uvm_swap.c revision 1.185 1 /* $NetBSD: uvm_swap.c,v 1.185 2019/12/27 09:41:51 msaitoh Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.185 2019/12/27 09:41:51 msaitoh Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/proc.h>
46 #include <sys/namei.h>
47 #include <sys/disklabel.h>
48 #include <sys/errno.h>
49 #include <sys/kernel.h>
50 #include <sys/vnode.h>
51 #include <sys/file.h>
52 #include <sys/vmem.h>
53 #include <sys/blist.h>
54 #include <sys/mount.h>
55 #include <sys/pool.h>
56 #include <sys/kmem.h>
57 #include <sys/syscallargs.h>
58 #include <sys/swap.h>
59 #include <sys/kauth.h>
60 #include <sys/sysctl.h>
61 #include <sys/workqueue.h>
62
63 #include <uvm/uvm.h>
64
65 #include <miscfs/specfs/specdev.h>
66
67 /*
68 * uvm_swap.c: manage configuration and i/o to swap space.
69 */
70
71 /*
72 * swap space is managed in the following way:
73 *
74 * each swap partition or file is described by a "swapdev" structure.
75 * each "swapdev" structure contains a "swapent" structure which contains
76 * information that is passed up to the user (via system calls).
77 *
78 * each swap partition is assigned a "priority" (int) which controls
79 * swap parition usage.
80 *
81 * the system maintains a global data structure describing all swap
82 * partitions/files. there is a sorted LIST of "swappri" structures
83 * which describe "swapdev"'s at that priority. this LIST is headed
84 * by the "swap_priority" global var. each "swappri" contains a
85 * TAILQ of "swapdev" structures at that priority.
86 *
87 * locking:
88 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap arena.
94 *
95 * each swap device has the following info:
96 * - swap device in use (could be disabled, preventing future use)
97 * - swap enabled (allows new allocations on swap)
98 * - map info in /dev/drum
99 * - vnode pointer
100 * for swap files only:
101 * - block size
102 * - max byte count in buffer
103 * - buffer
104 *
105 * userland controls and configures swap with the swapctl(2) system call.
106 * the sys_swapctl performs the following operations:
107 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
108 * [2] SWAP_STATS: given a pointer to an array of swapent structures
109 * (passed in via "arg") of a size passed in via "misc" ... we load
110 * the current swap config into the array. The actual work is done
111 * in the uvm_swap_stats() function.
112 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
113 * priority in "misc", start swapping on it.
114 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
115 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
116 * "misc")
117 */
118
119 /*
120 * swapdev: describes a single swap partition/file
121 *
122 * note the following should be true:
123 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
124 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
125 */
126 struct swapdev {
127 dev_t swd_dev; /* device id */
128 int swd_flags; /* flags:inuse/enable/fake */
129 int swd_priority; /* our priority */
130 int swd_nblks; /* blocks in this device */
131 char *swd_path; /* saved pathname of device */
132 int swd_pathlen; /* length of pathname */
133 int swd_npages; /* #pages we can use */
134 int swd_npginuse; /* #pages in use */
135 int swd_npgbad; /* #pages bad */
136 int swd_drumoffset; /* page0 offset in drum */
137 int swd_drumsize; /* #pages in drum */
138 blist_t swd_blist; /* blist for this swapdev */
139 struct vnode *swd_vp; /* backing vnode */
140 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
141
142 int swd_bsize; /* blocksize (bytes) */
143 int swd_maxactive; /* max active i/o reqs */
144 struct bufq_state *swd_tab; /* buffer list */
145 int swd_active; /* number of active buffers */
146 };
147
148 /*
149 * swap device priority entry; the list is kept sorted on `spi_priority'.
150 */
151 struct swappri {
152 int spi_priority; /* priority */
153 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
154 /* tailq of swapdevs at this priority */
155 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
156 };
157
158 /*
159 * The following two structures are used to keep track of data transfers
160 * on swap devices associated with regular files.
161 * NOTE: this code is more or less a copy of vnd.c; we use the same
162 * structure names here to ease porting..
163 */
164 struct vndxfer {
165 struct buf *vx_bp; /* Pointer to parent buffer */
166 struct swapdev *vx_sdp;
167 int vx_error;
168 int vx_pending; /* # of pending aux buffers */
169 int vx_flags;
170 #define VX_BUSY 1
171 #define VX_DEAD 2
172 };
173
174 struct vndbuf {
175 struct buf vb_buf;
176 struct vndxfer *vb_xfer;
177 };
178
179 /*
180 * We keep a of pool vndbuf's and vndxfer structures.
181 */
182 static struct pool vndxfer_pool, vndbuf_pool;
183
184 /*
185 * local variables
186 */
187 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
188
189 /* list of all active swap devices [by priority] */
190 LIST_HEAD(swap_priority, swappri);
191 static struct swap_priority swap_priority;
192
193 /* locks */
194 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
195 static krwlock_t swap_syscall_lock;
196
197 /* workqueue and use counter for swap to regular files */
198 static int sw_reg_count = 0;
199 static struct workqueue *sw_reg_workqueue;
200
201 /* tuneables */
202 u_int uvm_swapisfull_factor = 99;
203
204 /*
205 * prototypes
206 */
207 static struct swapdev *swapdrum_getsdp(int);
208
209 static struct swapdev *swaplist_find(struct vnode *, bool);
210 static void swaplist_insert(struct swapdev *,
211 struct swappri *, int);
212 static void swaplist_trim(void);
213
214 static int swap_on(struct lwp *, struct swapdev *);
215 static int swap_off(struct lwp *, struct swapdev *);
216
217 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
218 static void sw_reg_biodone(struct buf *);
219 static void sw_reg_iodone(struct work *wk, void *dummy);
220 static void sw_reg_start(struct swapdev *);
221
222 static int uvm_swap_io(struct vm_page **, int, int, int);
223
224 /*
225 * uvm_swap_init: init the swap system data structures and locks
226 *
227 * => called at boot time from init_main.c after the filesystems
228 * are brought up (which happens after uvm_init())
229 */
230 void
231 uvm_swap_init(void)
232 {
233 UVMHIST_FUNC("uvm_swap_init");
234
235 UVMHIST_CALLED(pdhist);
236 /*
237 * first, init the swap list, its counter, and its lock.
238 * then get a handle on the vnode for /dev/drum by using
239 * the its dev_t number ("swapdev", from MD conf.c).
