Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.177
      1 /*	$NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/buf.h>
     42 #include <sys/bufq.h>
     43 #include <sys/conf.h>
     44 #include <sys/proc.h>
     45 #include <sys/namei.h>
     46 #include <sys/disklabel.h>
     47 #include <sys/errno.h>
     48 #include <sys/kernel.h>
     49 #include <sys/vnode.h>
     50 #include <sys/file.h>
     51 #include <sys/vmem.h>
     52 #include <sys/blist.h>
     53 #include <sys/mount.h>
     54 #include <sys/pool.h>
     55 #include <sys/kmem.h>
     56 #include <sys/syscallargs.h>
     57 #include <sys/swap.h>
     58 #include <sys/kauth.h>
     59 #include <sys/sysctl.h>
     60 #include <sys/workqueue.h>
     61 
     62 #include <uvm/uvm.h>
     63 
     64 #include <miscfs/specfs/specdev.h>
     65 
     66 /*
     67  * uvm_swap.c: manage configuration and i/o to swap space.
     68  */
     69 
     70 /*
     71  * swap space is managed in the following way:
     72  *
     73  * each swap partition or file is described by a "swapdev" structure.
     74  * each "swapdev" structure contains a "swapent" structure which contains
     75  * information that is passed up to the user (via system calls).
     76  *
     77  * each swap partition is assigned a "priority" (int) which controls
     78  * swap parition usage.
     79  *
     80  * the system maintains a global data structure describing all swap
     81  * partitions/files.   there is a sorted LIST of "swappri" structures
     82  * which describe "swapdev"'s at that priority.   this LIST is headed
     83  * by the "swap_priority" global var.    each "swappri" contains a
     84  * TAILQ of "swapdev" structures at that priority.
     85  *
     86  * locking:
     87  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     88  *    system call and prevents the swap priority list from changing
     89  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     90  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     91  *    structures including the priority list, the swapdev structures,
     92  *    and the swapmap arena.
     93  *
     94  * each swap device has the following info:
     95  *  - swap device in use (could be disabled, preventing future use)
     96  *  - swap enabled (allows new allocations on swap)
     97  *  - map info in /dev/drum
     98  *  - vnode pointer
     99  * for swap files only:
    100  *  - block size
    101  *  - max byte count in buffer
    102  *  - buffer
    103  *
    104  * userland controls and configures swap with the swapctl(2) system call.
    105  * the sys_swapctl performs the following operations:
    106  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    107  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    108  *	(passed in via "arg") of a size passed in via "misc" ... we load
    109  *	the current swap config into the array. The actual work is done
    110  *	in the uvm_swap_stats() function.
    111  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    112  *	priority in "misc", start swapping on it.
    113  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    114  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    115  *	"misc")
    116  */
    117 
    118 /*
    119  * swapdev: describes a single swap partition/file
    120  *
    121  * note the following should be true:
    122  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    123  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    124  */
    125 struct swapdev {
    126 	dev_t			swd_dev;	/* device id */
    127 	int			swd_flags;	/* flags:inuse/enable/fake */
    128 	int			swd_priority;	/* our priority */
    129 	int			swd_nblks;	/* blocks in this device */
    130 	char			*swd_path;	/* saved pathname of device */
    131 	int			swd_pathlen;	/* length of pathname */
    132 	int			swd_npages;	/* #pages we can use */
    133 	int			swd_npginuse;	/* #pages in use */
    134 	int			swd_npgbad;	/* #pages bad */
    135 	int			swd_drumoffset;	/* page0 offset in drum */
    136 	int			swd_drumsize;	/* #pages in drum */
    137 	blist_t			swd_blist;	/* blist for this swapdev */
    138 	struct vnode		*swd_vp;	/* backing vnode */
    139 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    140 
    141 	int			swd_bsize;	/* blocksize (bytes) */
    142 	int			swd_maxactive;	/* max active i/o reqs */
    143 	struct bufq_state	*swd_tab;	/* buffer list */
    144 	int			swd_active;	/* number of active buffers */
    145 };
    146 
    147 /*
    148  * swap device priority entry; the list is kept sorted on `spi_priority'.
    149  */
    150 struct swappri {
    151 	int			spi_priority;     /* priority */
    152 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    153 	/* tailq of swapdevs at this priority */
    154 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    155 };
    156 
    157 /*
    158  * The following two structures are used to keep track of data transfers
    159  * on swap devices associated with regular files.
    160  * NOTE: this code is more or less a copy of vnd.c; we use the same
    161  * structure names here to ease porting..
    162  */
    163 struct vndxfer {
    164 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    165 	struct swapdev	*vx_sdp;
    166 	int		vx_error;
    167 	int		vx_pending;	/* # of pending aux buffers */
    168 	int		vx_flags;
    169 #define VX_BUSY		1
    170 #define VX_DEAD		2
    171 };
    172 
    173 struct vndbuf {
    174 	struct buf	vb_buf;
    175 	struct vndxfer	*vb_xfer;
    176 };
    177 
    178 /*
    179  * We keep a of pool vndbuf's and vndxfer structures.
    180  */
    181 static struct pool vndxfer_pool, vndbuf_pool;
    182 
    183 /*
    184  * local variables
    185  */
    186 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    187 
    188 /* list of all active swap devices [by priority] */
    189 LIST_HEAD(swap_priority, swappri);
    190 static struct swap_priority swap_priority;
    191 
    192 /* locks */
    193 static krwlock_t swap_syscall_lock;
    194 
    195 /* workqueue and use counter for swap to regular files */
    196 static int sw_reg_count = 0;
    197 static struct workqueue *sw_reg_workqueue;
    198 
    199 /* tuneables */
    200 u_int uvm_swapisfull_factor = 99;
    201 
    202 /*
    203  * prototypes
    204  */
    205 static struct swapdev	*swapdrum_getsdp(int);
    206 
    207 static struct swapdev	*swaplist_find(struct vnode *, bool);
    208 static void		 swaplist_insert(struct swapdev *,
    209 					 struct swappri *, int);
    210 static void		 swaplist_trim(void);
    211 
    212 static int swap_on(struct lwp *, struct swapdev *);
    213 static int swap_off(struct lwp *, struct swapdev *);
    214 
    215 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    216 static void sw_reg_biodone(struct buf *);
    217 static void sw_reg_iodone(struct work *wk, void *dummy);
    218 static void sw_reg_start(struct swapdev *);
    219 
    220 static int uvm_swap_io(struct vm_page **, int, int, int);
    221 
    222 /*
    223  * uvm_swap_init: init the swap system data structures and locks
    224  *
    225  * => called at boot time from init_main.c after the filesystems
    226  *	are brought up (which happens after uvm_init())
    227  */
    228 void
    229 uvm_swap_init(void)
    230 {
    231 	UVMHIST_FUNC("uvm_swap_init");
    232 
    233 	UVMHIST_CALLED(pdhist);
    234 	/*
    235 	 * first, init the swap list, its counter, and its lock.
    236 	 * then get a handle on the vnode for /dev/drum by using
    237 	 * the its dev_t number ("swapdev", from MD conf.c).
