uvm_swap.c revision 1.177 1 /* $NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.177 2018/03/15 03:21:58 christos Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/buf.h>
42 #include <sys/bufq.h>
43 #include <sys/conf.h>
44 #include <sys/proc.h>
45 #include <sys/namei.h>
46 #include <sys/disklabel.h>
47 #include <sys/errno.h>
48 #include <sys/kernel.h>
49 #include <sys/vnode.h>
50 #include <sys/file.h>
51 #include <sys/vmem.h>
52 #include <sys/blist.h>
53 #include <sys/mount.h>
54 #include <sys/pool.h>
55 #include <sys/kmem.h>
56 #include <sys/syscallargs.h>
57 #include <sys/swap.h>
58 #include <sys/kauth.h>
59 #include <sys/sysctl.h>
60 #include <sys/workqueue.h>
61
62 #include <uvm/uvm.h>
63
64 #include <miscfs/specfs/specdev.h>
65
66 /*
67 * uvm_swap.c: manage configuration and i/o to swap space.
68 */
69
70 /*
71 * swap space is managed in the following way:
72 *
73 * each swap partition or file is described by a "swapdev" structure.
74 * each "swapdev" structure contains a "swapent" structure which contains
75 * information that is passed up to the user (via system calls).
76 *
77 * each swap partition is assigned a "priority" (int) which controls
78 * swap parition usage.
79 *
80 * the system maintains a global data structure describing all swap
81 * partitions/files. there is a sorted LIST of "swappri" structures
82 * which describe "swapdev"'s at that priority. this LIST is headed
83 * by the "swap_priority" global var. each "swappri" contains a
84 * TAILQ of "swapdev" structures at that priority.
85 *
86 * locking:
87 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
88 * system call and prevents the swap priority list from changing
89 * while we are in the middle of a system call (e.g. SWAP_STATS).
90 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
91 * structures including the priority list, the swapdev structures,
92 * and the swapmap arena.
93 *
94 * each swap device has the following info:
95 * - swap device in use (could be disabled, preventing future use)
96 * - swap enabled (allows new allocations on swap)
97 * - map info in /dev/drum
98 * - vnode pointer
99 * for swap files only:
100 * - block size
101 * - max byte count in buffer
102 * - buffer
103 *
104 * userland controls and configures swap with the swapctl(2) system call.
105 * the sys_swapctl performs the following operations:
106 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
107 * [2] SWAP_STATS: given a pointer to an array of swapent structures
108 * (passed in via "arg") of a size passed in via "misc" ... we load
109 * the current swap config into the array. The actual work is done
110 * in the uvm_swap_stats() function.
111 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
112 * priority in "misc", start swapping on it.
113 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
114 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
115 * "misc")
116 */
117
118 /*
119 * swapdev: describes a single swap partition/file
120 *
121 * note the following should be true:
122 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
123 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
124 */
125 struct swapdev {
126 dev_t swd_dev; /* device id */
127 int swd_flags; /* flags:inuse/enable/fake */
128 int swd_priority; /* our priority */
129 int swd_nblks; /* blocks in this device */
130 char *swd_path; /* saved pathname of device */
131 int swd_pathlen; /* length of pathname */
132 int swd_npages; /* #pages we can use */
133 int swd_npginuse; /* #pages in use */
134 int swd_npgbad; /* #pages bad */
135 int swd_drumoffset; /* page0 offset in drum */
136 int swd_drumsize; /* #pages in drum */
137 blist_t swd_blist; /* blist for this swapdev */
138 struct vnode *swd_vp; /* backing vnode */
139 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
140
141 int swd_bsize; /* blocksize (bytes) */
142 int swd_maxactive; /* max active i/o reqs */
143 struct bufq_state *swd_tab; /* buffer list */
144 int swd_active; /* number of active buffers */
145 };
146
147 /*
148 * swap device priority entry; the list is kept sorted on `spi_priority'.
149 */
150 struct swappri {
151 int spi_priority; /* priority */
152 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
153 /* tailq of swapdevs at this priority */
154 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
155 };
156
157 /*
158 * The following two structures are used to keep track of data transfers
159 * on swap devices associated with regular files.
160 * NOTE: this code is more or less a copy of vnd.c; we use the same
161 * structure names here to ease porting..
162 */
163 struct vndxfer {
164 struct buf *vx_bp; /* Pointer to parent buffer */
165 struct swapdev *vx_sdp;
166 int vx_error;
167 int vx_pending; /* # of pending aux buffers */
168 int vx_flags;
169 #define VX_BUSY 1
170 #define VX_DEAD 2
171 };
172
173 struct vndbuf {
174 struct buf vb_buf;
175 struct vndxfer *vb_xfer;
176 };
177
178 /*
179 * We keep a of pool vndbuf's and vndxfer structures.
180 */
181 static struct pool vndxfer_pool, vndbuf_pool;
182
183 /*
184 * local variables
185 */
186 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
187
188 /* list of all active swap devices [by priority] */
189 LIST_HEAD(swap_priority, swappri);
190 static struct swap_priority swap_priority;
191
192 /* locks */
193 static krwlock_t swap_syscall_lock;
194
195 /* workqueue and use counter for swap to regular files */
196 static int sw_reg_count = 0;
197 static struct workqueue *sw_reg_workqueue;
198
199 /* tuneables */
200 u_int uvm_swapisfull_factor = 99;
201
202 /*
203 * prototypes
204 */
205 static struct swapdev *swapdrum_getsdp(int);
206
207 static struct swapdev *swaplist_find(struct vnode *, bool);
208 static void swaplist_insert(struct swapdev *,
209 struct swappri *, int);
210 static void swaplist_trim(void);
211
212 static int swap_on(struct lwp *, struct swapdev *);
213 static int swap_off(struct lwp *, struct swapdev *);
214
215 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
216 static void sw_reg_biodone(struct buf *);
217 static void sw_reg_iodone(struct work *wk, void *dummy);
218 static void sw_reg_start(struct swapdev *);
219
220 static int uvm_swap_io(struct vm_page **, int, int, int);
221
222 /*
223 * uvm_swap_init: init the swap system data structures and locks
224 *
225 * => called at boot time from init_main.c after the filesystems
226 * are brought up (which happens after uvm_init())
227 */
228 void
229 uvm_swap_init(void)
230 {
231 UVMHIST_FUNC("uvm_swap_init");
232
233 UVMHIST_CALLED(pdhist);
234 /*
235 * first, init the swap list, its counter, and its lock.
236 * then get a handle on the vnode for /dev/drum by using
237 * the its dev_t number ("swapdev", from MD conf.c).
