uvm_swap.c revision 1.196 1 /* $NetBSD: uvm_swap.c,v 1.196 2020/07/08 13:26:22 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.196 2020/07/08 13:26:22 skrll Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/cprng.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/kmem.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60 #include <sys/kauth.h>
61 #include <sys/sysctl.h>
62 #include <sys/workqueue.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 #include <crypto/aes/aes.h>
69
70 /*
71 * uvm_swap.c: manage configuration and i/o to swap space.
72 */
73
74 /*
75 * swap space is managed in the following way:
76 *
77 * each swap partition or file is described by a "swapdev" structure.
78 * each "swapdev" structure contains a "swapent" structure which contains
79 * information that is passed up to the user (via system calls).
80 *
81 * each swap partition is assigned a "priority" (int) which controls
82 * swap parition usage.
83 *
84 * the system maintains a global data structure describing all swap
85 * partitions/files. there is a sorted LIST of "swappri" structures
86 * which describe "swapdev"'s at that priority. this LIST is headed
87 * by the "swap_priority" global var. each "swappri" contains a
88 * TAILQ of "swapdev" structures at that priority.
89 *
90 * locking:
91 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
92 * system call and prevents the swap priority list from changing
93 * while we are in the middle of a system call (e.g. SWAP_STATS).
94 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
95 * structures including the priority list, the swapdev structures,
96 * and the swapmap arena.
97 *
98 * each swap device has the following info:
99 * - swap device in use (could be disabled, preventing future use)
100 * - swap enabled (allows new allocations on swap)
101 * - map info in /dev/drum
102 * - vnode pointer
103 * for swap files only:
104 * - block size
105 * - max byte count in buffer
106 * - buffer
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array. The actual work is done
114 * in the uvm_swap_stats() function.
115 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
116 * priority in "misc", start swapping on it.
117 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
118 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
119 * "misc")
120 */
121
122 /*
123 * swapdev: describes a single swap partition/file
124 *
125 * note the following should be true:
126 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
127 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
128 */
129 struct swapdev {
130 dev_t swd_dev; /* device id */
131 int swd_flags; /* flags:inuse/enable/fake */
132 int swd_priority; /* our priority */
133 int swd_nblks; /* blocks in this device */
134 char *swd_path; /* saved pathname of device */
135 int swd_pathlen; /* length of pathname */
136 int swd_npages; /* #pages we can use */
137 int swd_npginuse; /* #pages in use */
138 int swd_npgbad; /* #pages bad */
139 int swd_drumoffset; /* page0 offset in drum */
140 int swd_drumsize; /* #pages in drum */
141 blist_t swd_blist; /* blist for this swapdev */
142 struct vnode *swd_vp; /* backing vnode */
143 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
144
145 int swd_bsize; /* blocksize (bytes) */
146 int swd_maxactive; /* max active i/o reqs */
147 struct bufq_state *swd_tab; /* buffer list */
148 int swd_active; /* number of active buffers */
149
150 volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */
151 struct aesenc swd_enckey; /* AES key expanded for enc */
152 struct aesdec swd_deckey; /* AES key expanded for dec */
153 bool swd_encinit; /* true if keys initialized */
154 };
155
156 /*
157 * swap device priority entry; the list is kept sorted on `spi_priority'.
158 */
159 struct swappri {
160 int spi_priority; /* priority */
161 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
162 /* tailq of swapdevs at this priority */
163 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
164 };
165
166 /*
167 * The following two structures are used to keep track of data transfers
168 * on swap devices associated with regular files.
169 * NOTE: this code is more or less a copy of vnd.c; we use the same
170 * structure names here to ease porting..
171 */
172 struct vndxfer {
173 struct buf *vx_bp; /* Pointer to parent buffer */
174 struct swapdev *vx_sdp;
175 int vx_error;
176 int vx_pending; /* # of pending aux buffers */
177 int vx_flags;
178 #define VX_BUSY 1
179 #define VX_DEAD 2
180 };
181
182 struct vndbuf {
183 struct buf vb_buf;
184 struct vndxfer *vb_xfer;
185 };
186
187 /*
188 * We keep a of pool vndbuf's and vndxfer structures.
189 */
190 static struct pool vndxfer_pool, vndbuf_pool;
191
192 /*
193 * local variables
194 */
195 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
196
197 /* list of all active swap devices [by priority] */
198 LIST_HEAD(swap_priority, swappri);
199 static struct swap_priority swap_priority;
200
201 /* locks */
202 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
203 static krwlock_t swap_syscall_lock;
204
205 /* workqueue and use counter for swap to regular files */
206 static int sw_reg_count = 0;
207 static struct workqueue *sw_reg_workqueue;
208
209 /* tuneables */
210 u_int uvm_swapisfull_factor = 99;
211 bool uvm_swap_encrypt = false;
212
213 /*
214 * prototypes
215 */
216 static struct swapdev *swapdrum_getsdp(int);
217
218 static struct swapdev *swaplist_find(struct vnode *, bool);
219 static void swaplist_insert(struct swapdev *,
220 struct swappri *, int);
221 static void swaplist_trim(void);
222
223 static int swap_on(struct lwp *, struct swapdev *);
224 static int swap_off(struct lwp *, struct swapdev *);
225
226 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
227 static void sw_reg_biodone(struct buf *);
228 static void sw_reg_iodone(struct work *wk, void *dummy);
229 static void sw_reg_start(struct swapdev *);
230
231 static int uvm_swap_io(struct vm_page **, int, int, int);
232
233 static void uvm_swap_genkey(struct swapdev *);
234 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
235 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
236
237 static size_t
238 encmap_size(size_t npages)
239 {
240 struct swapdev *sdp;
241 const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
242 const size_t bitsperword = NBBY * bytesperword;
243 const size_t nbits = npages; /* one bit for each page */
244 const size_t nwords = howmany(nbits, bitsperword);
245 const size_t nbytes = nwords * bytesperword;
246
247 return nbytes;
248 }
249
250 /*
251 * uvm_swap_init: init the swap system data structures and locks
252 *
253 * => called at boot time from init_main.c after the filesystems
254 * are brought up (which happens after uvm_init())
255 */
256 void
257 uvm_swap_init(void)
258 {
259 UVMHIST_FUNC("uvm_swap_init");
260
261 UVMHIST_CALLED(pdhist);
262 /*
263 * first, init the swap list, its counter, and its lock.
264 * then get a handle on the vnode for /dev/drum by using
265 * the its dev_t number ("swapdev", from MD conf.c).
266 */
267
268 LIST_INIT(&swap_priority);
269 uvmexp.nswapdev = 0;
270 rw_init(&swap_syscall_lock);
271 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
272
273 if (bdevvp(swapdev, &swapdev_vp))
274 panic("%s: can't get vnode for swap device", __func__);
275 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
276 panic("%s: can't lock swap device", __func__);
277 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
278 panic("%s: can't open swap device", __func__);
279 VOP_UNLOCK(swapdev_vp);
280
281 /*
282 * create swap block resource map to map /dev/drum. the range
283 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
284 * that block 0 is reserved (used to indicate an allocation
285 * failure, or no allocation).
286 */
287 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
288 VM_NOSLEEP, IPL_NONE);
289 if (swapmap == 0) {
290 panic("%s: vmem_create failed", __func__);
291 }
292
293 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
294 NULL, IPL_BIO);
295 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
296 NULL, IPL_BIO);
297
298 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
299 }
300
301 /*
302 * swaplist functions: functions that operate on the list of swap
303 * devices on the system.
