Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.175.2.1
      1 /*	$NetBSD: uvm_swap.c,v 1.175.2.1 2018/03/13 09:10:31 pgoyette Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.175.2.1 2018/03/13 09:10:31 pgoyette Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/bufq.h>
     43 #include <sys/conf.h>
     44 #include <sys/proc.h>
     45 #include <sys/namei.h>
     46 #include <sys/disklabel.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/vmem.h>
     52 #include <sys/blist.h>
     53 #include <sys/mount.h>
     54 #include <sys/pool.h>
     55 #include <sys/kmem.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/swap.h>
     58 #include <sys/kauth.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/workqueue.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 /*
     67  * uvm_swap.c: manage configuration and i/o to swap space.
     68  */
     69 
     70 /*
     71  * swap space is managed in the following way:
     72  *
     73  * each swap partition or file is described by a "swapdev" structure.
     74  * each "swapdev" structure contains a "swapent" structure which contains
     75  * information that is passed up to the user (via system calls).
     76  *
     77  * each swap partition is assigned a "priority" (int) which controls
     78  * swap parition usage.
     79  *
     80  * the system maintains a global data structure describing all swap
     81  * partitions/files.   there is a sorted LIST of "swappri" structures
     82  * which describe "swapdev"'s at that priority.   this LIST is headed
     83  * by the "swap_priority" global var.    each "swappri" contains a
     84  * TAILQ of "swapdev" structures at that priority.
     85  *
     86  * locking:
     87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88  *    system call and prevents the swap priority list from changing
     89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91  *    structures including the priority list, the swapdev structures,
     92  *    and the swapmap arena.
     93  *
     94  * each swap device has the following info:
     95  *  - swap device in use (could be disabled, preventing future use)
     96  *  - swap enabled (allows new allocations on swap)
     97  *  - map info in /dev/drum
     98  *  - vnode pointer
     99  * for swap files only:
    100  *  - block size
    101  *  - max byte count in buffer
    102  *  - buffer
    103  *
    104  * userland controls and configures swap with the swapctl(2) system call.
    105  * the sys_swapctl performs the following operations:
    106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109  *	the current swap config into the array. The actual work is done
    110  *	in the uvm_swap_stats() function.
    111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112  *	priority in "misc", start swapping on it.
    113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115  *	"misc")
    116  */
    117 
    118 /*
    119  * swap device priority entry; the list is kept sorted on `spi_priority'.
    120  */
    121 struct swappri {
    122 	int			spi_priority;     /* priority */
    123 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    124 	/* tailq of swapdevs at this priority */
    125 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    126 };
    127 
    128 /*
    129  * The following two structures are used to keep track of data transfers
    130  * on swap devices associated with regular files.
    131  * NOTE: this code is more or less a copy of vnd.c; we use the same
    132  * structure names here to ease porting..
    133  */
    134 struct vndxfer {
    135 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    136 	struct swapdev	*vx_sdp;
    137 	int		vx_error;
    138 	int		vx_pending;	/* # of pending aux buffers */
    139 	int		vx_flags;
    140 #define VX_BUSY		1
    141 #define VX_DEAD		2
    142 };
    143 
    144 struct vndbuf {
    145 	struct buf	vb_buf;
    146 	struct vndxfer	*vb_xfer;
    147 };
    148 
    149 /*
    150  * NetBSD 1.3 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    151  * dev_t and has no se_path[] member.
    152  */
    153 struct swapent13 {
    154 	int32_t	se13_dev;		/* device id */
    155 	int	se13_flags;		/* flags */
    156 	int	se13_nblks;		/* total blocks */
    157 	int	se13_inuse;		/* blocks in use */
    158 	int	se13_priority;		/* priority of this device */
    159 };
    160 
    161 /*
    162  * NetBSD 5.0 swapctl(SWAP_STATS, ...) swapent structure; uses 32 bit
    163  * dev_t.
    164  */
    165 struct swapent50 {
    166 	int32_t	se50_dev;		/* device id */
    167 	int	se50_flags;		/* flags */
    168 	int	se50_nblks;		/* total blocks */
    169 	int	se50_inuse;		/* blocks in use */
    170 	int	se50_priority;		/* priority of this device */
    171 	char	se50_path[PATH_MAX+1];	/* path name */
    172 };
    173 
    174 /*
    175  * We keep a of pool vndbuf's and vndxfer structures.
    176  */
    177 static struct pool vndxfer_pool, vndbuf_pool;
    178 
    179 /*
    180  * local variables
    181  */
    182 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    183 
    184 /* list of all active swap devices [by priority] */
    185 LIST_HEAD(swap_priority, swappri);
    186 static struct swap_priority swap_priority;
    187 
    188 /* locks */
    189 static krwlock_t swap_syscall_lock;
    190 
    191 /* workqueue and use counter for swap to regular files */
    192 static int sw_reg_count = 0;
    193 static struct workqueue *sw_reg_workqueue;
    194 
    195 /* tuneables */
    196 u_int uvm_swapisfull_factor = 99;
    197 
    198 /*
    199  * prototypes
    200  */
    201 static struct swapdev	*swapdrum_getsdp(int);
    202 
    203 static struct swapdev	*swaplist_find(struct vnode *, bool);
    204 static void		 swaplist_insert(struct swapdev *,
    205 					 struct swappri *, int);
    206 static void		 swaplist_trim(void);
    207 
    208 static int swap_on(struct lwp *, struct swapdev *);
    209 static int swap_off(struct lwp *, struct swapdev *);
    210 
    211 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    212 static void sw_reg_biodone(struct buf *);
    213 static void sw_reg_iodone(struct work *wk, void *dummy);
    214 static void sw_reg_start(struct swapdev *);
    215 
    216 static int uvm_swap_io(struct vm_page **, int, int, int);
    217 
    218 /*
    219  * vectored routines for COMPAT_13 and COMPAT_50
    220  */
    221 
    222 size_t swapstats_len_13 = 0;
    223 
    224 static void stub_swapstats13_copy(int, int, struct swapdev *,
    225     struct swapent13 *);
    226 void (*vec_swapstats_copy_13)(int, int, struct swapdev *, struct swapent13 *) =
    227     stub_swapstats13_copy;
    228 
    229 size_t swapstats_len_50 = 0;
    230 
    231 static void stub_swapstats50_copy(int, int, struct swapdev *,
    232     struct swapent50 *);
    233 void (*vec_swapstats_copy_50)(int, int, struct swapdev *, struct swapent50 *) =
    234     stub_swapstats50_copy;
    235 
    236 static void
    237 stub_swapstats13_copy(int cmd, int inuse, struct swapdev *sdp,
    238     struct swapent13 *sep13)
    239 {
    240 
    241 	/* nothing */
    242 }
    243 
    244 static void
    245 stub_swapstats50_copy(int cmd, int inuse, struct swapdev *sdp,
    246     struct swapent50 *sep50)
    247 {
    248 
    249 	/* nothing */
    250 }
    251 
    252 /*
    253  * uvm_swap_init: init the swap system data structures and locks
    254  *
    255  * => called at boot time from init_main.c after the filesystems
    256  *	are brought up (which happens after uvm_init())
    257  */
    258 void
    259 uvm_swap_init(void)
    260 {
    261 	UVMHIST_FUNC("uvm_swap_init");
    262 
    263 	UVMHIST_CALLED(pdhist);
    264 	/*
    265 	 * first, init the swap list, its counter, and its lock.
    266 	 * then get a handle on the vnode for /dev/drum by using
    267 	 * the its dev_t number ("swapdev", from MD conf.c).