238 */
239
240 LIST_INIT(&swap_priority);
241 uvmexp.nswapdev = 0;
242 rw_init(&swap_syscall_lock);
243 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
244
245 if (bdevvp(swapdev, &swapdev_vp))
246 panic("%s: can't get vnode for swap device", __func__);
247 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
248 panic("%s: can't lock swap device", __func__);
249 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
250 panic("%s: can't open swap device", __func__);
251 VOP_UNLOCK(swapdev_vp);
252
253 /*
254 * create swap block resource map to map /dev/drum. the range
255 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
256 * that block 0 is reserved (used to indicate an allocation
257 * failure, or no allocation).
258 */
259 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
260 VM_NOSLEEP, IPL_NONE);
261 if (swapmap == 0) {
262 panic("%s: vmem_create failed", __func__);
263 }
264
265 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
266 NULL, IPL_BIO);
267 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
268 NULL, IPL_BIO);
269
270 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
271 }
272
273 /*
274 * swaplist functions: functions that operate on the list of swap
275 * devices on the system.
276 */
277
278 /*
279 * swaplist_insert: insert swap device "sdp" into the global list
280 *
281 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
282 * => caller must provide a newly allocated swappri structure (we will
283 * FREE it if we don't need it... this it to prevent allocation
284 * blocking here while adding swap)
285 */
286 static void
287 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
288 {
289 struct swappri *spp, *pspp;
290 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
291
292 /*
293 * find entry at or after which to insert the new device.
294 */
295 pspp = NULL;
296 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
297 if (priority <= spp->spi_priority)
298 break;
299 pspp = spp;
300 }
301
302 /*
303 * new priority?
304 */
305 if (spp == NULL || spp->spi_priority != priority) {
306 spp = newspp; /* use newspp! */
307 UVMHIST_LOG(pdhist, "created new swappri = %jd",
308 priority, 0, 0, 0);
309
310 spp->spi_priority = priority;
311 TAILQ_INIT(&spp->spi_swapdev);
312
313 if (pspp)
314 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
315 else
316 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
317 } else {
318 /* we don't need a new priority structure, free it */
319 kmem_free(newspp, sizeof(*newspp));
320 }
321
322 /*
323 * priority found (or created). now insert on the priority's
324 * tailq list and bump the total number of swapdevs.
325 */
326 sdp->swd_priority = priority;
327 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
328 uvmexp.nswapdev++;
329 }
330
331 /*
332 * swaplist_find: find and optionally remove a swap device from the
333 * global list.
334 *
335 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
336 * => we return the swapdev we found (and removed)
337 */
338 static struct swapdev *
339 swaplist_find(struct vnode *vp, bool remove)
340 {
341 struct swapdev *sdp;
342 struct swappri *spp;
343
344 /*
345 * search the lists for the requested vp
346 */
347
348 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
349 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
350 if (sdp->swd_vp == vp) {
351 if (remove) {
352 TAILQ_REMOVE(&spp->spi_swapdev,
353 sdp, swd_next);
354 uvmexp.nswapdev--;
355 }
356 return(sdp);
357 }
358 }
359 }
360 return (NULL);
361 }
362
363 /*
364 * swaplist_trim: scan priority list for empty priority entries and kill
365 * them.
366 *
367 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
368 */
369 static void
370 swaplist_trim(void)
371 {
372 struct swappri *spp, *nextspp;
373
374 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
375 if (!TAILQ_EMPTY(&spp->spi_swapdev))
376 continue;
377 LIST_REMOVE(spp, spi_swappri);
378 kmem_free(spp, sizeof(*spp));
379 }
380 }
381
382 /*
383 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
384 * to the "swapdev" that maps that section of the drum.
385 *
386 * => each swapdev takes one big contig chunk of the drum
387 * => caller must hold uvm_swap_data_lock
388 */
389 static struct swapdev *
390 swapdrum_getsdp(int pgno)
391 {
392 struct swapdev *sdp;
393 struct swappri *spp;
394
395 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
396 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
397 if (sdp->swd_flags & SWF_FAKE)
398 continue;
399 if (pgno >= sdp->swd_drumoffset &&
400 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
401 return sdp;
402 }
403 }
404 }
405 return NULL;
406 }
407
408 void swapsys_lock(krw_t op)
409 {
410 rw_enter(&swap_syscall_lock, op);
411 }
412
413 void swapsys_unlock(void)
414 {
415 rw_exit(&swap_syscall_lock);
416 }
417
418 static void
419 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
420 {
421 se->se_dev = sdp->swd_dev;
422 se->se_flags = sdp->swd_flags;
423 se->se_nblks = sdp->swd_nblks;
424 se->se_inuse = inuse;
425 se->se_priority = sdp->swd_priority;
426 KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
427 strcpy(se->se_path, sdp->swd_path);
428 }
429
430 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
431 (void *)enosys;
432 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
433 (void *)enosys;
434
435 /*
436 * sys_swapctl: main entry point for swapctl(2) system call
437 * [with two helper functions: swap_on and swap_off]
438 */
439 int
440 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
441 {
442 /* {
443 syscallarg(int) cmd;
444 syscallarg(void *) arg;
445 syscallarg(int) misc;
446 } */
447 struct vnode *vp;
448 struct nameidata nd;
449 struct swappri *spp;
450 struct swapdev *sdp;
451 #define SWAP_PATH_MAX (PATH_MAX + 1)
452 char *userpath;
453 size_t len = 0;
454 int error;
455 int priority;
456 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
457
458 /*
459 * we handle the non-priv NSWAP and STATS request first.
460 *
461 * SWAP_NSWAP: return number of config'd swap devices
462 * [can also be obtained with uvmexp sysctl]
463 */
464 if (SCARG(uap, cmd) == SWAP_NSWAP) {
465 const int nswapdev = uvmexp.nswapdev;
466 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
467 0, 0, 0);
468 *retval = nswapdev;
469 return 0;
470 }
471
472 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
473
474 /*
475 * ensure serialized syscall access by grabbing the swap_syscall_lock
476 */
477 rw_enter(&swap_syscall_lock, RW_WRITER);
478
479 /*
480 * SWAP_STATS: get stats on current # of configured swap devs
481 *
482 * note that the swap_priority list can't change as long
483 * as we are holding the swap_syscall_lock. we don't want
484 * to grab the uvm_swap_data_lock because we may fault&sleep during
485 * copyout() and we don't want to be holding that lock then!
486 */
487 switch (SCARG(uap, cmd)) {
488 case SWAP_STATS13:
489 error = (*uvm_swap_stats13)(uap, retval);
490 goto out;
491 case SWAP_STATS50:
492 error = (*uvm_swap_stats50)(uap, retval);
493 goto out;
494 case SWAP_STATS:
495 error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
496 NULL, sizeof(struct swapent), retval);
497 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
498 goto out;
499
500 case SWAP_GETDUMPDEV:
501 error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
502 goto out;
503 default:
504 break;
505 }
506
507 /*
508 * all other requests require superuser privs. verify.