304 */
305
306 /*
307 * swaplist_insert: insert swap device "sdp" into the global list
308 *
309 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
310 * => caller must provide a newly allocated swappri structure (we will
311 * FREE it if we don't need it... this it to prevent allocation
312 * blocking here while adding swap)
313 */
314 static void
315 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
316 {
317 struct swappri *spp, *pspp;
318 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
319
320 KASSERT(rw_write_held(&swap_syscall_lock));
321 KASSERT(mutex_owned(&uvm_swap_data_lock));
322
323 /*
324 * find entry at or after which to insert the new device.
325 */
326 pspp = NULL;
327 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
328 if (priority <= spp->spi_priority)
329 break;
330 pspp = spp;
331 }
332
333 /*
334 * new priority?
335 */
336 if (spp == NULL || spp->spi_priority != priority) {
337 spp = newspp; /* use newspp! */
338 UVMHIST_LOG(pdhist, "created new swappri = %jd",
339 priority, 0, 0, 0);
340
341 spp->spi_priority = priority;
342 TAILQ_INIT(&spp->spi_swapdev);
343
344 if (pspp)
345 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
346 else
347 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
348 } else {
349 /* we don't need a new priority structure, free it */
350 kmem_free(newspp, sizeof(*newspp));
351 }
352
353 /*
354 * priority found (or created). now insert on the priority's
355 * tailq list and bump the total number of swapdevs.
356 */
357 sdp->swd_priority = priority;
358 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
359 uvmexp.nswapdev++;
360 }
361
362 /*
363 * swaplist_find: find and optionally remove a swap device from the
364 * global list.
365 *
366 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
367 * => we return the swapdev we found (and removed)
368 */
369 static struct swapdev *
370 swaplist_find(struct vnode *vp, bool remove)
371 {
372 struct swapdev *sdp;
373 struct swappri *spp;
374
375 KASSERT(rw_lock_held(&swap_syscall_lock));
376 KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
377 KASSERT(mutex_owned(&uvm_swap_data_lock));
378
379 /*
380 * search the lists for the requested vp
381 */
382
383 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
384 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
385 if (sdp->swd_vp == vp) {
386 if (remove) {
387 TAILQ_REMOVE(&spp->spi_swapdev,
388 sdp, swd_next);
389 uvmexp.nswapdev--;
390 }
391 return(sdp);
392 }
393 }
394 }
395 return (NULL);
396 }
397
398 /*
399 * swaplist_trim: scan priority list for empty priority entries and kill
400 * them.
401 *
402 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
403 */
404 static void
405 swaplist_trim(void)
406 {
407 struct swappri *spp, *nextspp;
408
409 KASSERT(rw_write_held(&swap_syscall_lock));
410 KASSERT(mutex_owned(&uvm_swap_data_lock));
411
412 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
413 if (!TAILQ_EMPTY(&spp->spi_swapdev))
414 continue;
415 LIST_REMOVE(spp, spi_swappri);
416 kmem_free(spp, sizeof(*spp));
417 }
418 }
419
420 /*
421 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
422 * to the "swapdev" that maps that section of the drum.
423 *
424 * => each swapdev takes one big contig chunk of the drum
425 * => caller must hold uvm_swap_data_lock
426 */
427 static struct swapdev *
428 swapdrum_getsdp(int pgno)
429 {
430 struct swapdev *sdp;
431 struct swappri *spp;
432
433 KASSERT(mutex_owned(&uvm_swap_data_lock));
434
435 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
436 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
437 if (sdp->swd_flags & SWF_FAKE)
438 continue;
439 if (pgno >= sdp->swd_drumoffset &&
440 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
441 return sdp;
442 }
443 }
444 }
445 return NULL;
446 }
447
448 /*
449 * swapdrum_sdp_is: true iff the swap device for pgno is sdp
450 *
451 * => for use in positive assertions only; result is not stable
452 */
453 static bool __debugused
454 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
455 {
456 bool result;
457
458 mutex_enter(&uvm_swap_data_lock);
459 result = swapdrum_getsdp(pgno) == sdp;
460 mutex_exit(&uvm_swap_data_lock);
461
462 return result;
463 }
464
465 void swapsys_lock(krw_t op)
466 {
467 rw_enter(&swap_syscall_lock, op);
468 }
469
470 void swapsys_unlock(void)
471 {
472 rw_exit(&swap_syscall_lock);
473 }
474
475 static void
476 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
477 {
478 se->se_dev = sdp->swd_dev;
479 se->se_flags = sdp->swd_flags;
480 se->se_nblks = sdp->swd_nblks;
481 se->se_inuse = inuse;
482 se->se_priority = sdp->swd_priority;
483 KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
484 strcpy(se->se_path, sdp->swd_path);
485 }
486
487 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
488 (void *)enosys;
489 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
490 (void *)enosys;
491
492 /*
493 * sys_swapctl: main entry point for swapctl(2) system call
494 * [with two helper functions: swap_on and swap_off]
495 */
496 int
497 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
498 {
499 /* {
500 syscallarg(int) cmd;
501 syscallarg(void *) arg;
502 syscallarg(int) misc;
503 } */
504 struct vnode *vp;
505 struct nameidata nd;
506 struct swappri *spp;
507 struct swapdev *sdp;
508 #define SWAP_PATH_MAX (PATH_MAX + 1)
509 char *userpath;
510 size_t len = 0;
511 int error;
512 int priority;
513 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
514
515 /*
516 * we handle the non-priv NSWAP and STATS request first.
517 *
518 * SWAP_NSWAP: return number of config'd swap devices
519 * [can also be obtained with uvmexp sysctl]
520 */
521 if (SCARG(uap, cmd) == SWAP_NSWAP) {
522 const int nswapdev = uvmexp.nswapdev;
523 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
524 0, 0, 0);
525 *retval = nswapdev;
526 return 0;
527 }
528
529 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
530
531 /*
532 * ensure serialized syscall access by grabbing the swap_syscall_lock
533 */
534 rw_enter(&swap_syscall_lock, RW_WRITER);
535
536 /*
537 * SWAP_STATS: get stats on current # of configured swap devs
538 *
539 * note that the swap_priority list can't change as long
540 * as we are holding the swap_syscall_lock. we don't want
541 * to grab the uvm_swap_data_lock because we may fault&sleep during
542 * copyout() and we don't want to be holding that lock then!
543 */
544 switch (SCARG(uap, cmd)) {
545 case SWAP_STATS13:
546 error = (*uvm_swap_stats13)(uap, retval);
547 goto out;
548 case SWAP_STATS50:
549 error = (*uvm_swap_stats50)(uap, retval);
550 goto out;
551 case SWAP_STATS:
552 error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
553 NULL, sizeof(struct swapent), retval);
554 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
555 goto out;
556
557 case SWAP_GETDUMPDEV:
558 error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
559 goto out;
560 default:
561 break;
562 }
563
564 /*
565 * all other requests require superuser privs. verify.
566 */
567 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
568 0, NULL, NULL, NULL)))
569 goto out;
570
571 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
572 /* drop the current dump device */
573 dumpdev = NODEV;
574 dumpcdev = NODEV;
575 cpu_dumpconf();
576 goto out;
577 }
578
579 /*
580 * at this point we expect a path name in arg. we will
581 * use namei() to gain a vnode reference (vref), and lock
582 * the vnode (VOP_LOCK).
