uvm_swap.c revision 1.175 1 /* $NetBSD: uvm_swap.c,v 1.175 2017/10/28 00:37:13 pgoyette Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.175 2017/10/28 00:37:13 pgoyette Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * TAILQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* tailq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
180 * dev_t and has no se_path[] member.
181 */
182 struct swapent13 {
183 int32_t se13_dev; /* device id */
184 int se13_flags; /* flags */
185 int se13_nblks; /* total blocks */
186 int se13_inuse; /* blocks in use */
187 int se13_priority; /* priority of this device */
188 };
189
190 /*
191 * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
192 * dev_t.
193 */
194 struct swapent50 {
195 int32_t se50_dev; /* device id */
196 int se50_flags; /* flags */
197 int se50_nblks; /* total blocks */
198 int se50_inuse; /* blocks in use */
199 int se50_priority; /* priority of this device */
200 char se50_path[PATH_MAX+1]; /* path name */
201 };
202
203 /*
204 * We keep a of pool vndbuf's and vndxfer structures.
205 */
206 static struct pool vndxfer_pool, vndbuf_pool;
207
208 /*
209 * local variables
210 */
211 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
212
213 /* list of all active swap devices [by priority] */
214 LIST_HEAD(swap_priority, swappri);
215 static struct swap_priority swap_priority;
216
217 /* locks */
218 static krwlock_t swap_syscall_lock;
219
220 /* workqueue and use counter for swap to regular files */
221 static int sw_reg_count = 0;
222 static struct workqueue *sw_reg_workqueue;
223
224 /* tuneables */
225 u_int uvm_swapisfull_factor = 99;
226
227 /*
228 * prototypes
229 */
230 static struct swapdev *swapdrum_getsdp(int);
231
232 static struct swapdev *swaplist_find(struct vnode *, bool);
233 static void swaplist_insert(struct swapdev *,
234 struct swappri *, int);
235 static void swaplist_trim(void);
236
237 static int swap_on(struct lwp *, struct swapdev *);
238 static int swap_off(struct lwp *, struct swapdev *);
239
240 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
241 static void sw_reg_biodone(struct buf *);
242 static void sw_reg_iodone(struct work *wk, void *dummy);
243 static void sw_reg_start(struct swapdev *);
244
245 static int uvm_swap_io(struct vm_page **, int, int, int);
246
247 /*
248 * uvm_swap_init: init the swap system data structures and locks
249 *
250 * => called at boot time from init_main.c after the filesystems
251 * are brought up (which happens after uvm_init())
252 */
253 void
254 uvm_swap_init(void)
255 {
256 UVMHIST_FUNC("uvm_swap_init");
257
258 UVMHIST_CALLED(pdhist);
259 /*
260 * first, init the swap list, its counter, and its lock.
261 * then get a handle on the vnode for /dev/drum by using
262 * the its dev_t number ("swapdev", from MD conf.c).
263 */
264
265 LIST_INIT(&swap_priority);
266 uvmexp.nswapdev = 0;
267 rw_init(&swap_syscall_lock);
268 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
269
270 if (bdevvp(swapdev, &swapdev_vp))
271 panic("%s: can't get vnode for swap device", __func__);
272 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
273 panic("%s: can't lock swap device", __func__);
274 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
275 panic("%s: can't open swap device", __func__);
276 VOP_UNLOCK(swapdev_vp);
277
278 /*
279 * create swap block resource map to map /dev/drum. the range
280 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
281 * that block 0 is reserved (used to indicate an allocation
282 * failure, or no allocation).
283 */
284 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
285 VM_NOSLEEP, IPL_NONE);
286 if (swapmap == 0) {
287 panic("%s: vmem_create failed", __func__);
288 }
289
290 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
291 NULL, IPL_BIO);
292 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
293 NULL, IPL_BIO);
294
295 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
296 }
297
298 /*
299 * swaplist functions: functions that operate on the list of swap
300 * devices on the system.
301 */
302
303 /*
304 * swaplist_insert: insert swap device "sdp" into the global list
305 *
306 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
307 * => caller must provide a newly allocated swappri structure (we will
308 * FREE it if we don't need it... this it to prevent allocation
309 * blocking here while adding swap)
310 */
311 static void
312 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
313 {
314 struct swappri *spp, *pspp;
315 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
316
317 /*
318 * find entry at or after which to insert the new device.
319 */
320 pspp = NULL;
321 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
322 if (priority <= spp->spi_priority)
323 break;
324 pspp = spp;
325 }
326
327 /*
328 * new priority?
329 */
330 if (spp == NULL || spp->spi_priority != priority) {
331 spp = newspp; /* use newspp! */
332 UVMHIST_LOG(pdhist, "created new swappri = %jd",
333 priority, 0, 0, 0);
334
335 spp->spi_priority = priority;
336 TAILQ_INIT(&spp->spi_swapdev);
337
338 if (pspp)
339 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
340 else
341 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
342 } else {
343 /* we don't need a new priority structure, free it */
344 kmem_free(newspp, sizeof(*newspp));
345 }
346
347 /*
348 * priority found (or created). now insert on the priority's
349 * tailq list and bump the total number of swapdevs.
350 */
351 sdp->swd_priority = priority;
352 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
353 uvmexp.nswapdev++;
354 }
355
356 /*
357 * swaplist_find: find and optionally remove a swap device from the
358 * global list.
359 *
360 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
361 * => we return the swapdev we found (and removed)
362 */
363 static struct swapdev *
364 swaplist_find(struct vnode *vp, bool remove)
365 {
366 struct swapdev *sdp;
367 struct swappri *spp;
368
369 /*
370 * search the lists for the requested vp
371 */
372
373 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
374 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
375 if (sdp->swd_vp == vp) {
376 if (remove) {
377 TAILQ_REMOVE(&spp->spi_swapdev,
378 sdp, swd_next);
379 uvmexp.nswapdev--;
380 }
381 return(sdp);
382 }
383 }
384 }
385 return (NULL);
386 }
387
388 /*
389 * swaplist_trim: scan priority list for empty priority entries and kill
390 * them.
391 *
392 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
393 */
394 static void
395 swaplist_trim(void)
396 {
397 struct swappri *spp, *nextspp;
398
399 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
400 if (!TAILQ_EMPTY(&spp->spi_swapdev))
401 continue;
402 LIST_REMOVE(spp, spi_swappri);
403 kmem_free(spp, sizeof(*spp));
404 }
405 }
406
407 /*
408 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
409 * to the "swapdev" that maps that section of the drum.