509 */
510 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
511 0, NULL, NULL, NULL)))
512 goto out;
513
514 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
515 /* drop the current dump device */
516 dumpdev = NODEV;
517 dumpcdev = NODEV;
518 cpu_dumpconf();
519 goto out;
520 }
521
522 /*
523 * at this point we expect a path name in arg. we will
524 * use namei() to gain a vnode reference (vref), and lock
525 * the vnode (VOP_LOCK).
526 *
527 * XXX: a NULL arg means use the root vnode pointer (e.g. for
528 * miniroot)
529 */
530 if (SCARG(uap, arg) == NULL) {
531 vp = rootvp; /* miniroot */
532 vref(vp);
533 if (vn_lock(vp, LK_EXCLUSIVE)) {
534 vrele(vp);
535 error = EBUSY;
536 goto out;
537 }
538 if (SCARG(uap, cmd) == SWAP_ON &&
539 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
540 panic("swapctl: miniroot copy failed");
541 } else {
542 struct pathbuf *pb;
543
544 /*
545 * This used to allow copying in one extra byte
546 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
547 * This was completely pointless because if anyone
548 * used that extra byte namei would fail with
549 * ENAMETOOLONG anyway, so I've removed the excess
550 * logic. - dholland 20100215
551 */
552
553 error = pathbuf_copyin(SCARG(uap, arg), &pb);
554 if (error) {
555 goto out;
556 }
557 if (SCARG(uap, cmd) == SWAP_ON) {
558 /* get a copy of the string */
559 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
560 len = strlen(userpath) + 1;
561 }
562 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
563 if ((error = namei(&nd))) {
564 pathbuf_destroy(pb);
565 goto out;
566 }
567 vp = nd.ni_vp;
568 pathbuf_destroy(pb);
569 }
570 /* note: "vp" is referenced and locked */
571
572 error = 0; /* assume no error */
573 switch(SCARG(uap, cmd)) {
574
575 case SWAP_DUMPDEV:
576 if (vp->v_type != VBLK) {
577 error = ENOTBLK;
578 break;
579 }
580 if (bdevsw_lookup(vp->v_rdev)) {
581 dumpdev = vp->v_rdev;
582 dumpcdev = devsw_blk2chr(dumpdev);
583 } else
584 dumpdev = NODEV;
585 cpu_dumpconf();
586 break;
587
588 case SWAP_CTL:
589 /*
590 * get new priority, remove old entry (if any) and then
591 * reinsert it in the correct place. finally, prune out
592 * any empty priority structures.
593 */
594 priority = SCARG(uap, misc);
595 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
596 mutex_enter(&uvm_swap_data_lock);
597 if ((sdp = swaplist_find(vp, true)) == NULL) {
598 error = ENOENT;
599 } else {
600 swaplist_insert(sdp, spp, priority);
601 swaplist_trim();
602 }
603 mutex_exit(&uvm_swap_data_lock);
604 if (error)
605 kmem_free(spp, sizeof(*spp));
606 break;
607
608 case SWAP_ON:
609
610 /*
611 * check for duplicates. if none found, then insert a
612 * dummy entry on the list to prevent someone else from
613 * trying to enable this device while we are working on
614 * it.
615 */
616
617 priority = SCARG(uap, misc);
618 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
619 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
620 sdp->swd_flags = SWF_FAKE;
621 sdp->swd_vp = vp;
622 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
623 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
624 mutex_enter(&uvm_swap_data_lock);
625 if (swaplist_find(vp, false) != NULL) {
626 error = EBUSY;
627 mutex_exit(&uvm_swap_data_lock);
628 bufq_free(sdp->swd_tab);
629 kmem_free(sdp, sizeof(*sdp));
630 kmem_free(spp, sizeof(*spp));
631 break;
632 }
633 swaplist_insert(sdp, spp, priority);
634 mutex_exit(&uvm_swap_data_lock);
635
636 KASSERT(len > 0);
637 sdp->swd_pathlen = len;
638 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
639 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
640 panic("swapctl: copystr");
641
642 /*
643 * we've now got a FAKE placeholder in the swap list.
644 * now attempt to enable swap on it. if we fail, undo
645 * what we've done and kill the fake entry we just inserted.
646 * if swap_on is a success, it will clear the SWF_FAKE flag
647 */
648
649 if ((error = swap_on(l, sdp)) != 0) {
650 mutex_enter(&uvm_swap_data_lock);
651 (void) swaplist_find(vp, true); /* kill fake entry */
652 swaplist_trim();
653 mutex_exit(&uvm_swap_data_lock);
654 bufq_free(sdp->swd_tab);
655 kmem_free(sdp->swd_path, sdp->swd_pathlen);
656 kmem_free(sdp, sizeof(*sdp));
657 break;
658 }
659 break;
660
661 case SWAP_OFF:
662 mutex_enter(&uvm_swap_data_lock);
663 if ((sdp = swaplist_find(vp, false)) == NULL) {
664 mutex_exit(&uvm_swap_data_lock);
665 error = ENXIO;
666 break;
667 }
668
669 /*
670 * If a device isn't in use or enabled, we
671 * can't stop swapping from it (again).
672 */
673 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
674 mutex_exit(&uvm_swap_data_lock);
675 error = EBUSY;
676 break;
677 }
678
679 /*
680 * do the real work.
681 */
682 error = swap_off(l, sdp);
683 break;
684
685 default:
686 error = EINVAL;
687 }
688
689 /*
690 * done! release the ref gained by namei() and unlock.
691 */
692 vput(vp);
693 out:
694 rw_exit(&swap_syscall_lock);
695 kmem_free(userpath, SWAP_PATH_MAX);
696
697 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
698 return (error);
699 }
700
701 /*
702 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
703 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
704 * emulation to use it directly without going through sys_swapctl().
705 * The problem with using sys_swapctl() there is that it involves
706 * copying the swapent array to the stackgap, and this array's size
707 * is not known at build time. Hence it would not be possible to
708 * ensure it would fit in the stackgap in any case.