583 *
584 * XXX: a NULL arg means use the root vnode pointer (e.g. for
585 * miniroot)
586 */
587 if (SCARG(uap, arg) == NULL) {
588 vp = rootvp; /* miniroot */
589 vref(vp);
590 if (vn_lock(vp, LK_EXCLUSIVE)) {
591 vrele(vp);
592 error = EBUSY;
593 goto out;
594 }
595 if (SCARG(uap, cmd) == SWAP_ON &&
596 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
597 panic("swapctl: miniroot copy failed");
598 } else {
599 struct pathbuf *pb;
600
601 /*
602 * This used to allow copying in one extra byte
603 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
604 * This was completely pointless because if anyone
605 * used that extra byte namei would fail with
606 * ENAMETOOLONG anyway, so I've removed the excess
607 * logic. - dholland 20100215
608 */
609
610 error = pathbuf_copyin(SCARG(uap, arg), &pb);
611 if (error) {
612 goto out;
613 }
614 if (SCARG(uap, cmd) == SWAP_ON) {
615 /* get a copy of the string */
616 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
617 len = strlen(userpath) + 1;
618 }
619 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
620 if ((error = namei(&nd))) {
621 pathbuf_destroy(pb);
622 goto out;
623 }
624 vp = nd.ni_vp;
625 pathbuf_destroy(pb);
626 }
627 /* note: "vp" is referenced and locked */
628
629 error = 0; /* assume no error */
630 switch(SCARG(uap, cmd)) {
631
632 case SWAP_DUMPDEV:
633 if (vp->v_type != VBLK) {
634 error = ENOTBLK;
635 break;
636 }
637 if (bdevsw_lookup(vp->v_rdev)) {
638 dumpdev = vp->v_rdev;
639 dumpcdev = devsw_blk2chr(dumpdev);
640 } else
641 dumpdev = NODEV;
642 cpu_dumpconf();
643 break;
644
645 case SWAP_CTL:
646 /*
647 * get new priority, remove old entry (if any) and then
648 * reinsert it in the correct place. finally, prune out
649 * any empty priority structures.
650 */
651 priority = SCARG(uap, misc);
652 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
653 mutex_enter(&uvm_swap_data_lock);
654 if ((sdp = swaplist_find(vp, true)) == NULL) {
655 error = ENOENT;
656 } else {
657 swaplist_insert(sdp, spp, priority);
658 swaplist_trim();
659 }
660 mutex_exit(&uvm_swap_data_lock);
661 if (error)
662 kmem_free(spp, sizeof(*spp));
663 break;
664
665 case SWAP_ON:
666
667 /*
668 * check for duplicates. if none found, then insert a
669 * dummy entry on the list to prevent someone else from
670 * trying to enable this device while we are working on
671 * it.
672 */
673
674 priority = SCARG(uap, misc);
675 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
676 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
677 sdp->swd_flags = SWF_FAKE;
678 sdp->swd_vp = vp;
679 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
680 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
681 mutex_enter(&uvm_swap_data_lock);
682 if (swaplist_find(vp, false) != NULL) {
683 error = EBUSY;
684 mutex_exit(&uvm_swap_data_lock);
685 bufq_free(sdp->swd_tab);
686 kmem_free(sdp, sizeof(*sdp));
687 kmem_free(spp, sizeof(*spp));
688 break;
689 }
690 swaplist_insert(sdp, spp, priority);
691 mutex_exit(&uvm_swap_data_lock);
692
693 KASSERT(len > 0);
694 sdp->swd_pathlen = len;
695 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
696 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
697 panic("swapctl: copystr");
698
699 /*
700 * we've now got a FAKE placeholder in the swap list.
701 * now attempt to enable swap on it. if we fail, undo
702 * what we've done and kill the fake entry we just inserted.
703 * if swap_on is a success, it will clear the SWF_FAKE flag
704 */
705
706 if ((error = swap_on(l, sdp)) != 0) {
707 mutex_enter(&uvm_swap_data_lock);
708 (void) swaplist_find(vp, true); /* kill fake entry */
709 swaplist_trim();
710 mutex_exit(&uvm_swap_data_lock);
711 bufq_free(sdp->swd_tab);
712 kmem_free(sdp->swd_path, sdp->swd_pathlen);
713 kmem_free(sdp, sizeof(*sdp));
714 break;
715 }
716 break;
717
718 case SWAP_OFF:
719 mutex_enter(&uvm_swap_data_lock);
720 if ((sdp = swaplist_find(vp, false)) == NULL) {
721 mutex_exit(&uvm_swap_data_lock);
722 error = ENXIO;
723 break;
724 }
725
726 /*
727 * If a device isn't in use or enabled, we
728 * can't stop swapping from it (again).
729 */
730 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
731 mutex_exit(&uvm_swap_data_lock);
732 error = EBUSY;
733 break;
734 }
735
736 /*
737 * do the real work.
738 */
739 error = swap_off(l, sdp);
740 break;
741
742 default:
743 error = EINVAL;
744 }
745
746 /*
747 * done! release the ref gained by namei() and unlock.
748 */
749 vput(vp);
750 out:
751 rw_exit(&swap_syscall_lock);
752 kmem_free(userpath, SWAP_PATH_MAX);
753
754 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
755 return (error);
756 }
757
758 /*
759 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
760 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
761 * emulation to use it directly without going through sys_swapctl().
762 * The problem with using sys_swapctl() there is that it involves
763 * copying the swapent array to the stackgap, and this array's size
764 * is not known at build time. Hence it would not be possible to
765 * ensure it would fit in the stackgap in any case.
766 */
767 int
768 uvm_swap_stats(char *ptr, int misc,
769 void (*f)(void *, const struct swapent *), size_t len,
770 register_t *retval)
771 {
772 struct swappri *spp;
773 struct swapdev *sdp;
774 struct swapent sep;
775 int count = 0;
776 int error;
777
778 KASSERT(len <= sizeof(sep));
779 if (len == 0)
780 return ENOSYS;
781
782 if (misc < 0)
783 return EINVAL;
784
785 if (misc == 0 || uvmexp.nswapdev == 0)
786 return 0;
787
788 /* Make sure userland cannot exhaust kernel memory */
789 if ((size_t)misc > (size_t)uvmexp.nswapdev)
790 misc = uvmexp.nswapdev;
791
792 KASSERT(rw_lock_held(&swap_syscall_lock));
793
794 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
795 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
796 int inuse;
797
798 if (misc-- <= 0)
799 break;
800
801 inuse = btodb((uint64_t)sdp->swd_npginuse <<
802 PAGE_SHIFT);
803
804 memset(&sep, 0, sizeof(sep));
805 swapent_cvt(&sep, sdp, inuse);
806 if (f)
807 (*f)(&sep, &sep);
808 if ((error = copyout(&sep, ptr, len)) != 0)
809 return error;
810 ptr += len;
811 count++;
812 }
813 }
814 *retval = count;
815 return 0;
816 }
817
818 /*
819 * swap_on: attempt to enable a swapdev for swapping. note that the
820 * swapdev is already on the global list, but disabled (marked
821 * SWF_FAKE).
822 *
823 * => we avoid the start of the disk (to protect disk labels)
824 * => we also avoid the miniroot, if we are swapping to root.
825 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
826 * if needed.
827 */
828 static int
829 swap_on(struct lwp *l, struct swapdev *sdp)
830 {
831 struct vnode *vp;
832 int error, npages, nblocks, size;
833 long addr;
834 vmem_addr_t result;
835 struct vattr va;
836 dev_t dev;
837 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
838
839 /*
840 * we want to enable swapping on sdp. the swd_vp contains
841 * the vnode we want (locked and ref'd), and the swd_dev
842 * contains the dev_t of the file, if it a block device.
843 */
844
845 vp = sdp->swd_vp;
846 dev = sdp->swd_dev;
847
848 /*
849 * open the swap file (mostly useful for block device files to
850 * let device driver know what is up).
851 *
852 * we skip the open/close for root on swap because the root
853 * has already been opened when root was mounted (mountroot).
854 */
855 if (vp != rootvp) {
856 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
857 return (error);
858 }
859
860 /* XXX this only works for block devices */
861 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
862
863 /*
864 * we now need to determine the size of the swap area. for
865 * block specials we can call the d_psize function.