410 *
411 * => each swapdev takes one big contig chunk of the drum
412 * => caller must hold uvm_swap_data_lock
413 */
414 static struct swapdev *
415 swapdrum_getsdp(int pgno)
416 {
417 struct swapdev *sdp;
418 struct swappri *spp;
419
420 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
421 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
422 if (sdp->swd_flags & SWF_FAKE)
423 continue;
424 if (pgno >= sdp->swd_drumoffset &&
425 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
426 return sdp;
427 }
428 }
429 }
430 return NULL;
431 }
432
433 void swapsys_lock(krw_t op)
434 {
435 rw_enter(&swap_syscall_lock, op);
436 }
437
438 void swapsys_unlock(void)
439 {
440 rw_exit(&swap_syscall_lock);
441 }
442
443 /*
444 * sys_swapctl: main entry point for swapctl(2) system call
445 * [with two helper functions: swap_on and swap_off]
446 */
447 int
448 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
449 {
450 /* {
451 syscallarg(int) cmd;
452 syscallarg(void *) arg;
453 syscallarg(int) misc;
454 } */
455 struct vnode *vp;
456 struct nameidata nd;
457 struct swappri *spp;
458 struct swapdev *sdp;
459 struct swapent *sep;
460 #define SWAP_PATH_MAX (PATH_MAX + 1)
461 char *userpath;
462 size_t len = 0;
463 int error, misc;
464 int priority;
465 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
466
467 /*
468 * we handle the non-priv NSWAP and STATS request first.
469 *
470 * SWAP_NSWAP: return number of config'd swap devices
471 * [can also be obtained with uvmexp sysctl]
472 */
473 if (SCARG(uap, cmd) == SWAP_NSWAP) {
474 const int nswapdev = uvmexp.nswapdev;
475 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
476 0, 0, 0);
477 *retval = nswapdev;
478 return 0;
479 }
480
481 misc = SCARG(uap, misc);
482 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
483
484 /*
485 * ensure serialized syscall access by grabbing the swap_syscall_lock
486 */
487 rw_enter(&swap_syscall_lock, RW_WRITER);
488
489 /*
490 * SWAP_STATS: get stats on current # of configured swap devs
491 *
492 * note that the swap_priority list can't change as long
493 * as we are holding the swap_syscall_lock. we don't want
494 * to grab the uvm_swap_data_lock because we may fault&sleep during
495 * copyout() and we don't want to be holding that lock then!
496 */
497 if (SCARG(uap, cmd) == SWAP_STATS
498 #if defined(COMPAT_50)
499 || SCARG(uap, cmd) == SWAP_STATS50
500 #endif
501 #if defined(COMPAT_13)
502 || SCARG(uap, cmd) == SWAP_STATS13
503 #endif
504 ) {
505 if (misc < 0) {
506 error = EINVAL;
507 goto out;
508 }
509 if (misc == 0 || uvmexp.nswapdev == 0) {
510 error = 0;
511 goto out;
512 }
513 /* Make sure userland cannot exhaust kernel memory */
514 if ((size_t)misc > (size_t)uvmexp.nswapdev)
515 misc = uvmexp.nswapdev;
516 KASSERT(misc > 0);
517 #if defined(COMPAT_13)
518 if (SCARG(uap, cmd) == SWAP_STATS13)
519 len = sizeof(struct swapent13) * misc;
520 else
521 #endif
522 #if defined(COMPAT_50)
523 if (SCARG(uap, cmd) == SWAP_STATS50)
524 len = sizeof(struct swapent50) * misc;
525 else
526 #endif
527 len = sizeof(struct swapent) * misc;
528 sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
529
530 uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
531 error = copyout(sep, SCARG(uap, arg), len);
532
533 kmem_free(sep, len);
534 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
535 goto out;
536 }
537 if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
538 dev_t *devp = (dev_t *)SCARG(uap, arg);
539
540 error = copyout(&dumpdev, devp, sizeof(dumpdev));
541 goto out;
542 }
543
544 /*
545 * all other requests require superuser privs. verify.
546 */
547 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
548 0, NULL, NULL, NULL)))
549 goto out;
550
551 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
552 /* drop the current dump device */
553 dumpdev = NODEV;
554 dumpcdev = NODEV;
555 cpu_dumpconf();
556 goto out;
557 }
558
559 /*
560 * at this point we expect a path name in arg. we will
561 * use namei() to gain a vnode reference (vref), and lock
562 * the vnode (VOP_LOCK).
563 *
564 * XXX: a NULL arg means use the root vnode pointer (e.g. for
565 * miniroot)
566 */
567 if (SCARG(uap, arg) == NULL) {
568 vp = rootvp; /* miniroot */
569 vref(vp);
570 if (vn_lock(vp, LK_EXCLUSIVE)) {
571 vrele(vp);
572 error = EBUSY;
573 goto out;
574 }
575 if (SCARG(uap, cmd) == SWAP_ON &&
576 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
577 panic("swapctl: miniroot copy failed");
578 } else {
579 struct pathbuf *pb;
580
581 /*
582 * This used to allow copying in one extra byte
583 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
584 * This was completely pointless because if anyone
585 * used that extra byte namei would fail with
586 * ENAMETOOLONG anyway, so I've removed the excess
587 * logic. - dholland 20100215
588 */
589
590 error = pathbuf_copyin(SCARG(uap, arg), &pb);
591 if (error) {
592 goto out;
593 }
594 if (SCARG(uap, cmd) == SWAP_ON) {
595 /* get a copy of the string */
596 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
597 len = strlen(userpath) + 1;
598 }
599 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
600 if ((error = namei(&nd))) {
601 pathbuf_destroy(pb);
602 goto out;
603 }
604 vp = nd.ni_vp;
605 pathbuf_destroy(pb);
606 }
607 /* note: "vp" is referenced and locked */
608
609 error = 0; /* assume no error */
610 switch(SCARG(uap, cmd)) {
611
612 case SWAP_DUMPDEV:
613 if (vp->v_type != VBLK) {
614 error = ENOTBLK;
615 break;
616 }
617 if (bdevsw_lookup(vp->v_rdev)) {
618 dumpdev = vp->v_rdev;
619 dumpcdev = devsw_blk2chr(dumpdev);
620 } else
621 dumpdev = NODEV;
622 cpu_dumpconf();
623 break;
624
625 case SWAP_CTL:
626 /*
627 * get new priority, remove old entry (if any) and then
628 * reinsert it in the correct place. finally, prune out
629 * any empty priority structures.
