uvm_swap.c revision 1.174.2.1 1 /* $NetBSD: uvm_swap.c,v 1.174.2.1 2016/07/20 23:47:57 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.174.2.1 2016/07/20 23:47:57 pgoyette Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * TAILQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* tailq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226
227 /*
228 * prototypes
229 */
230 static struct swapdev *swapdrum_getsdp(int);
231
232 static struct swapdev *swaplist_find(struct vnode *, bool);
233 static void swaplist_insert(struct swapdev *,
234 struct swappri *, int);
235 static void swaplist_trim(void);
236
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246
247 /*
248 * uvm_swap_init: init the swap system data structures and locks
249 *
250 * => called at boot time from init_main.c after the filesystems
251 * are brought up (which happens after uvm_init())
252 */
253 void
254 uvm_swap_init(void)
255 {
256 UVMHIST_FUNC("uvm_swap_init");
257
258 UVMHIST_CALLED(pdhist);
259 /*
260 * first, init the swap list, its counter, and its lock.
261 * then get a handle on the vnode for /dev/drum by using
262 * the its dev_t number ("swapdev", from MD conf.c).
263 */
264
265 LIST_INIT(&swap_priority);
266 uvmexp.nswapdev = 0;
267 rw_init(&swap_syscall_lock);
268 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269
270 if (bdevvp(swapdev, &swapdev_vp))
271 panic("%s: can't get vnode for swap device", __func__);
272 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 panic("%s: can't lock swap device", __func__);
274 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 panic("%s: can't open swap device", __func__);
276 VOP_UNLOCK(swapdev_vp);
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 VM_NOSLEEP, IPL_NONE);
286 if (swapmap == 0) {
287 panic("%s: vmem_create failed", __func__);
288 }
289
290 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 NULL, IPL_BIO);
292 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 NULL, IPL_BIO);
294
295 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297
298 /*
299 * swaplist functions: functions that operate on the list of swap
300 * devices on the system.
301 */
302
303 /*
304 * swaplist_insert: insert swap device "sdp" into the global list
305 *
306 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307 * => caller must provide a newly allocated swappri structure (we will
308 * FREE it if we don't need it... this it to prevent allocation
309 * blocking here while adding swap)
310 */
311 static void
312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %d",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 TAILQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 kmem_free(newspp, sizeof(*newspp));
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * tailq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372
373 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 TAILQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 }
385 return (NULL);
386 }
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393 */
394 static void
395 swaplist_trim(void)
396 {
397 struct swappri *spp, *nextspp;
398
399 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 continue;
402 LIST_REMOVE(spp, spi_swappri);
403 kmem_free(spp, sizeof(*spp));
404 }
405 }
406
407 /*
408 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409 * to the "swapdev" that maps that section of the drum.
410 *
411 * => each swapdev takes one big contig chunk of the drum
412 * => caller must hold uvm_swap_data_lock
413 */
414 static struct swapdev *
415 swapdrum_getsdp(int pgno)
416 {
417 struct swapdev *sdp;
418 struct swappri *spp;
419
420 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 if (sdp->swd_flags & SWF_FAKE)
423 continue;
424 if (pgno >= sdp->swd_drumoffset &&
425 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 return sdp;
427 }
428 }
429 }
430 return NULL;
431 }
432
433 void swapsys_lock(krw_t op)
434 {
435 rw_enter(&swap_syscall_lock, op);
436 }
437
438 void swapsys_unlock(void)
439 {
440 rw_exit(&swap_syscall_lock);
441 }
442
443 /*
444 * sys_swapctl: main entry point for swapctl(2) system call
445 * [with two helper functions: swap_on and swap_off]
446 */
447 int
448 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
449 {
450 /* {
451 syscallarg(int) cmd;
452 syscallarg(void *) arg;
453 syscallarg(int) misc;
454 } */
455 struct vnode *vp;
456 struct nameidata nd;
457 struct swappri *spp;
458 struct swapdev *sdp;
459 struct swapent *sep;
460 #define SWAP_PATH_MAX (PATH_MAX + 1)
461 char *userpath;
462 size_t len = 0;
463 int error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 /*
468 * we handle the non-priv NSWAP and STATS request first.
469 *
470 * SWAP_NSWAP: return number of config'd swap devices
471 * [can also be obtained with uvmexp sysctl]
472 */
473 if (SCARG(uap, cmd) == SWAP_NSWAP) {
474 const int nswapdev = uvmexp.nswapdev;
475 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", nswapdev, 0, 0, 0);
476 *retval = nswapdev;
477 return 0;
478 }
479
480 misc = SCARG(uap, misc);
481 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
482
483 /*
484 * ensure serialized syscall access by grabbing the swap_syscall_lock
485 */
486 rw_enter(&swap_syscall_lock, RW_WRITER);
487
488 /*
489 * SWAP_STATS: get stats on current # of configured swap devs
490 *
491 * note that the swap_priority list can't change as long
492 * as we are holding the swap_syscall_lock. we don't want
493 * to grab the uvm_swap_data_lock because we may fault&sleep during
494 * copyout() and we don't want to be holding that lock then!
495 */
496 if (SCARG(uap, cmd) == SWAP_STATS
497 #if defined(COMPAT_50)
498 || SCARG(uap, cmd) == SWAP_STATS50
499 #endif
500 #if defined(COMPAT_13)
501 || SCARG(uap, cmd) == SWAP_STATS13
502 #endif
503 ) {
504 if (misc < 0) {
505 error = EINVAL;
506 goto out;
507 }
508 if (misc == 0 || uvmexp.nswapdev == 0) {
509 error = 0;
510 goto out;
511 }
512 /* Make sure userland cannot exhaust kernel memory */
513 if ((size_t)misc > (size_t)uvmexp.nswapdev)
514 misc = uvmexp.nswapdev;
515 KASSERT(misc > 0);
516 #if defined(COMPAT_13)
517 if (SCARG(uap, cmd) == SWAP_STATS13)
518 len = sizeof(struct swapent13) * misc;
519 else
520 #endif
521 #if defined(COMPAT_50)
522 if (SCARG(uap, cmd) == SWAP_STATS50)
523 len = sizeof(struct swapent50) * misc;
524 else
525 #endif
526 len = sizeof(struct swapent) * misc;
527 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
528
529 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
530 error = copyout(sep, SCARG(uap, arg), len);
531
532 kmem_free(sep, len);
533 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
534 goto out;
535 }
536 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
537 dev_t *devp = (dev_t *)SCARG(uap, arg);
538
539 error = copyout(&dumpdev, devp, sizeof(dumpdev));
540 goto out;
541 }
542
543 /*
544 * all other requests require superuser privs. verify.