240 */
241
242 LIST_INIT(&swap_priority);
243 uvmexp.nswapdev = 0;
244 rw_init(&swap_syscall_lock);
245 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
246
247 if (bdevvp(swapdev, &swapdev_vp))
248 panic("%s: can't get vnode for swap device", __func__);
249 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
250 panic("%s: can't lock swap device", __func__);
251 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
252 panic("%s: can't open swap device", __func__);
253 VOP_UNLOCK(swapdev_vp);
254
255 /*
256 * create swap block resource map to map /dev/drum. the range
257 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
258 * that block 0 is reserved (used to indicate an allocation
259 * failure, or no allocation).
260 */
261 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
262 VM_NOSLEEP, IPL_NONE);
263 if (swapmap == 0) {
264 panic("%s: vmem_create failed", __func__);
265 }
266
267 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
268 NULL, IPL_BIO);
269 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
270 NULL, IPL_BIO);
271
272 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
273 }
274
275 /*
276 * swaplist functions: functions that operate on the list of swap
277 * devices on the system.
278 */
279
280 /*
281 * swaplist_insert: insert swap device "sdp" into the global list
282 *
283 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
284 * => caller must provide a newly allocated swappri structure (we will
285 * FREE it if we don't need it... this it to prevent allocation
286 * blocking here while adding swap)
287 */
288 static void
289 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
290 {
291 struct swappri *spp, *pspp;
292 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
293
294 /*
295 * find entry at or after which to insert the new device.
296 */
297 pspp = NULL;
298 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
299 if (priority <= spp->spi_priority)
300 break;
301 pspp = spp;
302 }
303
304 /*
305 * new priority?
306 */
307 if (spp == NULL || spp->spi_priority != priority) {
308 spp = newspp; /* use newspp! */
309 UVMHIST_LOG(pdhist, "created new swappri = %jd",
310 priority, 0, 0, 0);
311
312 spp->spi_priority = priority;
313 TAILQ_INIT(&spp->spi_swapdev);
314
315 if (pspp)
316 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
317 else
318 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
319 } else {
320 /* we don't need a new priority structure, free it */
321 kmem_free(newspp, sizeof(*newspp));
322 }
323
324 /*
325 * priority found (or created). now insert on the priority's
326 * tailq list and bump the total number of swapdevs.
327 */
328 sdp->swd_priority = priority;
329 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
330 uvmexp.nswapdev++;
331 }
332
333 /*
334 * swaplist_find: find and optionally remove a swap device from the
335 * global list.
336 *
337 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
338 * => we return the swapdev we found (and removed)
339 */
340 static struct swapdev *
341 swaplist_find(struct vnode *vp, bool remove)
342 {
343 struct swapdev *sdp;
344 struct swappri *spp;
345
346 /*
347 * search the lists for the requested vp
348 */
349
350 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
351 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
352 if (sdp->swd_vp == vp) {
353 if (remove) {
354 TAILQ_REMOVE(&spp->spi_swapdev,
355 sdp, swd_next);
356 uvmexp.nswapdev--;
357 }
358 return(sdp);
359 }
360 }
361 }
362 return (NULL);
363 }
364
365 /*
366 * swaplist_trim: scan priority list for empty priority entries and kill
367 * them.
368 *
369 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
370 */
371 static void
372 swaplist_trim(void)
373 {
374 struct swappri *spp, *nextspp;
375
376 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
377 if (!TAILQ_EMPTY(&spp->spi_swapdev))
378 continue;
379 LIST_REMOVE(spp, spi_swappri);
380 kmem_free(spp, sizeof(*spp));
381 }
382 }
383
384 /*
385 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
386 * to the "swapdev" that maps that section of the drum.
387 *
388 * => each swapdev takes one big contig chunk of the drum
389 * => caller must hold uvm_swap_data_lock
390 */
391 static struct swapdev *
392 swapdrum_getsdp(int pgno)
393 {
394 struct swapdev *sdp;
395 struct swappri *spp;
396
397 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
398 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
399 if (sdp->swd_flags & SWF_FAKE)
400 continue;
401 if (pgno >= sdp->swd_drumoffset &&
402 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
403 return sdp;
404 }
405 }
406 }
407 return NULL;
408 }
409
410 void swapsys_lock(krw_t op)
411 {
412 rw_enter(&swap_syscall_lock, op);
413 }
414
415 void swapsys_unlock(void)
416 {
417 rw_exit(&swap_syscall_lock);
418 }
419
420 static void
421 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
422 {
423 se->se_dev = sdp->swd_dev;
424 se->se_flags = sdp->swd_flags;
425 se->se_nblks = sdp->swd_nblks;
426 se->se_inuse = inuse;
427 se->se_priority = sdp->swd_priority;
428 KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
429 strcpy(se->se_path, sdp->swd_path);
430 }
431
432 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
433 (void *)enosys;
434 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
435 (void *)enosys;
436
437 /*
438 * sys_swapctl: main entry point for swapctl(2) system call
439 * [with two helper functions: swap_on and swap_off]
440 */
441 int
442 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
443 {
444 /* {
445 syscallarg(int) cmd;
446 syscallarg(void *) arg;
447 syscallarg(int) misc;
448 } */
449 struct vnode *vp;
450 struct nameidata nd;
451 struct swappri *spp;
452 struct swapdev *sdp;
453 #define SWAP_PATH_MAX (PATH_MAX + 1)
454 char *userpath;
455 size_t len = 0;
456 int error;
457 int priority;
458 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
459
460 /*
461 * we handle the non-priv NSWAP and STATS request first.
462 *
463 * SWAP_NSWAP: return number of config'd swap devices
464 * [can also be obtained with uvmexp sysctl]
465 */
466 if (SCARG(uap, cmd) == SWAP_NSWAP) {
467 const int nswapdev = uvmexp.nswapdev;
468 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
469 0, 0, 0);
470 *retval = nswapdev;
471 return 0;
472 }
473
474 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
475
476 /*
477 * ensure serialized syscall access by grabbing the swap_syscall_lock
478 */
479 rw_enter(&swap_syscall_lock, RW_WRITER);
480
481 /*
482 * SWAP_STATS: get stats on current # of configured swap devs
483 *
484 * note that the swap_priority list can't change as long
485 * as we are holding the swap_syscall_lock. we don't want
486 * to grab the uvm_swap_data_lock because we may fault&sleep during
487 * copyout() and we don't want to be holding that lock then!
488 */
489 switch (SCARG(uap, cmd)) {
490 case SWAP_STATS13:
491 error = (*uvm_swap_stats13)(uap, retval);
492 goto out;
493 case SWAP_STATS50:
494 error = (*uvm_swap_stats50)(uap, retval);
495 goto out;
496 case SWAP_STATS:
497 error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
498 NULL, sizeof(struct swapent), retval);
499 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
500 goto out;
501
502 case SWAP_GETDUMPDEV:
503 error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
504 goto out;
505 default:
506 break;
507 }
508
509 /*
510 * all other requests require superuser privs. verify.
