Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.185
      1 /*	$NetBSD: uvm_swap.c,v 1.185 2019/12/27 09:41:51 msaitoh Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.185 2019/12/27 09:41:51 msaitoh Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/atomic.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/proc.h>
     46 #include <sys/namei.h>
     47 #include <sys/disklabel.h>
     48 #include <sys/errno.h>
     49 #include <sys/kernel.h>
     50 #include <sys/vnode.h>
     51 #include <sys/file.h>
     52 #include <sys/vmem.h>
     53 #include <sys/blist.h>
     54 #include <sys/mount.h>
     55 #include <sys/pool.h>
     56 #include <sys/kmem.h>
     57 #include <sys/syscallargs.h>
     58 #include <sys/swap.h>
     59 #include <sys/kauth.h>
     60 #include <sys/sysctl.h>
     61 #include <sys/workqueue.h>
     62 
     63 #include <uvm/uvm.h>
     64 
     65 #include <miscfs/specfs/specdev.h>
     66 
     67 /*
     68  * uvm_swap.c: manage configuration and i/o to swap space.
     69  */
     70 
     71 /*
     72  * swap space is managed in the following way:
     73  *
     74  * each swap partition or file is described by a "swapdev" structure.
     75  * each "swapdev" structure contains a "swapent" structure which contains
     76  * information that is passed up to the user (via system calls).
     77  *
     78  * each swap partition is assigned a "priority" (int) which controls
     79  * swap parition usage.
     80  *
     81  * the system maintains a global data structure describing all swap
     82  * partitions/files.   there is a sorted LIST of "swappri" structures
     83  * which describe "swapdev"'s at that priority.   this LIST is headed
     84  * by the "swap_priority" global var.    each "swappri" contains a
     85  * TAILQ of "swapdev" structures at that priority.
     86  *
     87  * locking:
     88  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     89  *    system call and prevents the swap priority list from changing
     90  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     91  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     92  *    structures including the priority list, the swapdev structures,
     93  *    and the swapmap arena.
     94  *
     95  * each swap device has the following info:
     96  *  - swap device in use (could be disabled, preventing future use)
     97  *  - swap enabled (allows new allocations on swap)
     98  *  - map info in /dev/drum
     99  *  - vnode pointer
    100  * for swap files only:
    101  *  - block size
    102  *  - max byte count in buffer
    103  *  - buffer
    104  *
    105  * userland controls and configures swap with the swapctl(2) system call.
    106  * the sys_swapctl performs the following operations:
    107  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    108  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    109  *	(passed in via "arg") of a size passed in via "misc" ... we load
    110  *	the current swap config into the array. The actual work is done
    111  *	in the uvm_swap_stats() function.
    112  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    113  *	priority in "misc", start swapping on it.
    114  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    115  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    116  *	"misc")
    117  */
    118 
    119 /*
    120  * swapdev: describes a single swap partition/file
    121  *
    122  * note the following should be true:
    123  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    124  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    125  */
    126 struct swapdev {
    127 	dev_t			swd_dev;	/* device id */
    128 	int			swd_flags;	/* flags:inuse/enable/fake */
    129 	int			swd_priority;	/* our priority */
    130 	int			swd_nblks;	/* blocks in this device */
    131 	char			*swd_path;	/* saved pathname of device */
    132 	int			swd_pathlen;	/* length of pathname */
    133 	int			swd_npages;	/* #pages we can use */
    134 	int			swd_npginuse;	/* #pages in use */
    135 	int			swd_npgbad;	/* #pages bad */
    136 	int			swd_drumoffset;	/* page0 offset in drum */
    137 	int			swd_drumsize;	/* #pages in drum */
    138 	blist_t			swd_blist;	/* blist for this swapdev */
    139 	struct vnode		*swd_vp;	/* backing vnode */
    140 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    141 
    142 	int			swd_bsize;	/* blocksize (bytes) */
    143 	int			swd_maxactive;	/* max active i/o reqs */
    144 	struct bufq_state	*swd_tab;	/* buffer list */
    145 	int			swd_active;	/* number of active buffers */
    146 };
    147 
    148 /*
    149  * swap device priority entry; the list is kept sorted on `spi_priority'.
    150  */
    151 struct swappri {
    152 	int			spi_priority;     /* priority */
    153 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    154 	/* tailq of swapdevs at this priority */
    155 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    156 };
    157 
    158 /*
    159  * The following two structures are used to keep track of data transfers
    160  * on swap devices associated with regular files.
    161  * NOTE: this code is more or less a copy of vnd.c; we use the same
    162  * structure names here to ease porting..
    163  */
    164 struct vndxfer {
    165 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    166 	struct swapdev	*vx_sdp;
    167 	int		vx_error;
    168 	int		vx_pending;	/* # of pending aux buffers */
    169 	int		vx_flags;
    170 #define VX_BUSY		1
    171 #define VX_DEAD		2
    172 };
    173 
    174 struct vndbuf {
    175 	struct buf	vb_buf;
    176 	struct vndxfer	*vb_xfer;
    177 };
    178 
    179 /*
    180  * We keep a of pool vndbuf's and vndxfer structures.
    181  */
    182 static struct pool vndxfer_pool, vndbuf_pool;
    183 
    184 /*
    185  * local variables
    186  */
    187 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    188 
    189 /* list of all active swap devices [by priority] */
    190 LIST_HEAD(swap_priority, swappri);
    191 static struct swap_priority swap_priority;
    192 
    193 /* locks */
    194 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    195 static krwlock_t swap_syscall_lock;
    196 
    197 /* workqueue and use counter for swap to regular files */
    198 static int sw_reg_count = 0;
    199 static struct workqueue *sw_reg_workqueue;
    200 
    201 /* tuneables */
    202 u_int uvm_swapisfull_factor = 99;
    203 
    204 /*
    205  * prototypes
    206  */
    207 static struct swapdev	*swapdrum_getsdp(int);
    208 
    209 static struct swapdev	*swaplist_find(struct vnode *, bool);
    210 static void		 swaplist_insert(struct swapdev *,
    211 					 struct swappri *, int);
    212 static void		 swaplist_trim(void);
    213 
    214 static int swap_on(struct lwp *, struct swapdev *);
    215 static int swap_off(struct lwp *, struct swapdev *);
    216 
    217 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    218 static void sw_reg_biodone(struct buf *);
    219 static void sw_reg_iodone(struct work *wk, void *dummy);
    220 static void sw_reg_start(struct swapdev *);
    221 
    222 static int uvm_swap_io(struct vm_page **, int, int, int);
    223 
    224 /*
    225  * uvm_swap_init: init the swap system data structures and locks
    226  *
    227  * => called at boot time from init_main.c after the filesystems
    228  *	are brought up (which happens after uvm_init())
    229  */
    230 void
    231 uvm_swap_init(void)
    232 {
    233 	UVMHIST_FUNC("uvm_swap_init");
    234 
    235 	UVMHIST_CALLED(pdhist);
    236 	/*
    237 	 * first, init the swap list, its counter, and its lock.
    238 	 * then get a handle on the vnode for /dev/drum by using
    239 	 * the its dev_t number ("swapdev", from MD conf.c).