866 * for normal files, we must stat [get attrs].
867 *
868 * we put the result in nblks.
869 * for normal files, we also want the filesystem block size
870 * (which we get with statfs).
871 */
872 switch (vp->v_type) {
873 case VBLK:
874 if ((nblocks = bdev_size(dev)) == -1) {
875 error = ENXIO;
876 goto bad;
877 }
878 break;
879
880 case VREG:
881 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
882 goto bad;
883 nblocks = (int)btodb(va.va_size);
884 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
885 /*
886 * limit the max # of outstanding I/O requests we issue
887 * at any one time. take it easy on NFS servers.
888 */
889 if (vp->v_tag == VT_NFS)
890 sdp->swd_maxactive = 2; /* XXX */
891 else
892 sdp->swd_maxactive = 8; /* XXX */
893 break;
894
895 default:
896 error = ENXIO;
897 goto bad;
898 }
899
900 /*
901 * save nblocks in a safe place and convert to pages.
902 */
903
904 sdp->swd_nblks = nblocks;
905 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
906
907 /*
908 * for block special files, we want to make sure that leave
909 * the disklabel and bootblocks alone, so we arrange to skip
910 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
911 * note that because of this the "size" can be less than the
912 * actual number of blocks on the device.
913 */
914 if (vp->v_type == VBLK) {
915 /* we use pages 1 to (size - 1) [inclusive] */
916 size = npages - 1;
917 addr = 1;
918 } else {
919 /* we use pages 0 to (size - 1) [inclusive] */
920 size = npages;
921 addr = 0;
922 }
923
924 /*
925 * make sure we have enough blocks for a reasonable sized swap
926 * area. we want at least one page.
927 */
928
929 if (size < 1) {
930 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
931 error = EINVAL;
932 goto bad;
933 }
934
935 UVMHIST_LOG(pdhist, " dev=%jx: size=%jd addr=%jd", dev, size, addr, 0);
936
937 /*
938 * now we need to allocate an extent to manage this swap device
939 */
940
941 sdp->swd_blist = blist_create(npages);
942 /* mark all expect the `saved' region free. */
943 blist_free(sdp->swd_blist, addr, size);
944
945 /*
946 * allocate space to for swap encryption state and mark the
947 * keys uninitialized so we generate them lazily
948 */
949 sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
950 sdp->swd_encinit = false;
951
952 /*
953 * if the vnode we are swapping to is the root vnode
954 * (i.e. we are swapping to the miniroot) then we want
955 * to make sure we don't overwrite it. do a statfs to
956 * find its size and skip over it.
957 */
958 if (vp == rootvp) {
959 struct mount *mp;
960 struct statvfs *sp;
961 int rootblocks, rootpages;
962
963 mp = rootvnode->v_mount;
964 sp = &mp->mnt_stat;
965 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
966 /*
967 * XXX: sp->f_blocks isn't the total number of
968 * blocks in the filesystem, it's the number of
969 * data blocks. so, our rootblocks almost
970 * definitely underestimates the total size
971 * of the filesystem - how badly depends on the
972 * details of the filesystem type. there isn't
973 * an obvious way to deal with this cleanly
974 * and perfectly, so for now we just pad our
975 * rootblocks estimate with an extra 5 percent.
976 */
977 rootblocks += (rootblocks >> 5) +
978 (rootblocks >> 6) +
979 (rootblocks >> 7);
980 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
981 if (rootpages > size)
982 panic("swap_on: miniroot larger than swap?");
983
984 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
985 panic("swap_on: unable to preserve miniroot");
986 }
987
988 size -= rootpages;
989 printf("Preserved %d pages of miniroot ", rootpages);
990 printf("leaving %d pages of swap\n", size);
991 }
992
993 /*
994 * add a ref to vp to reflect usage as a swap device.
995 */
996 vref(vp);
997
998 /*
999 * now add the new swapdev to the drum and enable.
1000 */
1001 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1002 if (error != 0)
1003 panic("swapdrum_add");
1004 /*
1005 * If this is the first regular swap create the workqueue.
1006 * => Protected by swap_syscall_lock.
1007 */
1008 if (vp->v_type != VBLK) {
1009 if (sw_reg_count++ == 0) {
1010 KASSERT(sw_reg_workqueue == NULL);
1011 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1012 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1013 panic("%s: workqueue_create failed", __func__);
1014 }
1015 }
1016
1017 sdp->swd_drumoffset = (int)result;
1018 sdp->swd_drumsize = npages;
1019 sdp->swd_npages = size;
1020 mutex_enter(&uvm_swap_data_lock);
1021 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1022 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1023 uvmexp.swpages += size;
1024 uvmexp.swpgavail += size;
1025 mutex_exit(&uvm_swap_data_lock);
1026 return (0);
1027
1028 /*
1029 * failure: clean up and return error.
1030 */
1031
1032 bad:
1033 if (sdp->swd_blist) {
1034 blist_destroy(sdp->swd_blist);
1035 }
1036 if (vp != rootvp) {
1037 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1038 }
1039 return (error);
1040 }
1041
1042 /*
1043 * swap_off: stop swapping on swapdev
1044 *
1045 * => swap data should be locked, we will unlock.
1046 */
1047 static int
1048 swap_off(struct lwp *l, struct swapdev *sdp)
1049 {
1050 int npages = sdp->swd_npages;
1051 int error = 0;
1052
1053 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1054 UVMHIST_LOG(pdhist, " dev=%jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1055
1056 KASSERT(rw_write_held(&swap_syscall_lock));
1057 KASSERT(mutex_owned(&uvm_swap_data_lock));
1058
1059 /* disable the swap area being removed */
1060 sdp->swd_flags &= ~SWF_ENABLE;
1061 uvmexp.swpgavail -= npages;
1062 mutex_exit(&uvm_swap_data_lock);
1063
1064 /*
1065 * the idea is to find all the pages that are paged out to this
1066 * device, and page them all in. in uvm, swap-backed pageable
1067 * memory can take two forms: aobjs and anons. call the
1068 * swapoff hook for each subsystem to bring in pages.
1069 */
1070
1071 if (uao_swap_off(sdp->swd_drumoffset,
1072 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1073 amap_swap_off(sdp->swd_drumoffset,
1074 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1075 error = ENOMEM;
1076 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1077 error = EBUSY;
1078 }
1079
1080 if (error) {
1081 mutex_enter(&uvm_swap_data_lock);
1082 sdp->swd_flags |= SWF_ENABLE;
1083 uvmexp.swpgavail += npages;
1084 mutex_exit(&uvm_swap_data_lock);
1085
1086 return error;
1087 }
1088
1089 /*
1090 * If this is the last regular swap destroy the workqueue.
1091 * => Protected by swap_syscall_lock.
1092 */
1093 if (sdp->swd_vp->v_type != VBLK) {
1094 KASSERT(sw_reg_count > 0);
1095 KASSERT(sw_reg_workqueue != NULL);
1096 if (--sw_reg_count == 0) {
1097 workqueue_destroy(sw_reg_workqueue);
1098 sw_reg_workqueue = NULL;
1099 }
1100 }
1101
1102 /*
1103 * done with the vnode.
1104 * drop our ref on the vnode before calling VOP_CLOSE()
1105 * so that spec_close() can tell if this is the last close.
1106 */
1107 vrele(sdp->swd_vp);
1108 if (sdp->swd_vp != rootvp) {
1109 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1110 }
1111
1112 mutex_enter(&uvm_swap_data_lock);
1113 uvmexp.swpages -= npages;
1114 uvmexp.swpginuse -= sdp->swd_npgbad;
1115
1116 if (swaplist_find(sdp->swd_vp, true) == NULL)
1117 panic("%s: swapdev not in list", __func__);
1118 swaplist_trim();
1119 mutex_exit(&uvm_swap_data_lock);
1120
1121 /*
1122 * free all resources!