    238 	 */
    239 
    240 	LIST_INIT(&swap_priority);
    241 	uvmexp.nswapdev = 0;
    242 	rw_init(&swap_syscall_lock);
    243 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    244 
    245 	if (bdevvp(swapdev, &swapdev_vp))
    246 		panic("%s: can't get vnode for swap device", __func__);
    247 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    248 		panic("%s: can't lock swap device", __func__);
    249 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    250 		panic("%s: can't open swap device", __func__);
    251 	VOP_UNLOCK(swapdev_vp);
    252 
    253 	/*
    254 	 * create swap block resource map to map /dev/drum.   the range
    255 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    256 	 * that block 0 is reserved (used to indicate an allocation
    257 	 * failure, or no allocation).
    258 	 */
    259 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    260 	    VM_NOSLEEP, IPL_NONE);
    261 	if (swapmap == 0) {
    262 		panic("%s: vmem_create failed", __func__);
    263 	}
    264 
    265 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    266 	    NULL, IPL_BIO);
    267 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    268 	    NULL, IPL_BIO);
    269 
    270 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    271 }
    272 
    273 /*
    274  * swaplist functions: functions that operate on the list of swap
    275  * devices on the system.
    276  */
    277 
    278 /*
    279  * swaplist_insert: insert swap device "sdp" into the global list
    280  *
    281  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    282  * => caller must provide a newly allocated swappri structure (we will
    283  *	FREE it if we don't need it... this it to prevent allocation
    284  *	blocking here while adding swap)
    285  */
    286 static void
    287 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    288 {
    289 	struct swappri *spp, *pspp;
    290 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    291 
    292 	/*
    293 	 * find entry at or after which to insert the new device.
    294 	 */
    295 	pspp = NULL;
    296 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    297 		if (priority <= spp->spi_priority)
    298 			break;
    299 		pspp = spp;
    300 	}
    301 
    302 	/*
    303 	 * new priority?
    304 	 */
    305 	if (spp == NULL || spp->spi_priority != priority) {
    306 		spp = newspp;  /* use newspp! */
    307 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    308 			    priority, 0, 0, 0);
    309 
    310 		spp->spi_priority = priority;
    311 		TAILQ_INIT(&spp->spi_swapdev);
    312 
    313 		if (pspp)
    314 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    315 		else
    316 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    317 	} else {
    318 	  	/* we don't need a new priority structure, free it */
    319 		kmem_free(newspp, sizeof(*newspp));
    320 	}
    321 
    322 	/*
    323 	 * priority found (or created).   now insert on the priority's
    324 	 * tailq list and bump the total number of swapdevs.
    325 	 */
    326 	sdp->swd_priority = priority;
    327 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    328 	uvmexp.nswapdev++;
    329 }
    330 
    331 /*
    332  * swaplist_find: find and optionally remove a swap device from the
    333  *	global list.
    334  *
    335  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    336  * => we return the swapdev we found (and removed)
    337  */
    338 static struct swapdev *
    339 swaplist_find(struct vnode *vp, bool remove)
    340 {
    341 	struct swapdev *sdp;
    342 	struct swappri *spp;
    343 
    344 	/*
    345 	 * search the lists for the requested vp
    346 	 */
    347 
    348 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    349 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    350 			if (sdp->swd_vp == vp) {
    351 				if (remove) {
    352 					TAILQ_REMOVE(&spp->spi_swapdev,
    353 					    sdp, swd_next);
    354 					uvmexp.nswapdev--;
    355 				}
    356 				return(sdp);
    357 			}
    358 		}
    359 	}
    360 	return (NULL);
    361 }
    362 
    363 /*
    364  * swaplist_trim: scan priority list for empty priority entries and kill
    365  *	them.
    366  *
    367  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    368  */
    369 static void
    370 swaplist_trim(void)
    371 {
    372 	struct swappri *spp, *nextspp;
    373 
    374 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    375 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    376 			continue;
    377 		LIST_REMOVE(spp, spi_swappri);
    378 		kmem_free(spp, sizeof(*spp));
    379 	}
    380 }
    381 
    382 /*
    383  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    384  *	to the "swapdev" that maps that section of the drum.
    385  *
    386  * => each swapdev takes one big contig chunk of the drum
    387  * => caller must hold uvm_swap_data_lock
    388  */
    389 static struct swapdev *
    390 swapdrum_getsdp(int pgno)
    391 {
    392 	struct swapdev *sdp;
    393 	struct swappri *spp;
    394 
    395 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    396 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    397 			if (sdp->swd_flags & SWF_FAKE)
    398 				continue;
    399 			if (pgno >= sdp->swd_drumoffset &&
    400 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    401 				return sdp;
    402 			}
    403 		}
    404 	}
    405 	return NULL;
    406 }
    407 
    408 void swapsys_lock(krw_t op)
    409 {
    410 	rw_enter(&swap_syscall_lock, op);
    411 }
    412 
    413 void swapsys_unlock(void)
    414 {
    415 	rw_exit(&swap_syscall_lock);
    416 }
    417 
    418 static void
    419 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    420 {
    421 	se->se_dev = sdp->swd_dev;
    422 	se->se_flags = sdp->swd_flags;
    423 	se->se_nblks = sdp->swd_nblks;
    424 	se->se_inuse = inuse;
    425 	se->se_priority = sdp->swd_priority;
    426 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    427 	strcpy(se->se_path, sdp->swd_path);
    428 }
    429 
    430 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    431     (void *)enosys;
    432 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    433     (void *)enosys;
    434 
    435 /*
    436  * sys_swapctl: main entry point for swapctl(2) system call
    437  * 	[with two helper functions: swap_on and swap_off]
    438  */
    439 int
    440 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    441 {
    442 	/* {
    443 		syscallarg(int) cmd;
    444 		syscallarg(void *) arg;
    445 		syscallarg(int) misc;
    446 	} */
    447 	struct vnode *vp;
    448 	struct nameidata nd;
    449 	struct swappri *spp;
    450 	struct swapdev *sdp;
    451 #define SWAP_PATH_MAX (PATH_MAX + 1)
    452 	char	*userpath;
    453 	size_t	len = 0;
    454 	int	error;
    455 	int	priority;
    456 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    457 
    458 	/*
    459 	 * we handle the non-priv NSWAP and STATS request first.
    460 	 *
    461 	 * SWAP_NSWAP: return number of config'd swap devices
    462 	 * [can also be obtained with uvmexp sysctl]
    463 	 */
    464 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    465 		const int nswapdev = uvmexp.nswapdev;
    466 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    467 		    0, 0, 0);
    468 		*retval = nswapdev;
    469 		return 0;
    470 	}
    471 
    472 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    473 
    474 	/*
    475 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    476 	 */
    477 	rw_enter(&swap_syscall_lock, RW_WRITER);
    478 
    479 	/*
    480 	 * SWAP_STATS: get stats on current # of configured swap devs
    481 	 *
    482 	 * note that the swap_priority list can't change as long
    483 	 * as we are holding the swap_syscall_lock.  we don't want
    484 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    485 	 * copyout() and we don't want to be holding that lock then!
    486 	 */
    487 	switch (SCARG(uap, cmd)) {
    488 	case SWAP_STATS13:
    489 		error = (*uvm_swap_stats13)(uap, retval);
    490 		goto out;
    491 	case SWAP_STATS50:
    492 		error = (*uvm_swap_stats50)(uap, retval);
    493 		goto out;
    494 	case SWAP_STATS:
    495 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    496 		    NULL, sizeof(struct swapent), retval);
    497 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    498 		goto out;
    499 
    500 	case SWAP_GETDUMPDEV:
    501 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    502 		goto out;
    503 	default:
    504 		break;
    505 	}
    506 
    507 	/*
    508 	 * all other requests require superuser privs.   verify.