630 */
631 priority = SCARG(uap, misc);
632 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
633 mutex_enter(&uvm_swap_data_lock);
634 if ((sdp = swaplist_find(vp, true)) == NULL) {
635 error = ENOENT;
636 } else {
637 swaplist_insert(sdp, spp, priority);
638 swaplist_trim();
639 }
640 mutex_exit(&uvm_swap_data_lock);
641 if (error)
642 kmem_free(spp, sizeof(*spp));
643 break;
644
645 case SWAP_ON:
646
647 /*
648 * check for duplicates. if none found, then insert a
649 * dummy entry on the list to prevent someone else from
650 * trying to enable this device while we are working on
651 * it.
652 */
653
654 priority = SCARG(uap, misc);
655 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
656 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
657 sdp->swd_flags = SWF_FAKE;
658 sdp->swd_vp = vp;
659 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
660 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
661 mutex_enter(&uvm_swap_data_lock);
662 if (swaplist_find(vp, false) != NULL) {
663 error = EBUSY;
664 mutex_exit(&uvm_swap_data_lock);
665 bufq_free(sdp->swd_tab);
666 kmem_free(sdp, sizeof(*sdp));
667 kmem_free(spp, sizeof(*spp));
668 break;
669 }
670 swaplist_insert(sdp, spp, priority);
671 mutex_exit(&uvm_swap_data_lock);
672
673 KASSERT(len > 0);
674 sdp->swd_pathlen = len;
675 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
676 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
677 panic("swapctl: copystr");
678
679 /*
680 * we've now got a FAKE placeholder in the swap list.
681 * now attempt to enable swap on it. if we fail, undo
682 * what we've done and kill the fake entry we just inserted.
683 * if swap_on is a success, it will clear the SWF_FAKE flag
684 */
685
686 if ((error = swap_on(l, sdp)) != 0) {
687 mutex_enter(&uvm_swap_data_lock);
688 (void) swaplist_find(vp, true); /* kill fake entry */
689 swaplist_trim();
690 mutex_exit(&uvm_swap_data_lock);
691 bufq_free(sdp->swd_tab);
692 kmem_free(sdp->swd_path, sdp->swd_pathlen);
693 kmem_free(sdp, sizeof(*sdp));
694 break;
695 }
696 break;
697
698 case SWAP_OFF:
699 mutex_enter(&uvm_swap_data_lock);
700 if ((sdp = swaplist_find(vp, false)) == NULL) {
701 mutex_exit(&uvm_swap_data_lock);
702 error = ENXIO;
703 break;
704 }
705
706 /*
707 * If a device isn't in use or enabled, we
708 * can't stop swapping from it (again).
709 */
710 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
711 mutex_exit(&uvm_swap_data_lock);
712 error = EBUSY;
713 break;
714 }
715
716 /*
717 * do the real work.
718 */
719 error = swap_off(l, sdp);
720 break;
721
722 default:
723 error = EINVAL;
724 }
725
726 /*
727 * done! release the ref gained by namei() and unlock.
728 */
729 vput(vp);
730 out:
731 rw_exit(&swap_syscall_lock);
732 kmem_free(userpath, SWAP_PATH_MAX);
733
734 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
735 return (error);
736 }
737
738 /*
739 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
740 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
741 * emulation to use it directly without going through sys_swapctl().
742 * The problem with using sys_swapctl() there is that it involves
743 * copying the swapent array to the stackgap, and this array's size
744 * is not known at build time. Hence it would not be possible to
745 * ensure it would fit in the stackgap in any case.
746 */
747 void
748 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
749 {
750 struct swappri *spp;
751 struct swapdev *sdp;
752 int count = 0;
753
754 KASSERT(rw_lock_held(&swap_syscall_lock));
755
756 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
757 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
758 int inuse;
759
760 if (sec-- <= 0)
761 break;
762
763 /*
764 * backwards compatibility for system call.
765 * For NetBSD 1.3 and 5.0, we have to use
766 * the 32 bit dev_t. For 5.0 and -current
767 * we have to add the path.
768 */
769 inuse = btodb((uint64_t)sdp->swd_npginuse <<
770 PAGE_SHIFT);
771
772 #if defined(COMPAT_13) || defined(COMPAT_50)
773 if (cmd == SWAP_STATS) {
774 #endif
775 sep->se_dev = sdp->swd_dev;
776 sep->se_flags = sdp->swd_flags;
777 sep->se_nblks = sdp->swd_nblks;
778 sep->se_inuse = inuse;
779 sep->se_priority = sdp->swd_priority;
780 KASSERT(sdp->swd_pathlen <
781 sizeof(sep->se_path));
782 strcpy(sep->se_path, sdp->swd_path);
783 sep++;
784 #if defined(COMPAT_13)
785 } else if (cmd == SWAP_STATS13) {
786 struct swapent13 *sep13 =
787 (struct swapent13 *)sep;
788
789 sep13->se13_dev = sdp->swd_dev;
790 sep13->se13_flags = sdp->swd_flags;
791 sep13->se13_nblks = sdp->swd_nblks;
792 sep13->se13_inuse = inuse;
793 sep13->se13_priority = sdp->swd_priority;
794 sep = (struct swapent *)(sep13 + 1);
795 #endif
796 #if defined(COMPAT_50)
797 } else if (cmd == SWAP_STATS50) {
798 struct swapent50 *sep50 =
799 (struct swapent50 *)sep;
800
801 sep50->se50_dev = sdp->swd_dev;
802 sep50->se50_flags = sdp->swd_flags;
803 sep50->se50_nblks = sdp->swd_nblks;
804 sep50->se50_inuse = inuse;
805 sep50->se50_priority = sdp->swd_priority;
806 KASSERT(sdp->swd_pathlen <
807 sizeof(sep50->se50_path));
808 strcpy(sep50->se50_path, sdp->swd_path);
809 sep = (struct swapent *)(sep50 + 1);
810 #endif
811 #if defined(COMPAT_13) || defined(COMPAT_50)
812 }
813 #endif
814 count++;
815 }
816 }
817 *retval = count;
818 }
819
820 /*
821 * swap_on: attempt to enable a swapdev for swapping. note that the
822 * swapdev is already on the global list, but disabled (marked
823 * SWF_FAKE).
824 *
825 * => we avoid the start of the disk (to protect disk labels)
826 * => we also avoid the miniroot, if we are swapping to root.
827 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
828 * if needed.