545 */
546 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
547 0, NULL, NULL, NULL)))
548 goto out;
549
550 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
551 /* drop the current dump device */
552 dumpdev = NODEV;
553 dumpcdev = NODEV;
554 cpu_dumpconf();
555 goto out;
556 }
557
558 /*
559 * at this point we expect a path name in arg. we will
560 * use namei() to gain a vnode reference (vref), and lock
561 * the vnode (VOP_LOCK).
562 *
563 * XXX: a NULL arg means use the root vnode pointer (e.g. for
564 * miniroot)
565 */
566 if (SCARG(uap, arg) == NULL) {
567 vp = rootvp; /* miniroot */
568 vref(vp);
569 if (vn_lock(vp, LK_EXCLUSIVE)) {
570 vrele(vp);
571 error = EBUSY;
572 goto out;
573 }
574 if (SCARG(uap, cmd) == SWAP_ON &&
575 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
576 panic("swapctl: miniroot copy failed");
577 } else {
578 struct pathbuf *pb;
579
580 /*
581 * This used to allow copying in one extra byte
582 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
583 * This was completely pointless because if anyone
584 * used that extra byte namei would fail with
585 * ENAMETOOLONG anyway, so I've removed the excess
586 * logic. - dholland 20100215
587 */
588
589 error = pathbuf_copyin(SCARG(uap, arg), &pb);
590 if (error) {
591 goto out;
592 }
593 if (SCARG(uap, cmd) == SWAP_ON) {
594 /* get a copy of the string */
595 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
596 len = strlen(userpath) + 1;
597 }
598 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
599 if ((error = namei(&nd))) {
600 pathbuf_destroy(pb);
601 goto out;
602 }
603 vp = nd.ni_vp;
604 pathbuf_destroy(pb);
605 }
606 /* note: "vp" is referenced and locked */
607
608 error = 0; /* assume no error */
609 switch(SCARG(uap, cmd)) {
610
611 case SWAP_DUMPDEV: {
612 const struct bdevsw *bdev;
613
614 if (vp->v_type != VBLK) {
615 error = ENOTBLK;
616 break;
617 }
618 if ((bdev = bdevsw_lookup_acquire(vp->v_rdev))) {
619 dumpdev = vp->v_rdev;
620 dumpcdev = devsw_blk2chr(dumpdev);
621 } else
622 dumpdev = NODEV;
623 cpu_dumpconf();
624 if (dumpdev != NODEV)
625 bdevsw_release(bdev);
626 break;
627 }
628 case SWAP_CTL:
629 /*
630 * get new priority, remove old entry (if any) and then
631 * reinsert it in the correct place. finally, prune out
632 * any empty priority structures.
633 */
634 priority = SCARG(uap, misc);
635 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
636 mutex_enter(&uvm_swap_data_lock);
637 if ((sdp = swaplist_find(vp, true)) == NULL) {
638 error = ENOENT;
639 } else {
640 swaplist_insert(sdp, spp, priority);
641 swaplist_trim();
642 }
643 mutex_exit(&uvm_swap_data_lock);
644 if (error)
645 kmem_free(spp, sizeof(*spp));
646 break;
647
648 case SWAP_ON:
649
650 /*
651 * check for duplicates. if none found, then insert a
652 * dummy entry on the list to prevent someone else from
653 * trying to enable this device while we are working on
654 * it.
655 */
656
657 priority = SCARG(uap, misc);
658 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
659 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
660 sdp->swd_flags = SWF_FAKE;
661 sdp->swd_vp = vp;
662 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
663 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
664 mutex_enter(&uvm_swap_data_lock);
665 if (swaplist_find(vp, false) != NULL) {
666 error = EBUSY;
667 mutex_exit(&uvm_swap_data_lock);
668 bufq_free(sdp->swd_tab);
669 kmem_free(sdp, sizeof(*sdp));
670 kmem_free(spp, sizeof(*spp));
671 break;
672 }
673 swaplist_insert(sdp, spp, priority);
674 mutex_exit(&uvm_swap_data_lock);
675
676 KASSERT(len > 0);
677 sdp->swd_pathlen = len;
678 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
679 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
680 panic("swapctl: copystr");
681
682 /*
683 * we've now got a FAKE placeholder in the swap list.
684 * now attempt to enable swap on it. if we fail, undo
685 * what we've done and kill the fake entry we just inserted.
686 * if swap_on is a success, it will clear the SWF_FAKE flag
687 */
688
689 if ((error = swap_on(l, sdp)) != 0) {
690 mutex_enter(&uvm_swap_data_lock);
691 (void) swaplist_find(vp, true); /* kill fake entry */
692 swaplist_trim();
693 mutex_exit(&uvm_swap_data_lock);
694 bufq_free(sdp->swd_tab);
695 kmem_free(sdp->swd_path, sdp->swd_pathlen);
696 kmem_free(sdp, sizeof(*sdp));
697 break;
698 }
699 break;
700
701 case SWAP_OFF:
702 mutex_enter(&uvm_swap_data_lock);
703 if ((sdp = swaplist_find(vp, false)) == NULL) {
704 mutex_exit(&uvm_swap_data_lock);
705 error = ENXIO;
706 break;
707 }
708
709 /*
710 * If a device isn't in use or enabled, we
711 * can't stop swapping from it (again).
712 */
713 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
714 mutex_exit(&uvm_swap_data_lock);
715 error = EBUSY;
716 break;
717 }
718
719 /*
720 * do the real work.