    240 	 */
    241 
    242 	LIST_INIT(&swap_priority);
    243 	uvmexp.nswapdev = 0;
    244 	rw_init(&swap_syscall_lock);
    245 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    246 
    247 	if (bdevvp(swapdev, &swapdev_vp))
    248 		panic("%s: can't get vnode for swap device", __func__);
    249 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    250 		panic("%s: can't lock swap device", __func__);
    251 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    252 		panic("%s: can't open swap device", __func__);
    253 	VOP_UNLOCK(swapdev_vp);
    254 
    255 	/*
    256 	 * create swap block resource map to map /dev/drum.   the range
    257 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    258 	 * that block 0 is reserved (used to indicate an allocation
    259 	 * failure, or no allocation).
    260 	 */
    261 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    262 	    VM_NOSLEEP, IPL_NONE);
    263 	if (swapmap == 0) {
    264 		panic("%s: vmem_create failed", __func__);
    265 	}
    266 
    267 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    268 	    NULL, IPL_BIO);
    269 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    270 	    NULL, IPL_BIO);
    271 
    272 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    273 }
    274 
    275 /*
    276  * swaplist functions: functions that operate on the list of swap
    277  * devices on the system.
    278  */
    279 
    280 /*
    281  * swaplist_insert: insert swap device "sdp" into the global list
    282  *
    283  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    284  * => caller must provide a newly allocated swappri structure (we will
    285  *	FREE it if we don't need it... this it to prevent allocation
    286  *	blocking here while adding swap)
    287  */
    288 static void
    289 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    290 {
    291 	struct swappri *spp, *pspp;
    292 	UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
    293 
    294 	/*
    295 	 * find entry at or after which to insert the new device.
    296 	 */
    297 	pspp = NULL;
    298 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    299 		if (priority <= spp->spi_priority)
    300 			break;
    301 		pspp = spp;
    302 	}
    303 
    304 	/*
    305 	 * new priority?
    306 	 */
    307 	if (spp == NULL || spp->spi_priority != priority) {
    308 		spp = newspp;  /* use newspp! */
    309 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    310 			    priority, 0, 0, 0);
    311 
    312 		spp->spi_priority = priority;
    313 		TAILQ_INIT(&spp->spi_swapdev);
    314 
    315 		if (pspp)
    316 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    317 		else
    318 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    319 	} else {
    320 	  	/* we don't need a new priority structure, free it */
    321 		kmem_free(newspp, sizeof(*newspp));
    322 	}
    323 
    324 	/*
    325 	 * priority found (or created).   now insert on the priority's
    326 	 * tailq list and bump the total number of swapdevs.
    327 	 */
    328 	sdp->swd_priority = priority;
    329 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    330 	uvmexp.nswapdev++;
    331 }
    332 
    333 /*
    334  * swaplist_find: find and optionally remove a swap device from the
    335  *	global list.
    336  *
    337  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    338  * => we return the swapdev we found (and removed)
    339  */
    340 static struct swapdev *
    341 swaplist_find(struct vnode *vp, bool remove)
    342 {
    343 	struct swapdev *sdp;
    344 	struct swappri *spp;
    345 
    346 	/*
    347 	 * search the lists for the requested vp
    348 	 */
    349 
    350 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    351 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    352 			if (sdp->swd_vp == vp) {
    353 				if (remove) {
    354 					TAILQ_REMOVE(&spp->spi_swapdev,
    355 					    sdp, swd_next);
    356 					uvmexp.nswapdev--;
    357 				}
    358 				return(sdp);
    359 			}
    360 		}
    361 	}
    362 	return (NULL);
    363 }
    364 
    365 /*
    366  * swaplist_trim: scan priority list for empty priority entries and kill
    367  *	them.
    368  *
    369  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    370  */
    371 static void
    372 swaplist_trim(void)
    373 {
    374 	struct swappri *spp, *nextspp;
    375 
    376 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    377 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    378 			continue;
    379 		LIST_REMOVE(spp, spi_swappri);
    380 		kmem_free(spp, sizeof(*spp));
    381 	}
    382 }
    383 
    384 /*
    385  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    386  *	to the "swapdev" that maps that section of the drum.
    387  *
    388  * => each swapdev takes one big contig chunk of the drum
    389  * => caller must hold uvm_swap_data_lock
    390  */
    391 static struct swapdev *
    392 swapdrum_getsdp(int pgno)
    393 {
    394 	struct swapdev *sdp;
    395 	struct swappri *spp;
    396 
    397 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    398 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    399 			if (sdp->swd_flags & SWF_FAKE)
    400 				continue;
    401 			if (pgno >= sdp->swd_drumoffset &&
    402 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    403 				return sdp;
    404 			}
    405 		}
    406 	}
    407 	return NULL;
    408 }
    409 
    410 void swapsys_lock(krw_t op)
    411 {
    412 	rw_enter(&swap_syscall_lock, op);
    413 }
    414 
    415 void swapsys_unlock(void)
    416 {
    417 	rw_exit(&swap_syscall_lock);
    418 }
    419 
    420 static void
    421 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    422 {
    423 	se->se_dev = sdp->swd_dev;
    424 	se->se_flags = sdp->swd_flags;
    425 	se->se_nblks = sdp->swd_nblks;
    426 	se->se_inuse = inuse;
    427 	se->se_priority = sdp->swd_priority;
    428 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    429 	strcpy(se->se_path, sdp->swd_path);
    430 }
    431 
    432 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    433     (void *)enosys;
    434 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    435     (void *)enosys;
    436 
    437 /*
    438  * sys_swapctl: main entry point for swapctl(2) system call
    439  * 	[with two helper functions: swap_on and swap_off]
    440  */
    441 int
    442 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    443 {
    444 	/* {
    445 		syscallarg(int) cmd;
    446 		syscallarg(void *) arg;
    447 		syscallarg(int) misc;
    448 	} */
    449 	struct vnode *vp;
    450 	struct nameidata nd;
    451 	struct swappri *spp;
    452 	struct swapdev *sdp;
    453 #define SWAP_PATH_MAX (PATH_MAX + 1)
    454 	char	*userpath;
    455 	size_t	len = 0;
    456 	int	error;
    457 	int	priority;
    458 	UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
    459 
    460 	/*
    461 	 * we handle the non-priv NSWAP and STATS request first.
    462 	 *
    463 	 * SWAP_NSWAP: return number of config'd swap devices
    464 	 * [can also be obtained with uvmexp sysctl]
    465 	 */
    466 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    467 		const int nswapdev = uvmexp.nswapdev;
    468 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    469 		    0, 0, 0);
    470 		*retval = nswapdev;
    471 		return 0;
    472 	}
    473 
    474 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    475 
    476 	/*
    477 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    478 	 */
    479 	rw_enter(&swap_syscall_lock, RW_WRITER);
    480 
    481 	/*
    482 	 * SWAP_STATS: get stats on current # of configured swap devs
    483 	 *
    484 	 * note that the swap_priority list can't change as long
    485 	 * as we are holding the swap_syscall_lock.  we don't want
    486 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    487 	 * copyout() and we don't want to be holding that lock then!
    488 	 */
    489 	switch (SCARG(uap, cmd)) {
    490 	case SWAP_STATS13:
    491 		error = (*uvm_swap_stats13)(uap, retval);
    492 		goto out;
    493 	case SWAP_STATS50:
    494 		error = (*uvm_swap_stats50)(uap, retval);
    495 		goto out;
    496 	case SWAP_STATS:
    497 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    498 		    NULL, sizeof(struct swapent), retval);
    499 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    500 		goto out;
    501 
    502 	case SWAP_GETDUMPDEV:
    503 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    504 		goto out;
    505 	default:
    506 		break;
    507 	}
    508 
    509 	/*
    510 	 * all other requests require superuser privs.   verify.