829 */
830 static int
831 swap_on(struct lwp *l, struct swapdev *sdp)
832 {
833 struct vnode *vp;
834 int error, npages, nblocks, size;
835 long addr;
836 vmem_addr_t result;
837 struct vattr va;
838 dev_t dev;
839 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
840
841 /*
842 * we want to enable swapping on sdp. the swd_vp contains
843 * the vnode we want (locked and ref'd), and the swd_dev
844 * contains the dev_t of the file, if it a block device.
845 */
846
847 vp = sdp->swd_vp;
848 dev = sdp->swd_dev;
849
850 /*
851 * open the swap file (mostly useful for block device files to
852 * let device driver know what is up).
853 *
854 * we skip the open/close for root on swap because the root
855 * has already been opened when root was mounted (mountroot).
856 */
857 if (vp != rootvp) {
858 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
859 return (error);
860 }
861
862 /* XXX this only works for block devices */
863 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
864
865 /*
866 * we now need to determine the size of the swap area. for
867 * block specials we can call the d_psize function.
868 * for normal files, we must stat [get attrs].
869 *
870 * we put the result in nblks.
871 * for normal files, we also want the filesystem block size
872 * (which we get with statfs).
873 */
874 switch (vp->v_type) {
875 case VBLK:
876 if ((nblocks = bdev_size(dev)) == -1) {
877 error = ENXIO;
878 goto bad;
879 }
880 break;
881
882 case VREG:
883 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
884 goto bad;
885 nblocks = (int)btodb(va.va_size);
886 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
887 /*
888 * limit the max # of outstanding I/O requests we issue
889 * at any one time. take it easy on NFS servers.
890 */
891 if (vp->v_tag == VT_NFS)
892 sdp->swd_maxactive = 2; /* XXX */
893 else
894 sdp->swd_maxactive = 8; /* XXX */
895 break;
896
897 default:
898 error = ENXIO;
899 goto bad;
900 }
901
902 /*
903 * save nblocks in a safe place and convert to pages.
904 */
905
906 sdp->swd_nblks = nblocks;
907 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
908
909 /*
910 * for block special files, we want to make sure that leave
911 * the disklabel and bootblocks alone, so we arrange to skip
912 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
913 * note that because of this the "size" can be less than the
914 * actual number of blocks on the device.
915 */
916 if (vp->v_type == VBLK) {
917 /* we use pages 1 to (size - 1) [inclusive] */
918 size = npages - 1;
919 addr = 1;
920 } else {
921 /* we use pages 0 to (size - 1) [inclusive] */
922 size = npages;
923 addr = 0;
924 }
925
926 /*
927 * make sure we have enough blocks for a reasonable sized swap
928 * area. we want at least one page.
929 */
930
931 if (size < 1) {
932 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
933 error = EINVAL;
934 goto bad;
935 }
936
937 UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
938
939 /*
940 * now we need to allocate an extent to manage this swap device
941 */
942
943 sdp->swd_blist = blist_create(npages);
944 /* mark all expect the `saved' region free. */
945 blist_free(sdp->swd_blist, addr, size);
946
947 /*
948 * if the vnode we are swapping to is the root vnode
949 * (i.e. we are swapping to the miniroot) then we want
950 * to make sure we don't overwrite it. do a statfs to
951 * find its size and skip over it.
952 */
953 if (vp == rootvp) {
954 struct mount *mp;
955 struct statvfs *sp;
956 int rootblocks, rootpages;
957
958 mp = rootvnode->v_mount;
959 sp = &mp->mnt_stat;
960 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
961 /*
962 * XXX: sp->f_blocks isn't the total number of
963 * blocks in the filesystem, it's the number of
964 * data blocks. so, our rootblocks almost
965 * definitely underestimates the total size
966 * of the filesystem - how badly depends on the
967 * details of the filesystem type. there isn't
968 * an obvious way to deal with this cleanly
969 * and perfectly, so for now we just pad our
970 * rootblocks estimate with an extra 5 percent.
971 */
972 rootblocks += (rootblocks >> 5) +
973 (rootblocks >> 6) +
974 (rootblocks >> 7);
975 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
976 if (rootpages > size)
977 panic("swap_on: miniroot larger than swap?");
978
979 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
980 panic("swap_on: unable to preserve miniroot");
981 }
982
983 size -= rootpages;
984 printf("Preserved %d pages of miniroot ", rootpages);
985 printf("leaving %d pages of swap\n", size);
986 }
987
988 /*
989 * add a ref to vp to reflect usage as a swap device.
990 */
991 vref(vp);
992
993 /*
994 * now add the new swapdev to the drum and enable.
995 */
996 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
997 if (error != 0)
998 panic("swapdrum_add");
999 /*
1000 * If this is the first regular swap create the workqueue.
1001 * => Protected by swap_syscall_lock.
1002 */
1003 if (vp->v_type != VBLK) {
1004 if (sw_reg_count++ == 0) {
1005 KASSERT(sw_reg_workqueue == NULL);
1006 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1007 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1008 panic("%s: workqueue_create failed", __func__);
1009 }
1010 }
1011
1012 sdp->swd_drumoffset = (int)result;
1013 sdp->swd_drumsize = npages;
1014 sdp->swd_npages = size;
1015 mutex_enter(&uvm_swap_data_lock);
1016 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1017 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1018 uvmexp.swpages += size;
1019 uvmexp.swpgavail += size;
1020 mutex_exit(&uvm_swap_data_lock);
1021 return (0);
1022
1023 /*
1024 * failure: clean up and return error.
1025 */
1026
1027 bad:
1028 if (sdp->swd_blist) {
1029 blist_destroy(sdp->swd_blist);
1030 }
1031 if (vp != rootvp) {
1032 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1033 }
1034 return (error);
1035 }
1036
1037 /*
1038 * swap_off: stop swapping on swapdev
1039 *
1040 * => swap data should be locked, we will unlock.
1041 */
1042 static int
1043 swap_off(struct lwp *l, struct swapdev *sdp)
1044 {
1045 int npages = sdp->swd_npages;
1046 int error = 0;
1047
1048 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1049 UVMHIST_LOG(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1050
1051 /* disable the swap area being removed */
1052 sdp->swd_flags &= ~SWF_ENABLE;
1053 uvmexp.swpgavail -= npages;
1054 mutex_exit(&uvm_swap_data_lock);
1055
1056 /*
1057 * the idea is to find all the pages that are paged out to this
1058 * device, and page them all in. in uvm, swap-backed pageable
1059 * memory can take two forms: aobjs and anons. call the
1060 * swapoff hook for each subsystem to bring in pages.