511 */
512 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
513 0, NULL, NULL, NULL)))
514 goto out;
515
516 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
517 /* drop the current dump device */
518 dumpdev = NODEV;
519 dumpcdev = NODEV;
520 cpu_dumpconf();
521 goto out;
522 }
523
524 /*
525 * at this point we expect a path name in arg. we will
526 * use namei() to gain a vnode reference (vref), and lock
527 * the vnode (VOP_LOCK).
528 *
529 * XXX: a NULL arg means use the root vnode pointer (e.g. for
530 * miniroot)
531 */
532 if (SCARG(uap, arg) == NULL) {
533 vp = rootvp; /* miniroot */
534 vref(vp);
535 if (vn_lock(vp, LK_EXCLUSIVE)) {
536 vrele(vp);
537 error = EBUSY;
538 goto out;
539 }
540 if (SCARG(uap, cmd) == SWAP_ON &&
541 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
542 panic("swapctl: miniroot copy failed");
543 } else {
544 struct pathbuf *pb;
545
546 /*
547 * This used to allow copying in one extra byte
548 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
549 * This was completely pointless because if anyone
550 * used that extra byte namei would fail with
551 * ENAMETOOLONG anyway, so I've removed the excess
552 * logic. - dholland 20100215
553 */
554
555 error = pathbuf_copyin(SCARG(uap, arg), &pb);
556 if (error) {
557 goto out;
558 }
559 if (SCARG(uap, cmd) == SWAP_ON) {
560 /* get a copy of the string */
561 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
562 len = strlen(userpath) + 1;
563 }
564 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
565 if ((error = namei(&nd))) {
566 pathbuf_destroy(pb);
567 goto out;
568 }
569 vp = nd.ni_vp;
570 pathbuf_destroy(pb);
571 }
572 /* note: "vp" is referenced and locked */
573
574 error = 0; /* assume no error */
575 switch(SCARG(uap, cmd)) {
576
577 case SWAP_DUMPDEV:
578 if (vp->v_type != VBLK) {
579 error = ENOTBLK;
580 break;
581 }
582 if (bdevsw_lookup(vp->v_rdev)) {
583 dumpdev = vp->v_rdev;
584 dumpcdev = devsw_blk2chr(dumpdev);
585 } else
586 dumpdev = NODEV;
587 cpu_dumpconf();
588 break;
589
590 case SWAP_CTL:
591 /*
592 * get new priority, remove old entry (if any) and then
593 * reinsert it in the correct place. finally, prune out
594 * any empty priority structures.
595 */
596 priority = SCARG(uap, misc);
597 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
598 mutex_enter(&uvm_swap_data_lock);
599 if ((sdp = swaplist_find(vp, true)) == NULL) {
600 error = ENOENT;
601 } else {
602 swaplist_insert(sdp, spp, priority);
603 swaplist_trim();
604 }
605 mutex_exit(&uvm_swap_data_lock);
606 if (error)
607 kmem_free(spp, sizeof(*spp));
608 break;
609
610 case SWAP_ON:
611
612 /*
613 * check for duplicates. if none found, then insert a
614 * dummy entry on the list to prevent someone else from
615 * trying to enable this device while we are working on
616 * it.
617 */
618
619 priority = SCARG(uap, misc);
620 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
621 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
622 sdp->swd_flags = SWF_FAKE;
623 sdp->swd_vp = vp;
624 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
625 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
626 mutex_enter(&uvm_swap_data_lock);
627 if (swaplist_find(vp, false) != NULL) {
628 error = EBUSY;
629 mutex_exit(&uvm_swap_data_lock);
630 bufq_free(sdp->swd_tab);
631 kmem_free(sdp, sizeof(*sdp));
632 kmem_free(spp, sizeof(*spp));
633 break;
634 }
635 swaplist_insert(sdp, spp, priority);
636 mutex_exit(&uvm_swap_data_lock);
637
638 KASSERT(len > 0);
639 sdp->swd_pathlen = len;
640 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
641 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
642 panic("swapctl: copystr");
643
644 /*
645 * we've now got a FAKE placeholder in the swap list.
646 * now attempt to enable swap on it. if we fail, undo
647 * what we've done and kill the fake entry we just inserted.
648 * if swap_on is a success, it will clear the SWF_FAKE flag
649 */
650
651 if ((error = swap_on(l, sdp)) != 0) {
652 mutex_enter(&uvm_swap_data_lock);
653 (void) swaplist_find(vp, true); /* kill fake entry */
654 swaplist_trim();
655 mutex_exit(&uvm_swap_data_lock);
656 bufq_free(sdp->swd_tab);
657 kmem_free(sdp->swd_path, sdp->swd_pathlen);
658 kmem_free(sdp, sizeof(*sdp));
659 break;
660 }
661 break;
662
663 case SWAP_OFF:
664 mutex_enter(&uvm_swap_data_lock);
665 if ((sdp = swaplist_find(vp, false)) == NULL) {
666 mutex_exit(&uvm_swap_data_lock);
667 error = ENXIO;
668 break;
669 }
670
671 /*
672 * If a device isn't in use or enabled, we
673 * can't stop swapping from it (again).
674 */
675 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
676 mutex_exit(&uvm_swap_data_lock);
677 error = EBUSY;
678 break;
679 }
680
681 /*
682 * do the real work.
683 */
684 error = swap_off(l, sdp);
685 break;
686
687 default:
688 error = EINVAL;
689 }
690
691 /*
692 * done! release the ref gained by namei() and unlock.
693 */
694 vput(vp);
695 out:
696 rw_exit(&swap_syscall_lock);
697 kmem_free(userpath, SWAP_PATH_MAX);
698
699 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
700 return (error);
701 }
702
703 /*
704 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
705 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
706 * emulation to use it directly without going through sys_swapctl().
707 * The problem with using sys_swapctl() there is that it involves
708 * copying the swapent array to the stackgap, and this array's size
709 * is not known at build time. Hence it would not be possible to
710 * ensure it would fit in the stackgap in any case.