    511 	 */
    512 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    513 	    0, NULL, NULL, NULL)))
    514 		goto out;
    515 
    516 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    517 		/* drop the current dump device */
    518 		dumpdev = NODEV;
    519 		dumpcdev = NODEV;
    520 		cpu_dumpconf();
    521 		goto out;
    522 	}
    523 
    524 	/*
    525 	 * at this point we expect a path name in arg.   we will
    526 	 * use namei() to gain a vnode reference (vref), and lock
    527 	 * the vnode (VOP_LOCK).
    528 	 *
    529 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    530 	 * miniroot)
    531 	 */
    532 	if (SCARG(uap, arg) == NULL) {
    533 		vp = rootvp;		/* miniroot */
    534 		vref(vp);
    535 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    536 			vrele(vp);
    537 			error = EBUSY;
    538 			goto out;
    539 		}
    540 		if (SCARG(uap, cmd) == SWAP_ON &&
    541 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    542 			panic("swapctl: miniroot copy failed");
    543 	} else {
    544 		struct pathbuf *pb;
    545 
    546 		/*
    547 		 * This used to allow copying in one extra byte
    548 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    549 		 * This was completely pointless because if anyone
    550 		 * used that extra byte namei would fail with
    551 		 * ENAMETOOLONG anyway, so I've removed the excess
    552 		 * logic. - dholland 20100215
    553 		 */
    554 
    555 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    556 		if (error) {
    557 			goto out;
    558 		}
    559 		if (SCARG(uap, cmd) == SWAP_ON) {
    560 			/* get a copy of the string */
    561 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    562 			len = strlen(userpath) + 1;
    563 		}
    564 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    565 		if ((error = namei(&nd))) {
    566 			pathbuf_destroy(pb);
    567 			goto out;
    568 		}
    569 		vp = nd.ni_vp;
    570 		pathbuf_destroy(pb);
    571 	}
    572 	/* note: "vp" is referenced and locked */
    573 
    574 	error = 0;		/* assume no error */
    575 	switch(SCARG(uap, cmd)) {
    576 
    577 	case SWAP_DUMPDEV:
    578 		if (vp->v_type != VBLK) {
    579 			error = ENOTBLK;
    580 			break;
    581 		}
    582 		if (bdevsw_lookup(vp->v_rdev)) {
    583 			dumpdev = vp->v_rdev;
    584 			dumpcdev = devsw_blk2chr(dumpdev);
    585 		} else
    586 			dumpdev = NODEV;
    587 		cpu_dumpconf();
    588 		break;
    589 
    590 	case SWAP_CTL:
    591 		/*
    592 		 * get new priority, remove old entry (if any) and then
    593 		 * reinsert it in the correct place.  finally, prune out
    594 		 * any empty priority structures.
    595 		 */
    596 		priority = SCARG(uap, misc);
    597 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    598 		mutex_enter(&uvm_swap_data_lock);
    599 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    600 			error = ENOENT;
    601 		} else {
    602 			swaplist_insert(sdp, spp, priority);
    603 			swaplist_trim();
    604 		}
    605 		mutex_exit(&uvm_swap_data_lock);
    606 		if (error)
    607 			kmem_free(spp, sizeof(*spp));
    608 		break;
    609 
    610 	case SWAP_ON:
    611 
    612 		/*
    613 		 * check for duplicates.   if none found, then insert a
    614 		 * dummy entry on the list to prevent someone else from
    615 		 * trying to enable this device while we are working on
    616 		 * it.
    617 		 */
    618 
    619 		priority = SCARG(uap, misc);
    620 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    621 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    622 		sdp->swd_flags = SWF_FAKE;
    623 		sdp->swd_vp = vp;
    624 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    625 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    626 		mutex_enter(&uvm_swap_data_lock);
    627 		if (swaplist_find(vp, false) != NULL) {
    628 			error = EBUSY;
    629 			mutex_exit(&uvm_swap_data_lock);
    630 			bufq_free(sdp->swd_tab);
    631 			kmem_free(sdp, sizeof(*sdp));
    632 			kmem_free(spp, sizeof(*spp));
    633 			break;
    634 		}
    635 		swaplist_insert(sdp, spp, priority);
    636 		mutex_exit(&uvm_swap_data_lock);
    637 
    638 		KASSERT(len > 0);
    639 		sdp->swd_pathlen = len;
    640 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    641 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    642 			panic("swapctl: copystr");
    643 
    644 		/*
    645 		 * we've now got a FAKE placeholder in the swap list.
    646 		 * now attempt to enable swap on it.  if we fail, undo
    647 		 * what we've done and kill the fake entry we just inserted.
    648 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    649 		 */
    650 
    651 		if ((error = swap_on(l, sdp)) != 0) {
    652 			mutex_enter(&uvm_swap_data_lock);
    653 			(void) swaplist_find(vp, true);  /* kill fake entry */
    654 			swaplist_trim();
    655 			mutex_exit(&uvm_swap_data_lock);
    656 			bufq_free(sdp->swd_tab);
    657 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    658 			kmem_free(sdp, sizeof(*sdp));
    659 			break;
    660 		}
    661 		break;
    662 
    663 	case SWAP_OFF:
    664 		mutex_enter(&uvm_swap_data_lock);
    665 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    666 			mutex_exit(&uvm_swap_data_lock);
    667 			error = ENXIO;
    668 			break;
    669 		}
    670 
    671 		/*
    672 		 * If a device isn't in use or enabled, we
    673 		 * can't stop swapping from it (again).
    674 		 */
    675 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    676 			mutex_exit(&uvm_swap_data_lock);
    677 			error = EBUSY;
    678 			break;
    679 		}
    680 
    681 		/*
    682 		 * do the real work.
    683 		 */
    684 		error = swap_off(l, sdp);
    685 		break;
    686 
    687 	default:
    688 		error = EINVAL;
    689 	}
    690 
    691 	/*
    692 	 * done!  release the ref gained by namei() and unlock.
    693 	 */
    694 	vput(vp);
    695 out:
    696 	rw_exit(&swap_syscall_lock);
    697 	kmem_free(userpath, SWAP_PATH_MAX);
    698 
    699 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    700 	return (error);
    701 }
    702 
    703 /*
    704  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    705  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    706  * emulation to use it directly without going through sys_swapctl().
    707  * The problem with using sys_swapctl() there is that it involves
    708  * copying the swapent array to the stackgap, and this array's size
    709  * is not known at build time. Hence it would not be possible to
    710  * ensure it would fit in the stackgap in any case.
    711  */
    712 int
    713 uvm_swap_stats(char *ptr, int misc,
    714     void (*f)(void *, const struct swapent *), size_t len,
    715     register_t *retval)
    716 {
    717 	struct swappri *spp;
    718 	struct swapdev *sdp;
    719 	struct swapent sep;
    720 	int count = 0;
    721 	int error;
    722 
    723 	KASSERT(len <= sizeof(sep));
    724 	if (len == 0)
    725 		return ENOSYS;
    726 
    727 	if (misc < 0)
    728 		return EINVAL;
    729 
    730 	if (misc == 0 || uvmexp.nswapdev == 0)
    731 		return 0;
    732 
    733 	/* Make sure userland cannot exhaust kernel memory */
    734 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    735 		misc = uvmexp.nswapdev;
    736 
    737 	KASSERT(rw_lock_held(&swap_syscall_lock));
    738 
    739 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    740 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    741 			int inuse;
    742 
    743 			if (misc-- <= 0)
    744 				break;
    745 
    746 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    747 			    PAGE_SHIFT);
    748 
    749 			memset(&sep, 0, sizeof(sep));
    750 			swapent_cvt(&sep, sdp, inuse);
    751 			if (f)
    752 				(*f)(&sep, &sep);
    753 			if ((error = copyout(&sep, ptr, len)) != 0)
    754 				return error;
    755 			ptr += len;
    756 			count++;
    757 		}
    758 	}
    759 	*retval = count;
    760 	return 0;
    761 }
    762 
    763 /*
    764  * swap_on: attempt to enable a swapdev for swapping.   note that the
    765  *	swapdev is already on the global list, but disabled (marked
    766  *	SWF_FAKE).