1123 */
1124 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1125 blist_destroy(sdp->swd_blist);
1126 bufq_free(sdp->swd_tab);
1127 kmem_free(__UNVOLATILE(sdp->swd_encmap),
1128 encmap_size(sdp->swd_drumsize));
1129 explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1130 explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1131 kmem_free(sdp, sizeof(*sdp));
1132 return (0);
1133 }
1134
1135 void
1136 uvm_swap_shutdown(struct lwp *l)
1137 {
1138 struct swapdev *sdp;
1139 struct swappri *spp;
1140 struct vnode *vp;
1141 int error;
1142
1143 printf("turning off swap...");
1144 rw_enter(&swap_syscall_lock, RW_WRITER);
1145 mutex_enter(&uvm_swap_data_lock);
1146 again:
1147 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1148 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1149 if (sdp->swd_flags & SWF_FAKE)
1150 continue;
1151 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1152 continue;
1153 #ifdef DEBUG
1154 printf("\nturning off swap on %s...",
1155 sdp->swd_path);
1156 #endif
1157 if (vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE)) {
1158 error = EBUSY;
1159 vp = NULL;
1160 } else
1161 error = 0;
1162 if (!error) {
1163 error = swap_off(l, sdp);
1164 mutex_enter(&uvm_swap_data_lock);
1165 }
1166 if (error) {
1167 printf("stopping swap on %s failed "
1168 "with error %d\n", sdp->swd_path, error);
1169 TAILQ_REMOVE(&spp->spi_swapdev, sdp,
1170 swd_next);
1171 uvmexp.nswapdev--;
1172 swaplist_trim();
1173 if (vp)
1174 vput(vp);
1175 }
1176 goto again;
1177 }
1178 printf(" done\n");
1179 mutex_exit(&uvm_swap_data_lock);
1180 rw_exit(&swap_syscall_lock);
1181 }
1182
1183
1184 /*
1185 * /dev/drum interface and i/o functions
1186 */
1187
1188 /*
1189 * swstrategy: perform I/O on the drum
1190 *
1191 * => we must map the i/o request from the drum to the correct swapdev.
1192 */
1193 static void
1194 swstrategy(struct buf *bp)
1195 {
1196 struct swapdev *sdp;
1197 struct vnode *vp;
1198 int pageno, bn;
1199 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1200
1201 /*
1202 * convert block number to swapdev. note that swapdev can't
1203 * be yanked out from under us because we are holding resources
1204 * in it (i.e. the blocks we are doing I/O on).
1205 */
1206 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1207 mutex_enter(&uvm_swap_data_lock);
1208 sdp = swapdrum_getsdp(pageno);
1209 mutex_exit(&uvm_swap_data_lock);
1210 if (sdp == NULL) {
1211 bp->b_error = EINVAL;
1212 bp->b_resid = bp->b_bcount;
1213 biodone(bp);
1214 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1215 return;
1216 }
1217
1218 /*
1219 * convert drum page number to block number on this swapdev.
1220 */
1221
1222 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1223 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1224
1225 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%jx bn=%jx bcount=%jd",
1226 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1227 sdp->swd_drumoffset, bn, bp->b_bcount);
1228
1229 /*
1230 * for block devices we finish up here.
1231 * for regular files we have to do more work which we delegate
1232 * to sw_reg_strategy().
1233 */
1234
1235 vp = sdp->swd_vp; /* swapdev vnode pointer */
1236 switch (vp->v_type) {
1237 default:
1238 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1239
1240 case VBLK:
1241
1242 /*
1243 * must convert "bp" from an I/O on /dev/drum to an I/O
1244 * on the swapdev (sdp).
1245 */
1246 bp->b_blkno = bn; /* swapdev block number */
1247 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1248
1249 /*
1250 * if we are doing a write, we have to redirect the i/o on
1251 * drum's v_numoutput counter to the swapdevs.
1252 */
1253 if ((bp->b_flags & B_READ) == 0) {
1254 mutex_enter(bp->b_objlock);
1255 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1256 mutex_exit(bp->b_objlock);
1257 mutex_enter(vp->v_interlock);
1258 vp->v_numoutput++; /* put it on swapdev */
1259 mutex_exit(vp->v_interlock);
1260 }
1261
1262 /*
1263 * finally plug in swapdev vnode and start I/O
1264 */
1265 bp->b_vp = vp;
1266 bp->b_objlock = vp->v_interlock;
1267 VOP_STRATEGY(vp, bp);
1268 return;
1269
1270 case VREG:
1271 /*
1272 * delegate to sw_reg_strategy function.
1273 */
1274 sw_reg_strategy(sdp, bp, bn);
1275 return;
1276 }
1277 /* NOTREACHED */
1278 }
1279
1280 /*
1281 * swread: the read function for the drum (just a call to physio)
1282 */
1283 /*ARGSUSED*/
1284 static int
1285 swread(dev_t dev, struct uio *uio, int ioflag)
1286 {
1287 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1288
1289 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1290 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1291 }
1292
1293 /*
1294 * swwrite: the write function for the drum (just a call to physio)
1295 */
1296 /*ARGSUSED*/
1297 static int
1298 swwrite(dev_t dev, struct uio *uio, int ioflag)
1299 {
1300 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1301
1302 UVMHIST_LOG(pdhist, " dev=%jx offset=%jx", dev, uio->uio_offset, 0, 0);
1303 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1304 }
1305
1306 const struct bdevsw swap_bdevsw = {
1307 .d_open = nullopen,
1308 .d_close = nullclose,
1309 .d_strategy = swstrategy,
1310 .d_ioctl = noioctl,
1311 .d_dump = nodump,
1312 .d_psize = nosize,
1313 .d_discard = nodiscard,
1314 .d_flag = D_OTHER
1315 };
1316
1317 const struct cdevsw swap_cdevsw = {
1318 .d_open = nullopen,
1319 .d_close = nullclose,
1320 .d_read = swread,
1321 .d_write = swwrite,
1322 .d_ioctl = noioctl,
1323 .d_stop = nostop,
1324 .d_tty = notty,
1325 .d_poll = nopoll,
1326 .d_mmap = nommap,
1327 .d_kqfilter = nokqfilter,
1328 .d_discard = nodiscard,
1329 .d_flag = D_OTHER,
1330 };
1331
1332 /*
1333 * sw_reg_strategy: handle swap i/o to regular files
1334 */
1335 static void
1336 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1337 {
1338 struct vnode *vp;
1339 struct vndxfer *vnx;
1340 daddr_t nbn;
1341 char *addr;
1342 off_t byteoff;
1343 int s, off, nra, error, sz, resid;
1344 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1345
1346 /*
1347 * allocate a vndxfer head for this transfer and point it to
1348 * our buffer.
1349 */
1350 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1351 vnx->vx_flags = VX_BUSY;
1352 vnx->vx_error = 0;
1353 vnx->vx_pending = 0;
1354 vnx->vx_bp = bp;
1355 vnx->vx_sdp = sdp;
1356
1357 /*
1358 * setup for main loop where we read filesystem blocks into
1359 * our buffer.