709 */
710 int
711 uvm_swap_stats(char *ptr, int misc,
712 void (*f)(void *, const struct swapent *), size_t len,
713 register_t *retval)
714 {
715 struct swappri *spp;
716 struct swapdev *sdp;
717 struct swapent sep;
718 int count = 0;
719 int error;
720
721 KASSERT(len <= sizeof(sep));
722 if (len == 0)
723 return ENOSYS;
724
725 if (misc < 0)
726 return EINVAL;
727
728 if (misc == 0 || uvmexp.nswapdev == 0)
729 return 0;
730
731 /* Make sure userland cannot exhaust kernel memory */
732 if ((size_t)misc > (size_t)uvmexp.nswapdev)
733 misc = uvmexp.nswapdev;
734
735 KASSERT(rw_lock_held(&swap_syscall_lock));
736
737 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
738 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
739 int inuse;
740
741 if (misc-- <= 0)
742 break;
743
744 inuse = btodb((uint64_t)sdp->swd_npginuse <<
745 PAGE_SHIFT);
746
747 swapent_cvt(&sep, sdp, inuse);
748 if (f)
749 (*f)(&sep, &sep);
750 if ((error = copyout(&sep, ptr, len)) != 0)
751 return error;
752 ptr += len;
753 count++;
754 }
755 }
756 *retval = count;
757 return 0;
758 }
759
760 /*
761 * swap_on: attempt to enable a swapdev for swapping. note that the
762 * swapdev is already on the global list, but disabled (marked
763 * SWF_FAKE).
764 *
765 * => we avoid the start of the disk (to protect disk labels)
766 * => we also avoid the miniroot, if we are swapping to root.
767 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
768 * if needed.
769 */
770 static int
771 swap_on(struct lwp *l, struct swapdev *sdp)
772 {
773 struct vnode *vp;
774 int error, npages, nblocks, size;
775 long addr;
776 vmem_addr_t result;
777 struct vattr va;
778 dev_t dev;
779 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
780
781 /*
782 * we want to enable swapping on sdp. the swd_vp contains
783 * the vnode we want (locked and ref'd), and the swd_dev
784 * contains the dev_t of the file, if it a block device.
785 */
786
787 vp = sdp->swd_vp;
788 dev = sdp->swd_dev;
789
790 /*
791 * open the swap file (mostly useful for block device files to
792 * let device driver know what is up).
793 *
794 * we skip the open/close for root on swap because the root
795 * has already been opened when root was mounted (mountroot).
796 */
797 if (vp != rootvp) {
798 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
799 return (error);
800 }
801
802 /* XXX this only works for block devices */
803 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
804
805 /*
806 * we now need to determine the size of the swap area. for
807 * block specials we can call the d_psize function.
808 * for normal files, we must stat [get attrs].
809 *
810 * we put the result in nblks.
811 * for normal files, we also want the filesystem block size
812 * (which we get with statfs).
813 */
814 switch (vp->v_type) {
815 case VBLK:
816 if ((nblocks = bdev_size(dev)) == -1) {
817 error = ENXIO;
818 goto bad;
819 }
820 break;
821
822 case VREG:
823 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
824 goto bad;
825 nblocks = (int)btodb(va.va_size);
826 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
827 /*
828 * limit the max # of outstanding I/O requests we issue
829 * at any one time. take it easy on NFS servers.
830 */
831 if (vp->v_tag == VT_NFS)
832 sdp->swd_maxactive = 2; /* XXX */
833 else
834 sdp->swd_maxactive = 8; /* XXX */
835 break;
836
837 default:
838 error = ENXIO;
839 goto bad;
840 }
841
842 /*
843 * save nblocks in a safe place and convert to pages.
844 */
845
846 sdp->swd_nblks = nblocks;
847 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
848
849 /*
850 * for block special files, we want to make sure that leave
851 * the disklabel and bootblocks alone, so we arrange to skip
852 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
853 * note that because of this the "size" can be less than the
854 * actual number of blocks on the device.
855 */
856 if (vp->v_type == VBLK) {
857 /* we use pages 1 to (size - 1) [inclusive] */
858 size = npages - 1;
859 addr = 1;
860 } else {
861 /* we use pages 0 to (size - 1) [inclusive] */
862 size = npages;
863 addr = 0;
864 }
865
866 /*
867 * make sure we have enough blocks for a reasonable sized swap
868 * area. we want at least one page.
869 */
870
871 if (size < 1) {
872 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
873 error = EINVAL;
874 goto bad;
875 }
876
877 UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
878
879 /*
880 * now we need to allocate an extent to manage this swap device
881 */
882
883 sdp->swd_blist = blist_create(npages);
884 /* mark all expect the `saved' region free. */
885 blist_free(sdp->swd_blist, addr, size);
886
887 /*
888 * if the vnode we are swapping to is the root vnode
889 * (i.e. we are swapping to the miniroot) then we want
890 * to make sure we don't overwrite it. do a statfs to
891 * find its size and skip over it.
892 */
893 if (vp == rootvp) {
894 struct mount *mp;
895 struct statvfs *sp;
896 int rootblocks, rootpages;
897
898 mp = rootvnode->v_mount;
899 sp = &mp->mnt_stat;
900 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
901 /*
902 * XXX: sp->f_blocks isn't the total number of
903 * blocks in the filesystem, it's the number of
904 * data blocks. so, our rootblocks almost
905 * definitely underestimates the total size
906 * of the filesystem - how badly depends on the
907 * details of the filesystem type. there isn't
908 * an obvious way to deal with this cleanly
909 * and perfectly, so for now we just pad our
910 * rootblocks estimate with an extra 5 percent.
911 */
912 rootblocks += (rootblocks >> 5) +
913 (rootblocks >> 6) +
914 (rootblocks >> 7);
915 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
916 if (rootpages > size)
917 panic("swap_on: miniroot larger than swap?");
918
919 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
920 panic("swap_on: unable to preserve miniroot");
921 }
922
923 size -= rootpages;
924 printf("Preserved %d pages of miniroot ", rootpages);
925 printf("leaving %d pages of swap\n", size);
926 }
927
928 /*
929 * add a ref to vp to reflect usage as a swap device.
930 */
931 vref(vp);
932
933 /*
934 * now add the new swapdev to the drum and enable.
935 */
936 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
937 if (error != 0)
938 panic("swapdrum_add");
939 /*
940 * If this is the first regular swap create the workqueue.
941 * => Protected by swap_syscall_lock.
942 */
943 if (vp->v_type != VBLK) {
944 if (sw_reg_count++ == 0) {
945 KASSERT(sw_reg_workqueue == NULL);
946 if (workqueue_create(&sw_reg_workqueue, "swapiod",
947 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
948 panic("%s: workqueue_create failed", __func__);
949 }
950 }
951
952 sdp->swd_drumoffset = (int)result;
953 sdp->swd_drumsize = npages;
954 sdp->swd_npages = size;
955 mutex_enter(&uvm_swap_data_lock);
956 sdp->swd_flags &= ~SWF_FAKE; /* going live */
957 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
958 uvmexp.swpages += size;
959 uvmexp.swpgavail += size;
960 mutex_exit(&uvm_swap_data_lock);
961 return (0);
962
963 /*
964 * failure: clean up and return error.