    509 	 */
    510 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    511 	    0, NULL, NULL, NULL)))
    512 		goto out;
    513 
    514 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    515 		/* drop the current dump device */
    516 		dumpdev = NODEV;
    517 		dumpcdev = NODEV;
    518 		cpu_dumpconf();
    519 		goto out;
    520 	}
    521 
    522 	/*
    523 	 * at this point we expect a path name in arg.   we will
    524 	 * use namei() to gain a vnode reference (vref), and lock
    525 	 * the vnode (VOP_LOCK).
    526 	 *
    527 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    528 	 * miniroot)
    529 	 */
    530 	if (SCARG(uap, arg) == NULL) {
    531 		vp = rootvp;		/* miniroot */
    532 		vref(vp);
    533 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    534 			vrele(vp);
    535 			error = EBUSY;
    536 			goto out;
    537 		}
    538 		if (SCARG(uap, cmd) == SWAP_ON &&
    539 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    540 			panic("swapctl: miniroot copy failed");
    541 	} else {
    542 		struct pathbuf *pb;
    543 
    544 		/*
    545 		 * This used to allow copying in one extra byte
    546 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    547 		 * This was completely pointless because if anyone
    548 		 * used that extra byte namei would fail with
    549 		 * ENAMETOOLONG anyway, so I've removed the excess
    550 		 * logic. - dholland 20100215
    551 		 */
    552 
    553 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    554 		if (error) {
    555 			goto out;
    556 		}
    557 		if (SCARG(uap, cmd) == SWAP_ON) {
    558 			/* get a copy of the string */
    559 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    560 			len = strlen(userpath) + 1;
    561 		}
    562 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    563 		if ((error = namei(&nd))) {
    564 			pathbuf_destroy(pb);
    565 			goto out;
    566 		}
    567 		vp = nd.ni_vp;
    568 		pathbuf_destroy(pb);
    569 	}
    570 	/* note: "vp" is referenced and locked */
    571 
    572 	error = 0;		/* assume no error */
    573 	switch(SCARG(uap, cmd)) {
    574 
    575 	case SWAP_DUMPDEV:
    576 		if (vp->v_type != VBLK) {
    577 			error = ENOTBLK;
    578 			break;
    579 		}
    580 		if (bdevsw_lookup(vp->v_rdev)) {
    581 			dumpdev = vp->v_rdev;
    582 			dumpcdev = devsw_blk2chr(dumpdev);
    583 		} else
    584 			dumpdev = NODEV;
    585 		cpu_dumpconf();
    586 		break;
    587 
    588 	case SWAP_CTL:
    589 		/*
    590 		 * get new priority, remove old entry (if any) and then
    591 		 * reinsert it in the correct place.  finally, prune out
    592 		 * any empty priority structures.
    593 		 */
    594 		priority = SCARG(uap, misc);
    595 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    596 		mutex_enter(&uvm_swap_data_lock);
    597 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    598 			error = ENOENT;
    599 		} else {
    600 			swaplist_insert(sdp, spp, priority);
    601 			swaplist_trim();
    602 		}
    603 		mutex_exit(&uvm_swap_data_lock);
    604 		if (error)
    605 			kmem_free(spp, sizeof(*spp));
    606 		break;
    607 
    608 	case SWAP_ON:
    609 
    610 		/*
    611 		 * check for duplicates.   if none found, then insert a
    612 		 * dummy entry on the list to prevent someone else from
    613 		 * trying to enable this device while we are working on
    614 		 * it.
    615 		 */
    616 
    617 		priority = SCARG(uap, misc);
    618 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    619 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    620 		sdp->swd_flags = SWF_FAKE;
    621 		sdp->swd_vp = vp;
    622 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    623 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    624 		mutex_enter(&uvm_swap_data_lock);
    625 		if (swaplist_find(vp, false) != NULL) {
    626 			error = EBUSY;
    627 			mutex_exit(&uvm_swap_data_lock);
    628 			bufq_free(sdp->swd_tab);
    629 			kmem_free(sdp, sizeof(*sdp));
    630 			kmem_free(spp, sizeof(*spp));
    631 			break;
    632 		}
    633 		swaplist_insert(sdp, spp, priority);
    634 		mutex_exit(&uvm_swap_data_lock);
    635 
    636 		KASSERT(len > 0);
    637 		sdp->swd_pathlen = len;
    638 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    639 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    640 			panic("swapctl: copystr");
    641 
    642 		/*
    643 		 * we've now got a FAKE placeholder in the swap list.
    644 		 * now attempt to enable swap on it.  if we fail, undo
    645 		 * what we've done and kill the fake entry we just inserted.
    646 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    647 		 */
    648 
    649 		if ((error = swap_on(l, sdp)) != 0) {
    650 			mutex_enter(&uvm_swap_data_lock);
    651 			(void) swaplist_find(vp, true);  /* kill fake entry */
    652 			swaplist_trim();
    653 			mutex_exit(&uvm_swap_data_lock);
    654 			bufq_free(sdp->swd_tab);
    655 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    656 			kmem_free(sdp, sizeof(*sdp));
    657 			break;
    658 		}
    659 		break;
    660 
    661 	case SWAP_OFF:
    662 		mutex_enter(&uvm_swap_data_lock);
    663 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    664 			mutex_exit(&uvm_swap_data_lock);
    665 			error = ENXIO;
    666 			break;
    667 		}
    668 
    669 		/*
    670 		 * If a device isn't in use or enabled, we
    671 		 * can't stop swapping from it (again).
    672 		 */
    673 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    674 			mutex_exit(&uvm_swap_data_lock);
    675 			error = EBUSY;
    676 			break;
    677 		}
    678 
    679 		/*
    680 		 * do the real work.
    681 		 */
    682 		error = swap_off(l, sdp);
    683 		break;
    684 
    685 	default:
    686 		error = EINVAL;
    687 	}
    688 
    689 	/*
    690 	 * done!  release the ref gained by namei() and unlock.
    691 	 */
    692 	vput(vp);
    693 out:
    694 	rw_exit(&swap_syscall_lock);
    695 	kmem_free(userpath, SWAP_PATH_MAX);
    696 
    697 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    698 	return (error);
    699 }
    700 
    701 /*
    702  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    703  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    704  * emulation to use it directly without going through sys_swapctl().
    705  * The problem with using sys_swapctl() there is that it involves
    706  * copying the swapent array to the stackgap, and this array's size
    707  * is not known at build time. Hence it would not be possible to
    708  * ensure it would fit in the stackgap in any case.
