp->b_objlock);
1232 mutex_enter(vp->v_interlock);
1233 vp->v_numoutput++; /* put it on swapdev */
1234 mutex_exit(vp->v_interlock);
1235 }
1236
1237 /*
1238 * finally plug in swapdev vnode and start I/O
1239 */
1240 bp->b_vp = vp;
1241 bp->b_objlock = vp->v_interlock;
1242 VOP_STRATEGY(vp, bp);
1243 return;
1244
1245 case VREG:
1246 /*
1247 * delegate to sw_reg_strategy function.
1248 */
1249 sw_reg_strategy(sdp, bp, bn);
1250 return;
1251 }
1252 /* NOTREACHED */
1253 }
1254
1255 /*
1256 * swread: the read function for the drum (just a call to physio)
1257 */
1258 /*ARGSUSED*/
1259 static int
1260 swread(dev_t dev, struct uio *uio, int ioflag)
1261 {
1262 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1263
1264 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1265 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1266 }
1267
1268 /*
1269 * swwrite: the write function for the drum (just a call to physio)
1270 */
1271 /*ARGSUSED*/
1272 static int
1273 swwrite(dev_t dev, struct uio *uio, int ioflag)
1274 {
1275 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1276
1277 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1278 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1279 }
1280
1281 const struct bdevsw swap_bdevsw = {
1282 nullopen, nullclose, swstrategy, noioctl, nodump, nosize, D_OTHER,
1283 };
1284
1285 const struct cdevsw swap_cdevsw = {
1286 nullopen, nullclose, swread, swwrite, noioctl,
1287 nostop, notty, nopoll, nommap, nokqfilter, D_OTHER,
1288 };
1289
1290 /*
1291 * sw_reg_strategy: handle swap i/o to regular files
1292 */
1293 static void
1294 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1295 {
1296 struct vnode *vp;
1297 struct vndxfer *vnx;
1298 daddr_t nbn;
1299 char *addr;
1300 off_t byteoff;
1301 int s, off, nra, error, sz, resid;
1302 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1303
1304 /*
1305 * allocate a vndxfer head for this transfer and point it to
1306 * our buffer.
1307 */
1308 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1309 vnx->vx_flags = VX_BUSY;
1310 vnx->vx_error = 0;
1311 vnx->vx_pending = 0;
1312 vnx->vx_bp = bp;
1313 vnx->vx_sdp = sdp;
1314
1315 /*
1316 * setup for main loop where we read filesystem blocks into
1317 * our buffer.
1318 */
1319 error = 0;
1320 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1321 addr = bp->b_data; /* current position in buffer */
1322 byteoff = dbtob((uint64_t)bn);
1323
1324 for (resid = bp->b_resid; resid; resid -= sz) {
1325 struct vndbuf *nbp;
1326
1327 /*
1328 * translate byteoffset into block number. return values:
1329 * vp = vnode of underlying device
1330 * nbn = new block number (on underlying vnode dev)
1331 * nra = num blocks we can read-ahead (excludes requested
1332 * block)
1333 */
1334 nra = 0;
1335 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1336 &vp, &nbn, &nra);
1337
1338 if (error == 0 && nbn == (daddr_t)-1) {
1339 /*
1340 * this used to just set error, but that doesn't
1341 * do the right thing. Instead, it causes random
1342 * memory errors. The panic() should remain until
1343 * this condition doesn't destabilize the system.
1344 */
1345 #if 1
1346 panic("%s: swap to sparse file", __func__);
1347 #else
1348 error = EIO; /* failure */
1349 #endif
1350 }
1351
1352 /*
1353 * punt if there was an error or a hole in the file.
1354 * we must wait for any i/o ops we have already started
1355 * to finish before returning.
1356 *
1357 * XXX we could deal with holes here but it would be
1358 * a hassle (in the write case).
1359 */
1360 if (error) {
1361 s = splbio();
1362 vnx->vx_error = error; /* pass error up */
1363 goto out;
1364 }
1365
1366 /*
1367 * compute the size ("sz") of this transfer (in bytes).