711 */
712 int
713 uvm_swap_stats(char *ptr, int misc,
714 void (*f)(void *, const struct swapent *), size_t len,
715 register_t *retval)
716 {
717 struct swappri *spp;
718 struct swapdev *sdp;
719 struct swapent sep;
720 int count = 0;
721 int error;
722
723 KASSERT(len <= sizeof(sep));
724 if (len == 0)
725 return ENOSYS;
726
727 if (misc < 0)
728 return EINVAL;
729
730 if (misc == 0 || uvmexp.nswapdev == 0)
731 return 0;
732
733 /* Make sure userland cannot exhaust kernel memory */
734 if ((size_t)misc > (size_t)uvmexp.nswapdev)
735 misc = uvmexp.nswapdev;
736
737 KASSERT(rw_lock_held(&swap_syscall_lock));
738
739 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
740 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
741 int inuse;
742
743 if (misc-- <= 0)
744 break;
745
746 inuse = btodb((uint64_t)sdp->swd_npginuse <<
747 PAGE_SHIFT);
748
749 memset(&sep, 0, sizeof(sep));
750 swapent_cvt(&sep, sdp, inuse);
751 if (f)
752 (*f)(&sep, &sep);
753 if ((error = copyout(&sep, ptr, len)) != 0)
754 return error;
755 ptr += len;
756 count++;
757 }
758 }
759 *retval = count;
760 return 0;
761 }
762
763 /*
764 * swap_on: attempt to enable a swapdev for swapping. note that the
765 * swapdev is already on the global list, but disabled (marked
766 * SWF_FAKE).
767 *
768 * => we avoid the start of the disk (to protect disk labels)
769 * => we also avoid the miniroot, if we are swapping to root.
770 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
771 * if needed.
772 */
773 static int
774 swap_on(struct lwp *l, struct swapdev *sdp)
775 {
776 struct vnode *vp;
777 int error, npages, nblocks, size;
778 long addr;
779 vmem_addr_t result;
780 struct vattr va;
781 dev_t dev;
782 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
783
784 /*
785 * we want to enable swapping on sdp. the swd_vp contains
786 * the vnode we want (locked and ref'd), and the swd_dev
787 * contains the dev_t of the file, if it a block device.
788 */
789
790 vp = sdp->swd_vp;
791 dev = sdp->swd_dev;
792
793 /*
794 * open the swap file (mostly useful for block device files to
795 * let device driver know what is up).
796 *
797 * we skip the open/close for root on swap because the root
798 * has already been opened when root was mounted (mountroot).
799 */
800 if (vp != rootvp) {
801 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
802 return (error);
803 }
804
805 /* XXX this only works for block devices */
806 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
807
808 /*
809 * we now need to determine the size of the swap area. for
810 * block specials we can call the d_psize function.
811 * for normal files, we must stat [get attrs].
812 *
813 * we put the result in nblks.
814 * for normal files, we also want the filesystem block size
815 * (which we get with statfs).
816 */
817 switch (vp->v_type) {
818 case VBLK:
819 if ((nblocks = bdev_size(dev)) == -1) {
820 error = ENXIO;
821 goto bad;
822 }
823 break;
824
825 case VREG:
826 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
827 goto bad;
828 nblocks = (int)btodb(va.va_size);
829 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
830 /*
831 * limit the max # of outstanding I/O requests we issue
832 * at any one time. take it easy on NFS servers.
833 */
834 if (vp->v_tag == VT_NFS)
835 sdp->swd_maxactive = 2; /* XXX */
836 else
837 sdp->swd_maxactive = 8; /* XXX */
838 break;
839
840 default:
841 error = ENXIO;
842 goto bad;
843 }
844
845 /*
846 * save nblocks in a safe place and convert to pages.
847 */
848
849 sdp->swd_nblks = nblocks;
850 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
851
852 /*
853 * for block special files, we want to make sure that leave
854 * the disklabel and bootblocks alone, so we arrange to skip
855 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
856 * note that because of this the "size" can be less than the
857 * actual number of blocks on the device.
858 */
859 if (vp->v_type == VBLK) {
860 /* we use pages 1 to (size - 1) [inclusive] */
861 size = npages - 1;
862 addr = 1;
863 } else {
864 /* we use pages 0 to (size - 1) [inclusive] */
865 size = npages;
866 addr = 0;
867 }
868
869 /*
870 * make sure we have enough blocks for a reasonable sized swap
871 * area. we want at least one page.
872 */
873
874 if (size < 1) {
875 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
876 error = EINVAL;
877 goto bad;
878 }
879
880 UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
881
882 /*
883 * now we need to allocate an extent to manage this swap device
884 */
885
886 sdp->swd_blist = blist_create(npages);
887 /* mark all expect the `saved' region free. */
888 blist_free(sdp->swd_blist, addr, size);
889
890 /*
891 * if the vnode we are swapping to is the root vnode
892 * (i.e. we are swapping to the miniroot) then we want
893 * to make sure we don't overwrite it. do a statfs to
894 * find its size and skip over it.
895 */
896 if (vp == rootvp) {
897 struct mount *mp;
898 struct statvfs *sp;
899 int rootblocks, rootpages;
900
901 mp = rootvnode->v_mount;
902 sp = &mp->mnt_stat;
903 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
904 /*
905 * XXX: sp->f_blocks isn't the total number of
906 * blocks in the filesystem, it's the number of
907 * data blocks. so, our rootblocks almost
908 * definitely underestimates the total size
909 * of the filesystem - how badly depends on the
910 * details of the filesystem type. there isn't
911 * an obvious way to deal with this cleanly
912 * and perfectly, so for now we just pad our
913 * rootblocks estimate with an extra 5 percent.
914 */
915 rootblocks += (rootblocks >> 5) +
916 (rootblocks >> 6) +
917 (rootblocks >> 7);
918 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
919 if (rootpages > size)
920 panic("swap_on: miniroot larger than swap?");
921
922 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
923 panic("swap_on: unable to preserve miniroot");
924 }
925
926 size -= rootpages;
927 printf("Preserved %d pages of miniroot ", rootpages);
928 printf("leaving %d pages of swap\n", size);
929 }
930
931 /*
932 * add a ref to vp to reflect usage as a swap device.
933 */
934 vref(vp);
935
936 /*
937 * now add the new swapdev to the drum and enable.
938 */
939 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
940 if (error != 0)
941 panic("swapdrum_add");
942 /*
943 * If this is the first regular swap create the workqueue.
944 * => Protected by swap_syscall_lock.
945 */
946 if (vp->v_type != VBLK) {
947 if (sw_reg_count++ == 0) {
948 KASSERT(sw_reg_workqueue == NULL);
949 if (workqueue_create(&sw_reg_workqueue, "swapiod",
950 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
951 panic("%s: workqueue_create failed", __func__);
952 }
953 }
954
955 sdp->swd_drumoffset = (int)result;
956 sdp->swd_drumsize = npages;
957 sdp->swd_npages = size;
958 mutex_enter(&uvm_swap_data_lock);
959 sdp->swd_flags &= ~SWF_FAKE; /* going live */
960 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
961 uvmexp.swpages += size;
962 uvmexp.swpgavail += size;
963 mutex_exit(&uvm_swap_data_lock);
964 return (0);
965
966 /*
967 * failure: clean up and return error.