    709  */
    710 int
    711 uvm_swap_stats(char *ptr, int misc,
    712     void (*f)(void *, const struct swapent *), size_t len,
    713     register_t *retval)
    714 {
    715 	struct swappri *spp;
    716 	struct swapdev *sdp;
    717 	struct swapent sep;
    718 	int count = 0;
    719 	int error;
    720 
    721 	KASSERT(len <= sizeof(sep));
    722 	if (len == 0)
    723 		return ENOSYS;
    724 
    725 	if (misc < 0)
    726 		return EINVAL;
    727 
    728 	if (misc == 0 || uvmexp.nswapdev == 0)
    729 		return 0;
    730 
    731 	/* Make sure userland cannot exhaust kernel memory */
    732 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    733 		misc = uvmexp.nswapdev;
    734 
    735 	KASSERT(rw_lock_held(&swap_syscall_lock));
    736 
    737 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    738 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    739 			int inuse;
    740 
    741 			if (misc-- <= 0)
    742 				break;
    743 
    744 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    745 			    PAGE_SHIFT);
    746 
    747 			swapent_cvt(&sep, sdp, inuse);
    748 			if (f)
    749 				(*f)(&sep, &sep);
    750 			if ((error = copyout(&sep, ptr, len)) != 0)
    751 				return error;
    752 			ptr += len;
    753 			count++;
    754 		}
    755 	}
    756 	*retval = count;
    757 	return 0;
    758 }
    759 
    760 /*
    761  * swap_on: attempt to enable a swapdev for swapping.   note that the
    762  *	swapdev is already on the global list, but disabled (marked
    763  *	SWF_FAKE).
    764  *
    765  * => we avoid the start of the disk (to protect disk labels)
    766  * => we also avoid the miniroot, if we are swapping to root.
    767  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    768  *	if needed.
    769  */
    770 static int
    771 swap_on(struct lwp *l, struct swapdev *sdp)
    772 {
    773 	struct vnode *vp;
    774 	int error, npages, nblocks, size;
    775 	long addr;
    776 	vmem_addr_t result;
    777 	struct vattr va;
    778 	dev_t dev;
    779 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    780 
    781 	/*
    782 	 * we want to enable swapping on sdp.   the swd_vp contains
    783 	 * the vnode we want (locked and ref'd), and the swd_dev
    784 	 * contains the dev_t of the file, if it a block device.
    785 	 */
    786 
    787 	vp = sdp->swd_vp;
    788 	dev = sdp->swd_dev;
    789 
    790 	/*
    791 	 * open the swap file (mostly useful for block device files to
    792 	 * let device driver know what is up).
    793 	 *
    794 	 * we skip the open/close for root on swap because the root
    795 	 * has already been opened when root was mounted (mountroot).
    796 	 */
    797 	if (vp != rootvp) {
    798 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    799 			return (error);
    800 	}
    801 
    802 	/* XXX this only works for block devices */
    803 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    804 
    805 	/*
    806 	 * we now need to determine the size of the swap area.   for
    807 	 * block specials we can call the d_psize function.
    808 	 * for normal files, we must stat [get attrs].
    809 	 *
    810 	 * we put the result in nblks.
    811 	 * for normal files, we also want the filesystem block size
    812 	 * (which we get with statfs).
    813 	 */
    814 	switch (vp->v_type) {
    815 	case VBLK:
    816 		if ((nblocks = bdev_size(dev)) == -1) {
    817 			error = ENXIO;
    818 			goto bad;
    819 		}
    820 		break;
    821 
    822 	case VREG:
    823 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    824 			goto bad;
    825 		nblocks = (int)btodb(va.va_size);
    826 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    827 		/*
    828 		 * limit the max # of outstanding I/O requests we issue
    829 		 * at any one time.   take it easy on NFS servers.
    830 		 */
    831 		if (vp->v_tag == VT_NFS)
    832 			sdp->swd_maxactive = 2; /* XXX */
    833 		else
    834 			sdp->swd_maxactive = 8; /* XXX */
    835 		break;
    836 
    837 	default:
    838 		error = ENXIO;
    839 		goto bad;
    840 	}
    841 
    842 	/*
    843 	 * save nblocks in a safe place and convert to pages.
    844 	 */
    845 
    846 	sdp->swd_nblks = nblocks;
    847 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    848 
    849 	/*
    850 	 * for block special files, we want to make sure that leave
    851 	 * the disklabel and bootblocks alone, so we arrange to skip
    852 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    853 	 * note that because of this the "size" can be less than the
    854 	 * actual number of blocks on the device.
    855 	 */
    856 	if (vp->v_type == VBLK) {
    857 		/* we use pages 1 to (size - 1) [inclusive] */
    858 		size = npages - 1;
    859 		addr = 1;
    860 	} else {
    861 		/* we use pages 0 to (size - 1) [inclusive] */
    862 		size = npages;
    863 		addr = 0;
    864 	}
    865 
    866 	/*
    867 	 * make sure we have enough blocks for a reasonable sized swap
    868 	 * area.   we want at least one page.
    869 	 */
    870 
    871 	if (size < 1) {
    872 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    873 		error = EINVAL;
    874 		goto bad;
    875 	}
    876 
    877 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    878 
    879 	/*
    880 	 * now we need to allocate an extent to manage this swap device
    881 	 */
    882 
    883 	sdp->swd_blist = blist_create(npages);
    884 	/* mark all expect the `saved' region free. */
    885 	blist_free(sdp->swd_blist, addr, size);
    886 
    887 	/*
    888 	 * if the vnode we are swapping to is the root vnode
    889 	 * (i.e. we are swapping to the miniroot) then we want
    890 	 * to make sure we don't overwrite it.   do a statfs to
    891 	 * find its size and skip over it.
    892 	 */
    893 	if (vp == rootvp) {
    894 		struct mount *mp;
    895 		struct statvfs *sp;
    896 		int rootblocks, rootpages;
    897 
    898 		mp = rootvnode->v_mount;
    899 		sp = &mp->mnt_stat;
    900 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    901 		/*
    902 		 * XXX: sp->f_blocks isn't the total number of
    903 		 * blocks in the filesystem, it's the number of
    904 		 * data blocks.  so, our rootblocks almost
    905 		 * definitely underestimates the total size
    906 		 * of the filesystem - how badly depends on the
    907 		 * details of the filesystem type.  there isn't
    908 		 * an obvious way to deal with this cleanly
    909 		 * and perfectly, so for now we just pad our
    910 		 * rootblocks estimate with an extra 5 percent.
    911 		 */
    912 		rootblocks += (rootblocks >> 5) +
    913 			(rootblocks >> 6) +
    914 			(rootblocks >> 7);
    915 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    916 		if (rootpages > size)
    917 			panic("swap_on: miniroot larger than swap?");
    918 
    919 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    920 			panic("swap_on: unable to preserve miniroot");
    921 		}
    922 
    923 		size -= rootpages;
    924 		printf("Preserved %d pages of miniroot ", rootpages);
    925 		printf("leaving %d pages of swap\n", size);
    926 	}
    927 
    928 	/*
    929 	 * add a ref to vp to reflect usage as a swap device.
    930 	 */
    931 	vref(vp);
    932 
    933 	/*
    934 	 * now add the new swapdev to the drum and enable.
    935 	 */
    936 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    937 	if (error != 0)
    938 		panic("swapdrum_add");
    939 	/*
    940 	 * If this is the first regular swap create the workqueue.
    941 	 * => Protected by swap_syscall_lock.
    942 	 */
    943 	if (vp->v_type != VBLK) {
    944 		if (sw_reg_count++ == 0) {
    945 			KASSERT(sw_reg_workqueue == NULL);
    946 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    947 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    948 				panic("%s: workqueue_create failed", __func__);
    949 		}
    950 	}
    951 
    952 	sdp->swd_drumoffset = (int)result;
    953 	sdp->swd_drumsize = npages;
    954 	sdp->swd_npages = size;
    955 	mutex_enter(&uvm_swap_data_lock);
    956 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    957 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    958 	uvmexp.swpages += size;
    959 	uvmexp.swpgavail += size;
    960 	mutex_exit(&uvm_swap_data_lock);
    961 	return (0);
    962 
    963 	/*
    964 	 * failure: clean up and return error.