    268 	 */
    269 
    270 	LIST_INIT(&swap_priority);
    271 	uvmexp.nswapdev = 0;
    272 	rw_init(&swap_syscall_lock);
    273 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    274 
    275 	if (bdevvp(swapdev, &swapdev_vp))
    276 		panic("%s: can't get vnode for swap device", __func__);
    277 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    278 		panic("%s: can't lock swap device", __func__);
    279 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    280 		panic("%s: can't open swap device", __func__);
    281 	VOP_UNLOCK(swapdev_vp);
    282 
    283 	/*
    284 	 * create swap block resource map to map /dev/drum.   the range
    285 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    286 	 * that block 0 is reserved (used to indicate an allocation
    287 	 * failure, or no allocation).
    288 	 */
    289 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    290 	    VM_NOSLEEP, IPL_NONE);
    291 	if (swapmap == 0) {
    292 		panic("%s: vmem_create failed", __func__);
    293 	}
    294 
    295 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    296 	    NULL, IPL_BIO);
    297 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    298 	    NULL, IPL_BIO);
    299 
    300 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    301 }
    302 
    303 /*
    304  * swaplist functions: functions that operate on the list of swap
    305  * devices on the system.
    306  */
    307 
    308 /*
    309  * swaplist_insert: insert swap device "sdp" into the global list
    310  *
    311  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    312  * => caller must provide a newly allocated swappri structure (we will
    313  *	FREE it if we don't need it... this it to prevent allocation
    314  *	blocking here while adding swap)
    315  */
    316 static void
    317 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    318 {
    319 	struct swappri *spp, *pspp;
    320 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    321 
    322 	/*
    323 	 * find entry at or after which to insert the new device.
    324 	 */
    325 	pspp = NULL;
    326 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    327 		if (priority <= spp->spi_priority)
    328 			break;
    329 		pspp = spp;
    330 	}
    331 
    332 	/*
    333 	 * new priority?
    334 	 */
    335 	if (spp == NULL || spp->spi_priority != priority) {
    336 		spp = newspp;  /* use newspp! */
    337 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    338 			    priority, 0, 0, 0);
    339 
    340 		spp->spi_priority = priority;
    341 		TAILQ_INIT(&spp->spi_swapdev);
    342 
    343 		if (pspp)
    344 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    345 		else
    346 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    347 	} else {
    348 	  	/* we don't need a new priority structure, free it */
    349 		kmem_free(newspp, sizeof(*newspp));
    350 	}
    351 
    352 	/*
    353 	 * priority found (or created).   now insert on the priority's
    354 	 * tailq list and bump the total number of swapdevs.
    355 	 */
    356 	sdp->swd_priority = priority;
    357 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    358 	uvmexp.nswapdev++;
    359 }
    360 
    361 /*
    362  * swaplist_find: find and optionally remove a swap device from the
    363  *	global list.
    364  *
    365  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    366  * => we return the swapdev we found (and removed)
    367  */
    368 static struct swapdev *
    369 swaplist_find(struct vnode *vp, bool remove)
    370 {
    371 	struct swapdev *sdp;
    372 	struct swappri *spp;
    373 
    374 	/*
    375 	 * search the lists for the requested vp
    376 	 */
    377 
    378 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    379 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    380 			if (sdp->swd_vp == vp) {
    381 				if (remove) {
    382 					TAILQ_REMOVE(&spp->spi_swapdev,
    383 					    sdp, swd_next);
    384 					uvmexp.nswapdev--;
    385 				}
    386 				return(sdp);
    387 			}
    388 		}
    389 	}
    390 	return (NULL);
    391 }
    392 
    393 /*
    394  * swaplist_trim: scan priority list for empty priority entries and kill
    395  *	them.
    396  *
    397  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    398  */
    399 static void
    400 swaplist_trim(void)
    401 {
    402 	struct swappri *spp, *nextspp;
    403 
    404 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    405 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    406 			continue;
    407 		LIST_REMOVE(spp, spi_swappri);
    408 		kmem_free(spp, sizeof(*spp));
    409 	}
    410 }
    411 
    412 /*
    413  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    414  *	to the "swapdev" that maps that section of the drum.
    415  *
    416  * => each swapdev takes one big contig chunk of the drum
    417  * => caller must hold uvm_swap_data_lock
    418  */
    419 static struct swapdev *
    420 swapdrum_getsdp(int pgno)
    421 {
    422 	struct swapdev *sdp;
    423 	struct swappri *spp;
    424 
    425 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    426 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    427 			if (sdp->swd_flags & SWF_FAKE)
    428 				continue;
    429 			if (pgno >= sdp->swd_drumoffset &&
    430 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    431 				return sdp;
    432 			}
    433 		}
    434 	}
    435 	return NULL;
    436 }
    437 
    438 void swapsys_lock(krw_t op)
    439 {
    440 	rw_enter(&swap_syscall_lock, op);
    441 }
    442 
    443 void swapsys_unlock(void)
    444 {
    445 	rw_exit(&swap_syscall_lock);
    446 }
    447 
    448 /*
    449  * sys_swapctl: main entry point for swapctl(2) system call
    450  * 	[with two helper functions: swap_on and swap_off]
    451  */
    452 int
    453 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    454 {
    455 	/* {
    456 		syscallarg(int) cmd;
    457 		syscallarg(void *) arg;
    458 		syscallarg(int) misc;
    459 	} */
    460 	struct vnode *vp;
    461 	struct nameidata nd;
    462 	struct swappri *spp;
    463 	struct swapdev *sdp;
    464 	struct swapent *sep;
    465 #define SWAP_PATH_MAX (PATH_MAX + 1)
    466 	char	*userpath;
    467 	size_t	len = 0;
    468 	int	error, misc;
    469 	int	priority;
    470 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    471 
    472 	/*
    473 	 * we handle the non-priv NSWAP and STATS request first.
    474 	 *
    475 	 * SWAP_NSWAP: return number of config'd swap devices
    476 	 * [can also be obtained with uvmexp sysctl]
    477 	 */
    478 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    479 		const int nswapdev = uvmexp.nswapdev;
    480 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    481 		    0, 0, 0);
    482 		*retval = nswapdev;
    483 		return 0;
    484 	}
    485 
    486 	misc = SCARG(uap, misc);
    487 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    488 
    489 	/*
    490 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    491 	 */
    492 	rw_enter(&swap_syscall_lock, RW_WRITER);
    493 
    494 	/*
    495 	 * SWAP_STATS: get stats on current # of configured swap devs
    496 	 *
    497 	 * note that the swap_priority list can't change as long
    498 	 * as we are holding the swap_syscall_lock.  we don't want
    499 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    500 	 * copyout() and we don't want to be holding that lock then!
    501 	 */
    502 	len = 0;
    503 	if (SCARG(uap, cmd) == SWAP_STATS)
    504 		len = sizeof(struct swapent);
    505 	else if (SCARG(uap, cmd) == SWAP_STATS13)
    506 		len = swapstats_len_13;
    507 	else if (SCARG(uap, cmd) == SWAP_STATS50)
    508 		len = swapstats_len_50;
    509 	/*
    510 	 * If the compat_* code isn't loaded, len will still be zero
    511 	 * and we'll just fall through and return EINVAL
    512 	 */
    513 	if (len > 0) {
    514 		if (misc < 0) {
    515 			error = EINVAL;
    516 			goto out;
    517 		}
    518 		if (misc == 0 || uvmexp.nswapdev == 0) {
    519 			error = 0;
    520 			goto out;
    521 		}
    522 		/* Make sure userland cannot exhaust kernel memory */
    523 		if ((size_t)misc > (size_t)uvmexp.nswapdev)
    524 			misc = uvmexp.nswapdev;
    525 		KASSERT(misc > 0);
    526 		len *= misc;
    527 		sep = (struct swapent *)kmem_alloc(len, KM_SLEEP);
    528 
    529 		uvm_swap_stats(SCARG(uap, cmd), sep, misc, retval);
    530 		error = copyout(sep, SCARG(uap, arg), len);
    531 
    532 		kmem_free(sep, len);
    533 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    534 		goto out;
    535 	}
    536 	if (SCARG(uap, cmd) == SWAP_GETDUMPDEV) {
    537 		dev_t	*devp = (dev_t *)SCARG(uap, arg);
    538 
    539 		error = copyout(&dumpdev, devp, sizeof(dumpdev));
    540 		goto out;
    541 	}
    542 
    543 	/*
    544 	 * all other requests require superuser privs.   verify.