721 */
722 error = swap_off(l, sdp);
723 break;
724
725 default:
726 error = EINVAL;
727 }
728
729 /*
730 * done! release the ref gained by namei() and unlock.
731 */
732 vput(vp);
733 out:
734 rw_exit(&swap_syscall_lock);
735 kmem_free(userpath, SWAP_PATH_MAX);
736
737 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
738 return (error);
739 }
740
741 /*
742 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
743 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
744 * emulation to use it directly without going through sys_swapctl().
745 * The problem with using sys_swapctl() there is that it involves
746 * copying the swapent array to the stackgap, and this array's size
747 * is not known at build time. Hence it would not be possible to
748 * ensure it would fit in the stackgap in any case.
749 */
750 void
751 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
752 {
753 struct swappri *spp;
754 struct swapdev *sdp;
755 int count = 0;
756
757 KASSERT(rw_lock_held(&swap_syscall_lock));
758
759 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
760 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
761 int inuse;
762
763 if (sec-- <= 0)
764 break;
765
766 /*
767 * backwards compatibility for system call.
768 * For NetBSD 1.3 and 5.0, we have to use
769 * the 32 bit dev_t. For 5.0 and -current
770 * we have to add the path.
771 */
772 inuse = btodb((uint64_t)sdp->swd_npginuse <<
773 PAGE_SHIFT);
774
775 #if defined(COMPAT_13) || defined(COMPAT_50)
776 if (cmd == SWAP_STATS) {
777 #endif
778 sep->se_dev = sdp->swd_dev;
779 sep->se_flags = sdp->swd_flags;
780 sep->se_nblks = sdp->swd_nblks;
781 sep->se_inuse = inuse;
782 sep->se_priority = sdp->swd_priority;
783 KASSERT(sdp->swd_pathlen <
784 sizeof(sep->se_path));
785 strcpy(sep->se_path, sdp->swd_path);
786 sep++;
787 #if defined(COMPAT_13)
788 } else if (cmd == SWAP_STATS13) {
789 struct swapent13 *sep13 =
790 (struct swapent13 *)sep;
791
792 sep13->se13_dev = sdp->swd_dev;
793 sep13->se13_flags = sdp->swd_flags;
794 sep13->se13_nblks = sdp->swd_nblks;
795 sep13->se13_inuse = inuse;
796 sep13->se13_priority = sdp->swd_priority;
797 sep = (struct swapent *)(sep13 + 1);
798 #endif
799 #if defined(COMPAT_50)
800 } else if (cmd == SWAP_STATS50) {
801 struct swapent50 *sep50 =
802 (struct swapent50 *)sep;
803
804 sep50->se50_dev = sdp->swd_dev;
805 sep50->se50_flags = sdp->swd_flags;
806 sep50->se50_nblks = sdp->swd_nblks;
807 sep50->se50_inuse = inuse;
808 sep50->se50_priority = sdp->swd_priority;
809 KASSERT(sdp->swd_pathlen <
810 sizeof(sep50->se50_path));
811 strcpy(sep50->se50_path, sdp->swd_path);
812 sep = (struct swapent *)(sep50 + 1);
813 #endif
814 #if defined(COMPAT_13) || defined(COMPAT_50)
815 }
816 #endif
817 count++;
818 }
819 }
820 *retval = count;
821 }
822
823 /*
824 * swap_on: attempt to enable a swapdev for swapping. note that the
825 * swapdev is already on the global list, but disabled (marked
826 * SWF_FAKE).
827 *
828 * => we avoid the start of the disk (to protect disk labels)
829 * => we also avoid the miniroot, if we are swapping to root.
830 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
831 * if needed.
832 */
833 static int
834 swap_on(struct lwp *l, struct swapdev *sdp)
835 {
836 struct vnode *vp;
837 int error, npages, nblocks, size;
838 long addr;
839 vmem_addr_t result;
840 struct vattr va;
841 dev_t dev;
842 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
843
844 /*
845 * we want to enable swapping on sdp. the swd_vp contains
846 * the vnode we want (locked and ref'd), and the swd_dev
847 * contains the dev_t of the file, if it a block device.
848 */
849
850 vp = sdp->swd_vp;
851 dev = sdp->swd_dev;
852
853 /*
854 * open the swap file (mostly useful for block device files to
855 * let device driver know what is up).
856 *
857 * we skip the open/close for root on swap because the root
858 * has already been opened when root was mounted (mountroot).
859 */
860 if (vp != rootvp) {
861 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
862 return (error);
863 }
864
865 /* XXX this only works for block devices */
866 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
867
868 /*
869 * we now need to determine the size of the swap area. for
870 * block specials we can call the d_psize function.
871 * for normal files, we must stat [get attrs].
872 *
873 * we put the result in nblks.
874 * for normal files, we also want the filesystem block size
875 * (which we get with statfs).
876 */
877 switch (vp->v_type) {
878 case VBLK:
879 if ((nblocks = bdev_size(dev)) == -1) {
880 error = ENXIO;
881 goto bad;
882 }
883 break;
884
885 case VREG:
886 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
887 goto bad;
888 nblocks = (int)btodb(va.va_size);
889 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
890 /*
891 * limit the max # of outstanding I/O requests we issue
892 * at any one time. take it easy on NFS servers.
893 */
894 if (vp->v_tag == VT_NFS)
895 sdp->swd_maxactive = 2; /* XXX */
896 else
897 sdp->swd_maxactive = 8; /* XXX */
898 break;
899
900 default:
901 error = ENXIO;
902 goto bad;
903 }
904
905 /*
906 * save nblocks in a safe place and convert to pages.
907 */
908
909 sdp->swd_nblks = nblocks;
910 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
911
912 /*
913 * for block special files, we want to make sure that leave
914 * the disklabel and bootblocks alone, so we arrange to skip
915 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
916 * note that because of this the "size" can be less than the
917 * actual number of blocks on the device.
918 */
919 if (vp->v_type == VBLK) {
920 /* we use pages 1 to (size - 1) [inclusive] */
921 size = npages - 1;
922 addr = 1;
923 } else {
924 /* we use pages 0 to (size - 1) [inclusive] */
925 size = npages;
926 addr = 0;
927 }
928
929 /*
930 * make sure we have enough blocks for a reasonable sized swap
931 * area. we want at least one page.