    965 	 */
    966 
    967 bad:
    968 	if (sdp->swd_blist) {
    969 		blist_destroy(sdp->swd_blist);
    970 	}
    971 	if (vp != rootvp) {
    972 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    973 	}
    974 	return (error);
    975 }
    976 
    977 /*
    978  * swap_off: stop swapping on swapdev
    979  *
    980  * => swap data should be locked, we will unlock.
    981  */
    982 static int
    983 swap_off(struct lwp *l, struct swapdev *sdp)
    984 {
    985 	int npages = sdp->swd_npages;
    986 	int error = 0;
    987 
    988 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    989 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
    990 
    991 	/* disable the swap area being removed */
    992 	sdp->swd_flags &= ~SWF_ENABLE;
    993 	uvmexp.swpgavail -= npages;
    994 	mutex_exit(&uvm_swap_data_lock);
    995 
    996 	/*
    997 	 * the idea is to find all the pages that are paged out to this
    998 	 * device, and page them all in.  in uvm, swap-backed pageable
    999 	 * memory can take two forms: aobjs and anons.  call the
   1000 	 * swapoff hook for each subsystem to bring in pages.
   1001 	 */
   1002 
   1003 	if (uao_swap_off(sdp->swd_drumoffset,
   1004 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1005 	    amap_swap_off(sdp->swd_drumoffset,
   1006 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1007 		error = ENOMEM;
   1008 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1009 		error = EBUSY;
   1010 	}
   1011 
   1012 	if (error) {
   1013 		mutex_enter(&uvm_swap_data_lock);
   1014 		sdp->swd_flags |= SWF_ENABLE;
   1015 		uvmexp.swpgavail += npages;
   1016 		mutex_exit(&uvm_swap_data_lock);
   1017 
   1018 		return error;
   1019 	}
   1020 
   1021 	/*
   1022 	 * If this is the last regular swap destroy the workqueue.
   1023 	 * => Protected by swap_syscall_lock.
   1024 	 */
   1025 	if (sdp->swd_vp->v_type != VBLK) {
   1026 		KASSERT(sw_reg_count > 0);
   1027 		KASSERT(sw_reg_workqueue != NULL);
   1028 		if (--sw_reg_count == 0) {
   1029 			workqueue_destroy(sw_reg_workqueue);
   1030 			sw_reg_workqueue = NULL;
   1031 		}
   1032 	}
   1033 
   1034 	/*
   1035 	 * done with the vnode.
   1036 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1037 	 * so that spec_close() can tell if this is the last close.
   1038 	 */
   1039 	vrele(sdp->swd_vp);
   1040 	if (sdp->swd_vp != rootvp) {
   1041 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1042 	}
   1043 
   1044 	mutex_enter(&uvm_swap_data_lock);
   1045 	uvmexp.swpages -= npages;
   1046 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1047 
   1048 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1049 		panic("%s: swapdev not in list", __func__);
   1050 	swaplist_trim();
   1051 	mutex_exit(&uvm_swap_data_lock);
   1052 
   1053 	/*
   1054 	 * free all resources!
   1055 	 */
   1056 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1057 	blist_destroy(sdp->swd_blist);
   1058 	bufq_free(sdp->swd_tab);
   1059 	kmem_free(sdp, sizeof(*sdp));
   1060 	return (0);
   1061 }
   1062 
   1063 void
   1064 uvm_swap_shutdown(struct lwp *l)
   1065 {
   1066 	struct swapdev *sdp;
   1067 	struct swappri *spp;
   1068 	struct vnode *vp;
   1069 	int error;
   1070 
   1071 	printf("turning of swap...");
   1072 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1073 	mutex_enter(&uvm_swap_data_lock);
   1074 again:
   1075 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1076 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1077 			if (sdp->swd_flags & SWF_FAKE)
   1078 				continue;
   1079 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1080 				continue;
   1081 #ifdef DEBUG
   1082 			printf("\nturning off swap on %s...",
   1083 			    sdp->swd_path);
   1084 #endif
   1085 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1086 				error = EBUSY;
   1087 				vp = NULL;
   1088 			} else
   1089 				error = 0;
   1090 			if (!error) {
   1091 				error = swap_off(l, sdp);
   1092 				mutex_enter(&uvm_swap_data_lock);
   1093 			}
   1094 			if (error) {
   1095 				printf("stopping swap on %s failed "
   1096 				    "with error %d\n", sdp->swd_path, error);
   1097 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1098 				    swd_next);
   1099 				uvmexp.nswapdev--;
   1100 				swaplist_trim();
   1101 				if (vp)
   1102 					vput(vp);
   1103 			}
   1104 			goto again;
   1105 		}
   1106 	printf(" done\n");
   1107 	mutex_exit(&uvm_swap_data_lock);
   1108 	rw_exit(&swap_syscall_lock);
   1109 }
   1110 
   1111 
   1112 /*
   1113  * /dev/drum interface and i/o functions
   1114  */
   1115 
   1116 /*
   1117  * swstrategy: perform I/O on the drum
   1118  *
   1119  * => we must map the i/o request from the drum to the correct swapdev.
   1120  */
   1121 static void
   1122 swstrategy(struct buf *bp)
   1123 {
   1124 	struct swapdev *sdp;
   1125 	struct vnode *vp;
   1126 	int pageno, bn;
   1127 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1128 
   1129 	/*
   1130 	 * convert block number to swapdev.   note that swapdev can't
   1131 	 * be yanked out from under us because we are holding resources
   1132 	 * in it (i.e. the blocks we are doing I/O on).
   1133 	 */
   1134 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1135 	mutex_enter(&uvm_swap_data_lock);
   1136 	sdp = swapdrum_getsdp(pageno);
   1137 	mutex_exit(&uvm_swap_data_lock);
   1138 	if (sdp == NULL) {
   1139 		bp->b_error = EINVAL;
   1140 		bp->b_resid = bp->b_bcount;
   1141 		biodone(bp);
   1142 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1143 		return;
   1144 	}
   1145 
   1146 	/*
   1147 	 * convert drum page number to block number on this swapdev.
   1148 	 */
   1149 
   1150 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1151 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1152 
   1153 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1154 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1155 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1156 
   1157 	/*
   1158 	 * for block devices we finish up here.
   1159 	 * for regular files we have to do more work which we delegate
   1160 	 * to sw_reg_strategy().
   1161 	 */
   1162 
   1163 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1164 	switch (vp->v_type) {
   1165 	default:
   1166 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1167 
   1168 	case VBLK:
   1169 
   1170 		/*
   1171 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1172 		 * on the swapdev (sdp).
   1173 		 */
   1174 		bp->b_blkno = bn;		/* swapdev block number */
   1175 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1176 
   1177 		/*
   1178 		 * if we are doing a write, we have to redirect the i/o on
   1179 		 * drum's v_numoutput counter to the swapdevs.
   1180 		 */
   1181 		if ((bp->b_flags & B_READ) == 0) {
   1182 			mutex_enter(bp->b_objlock);
   1183 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1184 			mutex_exit(bp->b_objlock);
   1185 			mutex_enter(vp->v_interlock);
   1186 			vp->v_numoutput++;	/* put it on swapdev */
   1187 			mutex_exit(vp->v_interlock);
   1188 		}
   1189 
   1190 		/*
   1191 		 * finally plug in swapdev vnode and start I/O
   1192 		 */
   1193 		bp->b_vp = vp;
   1194 		bp->b_objlock = vp->v_interlock;
   1195 		VOP_STRATEGY(vp, bp);
   1196 		return;
   1197 
   1198 	case VREG:
   1199 		/*
   1200 		 * delegate to sw_reg_strategy function.