    545 	 */
    546 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    547 	    0, NULL, NULL, NULL)))
    548 		goto out;
    549 
    550 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    551 		/* drop the current dump device */
    552 		dumpdev = NODEV;
    553 		dumpcdev = NODEV;
    554 		cpu_dumpconf();
    555 		goto out;
    556 	}
    557 
    558 	/*
    559 	 * at this point we expect a path name in arg.   we will
    560 	 * use namei() to gain a vnode reference (vref), and lock
    561 	 * the vnode (VOP_LOCK).
    562 	 *
    563 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    564 	 * miniroot)
    565 	 */
    566 	if (SCARG(uap, arg) == NULL) {
    567 		vp = rootvp;		/* miniroot */
    568 		vref(vp);
    569 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    570 			vrele(vp);
    571 			error = EBUSY;
    572 			goto out;
    573 		}
    574 		if (SCARG(uap, cmd) == SWAP_ON &&
    575 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    576 			panic("swapctl: miniroot copy failed");
    577 	} else {
    578 		struct pathbuf *pb;
    579 
    580 		/*
    581 		 * This used to allow copying in one extra byte
    582 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    583 		 * This was completely pointless because if anyone
    584 		 * used that extra byte namei would fail with
    585 		 * ENAMETOOLONG anyway, so I've removed the excess
    586 		 * logic. - dholland 20100215
    587 		 */
    588 
    589 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    590 		if (error) {
    591 			goto out;
    592 		}
    593 		if (SCARG(uap, cmd) == SWAP_ON) {
    594 			/* get a copy of the string */
    595 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    596 			len = strlen(userpath) + 1;
    597 		}
    598 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    599 		if ((error = namei(&nd))) {
    600 			pathbuf_destroy(pb);
    601 			goto out;
    602 		}
    603 		vp = nd.ni_vp;
    604 		pathbuf_destroy(pb);
    605 	}
    606 	/* note: "vp" is referenced and locked */
    607 
    608 	error = 0;		/* assume no error */
    609 	switch(SCARG(uap, cmd)) {
    610 
    611 	case SWAP_DUMPDEV:
    612 		if (vp->v_type != VBLK) {
    613 			error = ENOTBLK;
    614 			break;
    615 		}
    616 		if (bdevsw_lookup(vp->v_rdev)) {
    617 			dumpdev = vp->v_rdev;
    618 			dumpcdev = devsw_blk2chr(dumpdev);
    619 		} else
    620 			dumpdev = NODEV;
    621 		cpu_dumpconf();
    622 		break;
    623 
    624 	case SWAP_CTL:
    625 		/*
    626 		 * get new priority, remove old entry (if any) and then
    627 		 * reinsert it in the correct place.  finally, prune out
    628 		 * any empty priority structures.
    629 		 */
    630 		priority = SCARG(uap, misc);
    631 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    632 		mutex_enter(&uvm_swap_data_lock);
    633 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    634 			error = ENOENT;
    635 		} else {
    636 			swaplist_insert(sdp, spp, priority);
    637 			swaplist_trim();
    638 		}
    639 		mutex_exit(&uvm_swap_data_lock);
    640 		if (error)
    641 			kmem_free(spp, sizeof(*spp));
    642 		break;
    643 
    644 	case SWAP_ON:
    645 
    646 		/*
    647 		 * check for duplicates.   if none found, then insert a
    648 		 * dummy entry on the list to prevent someone else from
    649 		 * trying to enable this device while we are working on
    650 		 * it.
    651 		 */
    652 
    653 		priority = SCARG(uap, misc);
    654 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    655 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    656 		sdp->swd_flags = SWF_FAKE;
    657 		sdp->swd_vp = vp;
    658 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    659 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    660 		mutex_enter(&uvm_swap_data_lock);
    661 		if (swaplist_find(vp, false) != NULL) {
    662 			error = EBUSY;
    663 			mutex_exit(&uvm_swap_data_lock);
    664 			bufq_free(sdp->swd_tab);
    665 			kmem_free(sdp, sizeof(*sdp));
    666 			kmem_free(spp, sizeof(*spp));
    667 			break;
    668 		}
    669 		swaplist_insert(sdp, spp, priority);
    670 		mutex_exit(&uvm_swap_data_lock);
    671 
    672 		KASSERT(len > 0);
    673 		sdp->swd_pathlen = len;
    674 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    675 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    676 			panic("swapctl: copystr");
    677 
    678 		/*
    679 		 * we've now got a FAKE placeholder in the swap list.
    680 		 * now attempt to enable swap on it.  if we fail, undo
    681 		 * what we've done and kill the fake entry we just inserted.
    682 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    683 		 */
    684 
    685 		if ((error = swap_on(l, sdp)) != 0) {
    686 			mutex_enter(&uvm_swap_data_lock);
    687 			(void) swaplist_find(vp, true);  /* kill fake entry */
    688 			swaplist_trim();
    689 			mutex_exit(&uvm_swap_data_lock);
    690 			bufq_free(sdp->swd_tab);
    691 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    692 			kmem_free(sdp, sizeof(*sdp));
    693 			break;
    694 		}
    695 		break;
    696 
    697 	case SWAP_OFF:
    698 		mutex_enter(&uvm_swap_data_lock);
    699 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    700 			mutex_exit(&uvm_swap_data_lock);
    701 			error = ENXIO;
    702 			break;
    703 		}
    704 
    705 		/*
    706 		 * If a device isn't in use or enabled, we
    707 		 * can't stop swapping from it (again).
    708 		 */
    709 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    710 			mutex_exit(&uvm_swap_data_lock);
    711 			error = EBUSY;
    712 			break;
    713 		}
    714 
    715 		/*
    716 		 * do the real work.
    717 		 */
    718 		error = swap_off(l, sdp);
    719 		break;
    720 
    721 	default:
    722 		error = EINVAL;
    723 	}
    724 
    725 	/*
    726 	 * done!  release the ref gained by namei() and unlock.
    727 	 */
    728 	vput(vp);
    729 out:
    730 	rw_exit(&swap_syscall_lock);
    731 	kmem_free(userpath, SWAP_PATH_MAX);
    732 
    733 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    734 	return (error);
    735 }
    736 
    737 /*
    738  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    739  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    740  * emulation to use it directly without going through sys_swapctl().
    741  * The problem with using sys_swapctl() there is that it involves
    742  * copying the swapent array to the stackgap, and this array's size
    743  * is not known at build time. Hence it would not be possible to
    744  * ensure it would fit in the stackgap in any case.
    745  */
    746 void
    747 uvm_swap_stats(int cmd, struct swapent *sep, int sec, register_t *retval)
    748 {
    749 	struct swappri *spp;
    750 	struct swapdev *sdp;
    751 	int count = 0;
    752 
    753 	KASSERT(rw_lock_held(&swap_syscall_lock));
    754 
    755 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    756 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    757 			int inuse;
    758 
    759 			if (sec-- <= 0)
    760 				break;
    761 
    762 			/*
    763 			 * backwards compatibility for system call.