968 */
969
970 bad:
971 if (sdp->swd_blist) {
972 blist_destroy(sdp->swd_blist);
973 }
974 if (vp != rootvp) {
975 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
976 }
977 return (error);
978 }
979
980 /*
981 * swap_off: stop swapping on swapdev
982 *
983 * => swap data should be locked, we will unlock.
984 */
985 static int
986 swap_off(struct lwp *l, struct swapdev *sdp)
987 {
988 int npages = sdp->swd_npages;
989 int error = 0;
990
991 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
992 UVMHIST_LOG(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
993
994 /* disable the swap area being removed */
995 sdp->swd_flags &= ~SWF_ENABLE;
996 uvmexp.swpgavail -= npages;
997 mutex_exit(&uvm_swap_data_lock);
998
999 /*
1000 * the idea is to find all the pages that are paged out to this
1001 * device, and page them all in. in uvm, swap-backed pageable
1002 * memory can take two forms: aobjs and anons. call the
1003 * swapoff hook for each subsystem to bring in pages.
1004 */
1005
1006 if (uao_swap_off(sdp->swd_drumoffset,
1007 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1008 amap_swap_off(sdp->swd_drumoffset,
1009 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1010 error = ENOMEM;
1011 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1012 error = EBUSY;
1013 }
1014
1015 if (error) {
1016 mutex_enter(&uvm_swap_data_lock);
1017 sdp->swd_flags |= SWF_ENABLE;
1018 uvmexp.swpgavail += npages;
1019 mutex_exit(&uvm_swap_data_lock);
1020
1021 return error;
1022 }
1023
1024 /*
1025 * If this is the last regular swap destroy the workqueue.
1026 * => Protected by swap_syscall_lock.
1027 */
1028 if (sdp->swd_vp->v_type != VBLK) {
1029 KASSERT(sw_reg_count > 0);
1030 KASSERT(sw_reg_workqueue != NULL);
1031 if (--sw_reg_count == 0) {
1032 workqueue_destroy(sw_reg_workqueue);
1033 sw_reg_workqueue = NULL;
1034 }
1035 }
1036
1037 /*
1038 * done with the vnode.
1039 * drop our ref on the vnode before calling VOP_CLOSE()
1040 * so that spec_close() can tell if this is the last close.
1041 */
1042 vrele(sdp->swd_vp);
1043 if (sdp->swd_vp != rootvp) {
1044 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1045 }
1046
1047 mutex_enter(&uvm_swap_data_lock);
1048 uvmexp.swpages -= npages;
1049 uvmexp.swpginuse -= sdp->swd_npgbad;
1050
1051 if (swaplist_find(sdp->swd_vp, true) == NULL)
1052 panic("%s: swapdev not in list", __func__);
1053 swaplist_trim();
1054 mutex_exit(&uvm_swap_data_lock);
1055
1056 /*
1057 * free all resources!
1058 */
1059 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1060 blist_destroy(sdp->swd_blist);
1061 bufq_free(sdp->swd_tab);
1062 kmem_free(sdp, sizeof(*sdp));
1063 return (0);
1064 }
1065
1066 void
1067 uvm_swap_shutdown(struct lwp *l)
1068 {
1069 struct swapdev *sdp;
1070 struct swappri *spp;
1071 struct vnode *vp;
1072 int error;
1073
1074 printf("turning off swap...");
1075 rw_enter(&swap_syscall_lock, RW_WRITER);
1076 mutex_enter(&uvm_swap_data_lock);
1077 again:
1078 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1079 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1080 if (sdp->swd_flags & SWF_FAKE)
1081 continue;
1082 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1083 continue;
1084 #ifdef DEBUG
1085 printf("\nturning off swap on %s...",
1086 sdp->swd_path);
1087 #endif
1088 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1089 error = EBUSY;
1090 vp = NULL;
1091 } else
1092 error = 0;
1093 if (!error) {
1094 error = swap_off(l, sdp);
1095 mutex_enter(&uvm_swap_data_lock);
1096 }
1097 if (error) {
1098 printf("stopping swap on %s failed "
1099 "with error %d\n", sdp->swd_path, error);
1100 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1101 swd_next);
1102 uvmexp.nswapdev--;
1103 swaplist_trim();
1104 if (vp)
1105 vput(vp);
1106 }
1107 goto again;
1108 }
1109 printf(" done\n");
1110 mutex_exit(&uvm_swap_data_lock);
1111 rw_exit(&swap_syscall_lock);
1112 }
1113
1114
1115 /*
1116 * /dev/drum interface and i/o functions
1117 */
1118
1119 /*
1120 * swstrategy: perform I/O on the drum
1121 *
1122 * => we must map the i/o request from the drum to the correct swapdev.
1123 */
1124 static void
1125 swstrategy(struct buf *bp)
1126 {
1127 struct swapdev *sdp;
1128 struct vnode *vp;
1129 int pageno, bn;
1130 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1131
1132 /*
1133 * convert block number to swapdev. note that swapdev can't
1134 * be yanked out from under us because we are holding resources
1135 * in it (i.e. the blocks we are doing I/O on).
1136 */
1137 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1138 mutex_enter(&uvm_swap_data_lock);
1139 sdp = swapdrum_getsdp(pageno);
1140 mutex_exit(&uvm_swap_data_lock);
1141 if (sdp == NULL) {
1142 bp->b_error = EINVAL;
1143 bp->b_resid = bp->b_bcount;
1144 biodone(bp);
1145 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1146 return;
1147 }
1148
1149 /*
1150 * convert drum page number to block number on this swapdev.
1151 */
1152
1153 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1154 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1155
1156 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1157 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1158 sdp->swd_drumoffset, bn, bp->b_bcount);
1159
1160 /*
1161 * for block devices we finish up here.
1162 * for regular files we have to do more work which we delegate
1163 * to sw_reg_strategy().
1164 */
1165
1166 vp = sdp->swd_vp; /* swapdev vnode pointer */
1167 switch (vp->v_type) {
1168 default:
1169 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1170
1171 case VBLK:
1172
1173 /*
1174 * must convert "bp" from an I/O on /dev/drum to an I/O
1175 * on the swapdev (sdp).
1176 */
1177 bp->b_blkno = bn; /* swapdev block number */
1178 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1179
1180 /*
1181 * if we are doing a write, we have to redirect the i/o on
1182 * drum's v_numoutput counter to the swapdevs.
1183 */
1184 if ((bp->b_flags & B_READ) == 0) {
1185 mutex_enter(bp->b_objlock);
1186 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1187 mutex_exit(bp->b_objlock);
1188 mutex_enter(vp->v_interlock);
1189 vp->v_numoutput++; /* put it on swapdev */
1190 mutex_exit(vp->v_interlock);
1191 }
1192
1193 /*
1194 * finally plug in swapdev vnode and start I/O
1195 */
1196 bp->b_vp = vp;
1197 bp->b_objlock = vp->v_interlock;
1198 VOP_STRATEGY(vp, bp);
1199 return;
1200
1201 case VREG:
1202 /*
1203 * delegate to sw_reg_strategy function.