932 */
933
934 if (size < 1) {
935 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
936 error = EINVAL;
937 goto bad;
938 }
939
940 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld", dev, size, addr, 0);
941
942 /*
943 * now we need to allocate an extent to manage this swap device
944 */
945
946 sdp->swd_blist = blist_create(npages);
947 /* mark all expect the `saved' region free. */
948 blist_free(sdp->swd_blist, addr, size);
949
950 /*
951 * if the vnode we are swapping to is the root vnode
952 * (i.e. we are swapping to the miniroot) then we want
953 * to make sure we don't overwrite it. do a statfs to
954 * find its size and skip over it.
955 */
956 if (vp == rootvp) {
957 struct mount *mp;
958 struct statvfs *sp;
959 int rootblocks, rootpages;
960
961 mp = rootvnode->v_mount;
962 sp = &mp->mnt_stat;
963 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
964 /*
965 * XXX: sp->f_blocks isn't the total number of
966 * blocks in the filesystem, it's the number of
967 * data blocks. so, our rootblocks almost
968 * definitely underestimates the total size
969 * of the filesystem - how badly depends on the
970 * details of the filesystem type. there isn't
971 * an obvious way to deal with this cleanly
972 * and perfectly, so for now we just pad our
973 * rootblocks estimate with an extra 5 percent.
974 */
975 rootblocks += (rootblocks >> 5) +
976 (rootblocks >> 6) +
977 (rootblocks >> 7);
978 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
979 if (rootpages > size)
980 panic("swap_on: miniroot larger than swap?");
981
982 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
983 panic("swap_on: unable to preserve miniroot");
984 }
985
986 size -= rootpages;
987 printf("Preserved %d pages of miniroot ", rootpages);
988 printf("leaving %d pages of swap\n", size);
989 }
990
991 /*
992 * add a ref to vp to reflect usage as a swap device.
993 */
994 vref(vp);
995
996 /*
997 * now add the new swapdev to the drum and enable.
998 */
999 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1000 if (error != 0)
1001 panic("swapdrum_add");
1002 /*
1003 * If this is the first regular swap create the workqueue.
1004 * => Protected by swap_syscall_lock.
1005 */
1006 if (vp->v_type != VBLK) {
1007 if (sw_reg_count++ == 0) {
1008 KASSERT(sw_reg_workqueue == NULL);
1009 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1010 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1011 panic("%s: workqueue_create failed", __func__);
1012 }
1013 }
1014
1015 sdp->swd_drumoffset = (int)result;
1016 sdp->swd_drumsize = npages;
1017 sdp->swd_npages = size;
1018 mutex_enter(&uvm_swap_data_lock);
1019 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1020 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1021 uvmexp.swpages += size;
1022 uvmexp.swpgavail += size;
1023 mutex_exit(&uvm_swap_data_lock);
1024 return (0);
1025
1026 /*
1027 * failure: clean up and return error.
1028 */
1029
1030 bad:
1031 if (sdp->swd_blist) {
1032 blist_destroy(sdp->swd_blist);
1033 }
1034 if (vp != rootvp) {
1035 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1036 }
1037 return (error);
1038 }
1039
1040 /*
1041 * swap_off: stop swapping on swapdev
1042 *
1043 * => swap data should be locked, we will unlock.
1044 */
1045 static int
1046 swap_off(struct lwp *l, struct swapdev *sdp)
1047 {
1048 int npages = sdp->swd_npages;
1049 int error = 0;
1050
1051 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1052 UVMHIST_LOG(pdhist, " dev=%x, npages=%d", sdp->swd_dev,npages,0,0);
1053
1054 /* disable the swap area being removed */
1055 sdp->swd_flags &= ~SWF_ENABLE;
1056 uvmexp.swpgavail -= npages;
1057 mutex_exit(&uvm_swap_data_lock);
1058
1059 /*
1060 * the idea is to find all the pages that are paged out to this
1061 * device, and page them all in. in uvm, swap-backed pageable
1062 * memory can take two forms: aobjs and anons. call the
1063 * swapoff hook for each subsystem to bring in pages.
1064 */
1065
1066 if (uao_swap_off(sdp->swd_drumoffset,
1067 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1068 amap_swap_off(sdp->swd_drumoffset,
1069 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1070 error = ENOMEM;
1071 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1072 error = EBUSY;
1073 }
1074
1075 if (error) {
1076 mutex_enter(&uvm_swap_data_lock);
1077 sdp->swd_flags |= SWF_ENABLE;
1078 uvmexp.swpgavail += npages;
1079 mutex_exit(&uvm_swap_data_lock);
1080
1081 return error;
1082 }
1083
1084 /*
1085 * If this is the last regular swap destroy the workqueue.
1086 * => Protected by swap_syscall_lock.
1087 */
1088 if (sdp->swd_vp->v_type != VBLK) {
1089 KASSERT(sw_reg_count > 0);
1090 KASSERT(sw_reg_workqueue != NULL);
1091 if (--sw_reg_count == 0) {
1092 workqueue_destroy(sw_reg_workqueue);
1093 sw_reg_workqueue = NULL;
1094 }
1095 }
1096
1097 /*
1098 * done with the vnode.
1099 * drop our ref on the vnode before calling VOP_CLOSE()
1100 * so that spec_close() can tell if this is the last close.
1101 */
1102 vrele(sdp->swd_vp);
1103 if (sdp->swd_vp != rootvp) {
1104 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1105 }
1106
1107 mutex_enter(&uvm_swap_data_lock);
1108 uvmexp.swpages -= npages;
1109 uvmexp.swpginuse -= sdp->swd_npgbad;
1110
1111 if (swaplist_find(sdp->swd_vp, true) == NULL)
1112 panic("%s: swapdev not in list", __func__);
1113 swaplist_trim();
1114 mutex_exit(&uvm_swap_data_lock);
1115
1116 /*
1117 * free all resources!