    767  *
    768  * => we avoid the start of the disk (to protect disk labels)
    769  * => we also avoid the miniroot, if we are swapping to root.
    770  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    771  *	if needed.
    772  */
    773 static int
    774 swap_on(struct lwp *l, struct swapdev *sdp)
    775 {
    776 	struct vnode *vp;
    777 	int error, npages, nblocks, size;
    778 	long addr;
    779 	vmem_addr_t result;
    780 	struct vattr va;
    781 	dev_t dev;
    782 	UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
    783 
    784 	/*
    785 	 * we want to enable swapping on sdp.   the swd_vp contains
    786 	 * the vnode we want (locked and ref'd), and the swd_dev
    787 	 * contains the dev_t of the file, if it a block device.
    788 	 */
    789 
    790 	vp = sdp->swd_vp;
    791 	dev = sdp->swd_dev;
    792 
    793 	/*
    794 	 * open the swap file (mostly useful for block device files to
    795 	 * let device driver know what is up).
    796 	 *
    797 	 * we skip the open/close for root on swap because the root
    798 	 * has already been opened when root was mounted (mountroot).
    799 	 */
    800 	if (vp != rootvp) {
    801 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    802 			return (error);
    803 	}
    804 
    805 	/* XXX this only works for block devices */
    806 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    807 
    808 	/*
    809 	 * we now need to determine the size of the swap area.   for
    810 	 * block specials we can call the d_psize function.
    811 	 * for normal files, we must stat [get attrs].
    812 	 *
    813 	 * we put the result in nblks.
    814 	 * for normal files, we also want the filesystem block size
    815 	 * (which we get with statfs).
    816 	 */
    817 	switch (vp->v_type) {
    818 	case VBLK:
    819 		if ((nblocks = bdev_size(dev)) == -1) {
    820 			error = ENXIO;
    821 			goto bad;
    822 		}
    823 		break;
    824 
    825 	case VREG:
    826 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    827 			goto bad;
    828 		nblocks = (int)btodb(va.va_size);
    829 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    830 		/*
    831 		 * limit the max # of outstanding I/O requests we issue
    832 		 * at any one time.   take it easy on NFS servers.
    833 		 */
    834 		if (vp->v_tag == VT_NFS)
    835 			sdp->swd_maxactive = 2; /* XXX */
    836 		else
    837 			sdp->swd_maxactive = 8; /* XXX */
    838 		break;
    839 
    840 	default:
    841 		error = ENXIO;
    842 		goto bad;
    843 	}
    844 
    845 	/*
    846 	 * save nblocks in a safe place and convert to pages.
    847 	 */
    848 
    849 	sdp->swd_nblks = nblocks;
    850 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    851 
    852 	/*
    853 	 * for block special files, we want to make sure that leave
    854 	 * the disklabel and bootblocks alone, so we arrange to skip
    855 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    856 	 * note that because of this the "size" can be less than the
    857 	 * actual number of blocks on the device.
    858 	 */
    859 	if (vp->v_type == VBLK) {
    860 		/* we use pages 1 to (size - 1) [inclusive] */
    861 		size = npages - 1;
    862 		addr = 1;
    863 	} else {
    864 		/* we use pages 0 to (size - 1) [inclusive] */
    865 		size = npages;
    866 		addr = 0;
    867 	}
    868 
    869 	/*
    870 	 * make sure we have enough blocks for a reasonable sized swap
    871 	 * area.   we want at least one page.
    872 	 */
    873 
    874 	if (size < 1) {
    875 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    876 		error = EINVAL;
    877 		goto bad;
    878 	}
    879 
    880 	UVMHIST_LOG(pdhist, "  dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
    881 
    882 	/*
    883 	 * now we need to allocate an extent to manage this swap device
    884 	 */
    885 
    886 	sdp->swd_blist = blist_create(npages);
    887 	/* mark all expect the `saved' region free. */
    888 	blist_free(sdp->swd_blist, addr, size);
    889 
    890 	/*
    891 	 * if the vnode we are swapping to is the root vnode
    892 	 * (i.e. we are swapping to the miniroot) then we want
    893 	 * to make sure we don't overwrite it.   do a statfs to
    894 	 * find its size and skip over it.
    895 	 */
    896 	if (vp == rootvp) {
    897 		struct mount *mp;
    898 		struct statvfs *sp;
    899 		int rootblocks, rootpages;
    900 
    901 		mp = rootvnode->v_mount;
    902 		sp = &mp->mnt_stat;
    903 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    904 		/*
    905 		 * XXX: sp->f_blocks isn't the total number of
    906 		 * blocks in the filesystem, it's the number of
    907 		 * data blocks.  so, our rootblocks almost
    908 		 * definitely underestimates the total size
    909 		 * of the filesystem - how badly depends on the
    910 		 * details of the filesystem type.  there isn't
    911 		 * an obvious way to deal with this cleanly
    912 		 * and perfectly, so for now we just pad our
    913 		 * rootblocks estimate with an extra 5 percent.
    914 		 */
    915 		rootblocks += (rootblocks >> 5) +
    916 			(rootblocks >> 6) +
    917 			(rootblocks >> 7);
    918 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    919 		if (rootpages > size)
    920 			panic("swap_on: miniroot larger than swap?");
    921 
    922 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    923 			panic("swap_on: unable to preserve miniroot");
    924 		}
    925 
    926 		size -= rootpages;
    927 		printf("Preserved %d pages of miniroot ", rootpages);
    928 		printf("leaving %d pages of swap\n", size);
    929 	}
    930 
    931 	/*
    932 	 * add a ref to vp to reflect usage as a swap device.
    933 	 */
    934 	vref(vp);
    935 
    936 	/*
    937 	 * now add the new swapdev to the drum and enable.
    938 	 */
    939 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
    940 	if (error != 0)
    941 		panic("swapdrum_add");
    942 	/*
    943 	 * If this is the first regular swap create the workqueue.
    944 	 * => Protected by swap_syscall_lock.
    945 	 */
    946 	if (vp->v_type != VBLK) {
    947 		if (sw_reg_count++ == 0) {
    948 			KASSERT(sw_reg_workqueue == NULL);
    949 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
    950 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
    951 				panic("%s: workqueue_create failed", __func__);
    952 		}
    953 	}
    954 
    955 	sdp->swd_drumoffset = (int)result;
    956 	sdp->swd_drumsize = npages;
    957 	sdp->swd_npages = size;
    958 	mutex_enter(&uvm_swap_data_lock);
    959 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
    960 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
    961 	uvmexp.swpages += size;
    962 	uvmexp.swpgavail += size;
    963 	mutex_exit(&uvm_swap_data_lock);
    964 	return (0);
    965 
    966 	/*
    967 	 * failure: clean up and return error.