1061 */
1062
1063 if (uao_swap_off(sdp->swd_drumoffset,
1064 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1065 amap_swap_off(sdp->swd_drumoffset,
1066 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1067 error = ENOMEM;
1068 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1069 error = EBUSY;
1070 }
1071
1072 if (error) {
1073 mutex_enter(&uvm_swap_data_lock);
1074 sdp->swd_flags |= SWF_ENABLE;
1075 uvmexp.swpgavail += npages;
1076 mutex_exit(&uvm_swap_data_lock);
1077
1078 return error;
1079 }
1080
1081 /*
1082 * If this is the last regular swap destroy the workqueue.
1083 * => Protected by swap_syscall_lock.
1084 */
1085 if (sdp->swd_vp->v_type != VBLK) {
1086 KASSERT(sw_reg_count > 0);
1087 KASSERT(sw_reg_workqueue != NULL);
1088 if (--sw_reg_count == 0) {
1089 workqueue_destroy(sw_reg_workqueue);
1090 sw_reg_workqueue = NULL;
1091 }
1092 }
1093
1094 /*
1095 * done with the vnode.
1096 * drop our ref on the vnode before calling VOP_CLOSE()
1097 * so that spec_close() can tell if this is the last close.
1098 */
1099 vrele(sdp->swd_vp);
1100 if (sdp->swd_vp != rootvp) {
1101 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1102 }
1103
1104 mutex_enter(&uvm_swap_data_lock);
1105 uvmexp.swpages -= npages;
1106 uvmexp.swpginuse -= sdp->swd_npgbad;
1107
1108 if (swaplist_find(sdp->swd_vp, true) == NULL)
1109 panic("%s: swapdev not in list", __func__);
1110 swaplist_trim();
1111 mutex_exit(&uvm_swap_data_lock);
1112
1113 /*
1114 * free all resources!
1115 */
1116 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1117 blist_destroy(sdp->swd_blist);
1118 bufq_free(sdp->swd_tab);
1119 kmem_free(sdp, sizeof(*sdp));
1120 return (0);
1121 }
1122
1123 void
1124 uvm_swap_shutdown(struct lwp *l)
1125 {
1126 struct swapdev *sdp;
1127 struct swappri *spp;
1128 struct vnode *vp;
1129 int error;
1130
1131 printf("turning of swap...");
1132 rw_enter(&swap_syscall_lock, RW_WRITER);
1133 mutex_enter(&uvm_swap_data_lock);
1134 again:
1135 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1136 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1137 if (sdp->swd_flags & SWF_FAKE)
1138 continue;
1139 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1140 continue;
1141 #ifdef DEBUG
1142 printf("\nturning off swap on %s...",
1143 sdp->swd_path);
1144 #endif
1145 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1146 error = EBUSY;
1147 vp = NULL;
1148 } else
1149 error = 0;
1150 if (!error) {
1151 error = swap_off(l, sdp);
1152 mutex_enter(&uvm_swap_data_lock);
1153 }
1154 if (error) {
1155 printf("stopping swap on %s failed "
1156 "with error %d\n", sdp->swd_path, error);
1157 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1158 swd_next);
1159 uvmexp.nswapdev--;
1160 swaplist_trim();
1161 if (vp)
1162 vput(vp);
1163 }
1164 goto again;
1165 }
1166 printf(" done\n");
1167 mutex_exit(&uvm_swap_data_lock);
1168 rw_exit(&swap_syscall_lock);
1169 }
1170
1171
1172 /*
1173 * /dev/drum interface and i/o functions
1174 */
1175
1176 /*
1177 * swstrategy: perform I/O on the drum
1178 *
1179 * => we must map the i/o request from the drum to the correct swapdev.
1180 */
1181 static void
1182 swstrategy(struct buf *bp)
1183 {
1184 struct swapdev *sdp;
1185 struct vnode *vp;
1186 int pageno, bn;
1187 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1188
1189 /*
1190 * convert block number to swapdev. note that swapdev can't
1191 * be yanked out from under us because we are holding resources
1192 * in it (i.e. the blocks we are doing I/O on).
1193 */
1194 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1195 mutex_enter(&uvm_swap_data_lock);
1196 sdp = swapdrum_getsdp(pageno);
1197 mutex_exit(&uvm_swap_data_lock);
1198 if (sdp == NULL) {
1199 bp->b_error = EINVAL;
1200 bp->b_resid = bp->b_bcount;
1201 biodone(bp);
1202 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1203 return;
1204 }
1205
1206 /*
1207 * convert drum page number to block number on this swapdev.
1208 */
1209
1210 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1211 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1212
1213 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1214 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1215 sdp->swd_drumoffset, bn, bp->b_bcount);
1216
1217 /*
1218 * for block devices we finish up here.
1219 * for regular files we have to do more work which we delegate
1220 * to sw_reg_strategy().
1221 */
1222
1223 vp = sdp->swd_vp; /* swapdev vnode pointer */
1224 switch (vp->v_type) {
1225 default:
1226 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1227
1228 case VBLK:
1229
1230 /*
1231 * must convert "bp" from an I/O on /dev/drum to an I/O
1232 * on the swapdev (sdp).
1233 */
1234 bp->b_blkno = bn; /* swapdev block number */
1235 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1236
1237 /*
1238 * if we are doing a write, we have to redirect the i/o on
1239 * drum's v_numoutput counter to the swapdevs.
1240 */
1241 if ((bp->b_flags & B_READ) == 0) {
1242 mutex_enter(bp->b_objlock);
1243 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1244 mutex_exit(bp->b_objlock);
1245 mutex_enter(vp->v_interlock);
1246 vp->v_numoutput++; /* put it on swapdev */
1247 mutex_exit(vp->v_interlock);
1248 }
1249
1250 /*
1251 * finally plug in swapdev vnode and start I/O
1252 */
1253 bp->b_vp = vp;
1254 bp->b_objlock = vp->v_interlock;
1255 VOP_STRATEGY(vp, bp);
1256 return;
1257
1258 case VREG:
1259 /*
1260 * delegate to sw_reg_strategy function.