965 */
966
967 bad:
968 if (sdp->swd_blist) {
969 blist_destroy(sdp->swd_blist);
970 }
971 if (vp != rootvp) {
972 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
973 }
974 return (error);
975 }
976
977 /*
978 * swap_off: stop swapping on swapdev
979 *
980 * => swap data should be locked, we will unlock.
981 */
982 static int
983 swap_off(struct lwp *l, struct swapdev *sdp)
984 {
985 int npages = sdp->swd_npages;
986 int error = 0;
987
988 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
989 UVMHIST_LOG(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
990
991 /* disable the swap area being removed */
992 sdp->swd_flags &= ~SWF_ENABLE;
993 uvmexp.swpgavail -= npages;
994 mutex_exit(&uvm_swap_data_lock);
995
996 /*
997 * the idea is to find all the pages that are paged out to this
998 * device, and page them all in. in uvm, swap-backed pageable
999 * memory can take two forms: aobjs and anons. call the
1000 * swapoff hook for each subsystem to bring in pages.
1001 */
1002
1003 if (uao_swap_off(sdp->swd_drumoffset,
1004 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1005 amap_swap_off(sdp->swd_drumoffset,
1006 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1007 error = ENOMEM;
1008 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1009 error = EBUSY;
1010 }
1011
1012 if (error) {
1013 mutex_enter(&uvm_swap_data_lock);
1014 sdp->swd_flags |= SWF_ENABLE;
1015 uvmexp.swpgavail += npages;
1016 mutex_exit(&uvm_swap_data_lock);
1017
1018 return error;
1019 }
1020
1021 /*
1022 * If this is the last regular swap destroy the workqueue.
1023 * => Protected by swap_syscall_lock.
1024 */
1025 if (sdp->swd_vp->v_type != VBLK) {
1026 KASSERT(sw_reg_count > 0);
1027 KASSERT(sw_reg_workqueue != NULL);
1028 if (--sw_reg_count == 0) {
1029 workqueue_destroy(sw_reg_workqueue);
1030 sw_reg_workqueue = NULL;
1031 }
1032 }
1033
1034 /*
1035 * done with the vnode.
1036 * drop our ref on the vnode before calling VOP_CLOSE()
1037 * so that spec_close() can tell if this is the last close.
1038 */
1039 vrele(sdp->swd_vp);
1040 if (sdp->swd_vp != rootvp) {
1041 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1042 }
1043
1044 mutex_enter(&uvm_swap_data_lock);
1045 uvmexp.swpages -= npages;
1046 uvmexp.swpginuse -= sdp->swd_npgbad;
1047
1048 if (swaplist_find(sdp->swd_vp, true) == NULL)
1049 panic("%s: swapdev not in list", __func__);
1050 swaplist_trim();
1051 mutex_exit(&uvm_swap_data_lock);
1052
1053 /*
1054 * free all resources!
1055 */
1056 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1057 blist_destroy(sdp->swd_blist);
1058 bufq_free(sdp->swd_tab);
1059 kmem_free(sdp, sizeof(*sdp));
1060 return (0);
1061 }
1062
1063 void
1064 uvm_swap_shutdown(struct lwp *l)
1065 {
1066 struct swapdev *sdp;
1067 struct swappri *spp;
1068 struct vnode *vp;
1069 int error;
1070
1071 printf("turning of swap...");
1072 rw_enter(&swap_syscall_lock, RW_WRITER);
1073 mutex_enter(&uvm_swap_data_lock);
1074 again:
1075 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1076 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1077 if (sdp->swd_flags & SWF_FAKE)
1078 continue;
1079 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1080 continue;
1081 #ifdef DEBUG
1082 printf("\nturning off swap on %s...",
1083 sdp->swd_path);
1084 #endif
1085 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1086 error = EBUSY;
1087 vp = NULL;
1088 } else
1089 error = 0;
1090 if (!error) {
1091 error = swap_off(l, sdp);
1092 mutex_enter(&uvm_swap_data_lock);
1093 }
1094 if (error) {
1095 printf("stopping swap on %s failed "
1096 "with error %d\n", sdp->swd_path, error);
1097 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1098 swd_next);
1099 uvmexp.nswapdev--;
1100 swaplist_trim();
1101 if (vp)
1102 vput(vp);
1103 }
1104 goto again;
1105 }
1106 printf(" done\n");
1107 mutex_exit(&uvm_swap_data_lock);
1108 rw_exit(&swap_syscall_lock);
1109 }
1110
1111
1112 /*
1113 * /dev/drum interface and i/o functions
1114 */
1115
1116 /*
1117 * swstrategy: perform I/O on the drum
1118 *
1119 * => we must map the i/o request from the drum to the correct swapdev.
1120 */
1121 static void
1122 swstrategy(struct buf *bp)
1123 {
1124 struct swapdev *sdp;
1125 struct vnode *vp;
1126 int pageno, bn;
1127 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1128
1129 /*
1130 * convert block number to swapdev. note that swapdev can't
1131 * be yanked out from under us because we are holding resources
1132 * in it (i.e. the blocks we are doing I/O on).
1133 */
1134 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1135 mutex_enter(&uvm_swap_data_lock);
1136 sdp = swapdrum_getsdp(pageno);
1137 mutex_exit(&uvm_swap_data_lock);
1138 if (sdp == NULL) {
1139 bp->b_error = EINVAL;
1140 bp->b_resid = bp->b_bcount;
1141 biodone(bp);
1142 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1143 return;
1144 }
1145
1146 /*
1147 * convert drum page number to block number on this swapdev.
1148 */
1149
1150 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1151 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1152
1153 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1154 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1155 sdp->swd_drumoffset, bn, bp->b_bcount);
1156
1157 /*
1158 * for block devices we finish up here.
1159 * for regular files we have to do more work which we delegate
1160 * to sw_reg_strategy().
1161 */
1162
1163 vp = sdp->swd_vp; /* swapdev vnode pointer */
1164 switch (vp->v_type) {
1165 default:
1166 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1167
1168 case VBLK:
1169
1170 /*
1171 * must convert "bp" from an I/O on /dev/drum to an I/O
1172 * on the swapdev (sdp).
1173 */
1174 bp->b_blkno = bn; /* swapdev block number */
1175 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1176
1177 /*
1178 * if we are doing a write, we have to redirect the i/o on
1179 * drum's v_numoutput counter to the swapdevs.