1360 */
1361 error = 0;
1362 bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1363 addr = bp->b_data; /* current position in buffer */
1364 byteoff = dbtob((uint64_t)bn);
1365
1366 for (resid = bp->b_resid; resid; resid -= sz) {
1367 struct vndbuf *nbp;
1368
1369 /*
1370 * translate byteoffset into block number. return values:
1371 * vp = vnode of underlying device
1372 * nbn = new block number (on underlying vnode dev)
1373 * nra = num blocks we can read-ahead (excludes requested
1374 * block)
1375 */
1376 nra = 0;
1377 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1378 &vp, &nbn, &nra);
1379
1380 if (error == 0 && nbn == (daddr_t)-1) {
1381 /*
1382 * this used to just set error, but that doesn't
1383 * do the right thing. Instead, it causes random
1384 * memory errors. The panic() should remain until
1385 * this condition doesn't destabilize the system.
1386 */
1387 #if 1
1388 panic("%s: swap to sparse file", __func__);
1389 #else
1390 error = EIO; /* failure */
1391 #endif
1392 }
1393
1394 /*
1395 * punt if there was an error or a hole in the file.
1396 * we must wait for any i/o ops we have already started
1397 * to finish before returning.
1398 *
1399 * XXX we could deal with holes here but it would be
1400 * a hassle (in the write case).
1401 */
1402 if (error) {
1403 s = splbio();
1404 vnx->vx_error = error; /* pass error up */
1405 goto out;
1406 }
1407
1408 /*
1409 * compute the size ("sz") of this transfer (in bytes).
1410 */
1411 off = byteoff % sdp->swd_bsize;
1412 sz = (1 + nra) * sdp->swd_bsize - off;
1413 if (sz > resid)
1414 sz = resid;
1415
1416 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1417 "vp %#jx/%#jx offset 0x%jx/0x%jx",
1418 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1419
1420 /*
1421 * now get a buf structure. note that the vb_buf is
1422 * at the front of the nbp structure so that you can
1423 * cast pointers between the two structure easily.
1424 */
1425 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1426 buf_init(&nbp->vb_buf);
1427 nbp->vb_buf.b_flags = bp->b_flags;
1428 nbp->vb_buf.b_cflags = bp->b_cflags;
1429 nbp->vb_buf.b_oflags = bp->b_oflags;
1430 nbp->vb_buf.b_bcount = sz;
1431 nbp->vb_buf.b_bufsize = sz;
1432 nbp->vb_buf.b_error = 0;
1433 nbp->vb_buf.b_data = addr;
1434 nbp->vb_buf.b_lblkno = 0;
1435 nbp->vb_buf.b_blkno = nbn + btodb(off);
1436 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1437 nbp->vb_buf.b_iodone = sw_reg_biodone;
1438 nbp->vb_buf.b_vp = vp;
1439 nbp->vb_buf.b_objlock = vp->v_interlock;
1440 if (vp->v_type == VBLK) {
1441 nbp->vb_buf.b_dev = vp->v_rdev;
1442 }
1443
1444 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1445
1446 /*
1447 * Just sort by block number
1448 */
1449 s = splbio();
1450 if (vnx->vx_error != 0) {
1451 buf_destroy(&nbp->vb_buf);
1452 pool_put(&vndbuf_pool, nbp);
1453 goto out;
1454 }
1455 vnx->vx_pending++;
1456
1457 /* sort it in and start I/O if we are not over our limit */
1458 /* XXXAD locking */
1459 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1460 sw_reg_start(sdp);
1461 splx(s);
1462
1463 /*
1464 * advance to the next I/O
1465 */
1466 byteoff += sz;
1467 addr += sz;
1468 }
1469
1470 s = splbio();
1471
1472 out: /* Arrive here at splbio */
1473 vnx->vx_flags &= ~VX_BUSY;
1474 if (vnx->vx_pending == 0) {
1475 error = vnx->vx_error;
1476 pool_put(&vndxfer_pool, vnx);
1477 bp->b_error = error;
1478 biodone(bp);
1479 }
1480 splx(s);
1481 }
1482
1483 /*
1484 * sw_reg_start: start an I/O request on the requested swapdev
1485 *
1486 * => reqs are sorted by b_rawblkno (above)
1487 */
1488 static void
1489 sw_reg_start(struct swapdev *sdp)
1490 {
1491 struct buf *bp;
1492 struct vnode *vp;
1493 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1494
1495 /* recursion control */
1496 if ((sdp->swd_flags & SWF_BUSY) != 0)
1497 return;
1498
1499 sdp->swd_flags |= SWF_BUSY;
1500
1501 while (sdp->swd_active < sdp->swd_maxactive) {
1502 bp = bufq_get(sdp->swd_tab);
1503 if (bp == NULL)
1504 break;
1505 sdp->swd_active++;
1506
1507 UVMHIST_LOG(pdhist,
1508 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %jx",
1509 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1510 bp->b_bcount);
1511 vp = bp->b_vp;
1512 KASSERT(bp->b_objlock == vp->v_interlock);
1513 if ((bp->b_flags & B_READ) == 0) {
1514 mutex_enter(vp->v_interlock);
1515 vp->v_numoutput++;
1516 mutex_exit(vp->v_interlock);
1517 }
1518 VOP_STRATEGY(vp, bp);
1519 }
1520 sdp->swd_flags &= ~SWF_BUSY;
1521 }
1522
1523 /*
1524 * sw_reg_biodone: one of our i/o's has completed
1525 */
1526 static void
1527 sw_reg_biodone(struct buf *bp)
1528 {
1529 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1530 }
1531
1532 /*
1533 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1534 *
1535 * => note that we can recover the vndbuf struct by casting the buf ptr
1536 */
1537 static void
1538 sw_reg_iodone(struct work *wk, void *dummy)
1539 {
1540 struct vndbuf *vbp = (void *)wk;
1541 struct vndxfer *vnx = vbp->vb_xfer;
1542 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1543 struct swapdev *sdp = vnx->vx_sdp;
1544 int s, resid, error;
1545 KASSERT(&vbp->vb_buf.b_work == wk);
1546 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1547
1548 UVMHIST_LOG(pdhist, " vbp=%#jx vp=%#jx blkno=%jx addr=%#jx",
1549 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1550 (uintptr_t)vbp->vb_buf.b_data);
1551 UVMHIST_LOG(pdhist, " cnt=%jx resid=%jx",
1552 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1553
1554 /*
1555 * protect vbp at splbio and update.
1556 */
1557
1558 s = splbio();
1559 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1560 pbp->b_resid -= resid;
1561 vnx->vx_pending--;
1562
1563 if (vbp->vb_buf.b_error != 0) {
1564 /* pass error upward */
1565 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1566 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1567 vnx->vx_error = error;
1568 }
1569
1570 /*
1571 * kill vbp structure
1572 */
1573 buf_destroy(&vbp->vb_buf);
1574 pool_put(&vndbuf_pool, vbp);
1575
1576 /*
1577 * wrap up this transaction if it has run to completion or, in
1578 * case of an error, when all auxiliary buffers have returned.
1579 */
1580 if (vnx->vx_error != 0) {
1581 /* pass error upward */
1582 error = vnx->vx_error;
1583 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1584 pbp->b_error = error;
1585 biodone(pbp);
1586 pool_put(&vndxfer_pool, vnx);
1587 }
1588 } else if (pbp->b_resid == 0) {
1589 KASSERT(vnx->vx_pending == 0);
1590 if ((vnx->vx_flags & VX_BUSY) == 0) {
1591 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1592 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1593 biodone(pbp);
1594 pool_put(&vndxfer_pool, vnx);
1595 }
1596 }
1597
1598 /*
1599 * done! start next swapdev I/O if one is pending
1600 */
1601 sdp->swd_active--;
1602 sw_reg_start(sdp);
1603 splx(s);
1604 }
1605
1606
1607 /*
1608 * uvm_swap_alloc: allocate space on swap
1609 *
1610 * => allocation is done "round robin" down the priority list, as we
1611 * allocate in a priority we "rotate" the circle queue.