1204 */
1205 sw_reg_strategy(sdp, bp, bn);
1206 return;
1207 }
1208 /* NOTREACHED */
1209 }
1210
1211 /*
1212 * swread: the read function for the drum (just a call to physio)
1213 */
1214 /*ARGSUSED*/
1215 static int
1216 swread(dev_t dev, struct uio *uio, int ioflag)
1217 {
1218 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1219
1220 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1221 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1222 }
1223
1224 /*
1225 * swwrite: the write function for the drum (just a call to physio)
1226 */
1227 /*ARGSUSED*/
1228 static int
1229 swwrite(dev_t dev, struct uio *uio, int ioflag)
1230 {
1231 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1232
1233 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1234 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1235 }
1236
1237 const struct bdevsw swap_bdevsw = {
1238 .d_open = nullopen,
1239 .d_close = nullclose,
1240 .d_strategy = swstrategy,
1241 .d_ioctl = noioctl,
1242 .d_dump = nodump,
1243 .d_psize = nosize,
1244 .d_discard = nodiscard,
1245 .d_flag = D_OTHER
1246 };
1247
1248 const struct cdevsw swap_cdevsw = {
1249 .d_open = nullopen,
1250 .d_close = nullclose,
1251 .d_read = swread,
1252 .d_write = swwrite,
1253 .d_ioctl = noioctl,
1254 .d_stop = nostop,
1255 .d_tty = notty,
1256 .d_poll = nopoll,
1257 .d_mmap = nommap,
1258 .d_kqfilter = nokqfilter,
1259 .d_discard = nodiscard,
1260 .d_flag = D_OTHER,
1261 };
1262
1263 /*
1264 * sw_reg_strategy: handle swap i/o to regular files
1265 */
1266 static void
1267 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1268 {
1269 struct vnode *vp;
1270 struct vndxfer *vnx;
1271 daddr_t nbn;
1272 char *addr;
1273 off_t byteoff;
1274 int s, off, nra, error, sz, resid;
1275 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1276
1277 /*
1278 * allocate a vndxfer head for this transfer and point it to
1279 * our buffer.
1280 */
1281 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1282 vnx->vx_flags = VX_BUSY;
1283 vnx->vx_error = 0;
1284 vnx->vx_pending = 0;
1285 vnx->vx_bp = bp;
1286 vnx->vx_sdp = sdp;
1287
1288 /*
1289 * setup for main loop where we read filesystem blocks into
1290 * our buffer.
1291 */
1292 error = 0;
1293 bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1294 addr = bp->b_data; /* current position in buffer */
1295 byteoff = dbtob((uint64_t)bn);
1296
1297 for (resid = bp->b_resid; resid; resid -= sz) {
1298 struct vndbuf *nbp;
1299
1300 /*
1301 * translate byteoffset into block number. return values:
1302 * vp = vnode of underlying device
1303 * nbn = new block number (on underlying vnode dev)
1304 * nra = num blocks we can read-ahead (excludes requested
1305 * block)
1306 */
1307 nra = 0;
1308 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1309 &vp, &nbn, &nra);
1310
1311 if (error == 0 && nbn == (daddr_t)-1) {
1312 /*
1313 * this used to just set error, but that doesn't
1314 * do the right thing. Instead, it causes random
1315 * memory errors. The panic() should remain until
1316 * this condition doesn't destabilize the system.
1317 */
1318 #if 1
1319 panic("%s: swap to sparse file", __func__);
1320 #else
1321 error = EIO; /* failure */
1322 #endif
1323 }
1324
1325 /*
1326 * punt if there was an error or a hole in the file.
1327 * we must wait for any i/o ops we have already started
1328 * to finish before returning.
1329 *
1330 * XXX we could deal with holes here but it would be
1331 * a hassle (in the write case).
1332 */
1333 if (error) {
1334 s = splbio();
1335 vnx->vx_error = error; /* pass error up */
1336 goto out;
1337 }
1338
1339 /*
1340 * compute the size ("sz") of this transfer (in bytes).
1341 */
1342 off = byteoff % sdp->swd_bsize;
1343 sz = (1 + nra) * sdp->swd_bsize - off;
1344 if (sz > resid)
1345 sz = resid;
1346
1347 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1348 "vp %#jx/%#jx offset 0x%jx/0x%jx",
1349 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1350
1351 /*
1352 * now get a buf structure. note that the vb_buf is
1353 * at the front of the nbp structure so that you can
1354 * cast pointers between the two structure easily.
1355 */
1356 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1357 buf_init(&nbp->vb_buf);
1358 nbp->vb_buf.b_flags = bp->b_flags;
1359 nbp->vb_buf.b_cflags = bp->b_cflags;
1360 nbp->vb_buf.b_oflags = bp->b_oflags;
1361 nbp->vb_buf.b_bcount = sz;
1362 nbp->vb_buf.b_bufsize = sz;
1363 nbp->vb_buf.b_error = 0;
1364 nbp->vb_buf.b_data = addr;
1365 nbp->vb_buf.b_lblkno = 0;
1366 nbp->vb_buf.b_blkno = nbn + btodb(off);
1367 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1368 nbp->vb_buf.b_iodone = sw_reg_biodone;
1369 nbp->vb_buf.b_vp = vp;
1370 nbp->vb_buf.b_objlock = vp->v_interlock;
1371 if (vp->v_type == VBLK) {
1372 nbp->vb_buf.b_dev = vp->v_rdev;
1373 }
1374
1375 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1376
1377 /*
1378 * Just sort by block number
1379 */
1380 s = splbio();
1381 if (vnx->vx_error != 0) {
1382 buf_destroy(&nbp->vb_buf);
1383 pool_put(&vndbuf_pool, nbp);
1384 goto out;
1385 }
1386 vnx->vx_pending++;
1387
1388 /* sort it in and start I/O if we are not over our limit */
1389 /* XXXAD locking */
1390 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1391 sw_reg_start(sdp);
1392 splx(s);
1393
1394 /*
1395 * advance to the next I/O
1396 */
1397 byteoff += sz;
1398 addr += sz;
1399 }
1400
1401 s = splbio();
1402
1403 out: /* Arrive here at splbio */
1404 vnx->vx_flags &= ~VX_BUSY;
1405 if (vnx->vx_pending == 0) {
1406 error = vnx->vx_error;
1407 pool_put(&vndxfer_pool, vnx);
1408 bp->b_error = error;
1409 biodone(bp);
1410 }
1411 splx(s);
1412 }
1413
1414 /*
1415 * sw_reg_start: start an I/O request on the requested swapdev
1416 *
1417 * => reqs are sorted by b_rawblkno (above)
1418 */
1419 static void
1420 sw_reg_start(struct swapdev *sdp)
1421 {
1422 struct buf *bp;
1423 struct vnode *vp;