1180 */
1181 if ((bp->b_flags & B_READ) == 0) {
1182 mutex_enter(bp->b_objlock);
1183 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1184 mutex_exit(bp->b_objlock);
1185 mutex_enter(vp->v_interlock);
1186 vp->v_numoutput++; /* put it on swapdev */
1187 mutex_exit(vp->v_interlock);
1188 }
1189
1190 /*
1191 * finally plug in swapdev vnode and start I/O
1192 */
1193 bp->b_vp = vp;
1194 bp->b_objlock = vp->v_interlock;
1195 VOP_STRATEGY(vp, bp);
1196 return;
1197
1198 case VREG:
1199 /*
1200 * delegate to sw_reg_strategy function.
1201 */
1202 sw_reg_strategy(sdp, bp, bn);
1203 return;
1204 }
1205 /* NOTREACHED */
1206 }
1207
1208 /*
1209 * swread: the read function for the drum (just a call to physio)
1210 */
1211 /*ARGSUSED*/
1212 static int
1213 swread(dev_t dev, struct uio *uio, int ioflag)
1214 {
1215 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1216
1217 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1218 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1219 }
1220
1221 /*
1222 * swwrite: the write function for the drum (just a call to physio)
1223 */
1224 /*ARGSUSED*/
1225 static int
1226 swwrite(dev_t dev, struct uio *uio, int ioflag)
1227 {
1228 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1229
1230 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1231 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1232 }
1233
1234 const struct bdevsw swap_bdevsw = {
1235 .d_open = nullopen,
1236 .d_close = nullclose,
1237 .d_strategy = swstrategy,
1238 .d_ioctl = noioctl,
1239 .d_dump = nodump,
1240 .d_psize = nosize,
1241 .d_discard = nodiscard,
1242 .d_flag = D_OTHER
1243 };
1244
1245 const struct cdevsw swap_cdevsw = {
1246 .d_open = nullopen,
1247 .d_close = nullclose,
1248 .d_read = swread,
1249 .d_write = swwrite,
1250 .d_ioctl = noioctl,
1251 .d_stop = nostop,
1252 .d_tty = notty,
1253 .d_poll = nopoll,
1254 .d_mmap = nommap,
1255 .d_kqfilter = nokqfilter,
1256 .d_discard = nodiscard,
1257 .d_flag = D_OTHER,
1258 };
1259
1260 /*
1261 * sw_reg_strategy: handle swap i/o to regular files
1262 */
1263 static void
1264 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1265 {
1266 struct vnode *vp;
1267 struct vndxfer *vnx;
1268 daddr_t nbn;
1269 char *addr;
1270 off_t byteoff;
1271 int s, off, nra, error, sz, resid;
1272 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1273
1274 /*
1275 * allocate a vndxfer head for this transfer and point it to
1276 * our buffer.
1277 */
1278 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1279 vnx->vx_flags = VX_BUSY;
1280 vnx->vx_error = 0;
1281 vnx->vx_pending = 0;
1282 vnx->vx_bp = bp;
1283 vnx->vx_sdp = sdp;
1284
1285 /*
1286 * setup for main loop where we read filesystem blocks into
1287 * our buffer.
1288 */
1289 error = 0;
1290 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1291 addr = bp->b_data; /* current position in buffer */
1292 byteoff = dbtob((uint64_t)bn);
1293
1294 for (resid = bp->b_resid; resid; resid -= sz) {
1295 struct vndbuf *nbp;
1296
1297 /*
1298 * translate byteoffset into block number. return values:
1299 * vp = vnode of underlying device
1300 * nbn = new block number (on underlying vnode dev)
1301 * nra = num blocks we can read-ahead (excludes requested
1302 * block)
1303 */
1304 nra = 0;
1305 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1306 &vp, &nbn, &nra);
1307
1308 if (error == 0 && nbn == (daddr_t)-1) {
1309 /*
1310 * this used to just set error, but that doesn't
1311 * do the right thing. Instead, it causes random
1312 * memory errors. The panic() should remain until
1313 * this condition doesn't destabilize the system.
1314 */
1315 #if 1
1316 panic("%s: swap to sparse file", __func__);
1317 #else
1318 error = EIO; /* failure */
1319 #endif
1320 }
1321
1322 /*
1323 * punt if there was an error or a hole in the file.
1324 * we must wait for any i/o ops we have already started
1325 * to finish before returning.
1326 *
1327 * XXX we could deal with holes here but it would be
1328 * a hassle (in the write case).
1329 */
1330 if (error) {
1331 s = splbio();
1332 vnx->vx_error = error; /* pass error up */
1333 goto out;
1334 }
1335
1336 /*
1337 * compute the size ("sz") of this transfer (in bytes).
1338 */
1339 off = byteoff % sdp->swd_bsize;
1340 sz = (1 + nra) * sdp->swd_bsize - off;
1341 if (sz > resid)
1342 sz = resid;
1343
1344 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1345 "vp %#jx/%#jx offset 0x%jx/0x%jx",
1346 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1347
1348 /*
1349 * now get a buf structure. note that the vb_buf is
1350 * at the front of the nbp structure so that you can
1351 * cast pointers between the two structure easily.