    968 	 */
    969 
    970 bad:
    971 	if (sdp->swd_blist) {
    972 		blist_destroy(sdp->swd_blist);
    973 	}
    974 	if (vp != rootvp) {
    975 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
    976 	}
    977 	return (error);
    978 }
    979 
    980 /*
    981  * swap_off: stop swapping on swapdev
    982  *
    983  * => swap data should be locked, we will unlock.
    984  */
    985 static int
    986 swap_off(struct lwp *l, struct swapdev *sdp)
    987 {
    988 	int npages = sdp->swd_npages;
    989 	int error = 0;
    990 
    991 	UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
    992 	UVMHIST_LOG(pdhist, "  dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
    993 
    994 	/* disable the swap area being removed */
    995 	sdp->swd_flags &= ~SWF_ENABLE;
    996 	uvmexp.swpgavail -= npages;
    997 	mutex_exit(&uvm_swap_data_lock);
    998 
    999 	/*
   1000 	 * the idea is to find all the pages that are paged out to this
   1001 	 * device, and page them all in.  in uvm, swap-backed pageable
   1002 	 * memory can take two forms: aobjs and anons.  call the
   1003 	 * swapoff hook for each subsystem to bring in pages.
   1004 	 */
   1005 
   1006 	if (uao_swap_off(sdp->swd_drumoffset,
   1007 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1008 	    amap_swap_off(sdp->swd_drumoffset,
   1009 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1010 		error = ENOMEM;
   1011 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1012 		error = EBUSY;
   1013 	}
   1014 
   1015 	if (error) {
   1016 		mutex_enter(&uvm_swap_data_lock);
   1017 		sdp->swd_flags |= SWF_ENABLE;
   1018 		uvmexp.swpgavail += npages;
   1019 		mutex_exit(&uvm_swap_data_lock);
   1020 
   1021 		return error;
   1022 	}
   1023 
   1024 	/*
   1025 	 * If this is the last regular swap destroy the workqueue.
   1026 	 * => Protected by swap_syscall_lock.
   1027 	 */
   1028 	if (sdp->swd_vp->v_type != VBLK) {
   1029 		KASSERT(sw_reg_count > 0);
   1030 		KASSERT(sw_reg_workqueue != NULL);
   1031 		if (--sw_reg_count == 0) {
   1032 			workqueue_destroy(sw_reg_workqueue);
   1033 			sw_reg_workqueue = NULL;
   1034 		}
   1035 	}
   1036 
   1037 	/*
   1038 	 * done with the vnode.
   1039 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1040 	 * so that spec_close() can tell if this is the last close.
   1041 	 */
   1042 	vrele(sdp->swd_vp);
   1043 	if (sdp->swd_vp != rootvp) {
   1044 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1045 	}
   1046 
   1047 	mutex_enter(&uvm_swap_data_lock);
   1048 	uvmexp.swpages -= npages;
   1049 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1050 
   1051 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1052 		panic("%s: swapdev not in list", __func__);
   1053 	swaplist_trim();
   1054 	mutex_exit(&uvm_swap_data_lock);
   1055 
   1056 	/*
   1057 	 * free all resources!
   1058 	 */
   1059 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1060 	blist_destroy(sdp->swd_blist);
   1061 	bufq_free(sdp->swd_tab);
   1062 	kmem_free(sdp, sizeof(*sdp));
   1063 	return (0);
   1064 }
   1065 
   1066 void
   1067 uvm_swap_shutdown(struct lwp *l)
   1068 {
   1069 	struct swapdev *sdp;
   1070 	struct swappri *spp;
   1071 	struct vnode *vp;
   1072 	int error;
   1073 
   1074 	printf("turning off swap...");
   1075 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1076 	mutex_enter(&uvm_swap_data_lock);
   1077 again:
   1078 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1079 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1080 			if (sdp->swd_flags & SWF_FAKE)
   1081 				continue;
   1082 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1083 				continue;
   1084 #ifdef DEBUG
   1085 			printf("\nturning off swap on %s...",
   1086 			    sdp->swd_path);
   1087 #endif
   1088 			if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
   1089 				error = EBUSY;
   1090 				vp = NULL;
   1091 			} else
   1092 				error = 0;
   1093 			if (!error) {
   1094 				error = swap_off(l, sdp);
   1095 				mutex_enter(&uvm_swap_data_lock);
   1096 			}
   1097 			if (error) {
   1098 				printf("stopping swap on %s failed "
   1099 				    "with error %d\n", sdp->swd_path, error);
   1100 				TAILQ_REMOVE(&spp->spi_swapdev, sdp,
   1101 				    swd_next);
   1102 				uvmexp.nswapdev--;
   1103 				swaplist_trim();
   1104 				if (vp)
   1105 					vput(vp);
   1106 			}
   1107 			goto again;
   1108 		}
   1109 	printf(" done\n");
   1110 	mutex_exit(&uvm_swap_data_lock);
   1111 	rw_exit(&swap_syscall_lock);
   1112 }
   1113 
   1114 
   1115 /*
   1116  * /dev/drum interface and i/o functions
   1117  */
   1118 
   1119 /*
   1120  * swstrategy: perform I/O on the drum
   1121  *
   1122  * => we must map the i/o request from the drum to the correct swapdev.
   1123  */
   1124 static void
   1125 swstrategy(struct buf *bp)
   1126 {
   1127 	struct swapdev *sdp;
   1128 	struct vnode *vp;
   1129 	int pageno, bn;
   1130 	UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
   1131 
   1132 	/*
   1133 	 * convert block number to swapdev.   note that swapdev can't
   1134 	 * be yanked out from under us because we are holding resources
   1135 	 * in it (i.e. the blocks we are doing I/O on).
   1136 	 */
   1137 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1138 	mutex_enter(&uvm_swap_data_lock);
   1139 	sdp = swapdrum_getsdp(pageno);
   1140 	mutex_exit(&uvm_swap_data_lock);
   1141 	if (sdp == NULL) {
   1142 		bp->b_error = EINVAL;
   1143 		bp->b_resid = bp->b_bcount;
   1144 		biodone(bp);
   1145 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1146 		return;
   1147 	}
   1148 
   1149 	/*
   1150 	 * convert drum page number to block number on this swapdev.
   1151 	 */
   1152 
   1153 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1154 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1155 
   1156 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
   1157 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1158 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1159 
   1160 	/*
   1161 	 * for block devices we finish up here.
   1162 	 * for regular files we have to do more work which we delegate
   1163 	 * to sw_reg_strategy().
   1164 	 */
   1165 
   1166 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1167 	switch (vp->v_type) {
   1168 	default:
   1169 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1170 
   1171 	case VBLK:
   1172 
   1173 		/*
   1174 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1175 		 * on the swapdev (sdp).
   1176 		 */
   1177 		bp->b_blkno = bn;		/* swapdev block number */
   1178 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1179 
   1180 		/*
   1181 		 * if we are doing a write, we have to redirect the i/o on
   1182 		 * drum's v_numoutput counter to the swapdevs.
   1183 		 */
   1184 		if ((bp->b_flags & B_READ) == 0) {
   1185 			mutex_enter(bp->b_objlock);
   1186 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1187 			mutex_exit(bp->b_objlock);
   1188 			mutex_enter(vp->v_interlock);
   1189 			vp->v_numoutput++;	/* put it on swapdev */
   1190 			mutex_exit(vp->v_interlock);
   1191 		}
   1192 
   1193 		/*
   1194 		 * finally plug in swapdev vnode and start I/O
   1195 		 */
   1196 		bp->b_vp = vp;
   1197 		bp->b_objlock = vp->v_interlock;
   1198 		VOP_STRATEGY(vp, bp);
   1199 		return;
   1200 
   1201 	case VREG:
   1202 		/*
   1203 		 * delegate to sw_reg_strategy function.