    764 			 * For NetBSD 1.3 and 5.0, we have to use
    765 			 * the 32 bit dev_t.  For 5.0 and -current
    766 			 * we have to add the path.
    767 			 */
    768 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    769 			    PAGE_SHIFT);
    770 
    771 			if (cmd == SWAP_STATS) {
    772 				sep->se_dev = sdp->swd_dev;
    773 				sep->se_flags = sdp->swd_flags;
    774 				sep->se_nblks = sdp->swd_nblks;
    775 				sep->se_inuse = inuse;
    776 				sep->se_priority = sdp->swd_priority;
    777 				KASSERT(sdp->swd_pathlen <
    778 				    sizeof(sep->se_path));
    779 				strcpy(sep->se_path, sdp->swd_path);
    780 				sep++;
    781 			} else if (cmd == SWAP_STATS13) {
    782 				struct swapent13 *sep13 =
    783 				    (struct swapent13 *)sep;
    784 
    785 				(*vec_swapstats_copy_13)(cmd, inuse, sdp,
    786 				    sep13);
    787 				sep = (struct swapent *)(sep13 + 1);
    788 			} else if (cmd == SWAP_STATS50) {
    789 				struct swapent50 *sep50 =
    790 				    (struct swapent50 *)sep;
    791 
    792 				(*vec_swapstats_copy_50)(cmd, inuse, sdp,
    793 				    sep50);
    794 				sep = (struct swapent *)(sep50 + 1);
    795 			}
    796 			count++;
    797 		}
    798 	}
    799 	*retval = count;
    800 }
    801 
    802 /*
    803  * swap_on: attempt to enable a swapdev for swapping.   note that the
    804  *	swapdev is already on the global list, but disabled (marked
    805  *	SWF_FAKE).
    806  *
    807  * => we avoid the start of the disk (to protect disk labels)
    808  * => we also avoid the miniroot, if we are swapping to root.
    809  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    810  *	if needed.
    811  */
    812 static int
    813 swap_on(struct lwp *l, struct swapdev *sdp)
    814 {
    815 	struct vnode *vp;
    816 	int error, npages, nblocks, size;
    817 	long addr;
    818 	vmem_addr_t result;
    819 	struct vattr va;
    820 	dev_t dev;
    821 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    822 
    823 	/*
    824 	 * we want to enable swapping on sdp.   the swd_vp contains
    825 	 * the vnode we want (locked and ref'd), and the swd_dev
    826 	 * contains the dev_t of the file, if it a block device.
    827 	 */
    828 
    829 	vp = sdp->swd_vp;
    830 	dev = sdp->swd_dev;
    831 
    832 	/*
    833 	 * open the swap file (mostly useful for block device files to
    834 	 * let device driver know what is up).
    835 	 *
    836 	 * we skip the open/close for root on swap because the root
    837 	 * has already been opened when root was mounted (mountroot).
    838 	 */
    839 	if (vp != rootvp) {
    840 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    841 			return (error);
    842 	}
    843 
    844 	/* XXX this only works for block devices */
    845 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    846 
    847 	/*
    848 	 * we now need to determine the size of the swap area.   for
    849 	 * block specials we can call the d_psize function.
    850 	 * for normal files, we must stat [get attrs].
    851 	 *
    852 	 * we put the result in nblks.
    853 	 * for normal files, we also want the filesystem block size
    854 	 * (which we get with statfs).
    855 	 */
    856 	switch (vp->v_type) {
    857 	case VBLK:
    858 		if ((nblocks = bdev_size(dev)) == -1) {
    859 			error = ENXIO;
    860 			goto bad;
    861 		}
    862 		break;
    863 
    864 	case VREG:
    865 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    866 			goto bad;
    867 		nblocks = (int)btodb(va.va_size);
    868 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    869 		/*
    870 		 * limit the max # of outstanding I/O requests we issue
    871 		 * at any one time.   take it easy on NFS servers.
    872 		 */
    873 		if (vp->v_tag == VT_NFS)
    874 			sdp->swd_maxactive = 2; /* XXX */
    875 		else
    876 			sdp->swd_maxactive = 8; /* XXX */
    877 		break;
    878 
    879 	default:
    880 		error = ENXIO;
    881 		goto bad;
    882 	}
    883 
    884 	/*
    885 	 * save nblocks in a safe place and convert to pages.
    886 	 */
    887 
    888 	sdp->swd_nblks = nblocks;
    889 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    890 
    891 	/*
    892 	 * for block special files, we want to make sure that leave
    893 	 * the disklabel and bootblocks alone, so we arrange to skip
    894 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    895 	 * note that because of this the "size" can be less than the
    896 	 * actual number of blocks on the device.
    897 	 */
    898 	if (vp->v_type == VBLK) {
    899 		/* we use pages 1 to (size - 1) [inclusive] */
    900 		size = npages - 1;
    901 		addr = 1;
    902 	} else {
    903 		/* we use pages 0 to (size - 1) [inclusive] */
    904 		size = npages;
    905 		addr = 0;
    906 	}
    907 
    908 	/*
    909 	 * make sure we have enough blocks for a reasonable sized swap
    910 	 * area.   we want at least one page.
    911 	 */
    912 
    913 	if (size < 1) {
    914 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    915 		error = EINVAL;
    916 		goto bad;
    917 	}
    918 
    919 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    920 
    921 	/*
    922 	 * now we need to allocate an extent to manage this swap device
    923 	 */
    924 
    925 	sdp->swd_blist = blist_create(npages);
    926 	/* mark all expect the `saved' region free. */
    927 	blist_free(sdp->swd_blist, addr, size);
    928 
    929 	/*
    930 	 * if the vnode we are swapping to is the root vnode
    931 	 * (i.e. we are swapping to the miniroot) then we want
    932 	 * to make sure we don't overwrite it.   do a statfs to
    933 	 * find its size and skip over it.
    934 	 */
    935 	if (vp == rootvp) {
    936 		struct mount *mp;
    937 		struct statvfs *sp;
    938 		int rootblocks, rootpages;
    939 
    940 		mp = rootvnode->v_mount;
    941 		sp = &mp->mnt_stat;
    942 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    943 		/*
    944 		 * XXX: sp->f_blocks isn't the total number of
    945 		 * blocks in the filesystem, it's the number of
    946 		 * data blocks.  so, our rootblocks almost
    947 		 * definitely underestimates the total size
    948 		 * of the filesystem - how badly depends on the
    949 		 * details of the filesystem type.  there isn't
    950 		 * an obvious way to deal with this cleanly
    951 		 * and perfectly, so for now we just pad our
    952 		 * rootblocks estimate with an extra 5 percent.
    953 		 */
    954 		rootblocks += (rootblocks >> 5) +
    955 			(rootblocks >> 6) +
    956 			(rootblocks >> 7);
    957 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    958 		if (rootpages > size)
    959 			panic("swap_on: miniroot larger than swap?");
    960 
    961 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    962 			panic("swap_on: unable to preserve miniroot");
    963 		}
    964 
    965 		size -= rootpages;
    966 		printf("Preserved %d pages of miniroot ", rootpages);
    967 		printf("leaving %d pages of swap\n", size);
    968 	}
    969 
    970 	/*
    971 	 * add a ref to vp to reflect usage as a swap device.
    972 	 */
    973 	vref(vp);
    974 
    975 	/*
    976 	 * now add the new swapdev to the drum and enable.