1261 */
1262 sw_reg_strategy(sdp, bp, bn);
1263 return;
1264 }
1265 /* NOTREACHED */
1266 }
1267
1268 /*
1269 * swread: the read function for the drum (just a call to physio)
1270 */
1271 /*ARGSUSED*/
1272 static int
1273 swread(dev_t dev, struct uio *uio, int ioflag)
1274 {
1275 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1276
1277 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1278 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1279 }
1280
1281 /*
1282 * swwrite: the write function for the drum (just a call to physio)
1283 */
1284 /*ARGSUSED*/
1285 static int
1286 swwrite(dev_t dev, struct uio *uio, int ioflag)
1287 {
1288 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1289
1290 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1291 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1292 }
1293
1294 const struct bdevsw swap_bdevsw = {
1295 .d_open = nullopen,
1296 .d_close = nullclose,
1297 .d_strategy = swstrategy,
1298 .d_ioctl = noioctl,
1299 .d_dump = nodump,
1300 .d_psize = nosize,
1301 .d_discard = nodiscard,
1302 .d_flag = D_OTHER
1303 };
1304
1305 const struct cdevsw swap_cdevsw = {
1306 .d_open = nullopen,
1307 .d_close = nullclose,
1308 .d_read = swread,
1309 .d_write = swwrite,
1310 .d_ioctl = noioctl,
1311 .d_stop = nostop,
1312 .d_tty = notty,
1313 .d_poll = nopoll,
1314 .d_mmap = nommap,
1315 .d_kqfilter = nokqfilter,
1316 .d_discard = nodiscard,
1317 .d_flag = D_OTHER,
1318 };
1319
1320 /*
1321 * sw_reg_strategy: handle swap i/o to regular files
1322 */
1323 static void
1324 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1325 {
1326 struct vnode *vp;
1327 struct vndxfer *vnx;
1328 daddr_t nbn;
1329 char *addr;
1330 off_t byteoff;
1331 int s, off, nra, error, sz, resid;
1332 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1333
1334 /*
1335 * allocate a vndxfer head for this transfer and point it to
1336 * our buffer.
1337 */
1338 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1339 vnx->vx_flags = VX_BUSY;
1340 vnx->vx_error = 0;
1341 vnx->vx_pending = 0;
1342 vnx->vx_bp = bp;
1343 vnx->vx_sdp = sdp;
1344
1345 /*
1346 * setup for main loop where we read filesystem blocks into
1347 * our buffer.
1348 */
1349 error = 0;
1350 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1351 addr = bp->b_data; /* current position in buffer */
1352 byteoff = dbtob((uint64_t)bn);
1353
1354 for (resid = bp->b_resid; resid; resid -= sz) {
1355 struct vndbuf *nbp;
1356
1357 /*
1358 * translate byteoffset into block number. return values:
1359 * vp = vnode of underlying device
1360 * nbn = new block number (on underlying vnode dev)
1361 * nra = num blocks we can read-ahead (excludes requested
1362 * block)
1363 */
1364 nra = 0;
1365 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1366 &vp, &nbn, &nra);
1367
1368 if (error == 0 && nbn == (daddr_t)-1) {
1369 /*
1370 * this used to just set error, but that doesn't
1371 * do the right thing. Instead, it causes random
1372 * memory errors. The panic() should remain until
1373 * this condition doesn't destabilize the system.
1374 */
1375 #if 1
1376 panic("%s: swap to sparse file", __func__);
1377 #else
1378 error = EIO; /* failure */
1379 #endif
1380 }
1381
1382 /*
1383 * punt if there was an error or a hole in the file.
1384 * we must wait for any i/o ops we have already started
1385 * to finish before returning.
1386 *
1387 * XXX we could deal with holes here but it would be
1388 * a hassle (in the write case).
1389 */
1390 if (error) {
1391 s = splbio();
1392 vnx->vx_error = error; /* pass error up */
1393 goto out;
1394 }
1395
1396 /*
1397 * compute the size ("sz") of this transfer (in bytes).
1398 */
1399 off = byteoff % sdp->swd_bsize;
1400 sz = (1 + nra) * sdp->swd_bsize - off;
1401 if (sz > resid)
1402 sz = resid;
1403
1404 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1405 "vp %#jx/%#jx offset 0x%jx/0x%jx",
1406 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1407
1408 /*
1409 * now get a buf structure. note that the vb_buf is
1410 * at the front of the nbp structure so that you can
1411 * cast pointers between the two structure easily.
1412 */
1413 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1414 buf_init(&nbp->vb_buf);
1415 nbp->vb_buf.b_flags = bp->b_flags;
1416 nbp->vb_buf.b_cflags = bp->b_cflags;
1417 nbp->vb_buf.b_oflags = bp->b_oflags;
1418 nbp->vb_buf.b_bcount = sz;
1419 nbp->vb_buf.b_bufsize = sz;
1420 nbp->vb_buf.b_error = 0;
1421 nbp->vb_buf.b_data = addr;
1422 nbp->vb_buf.b_lblkno = 0;
1423 nbp->vb_buf.b_blkno = nbn + btodb(off);
1424 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1425 nbp->vb_buf.b_iodone = sw_reg_biodone;
1426 nbp->vb_buf.b_vp = vp;
1427 nbp->vb_buf.b_objlock = vp->v_interlock;
1428 if (vp->v_type == VBLK) {
1429 nbp->vb_buf.b_dev = vp->v_rdev;
1430 }
1431
1432 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1433
1434 /*
1435 * Just sort by block number
1436 */
1437 s = splbio();
1438 if (vnx->vx_error != 0) {
1439 buf_destroy(&nbp->vb_buf);
1440 pool_put(&vndbuf_pool, nbp);
1441 goto out;
1442 }
1443 vnx->vx_pending++;
1444
1445 /* sort it in and start I/O if we are not over our limit */
1446 /* XXXAD locking */
1447 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1448 sw_reg_start(sdp);
1449 splx(s);
1450
1451 /*
1452 * advance to the next I/O
1453 */
1454 byteoff += sz;
1455 addr += sz;
1456 }
1457
1458 s = splbio();
1459
1460 out: /* Arrive here at splbio */
1461 vnx->vx_flags &= ~VX_BUSY;
1462 if (vnx->vx_pending == 0) {
1463 error = vnx->vx_error;
1464 pool_put(&vndxfer_pool, vnx);
1465 bp->b_error = error;
1466 biodone(bp);
1467 }
1468 splx(s);
1469 }
1470
1471 /*
1472 * sw_reg_start: start an I/O request on the requested swapdev
1473 *
1474 * => reqs are sorted by b_rawblkno (above)
1475 */
1476 static void
1477 sw_reg_start(struct swapdev *sdp)
1478 {
1479 struct buf *bp;
1480 struct vnode *vp;
1481 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1482
1483 /* recursion control */
1484 if ((sdp->swd_flags & SWF_BUSY) != 0)
1485 return;
1486
1487 sdp->swd_flags |= SWF_BUSY;
1488
1489 while (sdp->swd_active < sdp->swd_maxactive) {
1490 bp = bufq_get(sdp->swd_tab);
1491 if (bp == NULL)
1492 break;
1493 sdp->swd_active++;
1494
1495 UVMHIST_LOG(pdhist,
1496 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1497 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1498 bp->b_bcount);
1499 vp = bp->b_vp;
1500 KASSERT(bp->b_objlock == vp->v_interlock);
1501 if ((bp->b_flags & B_READ) == 0) {
1502 mutex_enter(vp->v_interlock);
1503 vp->v_numoutput++;
1504 mutex_exit(vp->v_interlock);
1505 }
1506 VOP_STRATEGY(vp, bp);
1507 }
1508 sdp->swd_flags &= ~SWF_BUSY;
1509 }
1510
1511 /*
1512 * sw_reg_biodone: one of our i/o's has completed
1513 */
1514 static void
1515 sw_reg_biodone(struct buf *bp)
1516 {
1517 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1518 }
1519
1520 /*
1521 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1522 *
1523 * => note that we can recover the vndbuf struct by casting the buf ptr
1524 */
1525 static void
1526 sw_reg_iodone(struct work *wk, void *dummy)
1527 {
1528 struct vndbuf *vbp = (void *)wk;
1529 struct vndxfer *vnx = vbp->vb_xfer;
1530 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1531 struct swapdev *sdp = vnx->vx_sdp;
1532 int s, resid, error;
1533 KASSERT(&vbp->vb_buf.b_work == wk);
1534 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1535
1536 UVMHIST_LOG(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1537 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1538 (uintptr_t)vbp->vb_buf.b_data);
1539 UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1540 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1541
1542 /*
1543 * protect vbp at splbio and update.