1612 * => space can be freed with uvm_swap_free
1613 * => we return the page slot number in /dev/drum (0 == invalid slot)
1614 * => we lock uvm_swap_data_lock
1615 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1616 */
1617 int
1618 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1619 {
1620 struct swapdev *sdp;
1621 struct swappri *spp;
1622 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1623
1624 /*
1625 * no swap devices configured yet? definite failure.
1626 */
1627 if (uvmexp.nswapdev < 1)
1628 return 0;
1629
1630 /*
1631 * XXXJAK: BEGIN HACK
1632 *
1633 * blist_alloc() in subr_blist.c will panic if we try to allocate
1634 * too many slots.
1635 */
1636 if (*nslots > BLIST_MAX_ALLOC) {
1637 if (__predict_false(lessok == false))
1638 return 0;
1639 *nslots = BLIST_MAX_ALLOC;
1640 }
1641 /* XXXJAK: END HACK */
1642
1643 /*
1644 * lock data lock, convert slots into blocks, and enter loop
1645 */
1646 mutex_enter(&uvm_swap_data_lock);
1647
1648 ReTry: /* XXXMRG */
1649 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1650 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1651 uint64_t result;
1652
1653 /* if it's not enabled, then we can't swap from it */
1654 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1655 continue;
1656 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1657 continue;
1658 result = blist_alloc(sdp->swd_blist, *nslots);
1659 if (result == BLIST_NONE) {
1660 continue;
1661 }
1662 KASSERT(result < sdp->swd_drumsize);
1663
1664 /*
1665 * successful allocation! now rotate the tailq.
1666 */
1667 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1668 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1669 sdp->swd_npginuse += *nslots;
1670 uvmexp.swpginuse += *nslots;
1671 mutex_exit(&uvm_swap_data_lock);
1672 /* done! return drum slot number */
1673 UVMHIST_LOG(pdhist,
1674 "success! returning %jd slots starting at %jd",
1675 *nslots, result + sdp->swd_drumoffset, 0, 0);
1676 return (result + sdp->swd_drumoffset);
1677 }
1678 }
1679
1680 /* XXXMRG: BEGIN HACK */
1681 if (*nslots > 1 && lessok) {
1682 *nslots = 1;
1683 /* XXXMRG: ugh! blist should support this for us */
1684 goto ReTry;
1685 }
1686 /* XXXMRG: END HACK */
1687
1688 mutex_exit(&uvm_swap_data_lock);
1689 return 0;
1690 }
1691
1692 /*
1693 * uvm_swapisfull: return true if most of available swap is allocated
1694 * and in use. we don't count some small portion as it may be inaccessible
1695 * to us at any given moment, for example if there is lock contention or if
1696 * pages are busy.
1697 */
1698 bool
1699 uvm_swapisfull(void)
1700 {
1701 int swpgonly;
1702 bool rv;
1703
1704 mutex_enter(&uvm_swap_data_lock);
1705 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1706 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1707 uvm_swapisfull_factor);
1708 rv = (swpgonly >= uvmexp.swpgavail);
1709 mutex_exit(&uvm_swap_data_lock);
1710
1711 return (rv);
1712 }
1713
1714 /*
1715 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1716 *
1717 * => we lock uvm_swap_data_lock
1718 */
1719 void
1720 uvm_swap_markbad(int startslot, int nslots)
1721 {
1722 struct swapdev *sdp;
1723 UVMHIST_FUNC("uvm_swap_markbad"); UVMHIST_CALLED(pdhist);
1724
1725 mutex_enter(&uvm_swap_data_lock);
1726 sdp = swapdrum_getsdp(startslot);
1727 KASSERT(sdp != NULL);
1728
1729 /*
1730 * we just keep track of how many pages have been marked bad
1731 * in this device, to make everything add up in swap_off().
1732 * we assume here that the range of slots will all be within
1733 * one swap device.
1734 */
1735
1736 KASSERT(uvmexp.swpgonly >= nslots);
1737 atomic_add_int(&uvmexp.swpgonly, -nslots);
1738 sdp->swd_npgbad += nslots;
1739 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1740 mutex_exit(&uvm_swap_data_lock);
1741 }
1742
1743 /*
1744 * uvm_swap_free: free swap slots
1745 *
1746 * => this can be all or part of an allocation made by uvm_swap_alloc
1747 * => we lock uvm_swap_data_lock
1748 */
1749 void
1750 uvm_swap_free(int startslot, int nslots)
1751 {
1752 struct swapdev *sdp;
1753 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1754
1755 UVMHIST_LOG(pdhist, "freeing %jd slots starting at %jd", nslots,
1756 startslot, 0, 0);
1757
1758 /*
1759 * ignore attempts to free the "bad" slot.
1760 */
1761
1762 if (startslot == SWSLOT_BAD) {
1763 return;
1764 }
1765
1766 /*
1767 * convert drum slot offset back to sdp, free the blocks
1768 * in the extent, and return. must hold pri lock to do
1769 * lookup and access the extent.
1770 */
1771
1772 mutex_enter(&uvm_swap_data_lock);
1773 sdp = swapdrum_getsdp(startslot);
1774 KASSERT(uvmexp.nswapdev >= 1);
1775 KASSERT(sdp != NULL);
1776 KASSERT(sdp->swd_npginuse >= nslots);
1777 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1778 sdp->swd_npginuse -= nslots;
1779 uvmexp.swpginuse -= nslots;
1780 mutex_exit(&uvm_swap_data_lock);
1781 }
1782
1783 /*
1784 * uvm_swap_put: put any number of pages into a contig place on swap
1785 *
1786 * => can be sync or async
1787 */
1788
1789 int
1790 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1791 {
1792 int error;
1793
1794 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1795 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1796 return error;
1797 }
1798
1799 /*
1800 * uvm_swap_get: get a single page from swap
1801 *
1802 * => usually a sync op (from fault)
1803 */
1804
1805 int
1806 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1807 {
1808 int error;
1809
1810 atomic_inc_uint(&uvmexp.nswget);
1811 KASSERT(flags & PGO_SYNCIO);
1812 if (swslot == SWSLOT_BAD) {
1813 return EIO;
1814 }
1815
1816 error = uvm_swap_io(&page, swslot, 1, B_READ |
1817 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1818 if (error == 0) {
1819
1820 /*
1821 * this page is no longer only in swap.
1822 */
1823
1824 KASSERT(uvmexp.swpgonly > 0);
1825 atomic_dec_uint(&uvmexp.swpgonly);
1826 }
1827 return error;
1828 }
1829
1830 /*
1831 * uvm_swap_io: do an i/o operation to swap
1832 */
1833
1834 static int
1835 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1836 {
1837 daddr_t startblk;
1838 struct buf *bp;
1839 vaddr_t kva;
1840 int error, mapinflags;
1841 bool write, async, swap_encrypt;
1842 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1843
1844 UVMHIST_LOG(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%jd",
1845 startslot, npages, flags, 0);
1846
1847 write = (flags & B_READ) == 0;
1848 async = (flags & B_ASYNC) != 0;
1849 swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1850
1851 /*
1852 * allocate a buf for the i/o.
1853 */
1854
1855 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1856 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1857 if (bp == NULL) {
1858 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1859 return ENOMEM;
1860 }
1861
1862 /*
1863 * convert starting drum slot to block number
1864 */
1865
1866 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1867
1868 /*
1869 * first, map the pages into the kernel.
1870 */
1871
1872 mapinflags = !write ?