1118 */
1119 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1120 blist_destroy(sdp->swd_blist);
1121 bufq_free(sdp->swd_tab);
1122 kmem_free(sdp, sizeof(*sdp));
1123 return (0);
1124 }
1125
1126 void
1127 uvm_swap_shutdown(struct lwp *l)
1128 {
1129 struct swapdev *sdp;
1130 struct swappri *spp;
1131 struct vnode *vp;
1132 int error;
1133
1134 printf("turning of swap...");
1135 rw_enter(&swap_syscall_lock, RW_WRITER);
1136 mutex_enter(&uvm_swap_data_lock);
1137 again:
1138 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1139 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1140 if (sdp->swd_flags & SWF_FAKE)
1141 continue;
1142 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1143 continue;
1144 #ifdef DEBUG
1145 printf("\nturning off swap on %s...",
1146 sdp->swd_path);
1147 #endif
1148 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1149 error = EBUSY;
1150 vp = NULL;
1151 } else
1152 error = 0;
1153 if (!error) {
1154 error = swap_off(l, sdp);
1155 mutex_enter(&uvm_swap_data_lock);
1156 }
1157 if (error) {
1158 printf("stopping swap on %s failed "
1159 "with error %d\n", sdp->swd_path, error);
1160 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1161 swd_next);
1162 uvmexp.nswapdev--;
1163 swaplist_trim();
1164 if (vp)
1165 vput(vp);
1166 }
1167 goto again;
1168 }
1169 printf(" done\n");
1170 mutex_exit(&uvm_swap_data_lock);
1171 rw_exit(&swap_syscall_lock);
1172 }
1173
1174
1175 /*
1176 * /dev/drum interface and i/o functions
1177 */
1178
1179 /*
1180 * swstrategy: perform I/O on the drum
1181 *
1182 * => we must map the i/o request from the drum to the correct swapdev.
1183 */
1184 static void
1185 swstrategy(struct buf *bp)
1186 {
1187 struct swapdev *sdp;
1188 struct vnode *vp;
1189 int pageno, bn;
1190 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1191
1192 /*
1193 * convert block number to swapdev. note that swapdev can't
1194 * be yanked out from under us because we are holding resources
1195 * in it (i.e. the blocks we are doing I/O on).
1196 */
1197 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1198 mutex_enter(&uvm_swap_data_lock);
1199 sdp = swapdrum_getsdp(pageno);
1200 mutex_exit(&uvm_swap_data_lock);
1201 if (sdp == NULL) {
1202 bp->b_error = EINVAL;
1203 bp->b_resid = bp->b_bcount;
1204 biodone(bp);
1205 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1206 return;
1207 }
1208
1209 /*
1210 * convert drum page number to block number on this swapdev.
1211 */
1212
1213 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1214 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1215
1216 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld",
1217 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1218 sdp->swd_drumoffset, bn, bp->b_bcount);
1219
1220 /*
1221 * for block devices we finish up here.
1222 * for regular files we have to do more work which we delegate
1223 * to sw_reg_strategy().
1224 */
1225
1226 vp = sdp->swd_vp; /* swapdev vnode pointer */
1227 switch (vp->v_type) {
1228 default:
1229 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1230
1231 case VBLK:
1232
1233 /*
1234 * must convert "bp" from an I/O on /dev/drum to an I/O
1235 * on the swapdev (sdp).
1236 */
1237 bp->b_blkno = bn; /* swapdev block number */
1238 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1239
1240 /*
1241 * if we are doing a write, we have to redirect the i/o on
1242 * drum's v_numoutput counter to the swapdevs.
1243 */
1244 if ((bp->b_flags & B_READ) == 0) {
1245 mutex_enter(bp->b_objlock);
1246 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1247 mutex_exit(bp->b_objlock);
1248 mutex_enter(vp->v_interlock);
1249 vp->v_numoutput++; /* put it on swapdev */
1250 mutex_exit(vp->v_interlock);
1251 }
1252
1253 /*
1254 * finally plug in swapdev vnode and start I/O
1255 */
1256 bp->b_vp = vp;
1257 bp->b_objlock = vp->v_interlock;
1258 VOP_STRATEGY(vp, bp);
1259 return;
1260
1261 case VREG:
1262 /*
1263 * delegate to sw_reg_strategy function.
1264 */
1265 sw_reg_strategy(sdp, bp, bn);
1266 return;
1267 }
1268 /* NOTREACHED */
1269 }
1270
1271 /*
1272 * swread: the read function for the drum (just a call to physio)
1273 */
1274 /*ARGSUSED*/
1275 static int
1276 swread(dev_t dev, struct uio *uio, int ioflag)
1277 {
1278 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1279
1280 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1281 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1282 }
1283
1284 /*
1285 * swwrite: the write function for the drum (just a call to physio)
1286 */
1287 /*ARGSUSED*/
1288 static int
1289 swwrite(dev_t dev, struct uio *uio, int ioflag)
1290 {
1291 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1292
1293 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1294 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1295 }
1296
1297 const struct bdevsw swap_bdevsw = {
1298 .d_open = nullopen,
1299 .d_close = nullclose,
1300 .d_strategy = swstrategy,
1301 .d_ioctl = noioctl,
1302 .d_dump = nodump,
1303 .d_psize = nosize,
1304 .d_discard = nodiscard,
1305 .d_flag = D_OTHER
1306 };
1307
1308 const struct cdevsw swap_cdevsw = {
1309 .d_open = nullopen,
1310 .d_close = nullclose,
1311 .d_read = swread,
1312 .d_write = swwrite,
1313 .d_ioctl = noioctl,
1314 .d_stop = nostop,
1315 .d_tty = notty,
1316 .d_poll = nopoll,
1317 .d_mmap = nommap,
1318 .d_kqfilter = nokqfilter,
1319 .d_discard = nodiscard,
1320 .d_flag = D_OTHER,
1321 };
1322
1323 /*
1324 * sw_reg_strategy: handle swap i/o to regular files
1325 */
1326 static void
1327 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1328 {
1329 struct vnode *vp;
1330 struct vndxfer *vnx;
1331 daddr_t nbn;
1332 char *addr;
1333 off_t byteoff;
1334 int s, off, nra, error, sz, resid;
1335 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1336
1337 /*
1338 * allocate a vndxfer head for this transfer and point it to
1339 * our buffer.