1544 */
1545
1546 s = splbio();
1547 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1548 pbp->b_resid -= resid;
1549 vnx->vx_pending--;
1550
1551 if (vbp->vb_buf.b_error != 0) {
1552 /* pass error upward */
1553 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1554 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1555 vnx->vx_error = error;
1556 }
1557
1558 /*
1559 * kill vbp structure
1560 */
1561 buf_destroy(&vbp->vb_buf);
1562 pool_put(&vndbuf_pool, vbp);
1563
1564 /*
1565 * wrap up this transaction if it has run to completion or, in
1566 * case of an error, when all auxiliary buffers have returned.
1567 */
1568 if (vnx->vx_error != 0) {
1569 /* pass error upward */
1570 error = vnx->vx_error;
1571 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1572 pbp->b_error = error;
1573 biodone(pbp);
1574 pool_put(&vndxfer_pool, vnx);
1575 }
1576 } else if (pbp->b_resid == 0) {
1577 KASSERT(vnx->vx_pending == 0);
1578 if ((vnx->vx_flags & VX_BUSY) == 0) {
1579 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1580 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1581 biodone(pbp);
1582 pool_put(&vndxfer_pool, vnx);
1583 }
1584 }
1585
1586 /*
1587 * done! start next swapdev I/O if one is pending
1588 */
1589 sdp->swd_active--;
1590 sw_reg_start(sdp);
1591 splx(s);
1592 }
1593
1594
1595 /*
1596 * uvm_swap_alloc: allocate space on swap
1597 *
1598 * => allocation is done "round robin" down the priority list, as we
1599 * allocate in a priority we "rotate" the circle queue.
1600 * => space can be freed with uvm_swap_free
1601 * => we return the page slot number in /dev/drum (0 == invalid slot)
1602 * => we lock uvm_swap_data_lock
1603 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1604 */
1605 int
1606 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1607 {
1608 struct swapdev *sdp;
1609 struct swappri *spp;
1610 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1611
1612 /*
1613 * no swap devices configured yet? definite failure.
1614 */
1615 if (uvmexp.nswapdev < 1)
1616 return 0;
1617
1618 /*
1619 * XXXJAK: BEGIN HACK
1620 *
1621 * blist_alloc() in subr_blist.c will panic if we try to allocate
1622 * too many slots.
1623 */
1624 if (*nslots > BLIST_MAX_ALLOC) {
1625 if (__predict_false(lessok == false))
1626 return 0;
1627 *nslots = BLIST_MAX_ALLOC;
1628 }
1629 /* XXXJAK: END HACK */
1630
1631 /*
1632 * lock data lock, convert slots into blocks, and enter loop
1633 */
1634 mutex_enter(&uvm_swap_data_lock);
1635
1636 ReTry: /* XXXMRG */
1637 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1638 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1639 uint64_t result;
1640
1641 /* if it's not enabled, then we can't swap from it */
1642 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1643 continue;
1644 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1645 continue;
1646 result = blist_alloc(sdp->swd_blist, *nslots);
1647 if (result == BLIST_NONE) {
1648 continue;
1649 }
1650 KASSERT(result < sdp->swd_drumsize);
1651
1652 /*
1653 * successful allocation! now rotate the tailq.
1654 */
1655 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1656 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1657 sdp->swd_npginuse += *nslots;
1658 uvmexp.swpginuse += *nslots;
1659 mutex_exit(&uvm_swap_data_lock);
1660 /* done! return drum slot number */
1661 UVMHIST_LOG(pdhist,
1662 "success! returning %jd slots starting at %jd",
1663 *nslots, result + sdp->swd_drumoffset, 0, 0);
1664 return (result + sdp->swd_drumoffset);
1665 }
1666 }
1667
1668 /* XXXMRG: BEGIN HACK */
1669 if (*nslots > 1 && lessok) {
1670 *nslots = 1;
1671 /* XXXMRG: ugh! blist should support this for us */
1672 goto ReTry;
1673 }
1674 /* XXXMRG: END HACK */
1675
1676 mutex_exit(&uvm_swap_data_lock);
1677 return 0;
1678 }
1679
1680 /*
1681 * uvm_swapisfull: return true if most of available swap is allocated
1682 * and in use. we don't count some small portion as it may be inaccessible
1683 * to us at any given moment, for example if there is lock contention or if
1684 * pages are busy.