1352 */
1353 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1354 buf_init(&nbp->vb_buf);
1355 nbp->vb_buf.b_flags = bp->b_flags;
1356 nbp->vb_buf.b_cflags = bp->b_cflags;
1357 nbp->vb_buf.b_oflags = bp->b_oflags;
1358 nbp->vb_buf.b_bcount = sz;
1359 nbp->vb_buf.b_bufsize = sz;
1360 nbp->vb_buf.b_error = 0;
1361 nbp->vb_buf.b_data = addr;
1362 nbp->vb_buf.b_lblkno = 0;
1363 nbp->vb_buf.b_blkno = nbn + btodb(off);
1364 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1365 nbp->vb_buf.b_iodone = sw_reg_biodone;
1366 nbp->vb_buf.b_vp = vp;
1367 nbp->vb_buf.b_objlock = vp->v_interlock;
1368 if (vp->v_type == VBLK) {
1369 nbp->vb_buf.b_dev = vp->v_rdev;
1370 }
1371
1372 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1373
1374 /*
1375 * Just sort by block number
1376 */
1377 s = splbio();
1378 if (vnx->vx_error != 0) {
1379 buf_destroy(&nbp->vb_buf);
1380 pool_put(&vndbuf_pool, nbp);
1381 goto out;
1382 }
1383 vnx->vx_pending++;
1384
1385 /* sort it in and start I/O if we are not over our limit */
1386 /* XXXAD locking */
1387 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1388 sw_reg_start(sdp);
1389 splx(s);
1390
1391 /*
1392 * advance to the next I/O
1393 */
1394 byteoff += sz;
1395 addr += sz;
1396 }
1397
1398 s = splbio();
1399
1400 out: /* Arrive here at splbio */
1401 vnx->vx_flags &= ~VX_BUSY;
1402 if (vnx->vx_pending == 0) {
1403 error = vnx->vx_error;
1404 pool_put(&vndxfer_pool, vnx);
1405 bp->b_error = error;
1406 biodone(bp);
1407 }
1408 splx(s);
1409 }
1410
1411 /*
1412 * sw_reg_start: start an I/O request on the requested swapdev
1413 *
1414 * => reqs are sorted by b_rawblkno (above)
1415 */
1416 static void
1417 sw_reg_start(struct swapdev *sdp)
1418 {
1419 struct buf *bp;
1420 struct vnode *vp;
1421 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1422
1423 /* recursion control */
1424 if ((sdp->swd_flags & SWF_BUSY) != 0)
1425 return;
1426
1427 sdp->swd_flags |= SWF_BUSY;
1428
1429 while (sdp->swd_active < sdp->swd_maxactive) {
1430 bp = bufq_get(sdp->swd_tab);
1431 if (bp == NULL)
1432 break;
1433 sdp->swd_active++;
1434
1435 UVMHIST_LOG(pdhist,
1436 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1437 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1438 bp->b_bcount);
1439 vp = bp->b_vp;
1440 KASSERT(bp->b_objlock == vp->v_interlock);
1441 if ((bp->b_flags & B_READ) == 0) {
1442 mutex_enter(vp->v_interlock);
1443 vp->v_numoutput++;
1444 mutex_exit(vp->v_interlock);
1445 }
1446 VOP_STRATEGY(vp, bp);
1447 }
1448 sdp->swd_flags &= ~SWF_BUSY;
1449 }
1450
1451 /*
1452 * sw_reg_biodone: one of our i/o's has completed
1453 */
1454 static void
1455 sw_reg_biodone(struct buf *bp)
1456 {
1457 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1458 }
1459
1460 /*
1461 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1462 *
1463 * => note that we can recover the vndbuf struct by casting the buf ptr
1464 */
1465 static void
1466 sw_reg_iodone(struct work *wk, void *dummy)
1467 {
1468 struct vndbuf *vbp = (void *)wk;
1469 struct vndxfer *vnx = vbp->vb_xfer;
1470 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1471 struct swapdev *sdp = vnx->vx_sdp;
1472 int s, resid, error;
1473 KASSERT(&vbp->vb_buf.b_work == wk);
1474 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1475
1476 UVMHIST_LOG(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1477 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1478 (uintptr_t)vbp->vb_buf.b_data);
1479 UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1480 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1481
1482 /*
1483 * protect vbp at splbio and update.
1484 */
1485
1486 s = splbio();
1487 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1488 pbp->b_resid -= resid;
1489 vnx->vx_pending--;
1490
1491 if (vbp->vb_buf.b_error != 0) {
1492 /* pass error upward */
1493 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1494 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1495 vnx->vx_error = error;
1496 }
1497
1498 /*
1499 * kill vbp structure
1500 */
1501 buf_destroy(&vbp->vb_buf);
1502 pool_put(&vndbuf_pool, vbp);
1503
1504 /*
1505 * wrap up this transaction if it has run to completion or, in
1506 * case of an error, when all auxiliary buffers have returned.
1507 */
1508 if (vnx->vx_error != 0) {
1509 /* pass error upward */
1510 error = vnx->vx_error;
1511 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1512 pbp->b_error = error;
1513 biodone(pbp);
1514 pool_put(&vndxfer_pool, vnx);
1515 }
1516 } else if (pbp->b_resid == 0) {
1517 KASSERT(vnx->vx_pending == 0);
1518 if ((vnx->vx_flags & VX_BUSY) == 0) {
1519 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1520 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1521 biodone(pbp);
1522 pool_put(&vndxfer_pool, vnx);
1523 }
1524 }
1525
1526 /*
1527 * done! start next swapdev I/O if one is pending
1528 */
1529 sdp->swd_active--;
1530 sw_reg_start(sdp);
1531 splx(s);
1532 }
1533
1534
1535 /*
1536 * uvm_swap_alloc: allocate space on swap
1537 *
1538 * => allocation is done "round robin" down the priority list, as we
1539 * allocate in a priority we "rotate" the circle queue.
1540 * => space can be freed with uvm_swap_free
1541 * => we return the page slot number in /dev/drum (0 == invalid slot)
1542 * => we lock uvm_swap_data_lock
1543 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1544 */
1545 int
1546 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1547 {
1548 struct swapdev *sdp;
1549 struct swappri *spp;
1550 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1551
1552 /*
1553 * no swap devices configured yet? definite failure.
1554 */
1555 if (uvmexp.nswapdev < 1)
1556 return 0;
1557
1558 /*
1559 * XXXJAK: BEGIN HACK
1560 *
1561 * blist_alloc() in subr_blist.c will panic if we try to allocate
1562 * too many slots.
1563 */
1564 if (*nslots > BLIST_MAX_ALLOC) {
1565 if (__predict_false(lessok == false))
1566 return 0;
1567 *nslots = BLIST_MAX_ALLOC;
1568 }
1569 /* XXXJAK: END HACK */
1570
1571 /*
1572 * lock data lock, convert slots into blocks, and enter loop
1573 */
1574 mutex_enter(&uvm_swap_data_lock);
1575
1576 ReTry: /* XXXMRG */
1577 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1578 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1579 uint64_t result;
1580
1581 /* if it's not enabled, then we can't swap from it */
1582 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1583 continue;
1584 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1585 continue;
1586 result = blist_alloc(sdp->swd_blist, *nslots);
1587 if (result == BLIST_NONE) {
1588 continue;
1589 }
1590 KASSERT(result < sdp->swd_drumsize);
1591
1592 /*
1593 * successful allocation! now rotate the tailq.
1594 */
1595 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1596 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1597 sdp->swd_npginuse += *nslots;
1598 uvmexp.swpginuse += *nslots;
1599 mutex_exit(&uvm_swap_data_lock);
1600 /* done! return drum slot number */
1601 UVMHIST_LOG(pdhist,
1602 "success! returning %jd slots starting at %jd",
1603 *nslots, result + sdp->swd_drumoffset, 0, 0);
1604 return (result + sdp->swd_drumoffset);
1605 }
1606 }
1607
1608 /* XXXMRG: BEGIN HACK */
1609 if (*nslots > 1 && lessok) {
1610 *nslots = 1;
1611 /* XXXMRG: ugh! blist should support this for us */
1612 goto ReTry;
1613 }
1614 /* XXXMRG: END HACK */
1615
1616 mutex_exit(&uvm_swap_data_lock);
1617 return 0;
1618 }
1619
1620 /*
1621 * uvm_swapisfull: return true if most of available swap is allocated
1622 * and in use. we don't count some small portion as it may be inaccessible
1623 * to us at any given moment, for example if there is lock contention or if
1624 * pages are busy.