   1201 		 */
   1202 		sw_reg_strategy(sdp, bp, bn);
   1203 		return;
   1204 	}
   1205 	/* NOTREACHED */
   1206 }
   1207 
   1208 /*
   1209  * swread: the read function for the drum (just a call to physio)
   1210  */
   1211 /*ARGSUSED*/
   1212 static int
   1213 swread(dev_t dev, struct uio *uio, int ioflag)
   1214 {
   1215 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1216 
   1217 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1218 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1219 }
   1220 
   1221 /*
   1222  * swwrite: the write function for the drum (just a call to physio)
   1223  */
   1224 /*ARGSUSED*/
   1225 static int
   1226 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1227 {
   1228 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1229 
   1230 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1231 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1232 }
   1233 
   1234 const struct bdevsw swap_bdevsw = {
   1235 	.d_open = nullopen,
   1236 	.d_close = nullclose,
   1237 	.d_strategy = swstrategy,
   1238 	.d_ioctl = noioctl,
   1239 	.d_dump = nodump,
   1240 	.d_psize = nosize,
   1241 	.d_discard = nodiscard,
   1242 	.d_flag = D_OTHER
   1243 };
   1244 
   1245 const struct cdevsw swap_cdevsw = {
   1246 	.d_open = nullopen,
   1247 	.d_close = nullclose,
   1248 	.d_read = swread,
   1249 	.d_write = swwrite,
   1250 	.d_ioctl = noioctl,
   1251 	.d_stop = nostop,
   1252 	.d_tty = notty,
   1253 	.d_poll = nopoll,
   1254 	.d_mmap = nommap,
   1255 	.d_kqfilter = nokqfilter,
   1256 	.d_discard = nodiscard,
   1257 	.d_flag = D_OTHER,
   1258 };
   1259 
   1260 /*
   1261  * sw_reg_strategy: handle swap i/o to regular files
   1262  */
   1263 static void
   1264 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1265 {
   1266 	struct vnode	*vp;
   1267 	struct vndxfer	*vnx;
   1268 	daddr_t		nbn;
   1269 	char 		*addr;
   1270 	off_t		byteoff;
   1271 	int		s, off, nra, error, sz, resid;
   1272 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1273 
   1274 	/*
   1275 	 * allocate a vndxfer head for this transfer and point it to
   1276 	 * our buffer.
   1277 	 */
   1278 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1279 	vnx->vx_flags = VX_BUSY;
   1280 	vnx->vx_error = 0;
   1281 	vnx->vx_pending = 0;
   1282 	vnx->vx_bp = bp;
   1283 	vnx->vx_sdp = sdp;
   1284 
   1285 	/*
   1286 	 * setup for main loop where we read filesystem blocks into
   1287 	 * our buffer.
   1288 	 */
   1289 	error = 0;
   1290 	bp->b_resid = bp->b_bcount;	/* nothing transfered yet! */
   1291 	addr = bp->b_data;		/* current position in buffer */
   1292 	byteoff = dbtob((uint64_t)bn);
   1293 
   1294 	for (resid = bp->b_resid; resid; resid -= sz) {
   1295 		struct vndbuf	*nbp;
   1296 
   1297 		/*
   1298 		 * translate byteoffset into block number.  return values:
   1299 		 *   vp = vnode of underlying device
   1300 		 *  nbn = new block number (on underlying vnode dev)
   1301 		 *  nra = num blocks we can read-ahead (excludes requested
   1302 		 *	block)
   1303 		 */
   1304 		nra = 0;
   1305 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1306 				 	&vp, &nbn, &nra);
   1307 
   1308 		if (error == 0 && nbn == (daddr_t)-1) {
   1309 			/*
   1310 			 * this used to just set error, but that doesn't
   1311 			 * do the right thing.  Instead, it causes random
   1312 			 * memory errors.  The panic() should remain until
   1313 			 * this condition doesn't destabilize the system.
   1314 			 */
   1315 #if 1
   1316 			panic("%s: swap to sparse file", __func__);
   1317 #else
   1318 			error = EIO;	/* failure */
   1319 #endif
   1320 		}
   1321 
   1322 		/*
   1323 		 * punt if there was an error or a hole in the file.
   1324 		 * we must wait for any i/o ops we have already started
   1325 		 * to finish before returning.
   1326 		 *
   1327 		 * XXX we could deal with holes here but it would be
   1328 		 * a hassle (in the write case).
   1329 		 */
   1330 		if (error) {
   1331 			s = splbio();
   1332 			vnx->vx_error = error;	/* pass error up */
   1333 			goto out;
   1334 		}
   1335 
   1336 		/*
   1337 		 * compute the size ("sz") of this transfer (in bytes).
   1338 		 */
   1339 		off = byteoff % sdp->swd_bsize;
   1340 		sz = (1 + nra) * sdp->swd_bsize - off;
   1341 		if (sz > resid)
   1342 			sz = resid;
   1343 
   1344 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1345 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1346 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1347 
   1348 		/*
   1349 		 * now get a buf structure.   note that the vb_buf is
   1350 		 * at the front of the nbp structure so that you can
   1351 		 * cast pointers between the two structure easily.