    977 	 */
    978 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    979 	if (error != 0)
    980 		panic("swapdrum_add");
    981 	/*
    982 	 * If this is the first regular swap create the workqueue.
    983 	 * => Protected by swap_syscall_lock.
    984 	 */
    985 	if (vp->v_type != VBLK) {
    986 		if (sw_reg_count++ == 0) {
    987 			KASSERT(sw_reg_workqueue == NULL);
    988 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    989 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    990 				panic("%s: workqueue_create failed", __func__);
    991 		}
    992 	}
    993 
    994 	sdp->swd_drumoffset = (int)result;
    995 	sdp->swd_drumsize = npages;
    996 	sdp->swd_npages = size;
    997 	mutex_enter(&uvm_swap_data_lock);
    998 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    999 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1000 	uvmexp.swpages += size;
   1001 	uvmexp.swpgavail += size;
   1002 	mutex_exit(&uvm_swap_data_lock);
   1003 	return (0);
   1004 
   1005 	/*
   1006 	 * failure: clean up and return error.
   1007 	 */
   1008 
   1009 bad:
   1010 	if (sdp->swd_blist) {
   1011 		blist_destroy(sdp->swd_blist);
   1012 	}
   1013 	if (vp != rootvp) {
   1014 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1015 	}
   1016 	return (error);
   1017 }
   1018 
   1019 /*
   1020  * swap_off: stop swapping on swapdev
   1021  *
   1022  * => swap data should be locked, we will unlock.
   1023  */
   1024 static int
   1025 swap_off(struct lwp *l, struct swapdev *sdp)
   1026 {
   1027 	int npages = sdp->swd_npages;
   1028 	int error = 0;
   1029 
   1030 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
   1031 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1032 
   1033 	/* disable the swap area being removed */
   1034 	sdp->swd_flags &= ~SWF_ENABLE;
   1035 	uvmexp.swpgavail -= npages;
   1036 	mutex_exit(&uvm_swap_data_lock);
   1037 
   1038 	/*
   1039 	 * the idea is to find all the pages that are paged out to this
   1040 	 * device, and page them all in.  in uvm, swap-backed pageable
   1041 	 * memory can take two forms: aobjs and anons.  call the
   1042 	 * swapoff hook for each subsystem to bring in pages.
   1043 	 */
   1044 
   1045 	if (uao_swap_off(sdp->swd_drumoffset,
   1046 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1047 	    amap_swap_off(sdp->swd_drumoffset,
   1048 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1049 		error = ENOMEM;
   1050 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1051 		error = EBUSY;
   1052 	}
   1053 
   1054 	if (error) {
   1055 		mutex_enter(&uvm_swap_data_lock);
   1056 		sdp->swd_flags |= SWF_ENABLE;
   1057 		uvmexp.swpgavail += npages;
   1058 		mutex_exit(&uvm_swap_data_lock);
   1059 
   1060 		return error;
   1061 	}
   1062 
   1063 	/*
   1064 	 * If this is the last regular swap destroy the workqueue.
   1065 	 * => Protected by swap_syscall_lock.
   1066 	 */
   1067 	if (sdp->swd_vp->v_type != VBLK) {
   1068 		KASSERT(sw_reg_count > 0);
   1069 		KASSERT(sw_reg_workqueue != NULL);
   1070 		if (--sw_reg_count == 0) {
   1071 			workqueue_destroy(sw_reg_workqueue);
   1072 			sw_reg_workqueue = NULL;
   1073 		}
   1074 	}
   1075 
   1076 	/*
   1077 	 * done with the vnode.
   1078 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1079 	 * so that spec_close() can tell if this is the last close.
   1080 	 */
   1081 	vrele(sdp->swd_vp);
   1082 	if (sdp->swd_vp != rootvp) {
   1083 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1084 	}
   1085 
   1086 	mutex_enter(&uvm_swap_data_lock);
   1087 	uvmexp.swpages -= npages;
   1088 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1089 
   1090 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1091 		panic("%s: swapdev not in list", __func__);
   1092 	swaplist_trim();
   1093 	mutex_exit(&uvm_swap_data_lock);
   1094 
   1095 	/*
   1096 	 * free all resources!
   1097 	 */
   1098 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1099 	blist_destroy(sdp->swd_blist);
   1100 	bufq_free(sdp->swd_tab);
   1101 	kmem_free(sdp, sizeof(*sdp));
   1102 	return (0);
   1103 }
   1104 
   1105 void
   1106 uvm_swap_shutdown(struct lwp *l)
   1107 {
   1108 	struct swapdev *sdp;
   1109 	struct swappri *spp;
   1110 	struct vnode *vp;
   1111 	int error;
   1112 
   1113 	printf("turning of swap...");
   1114 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1115 	mutex_enter(&uvm_swap_data_lock);
   1116 again:
   1117 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1118 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1119 			if (sdp->swd_flags & SWF_FAKE)
   1120 				continue;
   1121 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1122 				continue;
   1123 #ifdef DEBUG
   1124 			printf("\nturning off swap on %s...",
   1125 			    sdp->swd_path);
   1126 #endif
   1127 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1128 				error = EBUSY;
   1129 				vp = NULL;
   1130 			} else
   1131 				error = 0;
   1132 			if (!error) {
   1133 				error = swap_off(l, sdp);
   1134 				mutex_enter(&uvm_swap_data_lock);
   1135 			}
   1136 			if (error) {
   1137 				printf("stopping swap on %s failed "
   1138 				    "with error %d\n", sdp->swd_path, error);
   1139 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1140 				    swd_next);
   1141 				uvmexp.nswapdev--;
   1142 				swaplist_trim();
   1143 				if (vp)
   1144 					vput(vp);
   1145 			}
   1146 			goto again;
   1147 		}
   1148 	printf(" done\n");
   1149 	mutex_exit(&uvm_swap_data_lock);
   1150 	rw_exit(&swap_syscall_lock);
   1151 }
   1152 
   1153 
   1154 /*
   1155  * /dev/drum interface and i/o functions
   1156  */
   1157 
   1158 /*
   1159  * swstrategy: perform I/O on the drum
   1160  *
   1161  * => we must map the i/o request from the drum to the correct swapdev.
   1162  */
   1163 static void
   1164 swstrategy(struct buf *bp)
   1165 {
   1166 	struct swapdev *sdp;
   1167 	struct vnode *vp;
   1168 	int pageno, bn;
   1169 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1170 
   1171 	/*
   1172 	 * convert block number to swapdev.   note that swapdev can't
   1173 	 * be yanked out from under us because we are holding resources
   1174 	 * in it (i.e. the blocks we are doing I/O on).
   1175 	 */
   1176 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1177 	mutex_enter(&uvm_swap_data_lock);
   1178 	sdp = swapdrum_getsdp(pageno);
   1179 	mutex_exit(&uvm_swap_data_lock);
   1180 	if (sdp == NULL) {
   1181 		bp->b_error = EINVAL;
   1182 		bp->b_resid = bp->b_bcount;
   1183 		biodone(bp);
   1184 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1185 		return;
   1186 	}
   1187 
   1188 	/*
   1189 	 * convert drum page number to block number on this swapdev.
   1190 	 */
   1191 
   1192 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1193 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1194 
   1195 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1196 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1197 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1198 
   1199 	/*
   1200 	 * for block devices we finish up here.
   1201 	 * for regular files we have to do more work which we delegate
   1202 	 * to sw_reg_strategy().
   1203 	 */
   1204 
   1205 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1206 	switch (vp->v_type) {
   1207 	default:
   1208 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1209 
   1210 	case VBLK:
   1211 
   1212 		/*
   1213 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1214 		 * on the swapdev (sdp).