1424 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1425
1426 /* recursion control */
1427 if ((sdp->swd_flags & SWF_BUSY) != 0)
1428 return;
1429
1430 sdp->swd_flags |= SWF_BUSY;
1431
1432 while (sdp->swd_active < sdp->swd_maxactive) {
1433 bp = bufq_get(sdp->swd_tab);
1434 if (bp == NULL)
1435 break;
1436 sdp->swd_active++;
1437
1438 UVMHIST_LOG(pdhist,
1439 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1440 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1441 bp->b_bcount);
1442 vp = bp->b_vp;
1443 KASSERT(bp->b_objlock == vp->v_interlock);
1444 if ((bp->b_flags & B_READ) == 0) {
1445 mutex_enter(vp->v_interlock);
1446 vp->v_numoutput++;
1447 mutex_exit(vp->v_interlock);
1448 }
1449 VOP_STRATEGY(vp, bp);
1450 }
1451 sdp->swd_flags &= ~SWF_BUSY;
1452 }
1453
1454 /*
1455 * sw_reg_biodone: one of our i/o's has completed
1456 */
1457 static void
1458 sw_reg_biodone(struct buf *bp)
1459 {
1460 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1461 }
1462
1463 /*
1464 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1465 *
1466 * => note that we can recover the vndbuf struct by casting the buf ptr
1467 */
1468 static void
1469 sw_reg_iodone(struct work *wk, void *dummy)
1470 {
1471 struct vndbuf *vbp = (void *)wk;
1472 struct vndxfer *vnx = vbp->vb_xfer;
1473 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1474 struct swapdev *sdp = vnx->vx_sdp;
1475 int s, resid, error;
1476 KASSERT(&vbp->vb_buf.b_work == wk);
1477 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1478
1479 UVMHIST_LOG(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1480 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1481 (uintptr_t)vbp->vb_buf.b_data);
1482 UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1483 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1484
1485 /*
1486 * protect vbp at splbio and update.
1487 */
1488
1489 s = splbio();
1490 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1491 pbp->b_resid -= resid;
1492 vnx->vx_pending--;
1493
1494 if (vbp->vb_buf.b_error != 0) {
1495 /* pass error upward */
1496 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1497 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1498 vnx->vx_error = error;
1499 }
1500
1501 /*
1502 * kill vbp structure
1503 */
1504 buf_destroy(&vbp->vb_buf);
1505 pool_put(&vndbuf_pool, vbp);
1506
1507 /*
1508 * wrap up this transaction if it has run to completion or, in
1509 * case of an error, when all auxiliary buffers have returned.
1510 */
1511 if (vnx->vx_error != 0) {
1512 /* pass error upward */
1513 error = vnx->vx_error;
1514 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1515 pbp->b_error = error;
1516 biodone(pbp);
1517 pool_put(&vndxfer_pool, vnx);
1518 }
1519 } else if (pbp->b_resid == 0) {
1520 KASSERT(vnx->vx_pending == 0);
1521 if ((vnx->vx_flags & VX_BUSY) == 0) {
1522 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1523 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1524 biodone(pbp);
1525 pool_put(&vndxfer_pool, vnx);
1526 }
1527 }
1528
1529 /*
1530 * done! start next swapdev I/O if one is pending
1531 */
1532 sdp->swd_active--;
1533 sw_reg_start(sdp);
1534 splx(s);
1535 }
1536
1537
1538 /*
1539 * uvm_swap_alloc: allocate space on swap
1540 *
1541 * => allocation is done "round robin" down the priority list, as we
1542 * allocate in a priority we "rotate" the circle queue.
1543 * => space can be freed with uvm_swap_free
1544 * => we return the page slot number in /dev/drum (0 == invalid slot)
1545 * => we lock uvm_swap_data_lock
1546 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1547 */
1548 int
1549 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1550 {
1551 struct swapdev *sdp;
1552 struct swappri *spp;
1553 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1554
1555 /*
1556 * no swap devices configured yet? definite failure.
1557 */
1558 if (uvmexp.nswapdev < 1)
1559 return 0;
1560
1561 /*
1562 * XXXJAK: BEGIN HACK
1563 *
1564 * blist_alloc() in subr_blist.c will panic if we try to allocate
1565 * too many slots.
1566 */
1567 if (*nslots > BLIST_MAX_ALLOC) {
1568 if (__predict_false(lessok == false))
1569 return 0;
1570 *nslots = BLIST_MAX_ALLOC;
1571 }
1572 /* XXXJAK: END HACK */
1573
1574 /*
1575 * lock data lock, convert slots into blocks, and enter loop
1576 */
1577 mutex_enter(&uvm_swap_data_lock);
1578
1579 ReTry: /* XXXMRG */
1580 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1581 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1582 uint64_t result;
1583
1584 /* if it's not enabled, then we can't swap from it */
1585 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1586 continue;
1587 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1588 continue;
1589 result = blist_alloc(sdp->swd_blist, *nslots);
1590 if (result == BLIST_NONE) {
1591 continue;
1592 }
1593 KASSERT(result < sdp->swd_drumsize);
1594
1595 /*
1596 * successful allocation! now rotate the tailq.
1597 */
1598 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1599 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1600 sdp->swd_npginuse += *nslots;
1601 uvmexp.swpginuse += *nslots;
1602 mutex_exit(&uvm_swap_data_lock);
1603 /* done! return drum slot number */
1604 UVMHIST_LOG(pdhist,
1605 "success! returning %jd slots starting at %jd",
1606 *nslots, result + sdp->swd_drumoffset, 0, 0);
1607 return (result + sdp->swd_drumoffset);
1608 }
1609 }
1610
1611 /* XXXMRG: BEGIN HACK */
1612 if (*nslots > 1 && lessok) {
1613 *nslots = 1;
1614 /* XXXMRG: ugh! blist should support this for us */
1615 goto ReTry;
1616 }
1617 /* XXXMRG: END HACK */
1618
1619 mutex_exit(&uvm_swap_data_lock);
1620 return 0;
1621 }
1622
1623 /*
1624 * uvm_swapisfull: return true if most of available swap is allocated
1625 * and in use. we don't count some small portion as it may be inaccessible
1626 * to us at any given moment, for example if there is lock contention or if
1627 * pages are busy.