   1352 		 */
   1353 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1354 		buf_init(&nbp->vb_buf);
   1355 		nbp->vb_buf.b_flags    = bp->b_flags;
   1356 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1357 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1358 		nbp->vb_buf.b_bcount   = sz;
   1359 		nbp->vb_buf.b_bufsize  = sz;
   1360 		nbp->vb_buf.b_error    = 0;
   1361 		nbp->vb_buf.b_data     = addr;
   1362 		nbp->vb_buf.b_lblkno   = 0;
   1363 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1364 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1365 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1366 		nbp->vb_buf.b_vp       = vp;
   1367 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1368 		if (vp->v_type == VBLK) {
   1369 			nbp->vb_buf.b_dev = vp->v_rdev;
   1370 		}
   1371 
   1372 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1373 
   1374 		/*
   1375 		 * Just sort by block number
   1376 		 */
   1377 		s = splbio();
   1378 		if (vnx->vx_error != 0) {
   1379 			buf_destroy(&nbp->vb_buf);
   1380 			pool_put(&vndbuf_pool, nbp);
   1381 			goto out;
   1382 		}
   1383 		vnx->vx_pending++;
   1384 
   1385 		/* sort it in and start I/O if we are not over our limit */
   1386 		/* XXXAD locking */
   1387 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1388 		sw_reg_start(sdp);
   1389 		splx(s);
   1390 
   1391 		/*
   1392 		 * advance to the next I/O
   1393 		 */
   1394 		byteoff += sz;
   1395 		addr += sz;
   1396 	}
   1397 
   1398 	s = splbio();
   1399 
   1400 out: /* Arrive here at splbio */
   1401 	vnx->vx_flags &= ~VX_BUSY;
   1402 	if (vnx->vx_pending == 0) {
   1403 		error = vnx->vx_error;
   1404 		pool_put(&vndxfer_pool, vnx);
   1405 		bp->b_error = error;
   1406 		biodone(bp);
   1407 	}
   1408 	splx(s);
   1409 }
   1410 
   1411 /*
   1412  * sw_reg_start: start an I/O request on the requested swapdev
   1413  *
   1414  * => reqs are sorted by b_rawblkno (above)
   1415  */
   1416 static void
   1417 sw_reg_start(struct swapdev *sdp)
   1418 {
   1419 	struct buf	*bp;
   1420 	struct vnode	*vp;
   1421 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1422 
   1423 	/* recursion control */
   1424 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1425 		return;
   1426 
   1427 	sdp->swd_flags |= SWF_BUSY;
   1428 
   1429 	while (sdp->swd_active < sdp->swd_maxactive) {
   1430 		bp = bufq_get(sdp->swd_tab);
   1431 		if (bp == NULL)
   1432 			break;
   1433 		sdp->swd_active++;
   1434 
   1435 		UVMHIST_LOG(pdhist,
   1436 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1437 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1438 		    bp->b_bcount);
   1439 		vp = bp->b_vp;
   1440 		KASSERT(bp->b_objlock == vp->v_interlock);
   1441 		if ((bp->b_flags & B_READ) == 0) {
   1442 			mutex_enter(vp->v_interlock);
   1443 			vp->v_numoutput++;
   1444 			mutex_exit(vp->v_interlock);
   1445 		}
   1446 		VOP_STRATEGY(vp, bp);
   1447 	}
   1448 	sdp->swd_flags &= ~SWF_BUSY;
   1449 }
   1450 
   1451 /*
   1452  * sw_reg_biodone: one of our i/o's has completed
   1453  */
   1454 static void
   1455 sw_reg_biodone(struct buf *bp)
   1456 {
   1457 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1458 }
   1459 
   1460 /*
   1461  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1462  *
   1463  * => note that we can recover the vndbuf struct by casting the buf ptr
   1464  */
   1465 static void
   1466 sw_reg_iodone(struct work *wk, void *dummy)
   1467 {
   1468 	struct vndbuf *vbp = (void *)wk;
   1469 	struct vndxfer *vnx = vbp->vb_xfer;
   1470 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1471 	struct swapdev	*sdp = vnx->vx_sdp;
   1472 	int s, resid, error;
   1473 	KASSERT(&vbp->vb_buf.b_work == wk);
   1474 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1475 
   1476 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1477 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1478 	    (uintptr_t)vbp->vb_buf.b_data);
   1479 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1480 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1481 
   1482 	/*
   1483 	 * protect vbp at splbio and update.
   1484 	 */
   1485 
   1486 	s = splbio();
   1487 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1488 	pbp->b_resid -= resid;
   1489 	vnx->vx_pending--;
   1490 
   1491 	if (vbp->vb_buf.b_error != 0) {
   1492 		/* pass error upward */
   1493 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1494 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1495 		vnx->vx_error = error;
   1496 	}
   1497 
   1498 	/*
   1499 	 * kill vbp structure
   1500 	 */
   1501 	buf_destroy(&vbp->vb_buf);
   1502 	pool_put(&vndbuf_pool, vbp);
   1503 
   1504 	/*
   1505 	 * wrap up this transaction if it has run to completion or, in
   1506 	 * case of an error, when all auxiliary buffers have returned.
   1507 	 */
   1508 	if (vnx->vx_error != 0) {
   1509 		/* pass error upward */
   1510 		error = vnx->vx_error;
   1511 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1512 			pbp->b_error = error;
   1513 			biodone(pbp);
   1514 			pool_put(&vndxfer_pool, vnx);
   1515 		}
   1516 	} else if (pbp->b_resid == 0) {
   1517 		KASSERT(vnx->vx_pending == 0);
   1518 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1519 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1520 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1521 			biodone(pbp);
   1522 			pool_put(&vndxfer_pool, vnx);
   1523 		}
   1524 	}
   1525 
   1526 	/*
   1527 	 * done!   start next swapdev I/O if one is pending
   1528 	 */
   1529 	sdp->swd_active--;
   1530 	sw_reg_start(sdp);
   1531 	splx(s);
   1532 }
   1533 
   1534 
   1535 /*
   1536  * uvm_swap_alloc: allocate space on swap
   1537  *
   1538  * => allocation is done "round robin" down the priority list, as we
   1539  *	allocate in a priority we "rotate" the circle queue.
   1540  * => space can be freed with uvm_swap_free
   1541  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1542  * => we lock uvm_swap_data_lock
   1543  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1544  */
   1545 int
   1546 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1547 {
   1548 	struct swapdev *sdp;
   1549 	struct swappri *spp;
   1550 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1551 
   1552 	/*
   1553 	 * no swap devices configured yet?   definite failure.
   1554 	 */
   1555 	if (uvmexp.nswapdev < 1)
   1556 		return 0;
   1557 
   1558 	/*
   1559 	 * XXXJAK: BEGIN HACK
   1560 	 *
   1561 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1562 	 * too many slots.
   1563 	 */
   1564 	if (*nslots > BLIST_MAX_ALLOC) {
   1565 		if (__predict_false(lessok == false))
   1566 			return 0;
   1567 		*nslots = BLIST_MAX_ALLOC;
   1568 	}
   1569 	/* XXXJAK: END HACK */
   1570 
   1571 	/*
   1572 	 * lock data lock, convert slots into blocks, and enter loop
   1573 	 */
   1574 	mutex_enter(&uvm_swap_data_lock);
   1575 
   1576 ReTry:	/* XXXMRG */
   1577 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1578 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1579 			uint64_t result;
   1580 
   1581 			/* if it's not enabled, then we can't swap from it */
   1582 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1583 				continue;
   1584 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1585 				continue;
   1586 			result = blist_alloc(sdp->swd_blist, *nslots);
   1587 			if (result == BLIST_NONE) {
   1588 				continue;
   1589 			}
   1590 			KASSERT(result < sdp->swd_drumsize);
   1591 
   1592 			/*
   1593 			 * successful allocation!  now rotate the tailq.
   1594 			 */
   1595 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1596 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1597 			sdp->swd_npginuse += *nslots;
   1598 			uvmexp.swpginuse += *nslots;
   1599 			mutex_exit(&uvm_swap_data_lock);
   1600 			/* done!  return drum slot number */
   1601 			UVMHIST_LOG(pdhist,
   1602 			    "success!  returning %jd slots starting at %jd",
   1603 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1604 			return (result + sdp->swd_drumoffset);
   1605 		}
   1606 	}
   1607 
   1608 	/* XXXMRG: BEGIN HACK */
   1609 	if (*nslots > 1 && lessok) {
   1610 		*nslots = 1;
   1611 		/* XXXMRG: ugh!  blist should support this for us */
   1612 		goto ReTry;
   1613 	}
   1614 	/* XXXMRG: END HACK */
   1615 
   1616 	mutex_exit(&uvm_swap_data_lock);
   1617 	return 0;
   1618 }
   1619 
   1620 /*
   1621  * uvm_swapisfull: return true if most of available swap is allocated
   1622  * and in use.  we don't count some small portion as it may be inaccessible
   1623  * to us at any given moment, for example if there is lock contention or if
   1624  * pages are busy.