1625 */
1626 bool
1627 uvm_swapisfull(void)
1628 {
1629 int swpgonly;
1630 bool rv;
1631
1632 mutex_enter(&uvm_swap_data_lock);
1633 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1634 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1635 uvm_swapisfull_factor);
1636 rv = (swpgonly >= uvmexp.swpgavail);
1637 mutex_exit(&uvm_swap_data_lock);
1638
1639 return (rv);
1640 }
1641
1642 /*
1643 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1644 *
1645 * => we lock uvm_swap_data_lock
1646 */
1647 void
1648 uvm_swap_markbad(int startslot, int nslots)
1649 {
1650 struct swapdev *sdp;
1651 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1652
1653 mutex_enter(&uvm_swap_data_lock);
1654 sdp = swapdrum_getsdp(startslot);
1655 KASSERT(sdp != NULL);
1656
1657 /*
1658 * we just keep track of how many pages have been marked bad
1659 * in this device, to make everything add up in swap_off().
1660 * we assume here that the range of slots will all be within
1661 * one swap device.
1662 */
1663
1664 KASSERT(uvmexp.swpgonly >= nslots);
1665 uvmexp.swpgonly -= nslots;
1666 sdp->swd_npgbad += nslots;
1667 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1668 mutex_exit(&uvm_swap_data_lock);
1669 }
1670
1671 /*
1672 * uvm_swap_free: free swap slots
1673 *
1674 * => this can be all or part of an allocation made by uvm_swap_alloc
1675 * => we lock uvm_swap_data_lock
1676 */
1677 void
1678 uvm_swap_free(int startslot, int nslots)
1679 {
1680 struct swapdev *sdp;
1681 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1682
1683 UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1684 startslot, 0, 0);
1685
1686 /*
1687 * ignore attempts to free the "bad" slot.
1688 */
1689
1690 if (startslot == SWSLOT_BAD) {
1691 return;
1692 }
1693
1694 /*
1695 * convert drum slot offset back to sdp, free the blocks
1696 * in the extent, and return. must hold pri lock to do
1697 * lookup and access the extent.
1698 */
1699
1700 mutex_enter(&uvm_swap_data_lock);
1701 sdp = swapdrum_getsdp(startslot);
1702 KASSERT(uvmexp.nswapdev >= 1);
1703 KASSERT(sdp != NULL);
1704 KASSERT(sdp->swd_npginuse >= nslots);
1705 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1706 sdp->swd_npginuse -= nslots;
1707 uvmexp.swpginuse -= nslots;
1708 mutex_exit(&uvm_swap_data_lock);
1709 }
1710
1711 /*
1712 * uvm_swap_put: put any number of pages into a contig place on swap
1713 *
1714 * => can be sync or async
1715 */
1716
1717 int
1718 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1719 {
1720 int error;
1721
1722 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1723 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1724 return error;
1725 }
1726
1727 /*
1728 * uvm_swap_get: get a single page from swap
1729 *
1730 * => usually a sync op (from fault)
1731 */
1732
1733 int
1734 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1735 {
1736 int error;
1737
1738 uvmexp.nswget++;
1739 KASSERT(flags & PGO_SYNCIO);
1740 if (swslot == SWSLOT_BAD) {
1741 return EIO;
1742 }
1743
1744 error = uvm_swap_io(&page, swslot, 1, B_READ |
1745 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1746 if (error == 0) {
1747
1748 /*
1749 * this page is no longer only in swap.
1750 */
1751
1752 mutex_enter(&uvm_swap_data_lock);
1753 KASSERT(uvmexp.swpgonly > 0);
1754 uvmexp.swpgonly--;
1755 mutex_exit(&uvm_swap_data_lock);
1756 }
1757 return error;
1758 }
1759
1760 /*
1761 * uvm_swap_io: do an i/o operation to swap
1762 */
1763
1764 static int
1765 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1766 {
1767 daddr_t startblk;
1768 struct buf *bp;
1769 vaddr_t kva;
1770 int error, mapinflags;
1771 bool write, async;
1772 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1773
1774 UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1775 startslot, npages, flags, 0);
1776
1777 write = (flags & B_READ) == 0;
1778 async = (flags & B_ASYNC) != 0;
1779
1780 /*
1781 * allocate a buf for the i/o.
1782 */
1783
1784 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1785 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1786 if (bp == NULL) {
1787 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1788 return ENOMEM;
1789 }
1790
1791 /*
1792 * convert starting drum slot to block number
1793 */
1794
1795 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1796
1797 /*
1798 * first, map the pages into the kernel.
1799 */
1800
1801 mapinflags = !write ?
1802 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1803 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1804 kva = uvm_pagermapin(pps, npages, mapinflags);
1805
1806 /*
1807 * fill in the bp/sbp. we currently route our i/o through
1808 * /dev/drum's vnode [swapdev_vp].
1809 */
1810
1811 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1812 bp->b_flags = (flags & (B_READ|B_ASYNC));
1813 bp->b_proc = &proc0; /* XXX */
1814 bp->b_vnbufs.le_next = NOLIST;
1815 bp->b_data = (void *)kva;
1816 bp->b_blkno = startblk;
1817 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1818
1819 /*
1820 * bump v_numoutput (counter of number of active outputs).
1821 */
1822
1823 if (write) {
1824 mutex_enter(swapdev_vp->v_interlock);
1825 swapdev_vp->v_numoutput++;
1826 mutex_exit(swapdev_vp->v_interlock);
1827 }
1828
1829 /*
1830 * for async ops we must set up the iodone handler.
1831 */
1832
1833 if (async) {
1834 bp->b_iodone = uvm_aio_biodone;
1835 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1836 if (curlwp == uvm.pagedaemon_lwp)
1837 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1838 else
1839 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1840 } else {
1841 bp->b_iodone = NULL;
1842 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1843 }
1844 UVMHIST_LOG(pdhist,
1845 "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1846 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1847
1848 /*
1849 * now we start the I/O, and if async, return.
1850 */
1851
1852 VOP_STRATEGY(swapdev_vp, bp);
1853 if (async)
1854 return 0;
1855
1856 /*
1857 * must be sync i/o. wait for it to finish
1858 */
1859
1860 error = biowait(bp);
1861
1862 /*
1863 * kill the pager mapping
1864 */
1865
1866 uvm_pagermapout(kva, npages);
1867
1868 /*
1869 * now dispose of the buf and we're done.
1870 */
1871
1872 if (write) {
1873 mutex_enter(swapdev_vp->v_interlock);
1874 vwakeup(bp);
1875 mutex_exit(swapdev_vp->v_interlock);
1876 }
1877 putiobuf(bp);
1878 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
1879
1880 return (error);
1881 }
1882