1340 */
1341 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1342 vnx->vx_flags = VX_BUSY;
1343 vnx->vx_error = 0;
1344 vnx->vx_pending = 0;
1345 vnx->vx_bp = bp;
1346 vnx->vx_sdp = sdp;
1347
1348 /*
1349 * setup for main loop where we read filesystem blocks into
1350 * our buffer.
1351 */
1352 error = 0;
1353 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1354 addr = bp->b_data; /* current position in buffer */
1355 byteoff = dbtob((uint64_t)bn);
1356
1357 for (resid = bp->b_resid; resid; resid -= sz) {
1358 struct vndbuf *nbp;
1359
1360 /*
1361 * translate byteoffset into block number. return values:
1362 * vp = vnode of underlying device
1363 * nbn = new block number (on underlying vnode dev)
1364 * nra = num blocks we can read-ahead (excludes requested
1365 * block)
1366 */
1367 nra = 0;
1368 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1369 &vp, &nbn, &nra);
1370
1371 if (error == 0 && nbn == (daddr_t)-1) {
1372 /*
1373 * this used to just set error, but that doesn't
1374 * do the right thing. Instead, it causes random
1375 * memory errors. The panic() should remain until
1376 * this condition doesn't destabilize the system.
1377 */
1378 #if 1
1379 panic("%s: swap to sparse file", __func__);
1380 #else
1381 error = EIO; /* failure */
1382 #endif
1383 }
1384
1385 /*
1386 * punt if there was an error or a hole in the file.
1387 * we must wait for any i/o ops we have already started
1388 * to finish before returning.
1389 *
1390 * XXX we could deal with holes here but it would be
1391 * a hassle (in the write case).
1392 */
1393 if (error) {
1394 s = splbio();
1395 vnx->vx_error = error; /* pass error up */
1396 goto out;
1397 }
1398
1399 /*
1400 * compute the size ("sz") of this transfer (in bytes).
1401 */
1402 off = byteoff % sdp->swd_bsize;
1403 sz = (1 + nra) * sdp->swd_bsize - off;
1404 if (sz > resid)
1405 sz = resid;
1406
1407 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1408 "vp %p/%p offset 0x%x/0x%x",
1409 sdp->swd_vp, vp, byteoff, nbn);
1410
1411 /*
1412 * now get a buf structure. note that the vb_buf is
1413 * at the front of the nbp structure so that you can
1414 * cast pointers between the two structure easily.
1415 */
1416 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1417 buf_init(&nbp->vb_buf);
1418 nbp->vb_buf.b_flags = bp->b_flags;
1419 nbp->vb_buf.b_cflags = bp->b_cflags;
1420 nbp->vb_buf.b_oflags = bp->b_oflags;
1421 nbp->vb_buf.b_bcount = sz;
1422 nbp->vb_buf.b_bufsize = sz;
1423 nbp->vb_buf.b_error = 0;
1424 nbp->vb_buf.b_data = addr;
1425 nbp->vb_buf.b_lblkno = 0;
1426 nbp->vb_buf.b_blkno = nbn + btodb(off);
1427 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1428 nbp->vb_buf.b_iodone = sw_reg_biodone;
1429 nbp->vb_buf.b_vp = vp;
1430 nbp->vb_buf.b_objlock = vp->v_interlock;
1431 if (vp->v_type == VBLK) {
1432 nbp->vb_buf.b_dev = vp->v_rdev;
1433 }
1434
1435 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1436
1437 /*
1438 * Just sort by block number
1439 */
1440 s = splbio();
1441 if (vnx->vx_error != 0) {
1442 buf_destroy(&nbp->vb_buf);
1443 pool_put(&vndbuf_pool, nbp);
1444 goto out;
1445 }
1446 vnx->vx_pending++;
1447
1448 /* sort it in and start I/O if we are not over our limit */
1449 /* XXXAD locking */
1450 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1451 sw_reg_start(sdp);
1452 splx(s);
1453
1454 /*
1455 * advance to the next I/O
1456 */
1457 byteoff += sz;
1458 addr += sz;
1459 }
1460
1461 s = splbio();
1462
1463 out: /* Arrive here at splbio */
1464 vnx->vx_flags &= ~VX_BUSY;
1465 if (vnx->vx_pending == 0) {
1466 error = vnx->vx_error;
1467 pool_put(&vndxfer_pool, vnx);
1468 bp->b_error = error;
1469 biodone(bp);
1470 }
1471 splx(s);
1472 }
1473
1474 /*
1475 * sw_reg_start: start an I/O request on the requested swapdev
1476 *
1477 * => reqs are sorted by b_rawblkno (above)
1478 */
1479 static void
1480 sw_reg_start(struct swapdev *sdp)
1481 {
1482 struct buf *bp;
1483 struct vnode *vp;
1484 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1485
1486 /* recursion control */
1487 if ((sdp->swd_flags & SWF_BUSY) != 0)
1488 return;
1489
1490 sdp->swd_flags |= SWF_BUSY;
1491
1492 while (sdp->swd_active < sdp->swd_maxactive) {
1493 bp = bufq_get(sdp->swd_tab);
1494 if (bp == NULL)
1495 break;
1496 sdp->swd_active++;
1497
1498 UVMHIST_LOG(pdhist,
1499 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1500 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1501 vp = bp->b_vp;
1502 KASSERT(bp->b_objlock == vp->v_interlock);
1503 if ((bp->b_flags & B_READ) == 0) {
1504 mutex_enter(vp->v_interlock);
1505 vp->v_numoutput++;
1506 mutex_exit(vp->v_interlock);
1507 }
1508 VOP_STRATEGY(vp, bp);
1509 }
1510 sdp->swd_flags &= ~SWF_BUSY;
1511 }
1512
1513 /*
1514 * sw_reg_biodone: one of our i/o's has completed
1515 */
1516 static void
1517 sw_reg_biodone(struct buf *bp)
1518 {
1519 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1520 }
1521
1522 /*
1523 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1524 *
1525 * => note that we can recover the vndbuf struct by casting the buf ptr
1526 */
1527 static void
1528 sw_reg_iodone(struct work *wk, void *dummy)
1529 {
1530 struct vndbuf *vbp = (void *)wk;
1531 struct vndxfer *vnx = vbp->vb_xfer;
1532 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1533 struct swapdev *sdp = vnx->vx_sdp;
1534 int s, resid, error;
1535 KASSERT(&vbp->vb_buf.b_work == wk);
1536 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1537
1538 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1539 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1540 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1541 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1542
1543 /*
1544 * protect vbp at splbio and update.