1368 */
1369 off = byteoff % sdp->swd_bsize;
1370 sz = (1 + nra) * sdp->swd_bsize - off;
1371 if (sz > resid)
1372 sz = resid;
1373
1374 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1375 "vp %p/%p offset 0x%x/0x%x",
1376 sdp->swd_vp, vp, byteoff, nbn);
1377
1378 /*
1379 * now get a buf structure. note that the vb_buf is
1380 * at the front of the nbp structure so that you can
1381 * cast pointers between the two structure easily.
1382 */
1383 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1384 buf_init(&nbp->vb_buf);
1385 nbp->vb_buf.b_flags = bp->b_flags;
1386 nbp->vb_buf.b_cflags = bp->b_cflags;
1387 nbp->vb_buf.b_oflags = bp->b_oflags;
1388 nbp->vb_buf.b_bcount = sz;
1389 nbp->vb_buf.b_bufsize = sz;
1390 nbp->vb_buf.b_error = 0;
1391 nbp->vb_buf.b_data = addr;
1392 nbp->vb_buf.b_lblkno = 0;
1393 nbp->vb_buf.b_blkno = nbn + btodb(off);
1394 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1395 nbp->vb_buf.b_iodone = sw_reg_biodone;
1396 nbp->vb_buf.b_vp = vp;
1397 nbp->vb_buf.b_objlock = vp->v_interlock;
1398 if (vp->v_type == VBLK) {
1399 nbp->vb_buf.b_dev = vp->v_rdev;
1400 }
1401
1402 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1403
1404 /*
1405 * Just sort by block number
1406 */
1407 s = splbio();
1408 if (vnx->vx_error != 0) {
1409 buf_destroy(&nbp->vb_buf);
1410 pool_put(&vndbuf_pool, nbp);
1411 goto out;
1412 }
1413 vnx->vx_pending++;
1414
1415 /* sort it in and start I/O if we are not over our limit */
1416 /* XXXAD locking */
1417 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1418 sw_reg_start(sdp);
1419 splx(s);
1420
1421 /*
1422 * advance to the next I/O
1423 */
1424 byteoff += sz;
1425 addr += sz;
1426 }
1427
1428 s = splbio();
1429
1430 out: /* Arrive here at splbio */
1431 vnx->vx_flags &= ~VX_BUSY;
1432 if (vnx->vx_pending == 0) {
1433 error = vnx->vx_error;
1434 pool_put(&vndxfer_pool, vnx);
1435 bp->b_error = error;
1436 biodone(bp);
1437 }
1438 splx(s);
1439 }
1440
1441 /*
1442 * sw_reg_start: start an I/O request on the requested swapdev
1443 *
1444 * => reqs are sorted by b_rawblkno (above)
1445 */
1446 static void
1447 sw_reg_start(struct swapdev *sdp)
1448 {
1449 struct buf *bp;
1450 struct vnode *vp;
1451 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1452
1453 /* recursion control */
1454 if ((sdp->swd_flags & SWF_BUSY) != 0)
1455 return;
1456
1457 sdp->swd_flags |= SWF_BUSY;
1458
1459 while (sdp->swd_active < sdp->swd_maxactive) {
1460 bp = bufq_get(sdp->swd_tab);
1461 if (bp == NULL)
1462 break;
1463 sdp->swd_active++;
1464
1465 UVMHIST_LOG(pdhist,
1466 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1467 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1468 vp = bp->b_vp;
1469 KASSERT(bp->b_objlock == vp->v_interlock);
1470 if ((bp->b_flags & B_READ) == 0) {
1471 mutex_enter(vp->v_interlock);
1472 vp->v_numoutput++;
1473 mutex_exit(vp->v_interlock);
1474 }
1475 VOP_STRATEGY(vp, bp);
1476 }
1477 sdp->swd_flags &= ~SWF_BUSY;
1478 }
1479
1480 /*
1481 * sw_reg_biodone: one of our i/o's has completed
1482 */
1483 static void
1484 sw_reg_biodone(struct buf *bp)
1485 {
1486 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1487 }
1488
1489 /*
1490 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1491 *
1492 * => note that we can recover the vndbuf struct by casting the buf ptr
1493 */
1494 static void
1495 sw_reg_iodone(struct work *wk, void *dummy)
1496 {
1497 struct vndbuf *vbp = (void *)wk;
1498 struct vndxfer *vnx = vbp->vb_xfer;
1499 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1500 struct swapdev *sdp = vnx->vx_sdp;
1501 int s, resid, error;
1502 KASSERT(&vbp->vb_buf.b_work == wk);
1503 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1504
1505 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1506 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1507 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1508 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1509
1510 /*
1511 * protect vbp at splbio and update.