   1625  */
   1626 bool
   1627 uvm_swapisfull(void)
   1628 {
   1629 	int swpgonly;
   1630 	bool rv;
   1631 
   1632 	mutex_enter(&uvm_swap_data_lock);
   1633 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1634 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1635 	    uvm_swapisfull_factor);
   1636 	rv = (swpgonly >= uvmexp.swpgavail);
   1637 	mutex_exit(&uvm_swap_data_lock);
   1638 
   1639 	return (rv);
   1640 }
   1641 
   1642 /*
   1643  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1644  *
   1645  * => we lock uvm_swap_data_lock
   1646  */
   1647 void
   1648 uvm_swap_markbad(int startslot, int nslots)
   1649 {
   1650 	struct swapdev *sdp;
   1651 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1652 
   1653 	mutex_enter(&uvm_swap_data_lock);
   1654 	sdp = swapdrum_getsdp(startslot);
   1655 	KASSERT(sdp != NULL);
   1656 
   1657 	/*
   1658 	 * we just keep track of how many pages have been marked bad
   1659 	 * in this device, to make everything add up in swap_off().
   1660 	 * we assume here that the range of slots will all be within
   1661 	 * one swap device.
   1662 	 */
   1663 
   1664 	KASSERT(uvmexp.swpgonly >= nslots);
   1665 	uvmexp.swpgonly -= nslots;
   1666 	sdp->swd_npgbad += nslots;
   1667 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1668 	mutex_exit(&uvm_swap_data_lock);
   1669 }
   1670 
   1671 /*
   1672  * uvm_swap_free: free swap slots
   1673  *
   1674  * => this can be all or part of an allocation made by uvm_swap_alloc
   1675  * => we lock uvm_swap_data_lock
   1676  */
   1677 void
   1678 uvm_swap_free(int startslot, int nslots)
   1679 {
   1680 	struct swapdev *sdp;
   1681 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1682 
   1683 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
   1684 	    startslot, 0, 0);
   1685 
   1686 	/*
   1687 	 * ignore attempts to free the "bad" slot.
   1688 	 */
   1689 
   1690 	if (startslot == SWSLOT_BAD) {
   1691 		return;
   1692 	}
   1693 
   1694 	/*
   1695 	 * convert drum slot offset back to sdp, free the blocks
   1696 	 * in the extent, and return.   must hold pri lock to do
   1697 	 * lookup and access the extent.
   1698 	 */
   1699 
   1700 	mutex_enter(&uvm_swap_data_lock);
   1701 	sdp = swapdrum_getsdp(startslot);
   1702 	KASSERT(uvmexp.nswapdev >= 1);
   1703 	KASSERT(sdp != NULL);
   1704 	KASSERT(sdp->swd_npginuse >= nslots);
   1705 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1706 	sdp->swd_npginuse -= nslots;
   1707 	uvmexp.swpginuse -= nslots;
   1708 	mutex_exit(&uvm_swap_data_lock);
   1709 }
   1710 
   1711 /*
   1712  * uvm_swap_put: put any number of pages into a contig place on swap
   1713  *
   1714  * => can be sync or async
   1715  */
   1716 
   1717 int
   1718 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1719 {
   1720 	int error;
   1721 
   1722 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1723 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1724 	return error;
   1725 }
   1726 
   1727 /*
   1728  * uvm_swap_get: get a single page from swap
   1729  *
   1730  * => usually a sync op (from fault)
   1731  */
   1732 
   1733 int
   1734 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1735 {
   1736 	int error;
   1737 
   1738 	uvmexp.nswget++;
   1739 	KASSERT(flags & PGO_SYNCIO);
   1740 	if (swslot == SWSLOT_BAD) {
   1741 		return EIO;
   1742 	}
   1743 
   1744 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1745 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1746 	if (error == 0) {
   1747 
   1748 		/*
   1749 		 * this page is no longer only in swap.
   1750 		 */
   1751 
   1752 		mutex_enter(&uvm_swap_data_lock);
   1753 		KASSERT(uvmexp.swpgonly > 0);
   1754 		uvmexp.swpgonly--;
   1755 		mutex_exit(&uvm_swap_data_lock);
   1756 	}
   1757 	return error;
   1758 }
   1759 
   1760 /*
   1761  * uvm_swap_io: do an i/o operation to swap
   1762  */
   1763 
   1764 static int
   1765 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1766 {
   1767 	daddr_t startblk;
   1768 	struct	buf *bp;
   1769 	vaddr_t kva;
   1770 	int	error, mapinflags;
   1771 	bool write, async;
   1772 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1773 
   1774 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1775 	    startslot, npages, flags, 0);
   1776 
   1777 	write = (flags & B_READ) == 0;
   1778 	async = (flags & B_ASYNC) != 0;
   1779 
   1780 	/*
   1781 	 * allocate a buf for the i/o.
   1782 	 */
   1783 
   1784 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1785 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1786 	if (bp == NULL) {
   1787 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1788 		return ENOMEM;
   1789 	}
   1790 
   1791 	/*
   1792 	 * convert starting drum slot to block number
   1793 	 */
   1794 
   1795 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1796 
   1797 	/*
   1798 	 * first, map the pages into the kernel.
   1799 	 */
   1800 
   1801 	mapinflags = !write ?
   1802 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1803 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1804 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1805 
   1806 	/*
   1807 	 * fill in the bp/sbp.   we currently route our i/o through
   1808 	 * /dev/drum's vnode [swapdev_vp].
   1809 	 */
   1810 
   1811 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1812 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1813 	bp->b_proc = &proc0;	/* XXX */
   1814 	bp->b_vnbufs.le_next = NOLIST;
   1815 	bp->b_data = (void *)kva;
   1816 	bp->b_blkno = startblk;
   1817 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1818 
   1819 	/*
   1820 	 * bump v_numoutput (counter of number of active outputs).
   1821 	 */
   1822 
   1823 	if (write) {
   1824 		mutex_enter(swapdev_vp->v_interlock);
   1825 		swapdev_vp->v_numoutput++;
   1826 		mutex_exit(swapdev_vp->v_interlock);
   1827 	}
   1828 
   1829 	/*
   1830 	 * for async ops we must set up the iodone handler.
   1831 	 */
   1832 
   1833 	if (async) {
   1834 		bp->b_iodone = uvm_aio_biodone;
   1835 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1836 		if (curlwp == uvm.pagedaemon_lwp)
   1837 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1838 		else
   1839 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1840 	} else {
   1841 		bp->b_iodone = NULL;
   1842 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1843 	}
   1844 	UVMHIST_LOG(pdhist,
   1845 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1846 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1847 
   1848 	/*
   1849 	 * now we start the I/O, and if async, return.
   1850 	 */
   1851 
   1852 	VOP_STRATEGY(swapdev_vp, bp);
   1853 	if (async)
   1854 		return 0;
   1855 
   1856 	/*
   1857 	 * must be sync i/o.   wait for it to finish
   1858 	 */
   1859 
   1860 	error = biowait(bp);
   1861 
   1862 	/*
   1863 	 * kill the pager mapping
   1864 	 */
   1865 
   1866 	uvm_pagermapout(kva, npages);
   1867 
   1868 	/*
   1869 	 * now dispose of the buf and we're done.
   1870 	 */
   1871 
   1872 	if (write) {
   1873 		mutex_enter(swapdev_vp->v_interlock);
   1874 		vwakeup(bp);
   1875 		mutex_exit(swapdev_vp->v_interlock);
   1876 	}
   1877 	putiobuf(bp);
   1878 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   1879 
   1880 	return (error);
   1881 }
   1882