1545 */
1546
1547 s = splbio();
1548 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1549 pbp->b_resid -= resid;
1550 vnx->vx_pending--;
1551
1552 if (vbp->vb_buf.b_error != 0) {
1553 /* pass error upward */
1554 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1555 UVMHIST_LOG(pdhist, " got error=%d !", error, 0, 0, 0);
1556 vnx->vx_error = error;
1557 }
1558
1559 /*
1560 * kill vbp structure
1561 */
1562 buf_destroy(&vbp->vb_buf);
1563 pool_put(&vndbuf_pool, vbp);
1564
1565 /*
1566 * wrap up this transaction if it has run to completion or, in
1567 * case of an error, when all auxiliary buffers have returned.
1568 */
1569 if (vnx->vx_error != 0) {
1570 /* pass error upward */
1571 error = vnx->vx_error;
1572 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1573 pbp->b_error = error;
1574 biodone(pbp);
1575 pool_put(&vndxfer_pool, vnx);
1576 }
1577 } else if (pbp->b_resid == 0) {
1578 KASSERT(vnx->vx_pending == 0);
1579 if ((vnx->vx_flags & VX_BUSY) == 0) {
1580 UVMHIST_LOG(pdhist, " iodone error=%d !",
1581 pbp, vnx->vx_error, 0, 0);
1582 biodone(pbp);
1583 pool_put(&vndxfer_pool, vnx);
1584 }
1585 }
1586
1587 /*
1588 * done! start next swapdev I/O if one is pending
1589 */
1590 sdp->swd_active--;
1591 sw_reg_start(sdp);
1592 splx(s);
1593 }
1594
1595
1596 /*
1597 * uvm_swap_alloc: allocate space on swap
1598 *
1599 * => allocation is done "round robin" down the priority list, as we
1600 * allocate in a priority we "rotate" the circle queue.
1601 * => space can be freed with uvm_swap_free
1602 * => we return the page slot number in /dev/drum (0 == invalid slot)
1603 * => we lock uvm_swap_data_lock
1604 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1605 */
1606 int
1607 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1608 {
1609 struct swapdev *sdp;
1610 struct swappri *spp;
1611 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1612
1613 /*
1614 * no swap devices configured yet? definite failure.
1615 */
1616 if (uvmexp.nswapdev < 1)
1617 return 0;
1618
1619 /*
1620 * XXXJAK: BEGIN HACK
1621 *
1622 * blist_alloc() in subr_blist.c will panic if we try to allocate
1623 * too many slots.
1624 */
1625 if (*nslots > BLIST_MAX_ALLOC) {
1626 if (__predict_false(lessok == false))
1627 return 0;
1628 *nslots = BLIST_MAX_ALLOC;
1629 }
1630 /* XXXJAK: END HACK */
1631
1632 /*
1633 * lock data lock, convert slots into blocks, and enter loop
1634 */
1635 mutex_enter(&uvm_swap_data_lock);
1636
1637 ReTry: /* XXXMRG */
1638 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1639 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1640 uint64_t result;
1641
1642 /* if it's not enabled, then we can't swap from it */
1643 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1644 continue;
1645 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1646 continue;
1647 result = blist_alloc(sdp->swd_blist, *nslots);
1648 if (result == BLIST_NONE) {
1649 continue;
1650 }
1651 KASSERT(result < sdp->swd_drumsize);
1652
1653 /*
1654 * successful allocation! now rotate the tailq.
1655 */
1656 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1657 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1658 sdp->swd_npginuse += *nslots;
1659 uvmexp.swpginuse += *nslots;
1660 mutex_exit(&uvm_swap_data_lock);
1661 /* done! return drum slot number */
1662 UVMHIST_LOG(pdhist,
1663 "success! returning %d slots starting at %d",
1664 *nslots, result + sdp->swd_drumoffset, 0, 0);
1665 return (result + sdp->swd_drumoffset);
1666 }
1667 }
1668
1669 /* XXXMRG: BEGIN HACK */
1670 if (*nslots > 1 && lessok) {
1671 *nslots = 1;
1672 /* XXXMRG: ugh! blist should support this for us */
1673 goto ReTry;
1674 }
1675 /* XXXMRG: END HACK */
1676
1677 mutex_exit(&uvm_swap_data_lock);
1678 return 0;
1679 }
1680
1681 /*
1682 * uvm_swapisfull: return true if most of available swap is allocated
1683 * and in use. we don't count some small portion as it may be inaccessible
1684 * to us at any given moment, for example if there is lock contention or if
1685 * pages are busy.
1686 */
1687 bool
1688 uvm_swapisfull(void)
1689 {
1690 int swpgonly;
1691 bool rv;
1692
1693 mutex_enter(&uvm_swap_data_lock);
1694 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1695 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1696 uvm_swapisfull_factor);
1697 rv = (swpgonly >= uvmexp.swpgavail);
1698 mutex_exit(&uvm_swap_data_lock);
1699
1700 return (rv);
1701 }
1702
1703 /*
1704 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1705 *
1706 * => we lock uvm_swap_data_lock
1707 */
1708 void
1709 uvm_swap_markbad(int startslot, int nslots)
1710 {
1711 struct swapdev *sdp;
1712 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1713
1714 mutex_enter(&uvm_swap_data_lock);
1715 sdp = swapdrum_getsdp(startslot);
1716 KASSERT(sdp != NULL);
1717
1718 /*
1719 * we just keep track of how many pages have been marked bad
1720 * in this device, to make everything add up in swap_off().