   1204 		 */
   1205 		sw_reg_strategy(sdp, bp, bn);
   1206 		return;
   1207 	}
   1208 	/* NOTREACHED */
   1209 }
   1210 
   1211 /*
   1212  * swread: the read function for the drum (just a call to physio)
   1213  */
   1214 /*ARGSUSED*/
   1215 static int
   1216 swread(dev_t dev, struct uio *uio, int ioflag)
   1217 {
   1218 	UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
   1219 
   1220 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1221 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1222 }
   1223 
   1224 /*
   1225  * swwrite: the write function for the drum (just a call to physio)
   1226  */
   1227 /*ARGSUSED*/
   1228 static int
   1229 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1230 {
   1231 	UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
   1232 
   1233 	UVMHIST_LOG(pdhist, "  dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
   1234 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1235 }
   1236 
   1237 const struct bdevsw swap_bdevsw = {
   1238 	.d_open = nullopen,
   1239 	.d_close = nullclose,
   1240 	.d_strategy = swstrategy,
   1241 	.d_ioctl = noioctl,
   1242 	.d_dump = nodump,
   1243 	.d_psize = nosize,
   1244 	.d_discard = nodiscard,
   1245 	.d_flag = D_OTHER
   1246 };
   1247 
   1248 const struct cdevsw swap_cdevsw = {
   1249 	.d_open = nullopen,
   1250 	.d_close = nullclose,
   1251 	.d_read = swread,
   1252 	.d_write = swwrite,
   1253 	.d_ioctl = noioctl,
   1254 	.d_stop = nostop,
   1255 	.d_tty = notty,
   1256 	.d_poll = nopoll,
   1257 	.d_mmap = nommap,
   1258 	.d_kqfilter = nokqfilter,
   1259 	.d_discard = nodiscard,
   1260 	.d_flag = D_OTHER,
   1261 };
   1262 
   1263 /*
   1264  * sw_reg_strategy: handle swap i/o to regular files
   1265  */
   1266 static void
   1267 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1268 {
   1269 	struct vnode	*vp;
   1270 	struct vndxfer	*vnx;
   1271 	daddr_t		nbn;
   1272 	char 		*addr;
   1273 	off_t		byteoff;
   1274 	int		s, off, nra, error, sz, resid;
   1275 	UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
   1276 
   1277 	/*
   1278 	 * allocate a vndxfer head for this transfer and point it to
   1279 	 * our buffer.
   1280 	 */
   1281 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1282 	vnx->vx_flags = VX_BUSY;
   1283 	vnx->vx_error = 0;
   1284 	vnx->vx_pending = 0;
   1285 	vnx->vx_bp = bp;
   1286 	vnx->vx_sdp = sdp;
   1287 
   1288 	/*
   1289 	 * setup for main loop where we read filesystem blocks into
   1290 	 * our buffer.
   1291 	 */
   1292 	error = 0;
   1293 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1294 	addr = bp->b_data;		/* current position in buffer */
   1295 	byteoff = dbtob((uint64_t)bn);
   1296 
   1297 	for (resid = bp->b_resid; resid; resid -= sz) {
   1298 		struct vndbuf	*nbp;
   1299 
   1300 		/*
   1301 		 * translate byteoffset into block number.  return values:
   1302 		 *   vp = vnode of underlying device
   1303 		 *  nbn = new block number (on underlying vnode dev)
   1304 		 *  nra = num blocks we can read-ahead (excludes requested
   1305 		 *	block)
   1306 		 */
   1307 		nra = 0;
   1308 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1309 				 	&vp, &nbn, &nra);
   1310 
   1311 		if (error == 0 && nbn == (daddr_t)-1) {
   1312 			/*
   1313 			 * this used to just set error, but that doesn't
   1314 			 * do the right thing.  Instead, it causes random
   1315 			 * memory errors.  The panic() should remain until
   1316 			 * this condition doesn't destabilize the system.
   1317 			 */
   1318 #if 1
   1319 			panic("%s: swap to sparse file", __func__);
   1320 #else
   1321 			error = EIO;	/* failure */
   1322 #endif
   1323 		}
   1324 
   1325 		/*
   1326 		 * punt if there was an error or a hole in the file.
   1327 		 * we must wait for any i/o ops we have already started
   1328 		 * to finish before returning.
   1329 		 *
   1330 		 * XXX we could deal with holes here but it would be
   1331 		 * a hassle (in the write case).
   1332 		 */
   1333 		if (error) {
   1334 			s = splbio();
   1335 			vnx->vx_error = error;	/* pass error up */
   1336 			goto out;
   1337 		}
   1338 
   1339 		/*
   1340 		 * compute the size ("sz") of this transfer (in bytes).
   1341 		 */
   1342 		off = byteoff % sdp->swd_bsize;
   1343 		sz = (1 + nra) * sdp->swd_bsize - off;
   1344 		if (sz > resid)
   1345 			sz = resid;
   1346 
   1347 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1348 		    "vp %#jx/%#jx offset 0x%jx/0x%jx",
   1349 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1350 
   1351 		/*
   1352 		 * now get a buf structure.   note that the vb_buf is
   1353 		 * at the front of the nbp structure so that you can
   1354 		 * cast pointers between the two structure easily.