   1215 		 */
   1216 		bp->b_blkno = bn;		/* swapdev block number */
   1217 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1218 
   1219 		/*
   1220 		 * if we are doing a write, we have to redirect the i/o on
   1221 		 * drum's v_numoutput counter to the swapdevs.
   1222 		 */
   1223 		if ((bp->b_flags & B_READ) == 0) {
   1224 			mutex_enter(bp->b_objlock);
   1225 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1226 			mutex_exit(bp->b_objlock);
   1227 			mutex_enter(vp->v_interlock);
   1228 			vp->v_numoutput++;	/* put it on swapdev */
   1229 			mutex_exit(vp->v_interlock);
   1230 		}
   1231 
   1232 		/*
   1233 		 * finally plug in swapdev vnode and start I/O
   1234 		 */
   1235 		bp->b_vp = vp;
   1236 		bp->b_objlock = vp->v_interlock;
   1237 		VOP_STRATEGY(vp, bp);
   1238 		return;
   1239 
   1240 	case VREG:
   1241 		/*
   1242 		 * delegate to sw_reg_strategy function.
   1243 		 */
   1244 		sw_reg_strategy(sdp, bp, bn);
   1245 		return;
   1246 	}
   1247 	/* NOTREACHED */
   1248 }
   1249 
   1250 /*
   1251  * swread: the read function for the drum (just a call to physio)
   1252  */
   1253 /*ARGSUSED*/
   1254 static int
   1255 swread(dev_t dev, struct uio *uio, int ioflag)
   1256 {
   1257 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1258 
   1259 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1260 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1261 }
   1262 
   1263 /*
   1264  * swwrite: the write function for the drum (just a call to physio)
   1265  */
   1266 /*ARGSUSED*/
   1267 static int
   1268 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1269 {
   1270 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1271 
   1272 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1273 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1274 }
   1275 
   1276 const struct bdevsw swap_bdevsw = {
   1277 	.d_open = nullopen,
   1278 	.d_close = nullclose,
   1279 	.d_strategy = swstrategy,
   1280 	.d_ioctl = noioctl,
   1281 	.d_dump = nodump,
   1282 	.d_psize = nosize,
   1283 	.d_discard = nodiscard,
   1284 	.d_flag = D_OTHER
   1285 };
   1286 
   1287 const struct cdevsw swap_cdevsw = {
   1288 	.d_open = nullopen,
   1289 	.d_close = nullclose,
   1290 	.d_read = swread,
   1291 	.d_write = swwrite,
   1292 	.d_ioctl = noioctl,
   1293 	.d_stop = nostop,
   1294 	.d_tty = notty,
   1295 	.d_poll = nopoll,
   1296 	.d_mmap = nommap,
   1297 	.d_kqfilter = nokqfilter,
   1298 	.d_discard = nodiscard,
   1299 	.d_flag = D_OTHER,
   1300 };
   1301 
   1302 /*
   1303  * sw_reg_strategy: handle swap i/o to regular files
   1304  */
   1305 static void
   1306 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1307 {
   1308 	struct vnode	*vp;
   1309 	struct vndxfer	*vnx;
   1310 	daddr_t		nbn;
   1311 	char 		*addr;
   1312 	off_t		byteoff;
   1313 	int		s, off, nra, error, sz, resid;
   1314 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1315 
   1316 	/*
   1317 	 * allocate a vndxfer head for this transfer and point it to
   1318 	 * our buffer.
   1319 	 */
   1320 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1321 	vnx->vx_flags = VX_BUSY;
   1322 	vnx->vx_error = 0;
   1323 	vnx->vx_pending = 0;
   1324 	vnx->vx_bp = bp;
   1325 	vnx->vx_sdp = sdp;
   1326 
   1327 	/*
   1328 	 * setup for main loop where we read filesystem blocks into
   1329 	 * our buffer.
   1330 	 */
   1331 	error = 0;
   1332 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1333 	addr = bp->b_data;		/* current position in buffer */
   1334 	byteoff = dbtob((uint64_t)bn);
   1335 
   1336 	for (resid = bp->b_resid; resid; resid -= sz) {
   1337 		struct vndbuf	*nbp;
   1338 
   1339 		/*
   1340 		 * translate byteoffset into block number.  return values:
   1341 		 *   vp = vnode of underlying device
   1342 		 *  nbn = new block number (on underlying vnode dev)
   1343 		 *  nra = num blocks we can read-ahead (excludes requested
   1344 		 *	block)
   1345 		 */
   1346 		nra = 0;
   1347 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1348 				 	&vp, &nbn, &nra);
   1349 
   1350 		if (error == 0 && nbn == (daddr_t)-1) {
   1351 			/*
   1352 			 * this used to just set error, but that doesn't
   1353 			 * do the right thing.  Instead, it causes random
   1354 			 * memory errors.  The panic() should remain until
   1355 			 * this condition doesn't destabilize the system.
   1356 			 */
   1357 #if 1
   1358 			panic("%s: swap to sparse file", __func__);
   1359 #else
   1360 			error = EIO;	/* failure */
   1361 #endif
   1362 		}
   1363 
   1364 		/*
   1365 		 * punt if there was an error or a hole in the file.
   1366 		 * we must wait for any i/o ops we have already started
   1367 		 * to finish before returning.
   1368 		 *
   1369 		 * XXX we could deal with holes here but it would be
   1370 		 * a hassle (in the write case).
   1371 		 */
   1372 		if (error) {
   1373 			s = splbio();
   1374 			vnx->vx_error = error;	/* pass error up */
   1375 			goto out;
   1376 		}
   1377 
   1378 		/*
   1379 		 * compute the size ("sz") of this transfer (in bytes).
   1380 		 */
   1381 		off = byteoff % sdp->swd_bsize;
   1382 		sz = (1 + nra) * sdp->swd_bsize - off;
   1383 		if (sz > resid)
   1384 			sz = resid;
   1385 
   1386 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1387 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1388 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1389 
   1390 		/*
   1391 		 * now get a buf structure.   note that the vb_buf is
   1392 		 * at the front of the nbp structure so that you can
   1393 		 * cast pointers between the two structure easily.