1721 * we assume here that the range of slots will all be within
1722 * one swap device.
1723 */
1724
1725 KASSERT(uvmexp.swpgonly >= nslots);
1726 uvmexp.swpgonly -= nslots;
1727 sdp->swd_npgbad += nslots;
1728 UVMHIST_LOG(pdhist, "now %d bad", sdp->swd_npgbad, 0,0,0);
1729 mutex_exit(&uvm_swap_data_lock);
1730 }
1731
1732 /*
1733 * uvm_swap_free: free swap slots
1734 *
1735 * => this can be all or part of an allocation made by uvm_swap_alloc
1736 * => we lock uvm_swap_data_lock
1737 */
1738 void
1739 uvm_swap_free(int startslot, int nslots)
1740 {
1741 struct swapdev *sdp;
1742 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1743
1744 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1745 startslot, 0, 0);
1746
1747 /*
1748 * ignore attempts to free the "bad" slot.
1749 */
1750
1751 if (startslot == SWSLOT_BAD) {
1752 return;
1753 }
1754
1755 /*
1756 * convert drum slot offset back to sdp, free the blocks
1757 * in the extent, and return. must hold pri lock to do
1758 * lookup and access the extent.
1759 */
1760
1761 mutex_enter(&uvm_swap_data_lock);
1762 sdp = swapdrum_getsdp(startslot);
1763 KASSERT(uvmexp.nswapdev >= 1);
1764 KASSERT(sdp != NULL);
1765 KASSERT(sdp->swd_npginuse >= nslots);
1766 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1767 sdp->swd_npginuse -= nslots;
1768 uvmexp.swpginuse -= nslots;
1769 mutex_exit(&uvm_swap_data_lock);
1770 }
1771
1772 /*
1773 * uvm_swap_put: put any number of pages into a contig place on swap
1774 *
1775 * => can be sync or async
1776 */
1777
1778 int
1779 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1780 {
1781 int error;
1782
1783 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1784 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1785 return error;
1786 }
1787
1788 /*
1789 * uvm_swap_get: get a single page from swap
1790 *
1791 * => usually a sync op (from fault)
1792 */
1793
1794 int
1795 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1796 {
1797 int error;
1798
1799 uvmexp.nswget++;
1800 KASSERT(flags & PGO_SYNCIO);
1801 if (swslot == SWSLOT_BAD) {
1802 return EIO;
1803 }
1804
1805 error = uvm_swap_io(&page, swslot, 1, B_READ |
1806 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1807 if (error == 0) {
1808
1809 /*
1810 * this page is no longer only in swap.
1811 */
1812
1813 mutex_enter(&uvm_swap_data_lock);
1814 KASSERT(uvmexp.swpgonly > 0);
1815 uvmexp.swpgonly--;
1816 mutex_exit(&uvm_swap_data_lock);
1817 }
1818 return error;
1819 }
1820
1821 /*
1822 * uvm_swap_io: do an i/o operation to swap
1823 */
1824
1825 static int
1826 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1827 {
1828 daddr_t startblk;
1829 struct buf *bp;
1830 vaddr_t kva;
1831 int error, mapinflags;
1832 bool write, async;
1833 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1834
1835 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1836 startslot, npages, flags, 0);
1837
1838 write = (flags & B_READ) == 0;
1839 async = (flags & B_ASYNC) != 0;
1840
1841 /*
1842 * allocate a buf for the i/o.
1843 */
1844
1845 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1846 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1847 if (bp == NULL) {
1848 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1849 return ENOMEM;
1850 }
1851
1852 /*
1853 * convert starting drum slot to block number
1854 */
1855
1856 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1857
1858 /*
1859 * first, map the pages into the kernel.
1860 */
1861
1862 mapinflags = !write ?
1863 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1864 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1865 kva = uvm_pagermapin(pps, npages, mapinflags);
1866
1867 /*
1868 * fill in the bp/sbp. we currently route our i/o through
1869 * /dev/drum's vnode [swapdev_vp].
1870 */
1871
1872 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1873 bp->b_flags = (flags & (B_READ|B_ASYNC));
1874 bp->b_proc = &proc0; /* XXX */
1875 bp->b_vnbufs.le_next = NOLIST;
1876 bp->b_data = (void *)kva;
1877 bp->b_blkno = startblk;
1878 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1879
1880 /*
1881 * bump v_numoutput (counter of number of active outputs).
1882 */
1883
1884 if (write) {
1885 mutex_enter(swapdev_vp->v_interlock);
1886 swapdev_vp->v_numoutput++;
1887 mutex_exit(swapdev_vp->v_interlock);
1888 }
1889
1890 /*
1891 * for async ops we must set up the iodone handler.
1892 */
1893
1894 if (async) {
1895 bp->b_iodone = uvm_aio_biodone;
1896 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1897 if (curlwp == uvm.pagedaemon_lwp)
1898 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1899 else
1900 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1901 } else {
1902 bp->b_iodone = NULL;
1903 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1904 }
1905 UVMHIST_LOG(pdhist,
1906 "about to start io: data = %p blkno = 0x%x, bcount = %ld",
1907 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1908
1909 /*
1910 * now we start the I/O, and if async, return.
1911 */
1912
1913 VOP_STRATEGY(swapdev_vp, bp);
1914 if (async)
1915 return 0;
1916
1917 /*
1918 * must be sync i/o. wait for it to finish
1919 */
1920
1921 error = biowait(bp);
1922
1923 /*
1924 * kill the pager mapping
1925 */
1926
1927 uvm_pagermapout(kva, npages);
1928
1929 /*
1930 * now dispose of the buf and we're done.
1931 */
1932
1933 if (write) {
1934 mutex_enter(swapdev_vp->v_interlock);
1935 vwakeup(bp);
1936 mutex_exit(swapdev_vp->v_interlock);
1937 }
1938 putiobuf(bp);
1939 UVMHIST_LOG(pdhist, "<- done (sync) error=%d", error, 0, 0, 0);
1940
1941 return (error);
1942 }
1943