1512 */
1513
1514 s = splbio();
1515 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1516 pbp->b_resid -= resid;
1517 vnx->vx_pending--;
1518
1519 if (vbp->vb_buf.b_error != 0) {
1520 /* pass error upward */
1521 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1522 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1523 vnx->vx_error = error;
1524 }
1525
1526 /*
1527 * kill vbp structure
1528 */
1529 buf_destroy(&vbp->vb_buf);
1530 pool_put(&vndbuf_pool, vbp);
1531
1532 /*
1533 * wrap up this transaction if it has run to completion or, in
1534 * case of an error, when all auxiliary buffers have returned.
1535 */
1536 if (vnx->vx_error != 0) {
1537 /* pass error upward */
1538 error = vnx->vx_error;
1539 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1540 pbp->b_error = error;
1541 biodone(pbp);
1542 pool_put(&vndxfer_pool, vnx);
1543 }
1544 } else if (pbp->b_resid == 0) {
1545 KASSERT(vnx->vx_pending == 0);
1546 if ((vnx->vx_flags & VX_BUSY) == 0) {
1547 UVMHIST_LOG(pdhist, " iodone error=%d !",
1548 pbp, vnx->vx_error, 0, 0);
1549 biodone(pbp);
1550 pool_put(&vndxfer_pool, vnx);
1551 }
1552 }
1553
1554 /*
1555 * done! start next swapdev I/O if one is pending
1556 */
1557 sdp->swd_active--;
1558 sw_reg_start(sdp);
1559 splx(s);
1560 }
1561
1562
1563 /*
1564 * uvm_swap_alloc: allocate space on swap
1565 *
1566 * => allocation is done "round robin" down the priority list, as we
1567 * allocate in a priority we "rotate" the circle queue.
1568 * => space can be freed with uvm_swap_free
1569 * => we return the page slot number in /dev/drum (0 == invalid slot)
1570 * => we lock uvm_swap_data_lock
1571 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1572 */
1573 int
1574 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1575 {
1576 struct swapdev *sdp;
1577 struct swappri *spp;
1578 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1579
1580 /*
1581 * no swap devices configured yet? definite failure.
1582 */
1583 if (uvmexp.nswapdev < 1)
1584 return 0;
1585
1586 /*
1587 * XXXJAK: BEGIN HACK
1588 *
1589 * blist_alloc() in subr_blist.c will panic if we try to allocate
1590 * too many slots.
1591 */
1592 if (*nslots > BLIST_MAX_ALLOC) {
1593 if (__predict_false(lessok == false))
1594 return 0;
1595 *nslots = BLIST_MAX_ALLOC;
1596 }
1597 /* XXXJAK: END HACK */
1598
1599 /*
1600 * lock data lock, convert slots into blocks, and enter loop
1601 */
1602 mutex_enter(&uvm_swap_data_lock);
1603
1604 ReTry: /* XXXMRG */
1605 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1606 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1607 uint64_t result;
1608
1609 /* if it's not enabled, then we can't swap from it */
1610 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1611 continue;
1612 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1613 continue;
1614 result = blist_alloc(sdp->swd_blist, *nslots);
1615 if (result == BLIST_NONE) {
1616 continue;
1617 }
1618 KASSERT(result < sdp->swd_drumsize);
1619
1620 /*
1621 * successful allocation! now rotate the circleq.