1873 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1874 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1875 if (write && swap_encrypt) /* need to encrypt in-place */
1876 mapinflags |= UVMPAGER_MAPIN_READ;
1877 kva = uvm_pagermapin(pps, npages, mapinflags);
1878
1879 /*
1880 * encrypt writes in place if requested
1881 */
1882
1883 if (write) do {
1884 struct swapdev *sdp;
1885 int i;
1886
1887 /*
1888 * Get the swapdev so we can discriminate on the
1889 * encryption state. There may or may not be an
1890 * encryption key generated; we may or may not be asked
1891 * to encrypt swap.
1892 *
1893 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1894 *
1895 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1896 * and mark the slots encrypted.
1897 *
1898 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1899 * marked encrypted from a past life. Mark them not
1900 * encrypted.
1901 *
1902 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1903 * encrypted.
1904 */
1905 mutex_enter(&uvm_swap_data_lock);
1906 sdp = swapdrum_getsdp(startslot);
1907 if (!sdp->swd_encinit) {
1908 if (!swap_encrypt) {
1909 mutex_exit(&uvm_swap_data_lock);
1910 break;
1911 }
1912 uvm_swap_genkey(sdp);
1913 }
1914 KASSERT(sdp->swd_encinit);
1915 mutex_exit(&uvm_swap_data_lock);
1916
1917 for (i = 0; i < npages; i++) {
1918 int s = startslot + i;
1919 KDASSERT(swapdrum_sdp_is(s, sdp));
1920 KASSERT(s >= sdp->swd_drumoffset);
1921 s -= sdp->swd_drumoffset;
1922 KASSERT(s < sdp->swd_drumsize);
1923
1924 if (swap_encrypt) {
1925 uvm_swap_encryptpage(sdp,
1926 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1927 atomic_or_32(&sdp->swd_encmap[s/32],
1928 __BIT(s%32));
1929 } else {
1930 atomic_and_32(&sdp->swd_encmap[s/32],
1931 ~__BIT(s%32));
1932 }
1933 }
1934 } while (0);
1935
1936 /*
1937 * fill in the bp/sbp. we currently route our i/o through
1938 * /dev/drum's vnode [swapdev_vp].
1939 */
1940
1941 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1942 bp->b_flags = (flags & (B_READ|B_ASYNC));
1943 bp->b_proc = &proc0; /* XXX */
1944 bp->b_vnbufs.le_next = NOLIST;
1945 bp->b_data = (void *)kva;
1946 bp->b_blkno = startblk;
1947 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1948
1949 /*
1950 * bump v_numoutput (counter of number of active outputs).
1951 */
1952
1953 if (write) {
1954 mutex_enter(swapdev_vp->v_interlock);
1955 swapdev_vp->v_numoutput++;
1956 mutex_exit(swapdev_vp->v_interlock);
1957 }
1958
1959 /*
1960 * for async ops we must set up the iodone handler.
1961 */
1962
1963 if (async) {
1964 bp->b_iodone = uvm_aio_aiodone;
1965 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1966 if (curlwp == uvm.pagedaemon_lwp)
1967 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1968 else
1969 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1970 } else {
1971 bp->b_iodone = NULL;
1972 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1973 }
1974 UVMHIST_LOG(pdhist,
1975 "about to start io: data = %#jx blkno = 0x%jx, bcount = %jd",
1976 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1977
1978 /*
1979 * now we start the I/O, and if async, return.
1980 */
1981
1982 VOP_STRATEGY(swapdev_vp, bp);
1983 if (async) {
1984 /*
1985 * Reads are always synchronous; if this changes, we
1986 * need to add an asynchronous path for decryption.
1987 */
1988 KASSERT(write);
1989 return 0;
1990 }
1991
1992 /*
1993 * must be sync i/o. wait for it to finish
1994 */
1995
1996 error = biowait(bp);
1997 if (error)
1998 goto out;
1999
2000 /*
2001 * decrypt reads in place if needed
2002 */
2003
2004 if (!write) do {
2005 struct swapdev *sdp;
2006 bool encinit;
2007 int i;
2008
2009 /*
2010 * Get the sdp. Everything about it except the encinit
2011 * bit, saying whether the encryption key is
2012 * initialized or not, and the encrypted bit for each
2013 * page, is stable until all swap pages have been
2014 * released and the device is removed.
2015 */
2016 mutex_enter(&uvm_swap_data_lock);
2017 sdp = swapdrum_getsdp(startslot);
2018 encinit = sdp->swd_encinit;
2019 mutex_exit(&uvm_swap_data_lock);
2020
2021 if (!encinit)
2022 /*
2023 * If there's no encryption key, there's no way
2024 * any of these slots can be encrypted, so
2025 * nothing to do here.
2026 */
2027 break;
2028 for (i = 0; i < npages; i++) {
2029 int s = startslot + i;
2030 KDASSERT(swapdrum_sdp_is(s, sdp));
2031 KASSERT(s >= sdp->swd_drumoffset);
2032 s -= sdp->swd_drumoffset;
2033 KASSERT(s < sdp->swd_drumsize);
2034 if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2035 __BIT(s%32)) == 0)
2036 continue;
2037 uvm_swap_decryptpage(sdp,
2038 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2039 }
2040 } while (0);
2041 out:
2042 /*
2043 * kill the pager mapping
2044 */
2045
2046 uvm_pagermapout(kva, npages);
2047
2048 /*
2049 * now dispose of the buf and we're done.
2050 */
2051
2052 if (write) {
2053 mutex_enter(swapdev_vp->v_interlock);
2054 vwakeup(bp);
2055 mutex_exit(swapdev_vp->v_interlock);
2056 }
2057 putiobuf(bp);
2058 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
2059
2060 return (error);
2061 }
2062
2063 /*
2064 * uvm_swap_genkey(sdp)
2065 *
2066 * Generate a key for swap encryption.
2067 */
2068 static void
2069 uvm_swap_genkey(struct swapdev *sdp)
2070 {
2071 uint8_t key[32];
2072
2073 KASSERT(!sdp->swd_encinit);
2074
2075 cprng_strong(kern_cprng, key, sizeof key, 0);
2076 aes_setenckey256(&sdp->swd_enckey, key);
2077 aes_setdeckey256(&sdp->swd_deckey, key);
2078 explicit_memset(key, 0, sizeof key);
2079
2080 sdp->swd_encinit = true;
2081 }
2082
2083 /*
2084 * uvm_swap_encryptpage(sdp, kva, slot)
2085 *
2086 * Encrypt one page of data at kva for the specified slot number
2087 * in the swap device.
2088 */
2089 static void
2090 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2091 {
2092 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2093
2094 /* iv := AES_k(le32enc(slot) || 0^96) */
2095 le32enc(preiv, slot);
2096 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2097
2098 /* *kva := AES-CBC_k(iv, *kva) */
2099 aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2100 AES_256_NROUNDS);
2101
2102 explicit_memset(&iv, 0, sizeof iv);
2103 }
2104
2105 /*
2106 * uvm_swap_decryptpage(sdp, kva, slot)
2107 *
2108 * Decrypt one page of data at kva for the specified slot number
2109 * in the swap device.
2110 */
2111 static void
2112 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2113 {
2114 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2115
2116 /* iv := AES_k(le32enc(slot) || 0^96) */
2117 le32enc(preiv, slot);
2118 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2119
2120 /* *kva := AES-CBC^{-1}_k(iv, *kva) */
2121 aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2122 AES_256_NROUNDS);
2123
2124 explicit_memset(&iv, 0, sizeof iv);
2125 }
2126
2127 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2128 {
2129
2130 sysctl_createv(clog, 0, NULL, NULL,
2131 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2132 SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2133 NULL, 0, &uvm_swap_encrypt, 0,
2134 CTL_VM, CTL_CREATE, CTL_EOL);
2135 }
2136