   1394 		 */
   1395 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1396 		buf_init(&nbp->vb_buf);
   1397 		nbp->vb_buf.b_flags    = bp->b_flags;
   1398 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1399 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1400 		nbp->vb_buf.b_bcount   = sz;
   1401 		nbp->vb_buf.b_bufsize  = sz;
   1402 		nbp->vb_buf.b_error    = 0;
   1403 		nbp->vb_buf.b_data     = addr;
   1404 		nbp->vb_buf.b_lblkno   = 0;
   1405 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1406 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1407 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1408 		nbp->vb_buf.b_vp       = vp;
   1409 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1410 		if (vp->v_type == VBLK) {
   1411 			nbp->vb_buf.b_dev = vp->v_rdev;
   1412 		}
   1413 
   1414 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1415 
   1416 		/*
   1417 		 * Just sort by block number
   1418 		 */
   1419 		s = splbio();
   1420 		if (vnx->vx_error != 0) {
   1421 			buf_destroy(&nbp->vb_buf);
   1422 			pool_put(&vndbuf_pool, nbp);
   1423 			goto out;
   1424 		}
   1425 		vnx->vx_pending++;
   1426 
   1427 		/* sort it in and start I/O if we are not over our limit */
   1428 		/* XXXAD locking */
   1429 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1430 		sw_reg_start(sdp);
   1431 		splx(s);
   1432 
   1433 		/*
   1434 		 * advance to the next I/O
   1435 		 */
   1436 		byteoff += sz;
   1437 		addr += sz;
   1438 	}
   1439 
   1440 	s = splbio();
   1441 
   1442 out: /* Arrive here at splbio */
   1443 	vnx->vx_flags &= ~VX_BUSY;
   1444 	if (vnx->vx_pending == 0) {
   1445 		error = vnx->vx_error;
   1446 		pool_put(&vndxfer_pool, vnx);
   1447 		bp->b_error = error;
   1448 		biodone(bp);
   1449 	}
   1450 	splx(s);
   1451 }
   1452 
   1453 /*
   1454  * sw_reg_start: start an I/O request on the requested swapdev
   1455  *
   1456  * => reqs are sorted by b_rawblkno (above)
   1457  */
   1458 static void
   1459 sw_reg_start(struct swapdev *sdp)
   1460 {
   1461 	struct buf	*bp;
   1462 	struct vnode	*vp;
   1463 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1464 
   1465 	/* recursion control */
   1466 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1467 		return;
   1468 
   1469 	sdp->swd_flags |= SWF_BUSY;
   1470 
   1471 	while (sdp->swd_active < sdp->swd_maxactive) {
   1472 		bp = bufq_get(sdp->swd_tab);
   1473 		if (bp == NULL)
   1474 			break;
   1475 		sdp->swd_active++;
   1476 
   1477 		UVMHIST_LOG(pdhist,
   1478 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1479 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1480 		    bp->b_bcount);
   1481 		vp = bp->b_vp;
   1482 		KASSERT(bp->b_objlock == vp->v_interlock);
   1483 		if ((bp->b_flags & B_READ) == 0) {
   1484 			mutex_enter(vp->v_interlock);
   1485 			vp->v_numoutput++;
   1486 			mutex_exit(vp->v_interlock);
   1487 		}
   1488 		VOP_STRATEGY(vp, bp);
   1489 	}
   1490 	sdp->swd_flags &= ~SWF_BUSY;
   1491 }
   1492 
   1493 /*
   1494  * sw_reg_biodone: one of our i/o's has completed
   1495  */
   1496 static void
   1497 sw_reg_biodone(struct buf *bp)
   1498 {
   1499 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1500 }
   1501 
   1502 /*
   1503  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1504  *
   1505  * => note that we can recover the vndbuf struct by casting the buf ptr
   1506  */
   1507 static void
   1508 sw_reg_iodone(struct work *wk, void *dummy)
   1509 {
   1510 	struct vndbuf *vbp = (void *)wk;
   1511 	struct vndxfer *vnx = vbp->vb_xfer;
   1512 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1513 	struct swapdev	*sdp = vnx->vx_sdp;
   1514 	int s, resid, error;
   1515 	KASSERT(&vbp->vb_buf.b_work == wk);
   1516 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1517 
   1518 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1519 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1520 	    (uintptr_t)vbp->vb_buf.b_data);
   1521 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1522 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1523 
   1524 	/*
   1525 	 * protect vbp at splbio and update.
   1526 	 */
   1527 
   1528 	s = splbio();
   1529 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1530 	pbp->b_resid -= resid;
   1531 	vnx->vx_pending--;
   1532 
   1533 	if (vbp->vb_buf.b_error != 0) {
   1534 		/* pass error upward */
   1535 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1536 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1537 		vnx->vx_error = error;
   1538 	}
   1539 
   1540 	/*
   1541 	 * kill vbp structure
   1542 	 */
   1543 	buf_destroy(&vbp->vb_buf);
   1544 	pool_put(&vndbuf_pool, vbp);
   1545 
   1546 	/*
   1547 	 * wrap up this transaction if it has run to completion or, in
   1548 	 * case of an error, when all auxiliary buffers have returned.
   1549 	 */
   1550 	if (vnx->vx_error != 0) {
   1551 		/* pass error upward */
   1552 		error = vnx->vx_error;
   1553 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1554 			pbp->b_error = error;
   1555 			biodone(pbp);
   1556 			pool_put(&vndxfer_pool, vnx);
   1557 		}
   1558 	} else if (pbp->b_resid == 0) {
   1559 		KASSERT(vnx->vx_pending == 0);
   1560 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1561 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1562 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1563 			biodone(pbp);
   1564 			pool_put(&vndxfer_pool, vnx);
   1565 		}
   1566 	}
   1567 
   1568 	/*
   1569 	 * done!   start next swapdev I/O if one is pending
   1570 	 */
   1571 	sdp->swd_active--;
   1572 	sw_reg_start(sdp);
   1573 	splx(s);
   1574 }
   1575 
   1576 
   1577 /*
   1578  * uvm_swap_alloc: allocate space on swap
   1579  *
   1580  * => allocation is done "round robin" down the priority list, as we
   1581  *	allocate in a priority we "rotate" the circle queue.
   1582  * => space can be freed with uvm_swap_free
   1583  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1584  * => we lock uvm_swap_data_lock
   1585  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1586  */
   1587 int
   1588 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1589 {
   1590 	struct swapdev *sdp;
   1591 	struct swappri *spp;
   1592 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1593 
   1594 	/*
   1595 	 * no swap devices configured yet?   definite failure.
   1596 	 */
   1597 	if (uvmexp.nswapdev < 1)
   1598 		return 0;
   1599 
   1600 	/*
   1601 	 * XXXJAK: BEGIN HACK
   1602 	 *
   1603 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1604 	 * too many slots.
   1605 	 */
   1606 	if (*nslots > BLIST_MAX_ALLOC) {
   1607 		if (__predict_false(lessok == false))
   1608 			return 0;
   1609 		*nslots = BLIST_MAX_ALLOC;
   1610 	}
   1611 	/* XXXJAK: END HACK */
   1612 
   1613 	/*
   1614 	 * lock data lock, convert slots into blocks, and enter loop
   1615 	 */
   1616 	mutex_enter(&uvm_swap_data_lock);
   1617 
   1618 ReTry:	/* XXXMRG */
   1619 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1620 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1621 			uint64_t result;
   1622 
   1623 			/* if it's not enabled, then we can't swap from it */
   1624 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1625 				continue;
   1626 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1627 				continue;
   1628 			result = blist_alloc(sdp->swd_blist, *nslots);
   1629 			if (result == BLIST_NONE) {
   1630 				continue;
   1631 			}
   1632 			KASSERT(result < sdp->swd_drumsize);
   1633 
   1634 			/*
   1635 			 * successful allocation!  now rotate the tailq.
   1636 			 */
   1637 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1638 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1639 			sdp->swd_npginuse += *nslots;
   1640 			uvmexp.swpginuse += *nslots;
   1641 			mutex_exit(&uvm_swap_data_lock);
   1642 			/* done!  return drum slot number */
   1643 			UVMHIST_LOG(pdhist,
   1644 			    "success!  returning %jd slots starting at %jd",
   1645 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1646 			return (result + sdp->swd_drumoffset);
   1647 		}
   1648 	}
   1649 
   1650 	/* XXXMRG: BEGIN HACK */
   1651 	if (*nslots > 1 && lessok) {
   1652 		*nslots = 1;
   1653 		/* XXXMRG: ugh!  blist should support this for us */
   1654 		goto ReTry;
   1655 	}
   1656 	/* XXXMRG: END HACK */
   1657 
   1658 	mutex_exit(&uvm_swap_data_lock);
   1659 	return 0;
   1660 }
   1661 
   1662 /*
   1663  * uvm_swapisfull: return true if most of available swap is allocated
   1664  * and in use.  we don't count some small portion as it may be inaccessible
   1665  * to us at any given moment, for example if there is lock contention or if
   1666  * pages are busy.