   1355 		 */
   1356 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1357 		buf_init(&nbp->vb_buf);
   1358 		nbp->vb_buf.b_flags    = bp->b_flags;
   1359 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1360 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1361 		nbp->vb_buf.b_bcount   = sz;
   1362 		nbp->vb_buf.b_bufsize  = sz;
   1363 		nbp->vb_buf.b_error    = 0;
   1364 		nbp->vb_buf.b_data     = addr;
   1365 		nbp->vb_buf.b_lblkno   = 0;
   1366 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1367 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1368 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1369 		nbp->vb_buf.b_vp       = vp;
   1370 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1371 		if (vp->v_type == VBLK) {
   1372 			nbp->vb_buf.b_dev = vp->v_rdev;
   1373 		}
   1374 
   1375 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1376 
   1377 		/*
   1378 		 * Just sort by block number
   1379 		 */
   1380 		s = splbio();
   1381 		if (vnx->vx_error != 0) {
   1382 			buf_destroy(&nbp->vb_buf);
   1383 			pool_put(&vndbuf_pool, nbp);
   1384 			goto out;
   1385 		}
   1386 		vnx->vx_pending++;
   1387 
   1388 		/* sort it in and start I/O if we are not over our limit */
   1389 		/* XXXAD locking */
   1390 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1391 		sw_reg_start(sdp);
   1392 		splx(s);
   1393 
   1394 		/*
   1395 		 * advance to the next I/O
   1396 		 */
   1397 		byteoff += sz;
   1398 		addr += sz;
   1399 	}
   1400 
   1401 	s = splbio();
   1402 
   1403 out: /* Arrive here at splbio */
   1404 	vnx->vx_flags &= ~VX_BUSY;
   1405 	if (vnx->vx_pending == 0) {
   1406 		error = vnx->vx_error;
   1407 		pool_put(&vndxfer_pool, vnx);
   1408 		bp->b_error = error;
   1409 		biodone(bp);
   1410 	}
   1411 	splx(s);
   1412 }
   1413 
   1414 /*
   1415  * sw_reg_start: start an I/O request on the requested swapdev
   1416  *
   1417  * => reqs are sorted by b_rawblkno (above)
   1418  */
   1419 static void
   1420 sw_reg_start(struct swapdev *sdp)
   1421 {
   1422 	struct buf	*bp;
   1423 	struct vnode	*vp;
   1424 	UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
   1425 
   1426 	/* recursion control */
   1427 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1428 		return;
   1429 
   1430 	sdp->swd_flags |= SWF_BUSY;
   1431 
   1432 	while (sdp->swd_active < sdp->swd_maxactive) {
   1433 		bp = bufq_get(sdp->swd_tab);
   1434 		if (bp == NULL)
   1435 			break;
   1436 		sdp->swd_active++;
   1437 
   1438 		UVMHIST_LOG(pdhist,
   1439 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %jx",
   1440 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1441 		    bp->b_bcount);
   1442 		vp = bp->b_vp;
   1443 		KASSERT(bp->b_objlock == vp->v_interlock);
   1444 		if ((bp->b_flags & B_READ) == 0) {
   1445 			mutex_enter(vp->v_interlock);
   1446 			vp->v_numoutput++;
   1447 			mutex_exit(vp->v_interlock);
   1448 		}
   1449 		VOP_STRATEGY(vp, bp);
   1450 	}
   1451 	sdp->swd_flags &= ~SWF_BUSY;
   1452 }
   1453 
   1454 /*
   1455  * sw_reg_biodone: one of our i/o's has completed
   1456  */
   1457 static void
   1458 sw_reg_biodone(struct buf *bp)
   1459 {
   1460 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1461 }
   1462 
   1463 /*
   1464  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1465  *
   1466  * => note that we can recover the vndbuf struct by casting the buf ptr
   1467  */
   1468 static void
   1469 sw_reg_iodone(struct work *wk, void *dummy)
   1470 {
   1471 	struct vndbuf *vbp = (void *)wk;
   1472 	struct vndxfer *vnx = vbp->vb_xfer;
   1473 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1474 	struct swapdev	*sdp = vnx->vx_sdp;
   1475 	int s, resid, error;
   1476 	KASSERT(&vbp->vb_buf.b_work == wk);
   1477 	UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
   1478 
   1479 	UVMHIST_LOG(pdhist, "  vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
   1480 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1481 	    (uintptr_t)vbp->vb_buf.b_data);
   1482 	UVMHIST_LOG(pdhist, "  cnt=%jx resid=%jx",
   1483 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1484 
   1485 	/*
   1486 	 * protect vbp at splbio and update.
   1487 	 */
   1488 
   1489 	s = splbio();
   1490 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1491 	pbp->b_resid -= resid;
   1492 	vnx->vx_pending--;
   1493 
   1494 	if (vbp->vb_buf.b_error != 0) {
   1495 		/* pass error upward */
   1496 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1497 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1498 		vnx->vx_error = error;
   1499 	}
   1500 
   1501 	/*
   1502 	 * kill vbp structure
   1503 	 */
   1504 	buf_destroy(&vbp->vb_buf);
   1505 	pool_put(&vndbuf_pool, vbp);
   1506 
   1507 	/*
   1508 	 * wrap up this transaction if it has run to completion or, in
   1509 	 * case of an error, when all auxiliary buffers have returned.
   1510 	 */
   1511 	if (vnx->vx_error != 0) {
   1512 		/* pass error upward */
   1513 		error = vnx->vx_error;
   1514 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1515 			pbp->b_error = error;
   1516 			biodone(pbp);
   1517 			pool_put(&vndxfer_pool, vnx);
   1518 		}
   1519 	} else if (pbp->b_resid == 0) {
   1520 		KASSERT(vnx->vx_pending == 0);
   1521 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1522 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1523 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1524 			biodone(pbp);
   1525 			pool_put(&vndxfer_pool, vnx);
   1526 		}
   1527 	}
   1528 
   1529 	/*
   1530 	 * done!   start next swapdev I/O if one is pending
   1531 	 */
   1532 	sdp->swd_active--;
   1533 	sw_reg_start(sdp);
   1534 	splx(s);
   1535 }
   1536 
   1537 
   1538 /*
   1539  * uvm_swap_alloc: allocate space on swap
   1540  *
   1541  * => allocation is done "round robin" down the priority list, as we
   1542  *	allocate in a priority we "rotate" the circle queue.
   1543  * => space can be freed with uvm_swap_free
   1544  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1545  * => we lock uvm_swap_data_lock
   1546  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1547  */
   1548 int
   1549 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1550 {
   1551 	struct swapdev *sdp;
   1552 	struct swappri *spp;
   1553 	UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
   1554 
   1555 	/*
   1556 	 * no swap devices configured yet?   definite failure.
   1557 	 */
   1558 	if (uvmexp.nswapdev < 1)
   1559 		return 0;
   1560 
   1561 	/*
   1562 	 * XXXJAK: BEGIN HACK
   1563 	 *
   1564 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1565 	 * too many slots.
   1566 	 */
   1567 	if (*nslots > BLIST_MAX_ALLOC) {
   1568 		if (__predict_false(lessok == false))
   1569 			return 0;
   1570 		*nslots = BLIST_MAX_ALLOC;
   1571 	}
   1572 	/* XXXJAK: END HACK */
   1573 
   1574 	/*
   1575 	 * lock data lock, convert slots into blocks, and enter loop
   1576 	 */
   1577 	mutex_enter(&uvm_swap_data_lock);
   1578 
   1579 ReTry:	/* XXXMRG */
   1580 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1581 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1582 			uint64_t result;
   1583 
   1584 			/* if it's not enabled, then we can't swap from it */
   1585 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1586 				continue;
   1587 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1588 				continue;
   1589 			result = blist_alloc(sdp->swd_blist, *nslots);
   1590 			if (result == BLIST_NONE) {
   1591 				continue;
   1592 			}
   1593 			KASSERT(result < sdp->swd_drumsize);
   1594 
   1595 			/*
   1596 			 * successful allocation!  now rotate the tailq.
   1597 			 */
   1598 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1599 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1600 			sdp->swd_npginuse += *nslots;
   1601 			uvmexp.swpginuse += *nslots;
   1602 			mutex_exit(&uvm_swap_data_lock);
   1603 			/* done!  return drum slot number */
   1604 			UVMHIST_LOG(pdhist,
   1605 			    "success!  returning %jd slots starting at %jd",
   1606 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1607 			return (result + sdp->swd_drumoffset);
   1608 		}
   1609 	}
   1610 
   1611 	/* XXXMRG: BEGIN HACK */
   1612 	if (*nslots > 1 && lessok) {
   1613 		*nslots = 1;
   1614 		/* XXXMRG: ugh!  blist should support this for us */
   1615 		goto ReTry;
   1616 	}
   1617 	/* XXXMRG: END HACK */
   1618 
   1619 	mutex_exit(&uvm_swap_data_lock);
   1620 	return 0;
   1621 }
   1622 
   1623 /*
   1624  * uvm_swapisfull: return true if most of available swap is allocated
   1625  * and in use.  we don't count some small portion as it may be inaccessible
   1626  * to us at any given moment, for example if there is lock contention or if
   1627  * pages are busy.