1622 */
1623 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1624 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1625 sdp->swd_npginuse += *nslots;
1626 uvmexp.swpginuse += *nslots;
1627 mutex_exit(&uvm_swap_data_lock);
1628 /* done! return drum slot number */
1629 UVMHIST_LOG(pdhist,
1630 "success! returning %d slots starting at %d",
1631 *nslots, result + sdp->swd_drumoffset, 0, 0);
1632 return (result + sdp->swd_drumoffset);
1633 }
1634 }
1635
1636 /* XXXMRG: BEGIN HACK */
1637 if (*nslots > 1 && lessok) {
1638 *nslots = 1;
1639 /* XXXMRG: ugh! blist should support this for us */
1640 goto ReTry;
1641 }
1642 /* XXXMRG: END HACK */
1643
1644 mutex_exit(&uvm_swap_data_lock);
1645 return 0;
1646 }
1647
1648 /*
1649 * uvm_swapisfull: return true if most of available swap is allocated
1650 * and in use. we don't count some small portion as it may be inaccessible
1651 * to us at any given moment, for example if there is lock contention or if
1652 * pages are busy.
1653 */
1654 bool
1655 uvm_swapisfull(void)
1656 {
1657 int swpgonly;
1658 bool rv;
1659
1660 mutex_enter(&uvm_swap_data_lock);
1661 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1662 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1663 uvm_swapisfull_factor);
1664 rv = (swpgonly >= uvmexp.swpgavail);
1665 mutex_exit(&uvm_swap_data_lock);
1666
1667 return (rv);
1668 }
1669
1670 /*
1671 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1672 *
1673 * => we lock uvm_swap_data_lock
1674 */
1675 void
1676 uvm_swap_markbad(int startslot, int nslots)
1677 {
1678 struct swapdev *sdp;
1679 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1680
1681 mutex_enter(&uvm_swap_data_lock);
1682 sdp = swapdrum_getsdp(startslot);
1683 KASSERT(sdp != NULL);
1684
1685 /*
1686 * we just keep track of how many pages have been marked bad
1687 * in this device, to make everything add up in swap_off().
1688 * we assume here that the range of slots will all be within
1689 * one swap device.
1690 */
1691
1692 KASSERT(uvmexp.swpgonly >= nslots);
1693 uvmexp.swpgonly -= nslots;
1694 sdp->swd_npgbad += nslots;
1695 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1696 mutex_exit(&uvm_swap_data_lock);
1697 }
1698
1699 /*
1700 * uvm_swap_free: free swap slots
1701 *
1702 * => this can be all or part of an allocation made by uvm_swap_alloc
1703 * => we lock uvm_swap_data_lock
1704 */
1705 void
1706 uvm_swap_free(int startslot, int nslots)
1707 {
1708 struct swapdev *sdp;
1709 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1710
1711 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1712 startslot, 0, 0);
1713
1714 /*
1715 * ignore attempts to free the "bad" slot.
1716 */
1717
1718 if (startslot == SWSLOT_BAD) {
1719 return;
1720 }
1721
1722 /*
1723 * convert drum slot offset back to sdp, free the blocks
1724 * in the extent, and return. must hold pri lock to do
1725 * lookup and access the extent.