   1667  */
   1668 bool
   1669 uvm_swapisfull(void)
   1670 {
   1671 	int swpgonly;
   1672 	bool rv;
   1673 
   1674 	mutex_enter(&uvm_swap_data_lock);
   1675 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1676 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1677 	    uvm_swapisfull_factor);
   1678 	rv = (swpgonly >= uvmexp.swpgavail);
   1679 	mutex_exit(&uvm_swap_data_lock);
   1680 
   1681 	return (rv);
   1682 }
   1683 
   1684 /*
   1685  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1686  *
   1687  * => we lock uvm_swap_data_lock
   1688  */
   1689 void
   1690 uvm_swap_markbad(int startslot, int nslots)
   1691 {
   1692 	struct swapdev *sdp;
   1693 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1694 
   1695 	mutex_enter(&uvm_swap_data_lock);
   1696 	sdp = swapdrum_getsdp(startslot);
   1697 	KASSERT(sdp != NULL);
   1698 
   1699 	/*
   1700 	 * we just keep track of how many pages have been marked bad
   1701 	 * in this device, to make everything add up in swap_off().
   1702 	 * we assume here that the range of slots will all be within
   1703 	 * one swap device.
   1704 	 */
   1705 
   1706 	KASSERT(uvmexp.swpgonly >= nslots);
   1707 	uvmexp.swpgonly -= nslots;
   1708 	sdp->swd_npgbad += nslots;
   1709 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1710 	mutex_exit(&uvm_swap_data_lock);
   1711 }
   1712 
   1713 /*
   1714  * uvm_swap_free: free swap slots
   1715  *
   1716  * => this can be all or part of an allocation made by uvm_swap_alloc
   1717  * => we lock uvm_swap_data_lock
   1718  */
   1719 void
   1720 uvm_swap_free(int startslot, int nslots)
   1721 {
   1722 	struct swapdev *sdp;
   1723 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1724 
   1725 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
   1726 	    startslot, 0, 0);
   1727 
   1728 	/*
   1729 	 * ignore attempts to free the "bad" slot.
   1730 	 */
   1731 
   1732 	if (startslot == SWSLOT_BAD) {
   1733 		return;
   1734 	}
   1735 
   1736 	/*
   1737 	 * convert drum slot offset back to sdp, free the blocks
   1738 	 * in the extent, and return.   must hold pri lock to do
   1739 	 * lookup and access the extent.
   1740 	 */
   1741 
   1742 	mutex_enter(&uvm_swap_data_lock);
   1743 	sdp = swapdrum_getsdp(startslot);
   1744 	KASSERT(uvmexp.nswapdev >= 1);
   1745 	KASSERT(sdp != NULL);
   1746 	KASSERT(sdp->swd_npginuse >= nslots);
   1747 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1748 	sdp->swd_npginuse -= nslots;
   1749 	uvmexp.swpginuse -= nslots;
   1750 	mutex_exit(&uvm_swap_data_lock);
   1751 }
   1752 
   1753 /*
   1754  * uvm_swap_put: put any number of pages into a contig place on swap
   1755  *
   1756  * => can be sync or async
   1757  */
   1758 
   1759 int
   1760 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1761 {
   1762 	int error;
   1763 
   1764 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1765 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1766 	return error;
   1767 }
   1768 
   1769 /*
   1770  * uvm_swap_get: get a single page from swap
   1771  *
   1772  * => usually a sync op (from fault)
   1773  */
   1774 
   1775 int
   1776 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1777 {
   1778 	int error;
   1779 
   1780 	uvmexp.nswget++;
   1781 	KASSERT(flags & PGO_SYNCIO);
   1782 	if (swslot == SWSLOT_BAD) {
   1783 		return EIO;
   1784 	}
   1785 
   1786 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1787 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1788 	if (error == 0) {
   1789 
   1790 		/*
   1791 		 * this page is no longer only in swap.
   1792 		 */
   1793 
   1794 		mutex_enter(&uvm_swap_data_lock);
   1795 		KASSERT(uvmexp.swpgonly > 0);
   1796 		uvmexp.swpgonly--;
   1797 		mutex_exit(&uvm_swap_data_lock);
   1798 	}
   1799 	return error;
   1800 }
   1801 
   1802 /*
   1803  * uvm_swap_io: do an i/o operation to swap
   1804  */
   1805 
   1806 static int
   1807 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1808 {
   1809 	daddr_t startblk;
   1810 	struct	buf *bp;
   1811 	vaddr_t kva;
   1812 	int	error, mapinflags;
   1813 	bool write, async;
   1814 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1815 
   1816 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1817 	    startslot, npages, flags, 0);
   1818 
   1819 	write = (flags & B_READ) == 0;
   1820 	async = (flags & B_ASYNC) != 0;
   1821 
   1822 	/*
   1823 	 * allocate a buf for the i/o.
   1824 	 */
   1825 
   1826 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1827 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1828 	if (bp == NULL) {
   1829 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1830 		return ENOMEM;
   1831 	}
   1832 
   1833 	/*
   1834 	 * convert starting drum slot to block number
   1835 	 */
   1836 
   1837 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1838 
   1839 	/*
   1840 	 * first, map the pages into the kernel.
   1841 	 */
   1842 
   1843 	mapinflags = !write ?
   1844 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1845 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1846 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1847 
   1848 	/*
   1849 	 * fill in the bp/sbp.   we currently route our i/o through
   1850 	 * /dev/drum's vnode [swapdev_vp].
   1851 	 */
   1852 
   1853 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1854 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1855 	bp->b_proc = &proc0;	/* XXX */
   1856 	bp->b_vnbufs.le_next = NOLIST;
   1857 	bp->b_data = (void *)kva;
   1858 	bp->b_blkno = startblk;
   1859 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1860 
   1861 	/*
   1862 	 * bump v_numoutput (counter of number of active outputs).
   1863 	 */
   1864 
   1865 	if (write) {
   1866 		mutex_enter(swapdev_vp->v_interlock);
   1867 		swapdev_vp->v_numoutput++;
   1868 		mutex_exit(swapdev_vp->v_interlock);
   1869 	}
   1870 
   1871 	/*
   1872 	 * for async ops we must set up the iodone handler.
   1873 	 */
   1874 
   1875 	if (async) {
   1876 		bp->b_iodone = uvm_aio_biodone;
   1877 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1878 		if (curlwp == uvm.pagedaemon_lwp)
   1879 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1880 		else
   1881 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1882 	} else {
   1883 		bp->b_iodone = NULL;
   1884 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1885 	}
   1886 	UVMHIST_LOG(pdhist,
   1887 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1888 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1889 
   1890 	/*
   1891 	 * now we start the I/O, and if async, return.
   1892 	 */
   1893 
   1894 	VOP_STRATEGY(swapdev_vp, bp);
   1895 	if (async)
   1896 		return 0;
   1897 
   1898 	/*
   1899 	 * must be sync i/o.   wait for it to finish
   1900 	 */
   1901 
   1902 	error = biowait(bp);
   1903 
   1904 	/*
   1905 	 * kill the pager mapping
   1906 	 */
   1907 
   1908 	uvm_pagermapout(kva, npages);
   1909 
   1910 	/*
   1911 	 * now dispose of the buf and we're done.
   1912 	 */
   1913 
   1914 	if (write) {
   1915 		mutex_enter(swapdev_vp->v_interlock);
   1916 		vwakeup(bp);
   1917 		mutex_exit(swapdev_vp->v_interlock);
   1918 	}
   1919 	putiobuf(bp);
   1920 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   1921 
   1922 	return (error);
   1923 }
   1924