1628 */
1629 bool
1630 uvm_swapisfull(void)
1631 {
1632 int swpgonly;
1633 bool rv;
1634
1635 mutex_enter(&uvm_swap_data_lock);
1636 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1637 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1638 uvm_swapisfull_factor);
1639 rv = (swpgonly >= uvmexp.swpgavail);
1640 mutex_exit(&uvm_swap_data_lock);
1641
1642 return (rv);
1643 }
1644
1645 /*
1646 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1647 *
1648 * => we lock uvm_swap_data_lock
1649 */
1650 void
1651 uvm_swap_markbad(int startslot, int nslots)
1652 {
1653 struct swapdev *sdp;
1654 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1655
1656 mutex_enter(&uvm_swap_data_lock);
1657 sdp = swapdrum_getsdp(startslot);
1658 KASSERT(sdp != NULL);
1659
1660 /*
1661 * we just keep track of how many pages have been marked bad
1662 * in this device, to make everything add up in swap_off().
1663 * we assume here that the range of slots will all be within
1664 * one swap device.
1665 */
1666
1667 KASSERT(uvmexp.swpgonly >= nslots);
1668 atomic_add_int(&uvmexp.swpgonly, -nslots);
1669 sdp->swd_npgbad += nslots;
1670 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1671 mutex_exit(&uvm_swap_data_lock);
1672 }
1673
1674 /*
1675 * uvm_swap_free: free swap slots
1676 *
1677 * => this can be all or part of an allocation made by uvm_swap_alloc
1678 * => we lock uvm_swap_data_lock
1679 */
1680 void
1681 uvm_swap_free(int startslot, int nslots)
1682 {
1683 struct swapdev *sdp;
1684 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1685
1686 UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1687 startslot, 0, 0);
1688
1689 /*
1690 * ignore attempts to free the "bad" slot.
1691 */
1692
1693 if (startslot == SWSLOT_BAD) {
1694 return;
1695 }
1696
1697 /*
1698 * convert drum slot offset back to sdp, free the blocks
1699 * in the extent, and return. must hold pri lock to do
1700 * lookup and access the extent.
1701 */
1702
1703 mutex_enter(&uvm_swap_data_lock);
1704 sdp = swapdrum_getsdp(startslot);
1705 KASSERT(uvmexp.nswapdev >= 1);
1706 KASSERT(sdp != NULL);
1707 KASSERT(sdp->swd_npginuse >= nslots);
1708 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1709 sdp->swd_npginuse -= nslots;
1710 uvmexp.swpginuse -= nslots;
1711 mutex_exit(&uvm_swap_data_lock);
1712 }
1713
1714 /*
1715 * uvm_swap_put: put any number of pages into a contig place on swap
1716 *
1717 * => can be sync or async
1718 */
1719
1720 int
1721 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1722 {
1723 int error;
1724
1725 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1726 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1727 return error;
1728 }
1729
1730 /*
1731 * uvm_swap_get: get a single page from swap
1732 *
1733 * => usually a sync op (from fault)
1734 */
1735
1736 int
1737 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1738 {
1739 int error;
1740
1741 atomic_inc_uint(&uvmexp.nswget);
1742 KASSERT(flags & PGO_SYNCIO);
1743 if (swslot == SWSLOT_BAD) {
1744 return EIO;
1745 }
1746
1747 error = uvm_swap_io(&page, swslot, 1, B_READ |
1748 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1749 if (error == 0) {
1750
1751 /*
1752 * this page is no longer only in swap.
1753 */
1754
1755 KASSERT(uvmexp.swpgonly > 0);
1756 atomic_dec_uint(&uvmexp.swpgonly);
1757 }
1758 return error;
1759 }
1760
1761 /*
1762 * uvm_swap_io: do an i/o operation to swap
1763 */
1764
1765 static int
1766 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1767 {
1768 daddr_t startblk;
1769 struct buf *bp;
1770 vaddr_t kva;
1771 int error, mapinflags;
1772 bool write, async;
1773 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1774
1775 UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1776 startslot, npages, flags, 0);
1777
1778 write = (flags & B_READ) == 0;
1779 async = (flags & B_ASYNC) != 0;
1780
1781 /* XXX swap io make take place before the aiodone queue exists */
1782 if (uvm.aiodone_queue == NULL)
1783 async = 0;
1784
1785 /*
1786 * allocate a buf for the i/o.
1787 */
1788
1789 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1790 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1791 if (bp == NULL) {
1792 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1793 return ENOMEM;
1794 }
1795
1796 /*
1797 * convert starting drum slot to block number
1798 */
1799
1800 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1801
1802 /*
1803 * first, map the pages into the kernel.
1804 */
1805
1806 mapinflags = !write ?
1807 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1808 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1809 kva = uvm_pagermapin(pps, npages, mapinflags);
1810
1811 /*
1812 * fill in the bp/sbp. we currently route our i/o through
1813 * /dev/drum's vnode [swapdev_vp].
1814 */
1815
1816 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1817 bp->b_flags = (flags & (B_READ|B_ASYNC));
1818 bp->b_proc = &proc0; /* XXX */
1819 bp->b_vnbufs.le_next = NOLIST;
1820 bp->b_data = (void *)kva;
1821 bp->b_blkno = startblk;
1822 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1823
1824 /*
1825 * bump v_numoutput (counter of number of active outputs).
1826 */
1827
1828 if (write) {
1829 mutex_enter(swapdev_vp->v_interlock);
1830 swapdev_vp->v_numoutput++;
1831 mutex_exit(swapdev_vp->v_interlock);
1832 }
1833
1834 /*
1835 * for async ops we must set up the iodone handler.
1836 */
1837
1838 if (async) {
1839 KASSERT(uvm.aiodone_queue != NULL);
1840 bp->b_iodone = uvm_aio_biodone;
1841 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1842 if (curlwp == uvm.pagedaemon_lwp)
1843 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1844 else
1845 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1846 } else {
1847 bp->b_iodone = NULL;
1848 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1849 }
1850 UVMHIST_LOG(pdhist,
1851 "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1852 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1853
1854 /*
1855 * now we start the I/O, and if async, return.
1856 */
1857
1858 VOP_STRATEGY(swapdev_vp, bp);
1859 if (async)
1860 return 0;
1861
1862 /*
1863 * must be sync i/o. wait for it to finish
1864 */
1865
1866 error = biowait(bp);
1867
1868 /*
1869 * kill the pager mapping
1870 */
1871
1872 uvm_pagermapout(kva, npages);
1873
1874 /*
1875 * now dispose of the buf and we're done.
1876 */
1877
1878 if (write) {
1879 mutex_enter(swapdev_vp->v_interlock);
1880 vwakeup(bp);
1881 mutex_exit(swapdev_vp->v_interlock);
1882 }
1883 putiobuf(bp);
1884 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
1885
1886 return (error);
1887 }
1888