1726 */
1727
1728 mutex_enter(&uvm_swap_data_lock);
1729 sdp = swapdrum_getsdp(startslot);
1730 KASSERT(uvmexp.nswapdev >= 1);
1731 KASSERT(sdp != NULL);
1732 KASSERT(sdp->swd_npginuse >= nslots);
1733 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1734 sdp->swd_npginuse -= nslots;
1735 uvmexp.swpginuse -= nslots;
1736 mutex_exit(&uvm_swap_data_lock);
1737 }
1738
1739 /*
1740 * uvm_swap_put: put any number of pages into a contig place on swap
1741 *
1742 * => can be sync or async
1743 */
1744
1745 int
1746 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1747 {
1748 int error;
1749
1750 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1751 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1752 return error;
1753 }
1754
1755 /*
1756 * uvm_swap_get: get a single page from swap
1757 *
1758 * => usually a sync op (from fault)
1759 */
1760
1761 int
1762 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1763 {
1764 int error;
1765
1766 uvmexp.nswget++;
1767 KASSERT(flags & PGO_SYNCIO);
1768 if (swslot == SWSLOT_BAD) {
1769 return EIO;
1770 }
1771
1772 error = uvm_swap_io(&page, swslot, 1, B_READ |
1773 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1774 if (error == 0) {
1775
1776 /*
1777 * this page is no longer only in swap.
1778 */
1779
1780 mutex_enter(&uvm_swap_data_lock);
1781 KASSERT(uvmexp.swpgonly > 0);
1782 uvmexp.swpgonly--;
1783 mutex_exit(&uvm_swap_data_lock);
1784 }
1785 return error;
1786 }
1787
1788 /*
1789 * uvm_swap_io: do an i/o operation to swap
1790 */
1791
1792 static int
1793 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1794 {
1795 daddr_t startblk;
1796 struct buf *bp;
1797 vaddr_t kva;
1798 int error, mapinflags;
1799 bool write, async;
1800 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1801
1802 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1803 startslot, npages, flags, 0);
1804
1805 write = (flags & B_READ) == 0;
1806 async = (flags & B_ASYNC) != 0;
1807
1808 /*
1809 * allocate a buf for the i/o.
1810 */
1811
1812 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1813 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1814 if (bp == NULL) {
1815 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1816 return ENOMEM;
1817 }
1818
1819 /*
1820 * convert starting drum slot to block number
1821 */
1822
1823 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1824
1825 /*
1826 * first, map the pages into the kernel.
1827 */
1828
1829 mapinflags = !write ?
1830 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1831 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1832 kva = uvm_pagermapin(pps, npages, mapinflags);
1833
1834 /*
1835 * fill in the bp/sbp. we currently route our i/o through
1836 * /dev/drum's vnode [swapdev_vp].
1837 */
1838
1839 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1840 bp->b_flags = (flags & (B_READ|B_ASYNC));
1841 bp->b_proc = &proc0; /* XXX */
1842 bp->b_vnbufs.le_next = NOLIST;
1843 bp->b_data = (void *)kva;
1844 bp->b_blkno = startblk;
1845 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1846
1847 /*
1848 * bump v_numoutput (counter of number of active outputs).
1849 */
1850
1851 if (write) {
1852 mutex_enter(swapdev_vp->v_interlock);
1853 swapdev_vp->v_numoutput++;
1854 mutex_exit(swapdev_vp->v_interlock);
1855 }
1856
1857 /*
1858 * for async ops we must set up the iodone handler.
1859 */
1860
1861 if (async) {
1862 bp->b_iodone = uvm_aio_biodone;
1863 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1864 if (curlwp == uvm.pagedaemon_lwp)
1865 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1866 else
1867 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1868 } else {
1869 bp->b_iodone = NULL;
1870 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1871 }
1872 UVMHIST_LOG(pdhist,
1873 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1874 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1875
1876 /*
1877 * now we start the I/O, and if async, return.
1878 */
1879
1880 VOP_STRATEGY(swapdev_vp, bp);
1881 if (async)
1882 return 0;
1883
1884 /*
1885 * must be sync i/o. wait for it to finish
1886 */
1887
1888 error = biowait(bp);
1889
1890 /*
1891 * kill the pager mapping
1892 */
1893
1894 uvm_pagermapout(kva, npages);
1895
1896 /*
1897 * now dispose of the buf and we're done.
1898 */
1899
1900 if (write) {
1901 mutex_enter(swapdev_vp->v_interlock);
1902 vwakeup(bp);
1903 mutex_exit(swapdev_vp->v_interlock);
1904 }
1905 putiobuf(bp);
1906 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1907
1908 return (error);
1909 }
1910