1685 */
1686 bool
1687 uvm_swapisfull(void)
1688 {
1689 int swpgonly;
1690 bool rv;
1691
1692 mutex_enter(&uvm_swap_data_lock);
1693 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1694 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1695 uvm_swapisfull_factor);
1696 rv = (swpgonly >= uvmexp.swpgavail);
1697 mutex_exit(&uvm_swap_data_lock);
1698
1699 return (rv);
1700 }
1701
1702 /*
1703 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1704 *
1705 * => we lock uvm_swap_data_lock
1706 */
1707 void
1708 uvm_swap_markbad(int startslot, int nslots)
1709 {
1710 struct swapdev *sdp;
1711 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1712
1713 mutex_enter(&uvm_swap_data_lock);
1714 sdp = swapdrum_getsdp(startslot);
1715 KASSERT(sdp != NULL);
1716
1717 /*
1718 * we just keep track of how many pages have been marked bad
1719 * in this device, to make everything add up in swap_off().
1720 * we assume here that the range of slots will all be within
1721 * one swap device.
1722 */
1723
1724 KASSERT(uvmexp.swpgonly >= nslots);
1725 uvmexp.swpgonly -= nslots;
1726 sdp->swd_npgbad += nslots;
1727 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1728 mutex_exit(&uvm_swap_data_lock);
1729 }
1730
1731 /*
1732 * uvm_swap_free: free swap slots
1733 *
1734 * => this can be all or part of an allocation made by uvm_swap_alloc
1735 * => we lock uvm_swap_data_lock
1736 */
1737 void
1738 uvm_swap_free(int startslot, int nslots)
1739 {
1740 struct swapdev *sdp;
1741 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1742
1743 UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1744 startslot, 0, 0);
1745
1746 /*
1747 * ignore attempts to free the "bad" slot.
1748 */
1749
1750 if (startslot == SWSLOT_BAD) {
1751 return;
1752 }
1753
1754 /*
1755 * convert drum slot offset back to sdp, free the blocks
1756 * in the extent, and return. must hold pri lock to do
1757 * lookup and access the extent.
1758 */
1759
1760 mutex_enter(&uvm_swap_data_lock);
1761 sdp = swapdrum_getsdp(startslot);
1762 KASSERT(uvmexp.nswapdev >= 1);
1763 KASSERT(sdp != NULL);
1764 KASSERT(sdp->swd_npginuse >= nslots);
1765 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1766 sdp->swd_npginuse -= nslots;
1767 uvmexp.swpginuse -= nslots;
1768 mutex_exit(&uvm_swap_data_lock);
1769 }
1770
1771 /*
1772 * uvm_swap_put: put any number of pages into a contig place on swap
1773 *
1774 * => can be sync or async
1775 */
1776
1777 int
1778 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1779 {
1780 int error;
1781
1782 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1783 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1784 return error;
1785 }
1786
1787 /*
1788 * uvm_swap_get: get a single page from swap
1789 *
1790 * => usually a sync op (from fault)
1791 */
1792
1793 int
1794 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1795 {
1796 int error;
1797
1798 uvmexp.nswget++;
1799 KASSERT(flags & PGO_SYNCIO);
1800 if (swslot == SWSLOT_BAD) {
1801 return EIO;
1802 }
1803
1804 error = uvm_swap_io(&page, swslot, 1, B_READ |
1805 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1806 if (error == 0) {
1807
1808 /*
1809 * this page is no longer only in swap.
1810 */
1811
1812 mutex_enter(&uvm_swap_data_lock);
1813 KASSERT(uvmexp.swpgonly > 0);
1814 uvmexp.swpgonly--;
1815 mutex_exit(&uvm_swap_data_lock);
1816 }
1817 return error;
1818 }
1819
1820 /*
1821 * uvm_swap_io: do an i/o operation to swap
1822 */
1823
1824 static int
1825 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1826 {
1827 daddr_t startblk;
1828 struct buf *bp;
1829 vaddr_t kva;
1830 int error, mapinflags;
1831 bool write, async;
1832 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1833
1834 UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1835 startslot, npages, flags, 0);
1836
1837 write = (flags & B_READ) == 0;
1838 async = (flags & B_ASYNC) != 0;
1839
1840 /*
1841 * allocate a buf for the i/o.
1842 */
1843
1844 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1845 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1846 if (bp == NULL) {
1847 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1848 return ENOMEM;
1849 }
1850
1851 /*
1852 * convert starting drum slot to block number
1853 */
1854
1855 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1856
1857 /*
1858 * first, map the pages into the kernel.
1859 */
1860
1861 mapinflags = !write ?
1862 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1863 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1864 kva = uvm_pagermapin(pps, npages, mapinflags);
1865
1866 /*
1867 * fill in the bp/sbp. we currently route our i/o through
1868 * /dev/drum's vnode [swapdev_vp].
1869 */
1870
1871 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1872 bp->b_flags = (flags & (B_READ|B_ASYNC));
1873 bp->b_proc = &proc0; /* XXX */
1874 bp->b_vnbufs.le_next = NOLIST;
1875 bp->b_data = (void *)kva;
1876 bp->b_blkno = startblk;
1877 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1878
1879 /*
1880 * bump v_numoutput (counter of number of active outputs).
1881 */
1882
1883 if (write) {
1884 mutex_enter(swapdev_vp->v_interlock);
1885 swapdev_vp->v_numoutput++;
1886 mutex_exit(swapdev_vp->v_interlock);
1887 }
1888
1889 /*
1890 * for async ops we must set up the iodone handler.
1891 */
1892
1893 if (async) {
1894 bp->b_iodone = uvm_aio_biodone;
1895 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1896 if (curlwp == uvm.pagedaemon_lwp)
1897 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1898 else
1899 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1900 } else {
1901 bp->b_iodone = NULL;
1902 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1903 }
1904 UVMHIST_LOG(pdhist,
1905 "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1906 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1907
1908 /*
1909 * now we start the I/O, and if async, return.
1910 */
1911
1912 VOP_STRATEGY(swapdev_vp, bp);
1913 if (async)
1914 return 0;
1915
1916 /*
1917 * must be sync i/o. wait for it to finish
1918 */
1919
1920 error = biowait(bp);
1921
1922 /*
1923 * kill the pager mapping
1924 */
1925
1926 uvm_pagermapout(kva, npages);
1927
1928 /*
1929 * now dispose of the buf and we're done.
1930 */
1931
1932 if (write) {
1933 mutex_enter(swapdev_vp->v_interlock);
1934 vwakeup(bp);
1935 mutex_exit(swapdev_vp->v_interlock);
1936 }
1937 putiobuf(bp);
1938 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
1939
1940 return (error);
1941 }
1942