   1628  */
   1629 bool
   1630 uvm_swapisfull(void)
   1631 {
   1632 	int swpgonly;
   1633 	bool rv;
   1634 
   1635 	mutex_enter(&uvm_swap_data_lock);
   1636 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1637 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1638 	    uvm_swapisfull_factor);
   1639 	rv = (swpgonly >= uvmexp.swpgavail);
   1640 	mutex_exit(&uvm_swap_data_lock);
   1641 
   1642 	return (rv);
   1643 }
   1644 
   1645 /*
   1646  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1647  *
   1648  * => we lock uvm_swap_data_lock
   1649  */
   1650 void
   1651 uvm_swap_markbad(int startslot, int nslots)
   1652 {
   1653 	struct swapdev *sdp;
   1654 	UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
   1655 
   1656 	mutex_enter(&uvm_swap_data_lock);
   1657 	sdp = swapdrum_getsdp(startslot);
   1658 	KASSERT(sdp != NULL);
   1659 
   1660 	/*
   1661 	 * we just keep track of how many pages have been marked bad
   1662 	 * in this device, to make everything add up in swap_off().
   1663 	 * we assume here that the range of slots will all be within
   1664 	 * one swap device.
   1665 	 */
   1666 
   1667 	KASSERT(uvmexp.swpgonly >= nslots);
   1668 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1669 	sdp->swd_npgbad += nslots;
   1670 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1671 	mutex_exit(&uvm_swap_data_lock);
   1672 }
   1673 
   1674 /*
   1675  * uvm_swap_free: free swap slots
   1676  *
   1677  * => this can be all or part of an allocation made by uvm_swap_alloc
   1678  * => we lock uvm_swap_data_lock
   1679  */
   1680 void
   1681 uvm_swap_free(int startslot, int nslots)
   1682 {
   1683 	struct swapdev *sdp;
   1684 	UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
   1685 
   1686 	UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
   1687 	    startslot, 0, 0);
   1688 
   1689 	/*
   1690 	 * ignore attempts to free the "bad" slot.
   1691 	 */
   1692 
   1693 	if (startslot == SWSLOT_BAD) {
   1694 		return;
   1695 	}
   1696 
   1697 	/*
   1698 	 * convert drum slot offset back to sdp, free the blocks
   1699 	 * in the extent, and return.   must hold pri lock to do
   1700 	 * lookup and access the extent.
   1701 	 */
   1702 
   1703 	mutex_enter(&uvm_swap_data_lock);
   1704 	sdp = swapdrum_getsdp(startslot);
   1705 	KASSERT(uvmexp.nswapdev >= 1);
   1706 	KASSERT(sdp != NULL);
   1707 	KASSERT(sdp->swd_npginuse >= nslots);
   1708 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1709 	sdp->swd_npginuse -= nslots;
   1710 	uvmexp.swpginuse -= nslots;
   1711 	mutex_exit(&uvm_swap_data_lock);
   1712 }
   1713 
   1714 /*
   1715  * uvm_swap_put: put any number of pages into a contig place on swap
   1716  *
   1717  * => can be sync or async
   1718  */
   1719 
   1720 int
   1721 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1722 {
   1723 	int error;
   1724 
   1725 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1726 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1727 	return error;
   1728 }
   1729 
   1730 /*
   1731  * uvm_swap_get: get a single page from swap
   1732  *
   1733  * => usually a sync op (from fault)
   1734  */
   1735 
   1736 int
   1737 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1738 {
   1739 	int error;
   1740 
   1741 	atomic_inc_uint(&uvmexp.nswget);
   1742 	KASSERT(flags & PGO_SYNCIO);
   1743 	if (swslot == SWSLOT_BAD) {
   1744 		return EIO;
   1745 	}
   1746 
   1747 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1748 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1749 	if (error == 0) {
   1750 
   1751 		/*
   1752 		 * this page is no longer only in swap.
   1753 		 */
   1754 
   1755 		KASSERT(uvmexp.swpgonly > 0);
   1756 		atomic_dec_uint(&uvmexp.swpgonly);
   1757 	}
   1758 	return error;
   1759 }
   1760 
   1761 /*
   1762  * uvm_swap_io: do an i/o operation to swap
   1763  */
   1764 
   1765 static int
   1766 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1767 {
   1768 	daddr_t startblk;
   1769 	struct	buf *bp;
   1770 	vaddr_t kva;
   1771 	int	error, mapinflags;
   1772 	bool write, async;
   1773 	UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
   1774 
   1775 	UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
   1776 	    startslot, npages, flags, 0);
   1777 
   1778 	write = (flags & B_READ) == 0;
   1779 	async = (flags & B_ASYNC) != 0;
   1780 
   1781 	/* XXX swap io make take place before the aiodone queue exists */
   1782 	if (uvm.aiodone_queue == NULL)
   1783 		async = 0;
   1784 
   1785 	/*
   1786 	 * allocate a buf for the i/o.
   1787 	 */
   1788 
   1789 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1790 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1791 	if (bp == NULL) {
   1792 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1793 		return ENOMEM;
   1794 	}
   1795 
   1796 	/*
   1797 	 * convert starting drum slot to block number
   1798 	 */
   1799 
   1800 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1801 
   1802 	/*
   1803 	 * first, map the pages into the kernel.
   1804 	 */
   1805 
   1806 	mapinflags = !write ?
   1807 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1808 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1809 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1810 
   1811 	/*
   1812 	 * fill in the bp/sbp.   we currently route our i/o through
   1813 	 * /dev/drum's vnode [swapdev_vp].
   1814 	 */
   1815 
   1816 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1817 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1818 	bp->b_proc = &proc0;	/* XXX */
   1819 	bp->b_vnbufs.le_next = NOLIST;
   1820 	bp->b_data = (void *)kva;
   1821 	bp->b_blkno = startblk;
   1822 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1823 
   1824 	/*
   1825 	 * bump v_numoutput (counter of number of active outputs).
   1826 	 */
   1827 
   1828 	if (write) {
   1829 		mutex_enter(swapdev_vp->v_interlock);
   1830 		swapdev_vp->v_numoutput++;
   1831 		mutex_exit(swapdev_vp->v_interlock);
   1832 	}
   1833 
   1834 	/*
   1835 	 * for async ops we must set up the iodone handler.
   1836 	 */
   1837 
   1838 	if (async) {
   1839 		KASSERT(uvm.aiodone_queue != NULL);
   1840 		bp->b_iodone = uvm_aio_biodone;
   1841 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1842 		if (curlwp == uvm.pagedaemon_lwp)
   1843 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1844 		else
   1845 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1846 	} else {
   1847 		bp->b_iodone = NULL;
   1848 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1849 	}
   1850 	UVMHIST_LOG(pdhist,
   1851 	    "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
   1852 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1853 
   1854 	/*
   1855 	 * now we start the I/O, and if async, return.
   1856 	 */
   1857 
   1858 	VOP_STRATEGY(swapdev_vp, bp);
   1859 	if (async)
   1860 		return 0;
   1861 
   1862 	/*
   1863 	 * must be sync i/o.   wait for it to finish
   1864 	 */
   1865 
   1866 	error = biowait(bp);
   1867 
   1868 	/*
   1869 	 * kill the pager mapping
   1870 	 */
   1871 
   1872 	uvm_pagermapout(kva, npages);
   1873 
   1874 	/*
   1875 	 * now dispose of the buf and we're done.
   1876 	 */
   1877 
   1878 	if (write) {
   1879 		mutex_enter(swapdev_vp->v_interlock);
   1880 		vwakeup(bp);
   1881 		mutex_exit(swapdev_vp->v_interlock);
   1882 	}
   1883 	putiobuf(bp);
   1884 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   1885 
   1886 	return (error);
   1887 }
   1888