uvm_swap.c revision 1.203 1 /* $NetBSD: uvm_swap.c,v 1.203 2021/03/13 15:29:55 skrll Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.203 2021/03/13 15:29:55 skrll Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/cprng.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/kmem.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60 #include <sys/kauth.h>
61 #include <sys/sysctl.h>
62 #include <sys/workqueue.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 #include <crypto/aes/aes.h>
69 #include <crypto/aes/aes_cbc.h>
70
71 /*
72 * uvm_swap.c: manage configuration and i/o to swap space.
73 */
74
75 /*
76 * swap space is managed in the following way:
77 *
78 * each swap partition or file is described by a "swapdev" structure.
79 * each "swapdev" structure contains a "swapent" structure which contains
80 * information that is passed up to the user (via system calls).
81 *
82 * each swap partition is assigned a "priority" (int) which controls
83 * swap partition usage.
84 *
85 * the system maintains a global data structure describing all swap
86 * partitions/files. there is a sorted LIST of "swappri" structures
87 * which describe "swapdev"'s at that priority. this LIST is headed
88 * by the "swap_priority" global var. each "swappri" contains a
89 * TAILQ of "swapdev" structures at that priority.
90 *
91 * locking:
92 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
93 * system call and prevents the swap priority list from changing
94 * while we are in the middle of a system call (e.g. SWAP_STATS).
95 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
96 * structures including the priority list, the swapdev structures,
97 * and the swapmap arena.
98 *
99 * each swap device has the following info:
100 * - swap device in use (could be disabled, preventing future use)
101 * - swap enabled (allows new allocations on swap)
102 * - map info in /dev/drum
103 * - vnode pointer
104 * for swap files only:
105 * - block size
106 * - max byte count in buffer
107 * - buffer
108 *
109 * userland controls and configures swap with the swapctl(2) system call.
110 * the sys_swapctl performs the following operations:
111 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
112 * [2] SWAP_STATS: given a pointer to an array of swapent structures
113 * (passed in via "arg") of a size passed in via "misc" ... we load
114 * the current swap config into the array. The actual work is done
115 * in the uvm_swap_stats() function.
116 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
117 * priority in "misc", start swapping on it.
118 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
119 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
120 * "misc")
121 */
122
123 /*
124 * swapdev: describes a single swap partition/file
125 *
126 * note the following should be true:
127 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
128 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
129 */
130 struct swapdev {
131 dev_t swd_dev; /* device id */
132 int swd_flags; /* flags:inuse/enable/fake */
133 int swd_priority; /* our priority */
134 int swd_nblks; /* blocks in this device */
135 char *swd_path; /* saved pathname of device */
136 int swd_pathlen; /* length of pathname */
137 int swd_npages; /* #pages we can use */
138 int swd_npginuse; /* #pages in use */
139 int swd_npgbad; /* #pages bad */
140 int swd_drumoffset; /* page0 offset in drum */
141 int swd_drumsize; /* #pages in drum */
142 blist_t swd_blist; /* blist for this swapdev */
143 struct vnode *swd_vp; /* backing vnode */
144 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
145
146 int swd_bsize; /* blocksize (bytes) */
147 int swd_maxactive; /* max active i/o reqs */
148 struct bufq_state *swd_tab; /* buffer list */
149 int swd_active; /* number of active buffers */
150
151 volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */
152 struct aesenc swd_enckey; /* AES key expanded for enc */
153 struct aesdec swd_deckey; /* AES key expanded for dec */
154 bool swd_encinit; /* true if keys initialized */
155 };
156
157 /*
158 * swap device priority entry; the list is kept sorted on `spi_priority'.
159 */
160 struct swappri {
161 int spi_priority; /* priority */
162 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
163 /* tailq of swapdevs at this priority */
164 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
165 };
166
167 /*
168 * The following two structures are used to keep track of data transfers
169 * on swap devices associated with regular files.
170 * NOTE: this code is more or less a copy of vnd.c; we use the same
171 * structure names here to ease porting..
172 */
173 struct vndxfer {
174 struct buf *vx_bp; /* Pointer to parent buffer */
175 struct swapdev *vx_sdp;
176 int vx_error;
177 int vx_pending; /* # of pending aux buffers */
178 int vx_flags;
179 #define VX_BUSY 1
180 #define VX_DEAD 2
181 };
182
183 struct vndbuf {
184 struct buf vb_buf;
185 struct vndxfer *vb_xfer;
186 };
187
188 /*
189 * We keep a of pool vndbuf's and vndxfer structures.
190 */
191 static struct pool vndxfer_pool, vndbuf_pool;
192
193 /*
194 * local variables
195 */
196 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
197
198 /* list of all active swap devices [by priority] */
199 LIST_HEAD(swap_priority, swappri);
200 static struct swap_priority swap_priority;
201
202 /* locks */
203 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
204 static krwlock_t swap_syscall_lock;
205
206 /* workqueue and use counter for swap to regular files */
207 static int sw_reg_count = 0;
208 static struct workqueue *sw_reg_workqueue;
209
210 /* tuneables */
211 u_int uvm_swapisfull_factor = 99;
212 bool uvm_swap_encrypt = false;
213
214 /*
215 * prototypes
216 */
217 static struct swapdev *swapdrum_getsdp(int);
218
219 static struct swapdev *swaplist_find(struct vnode *, bool);
220 static void swaplist_insert(struct swapdev *,
221 struct swappri *, int);
222 static void swaplist_trim(void);
223
224 static int swap_on(struct lwp *, struct swapdev *);
225 static int swap_off(struct lwp *, struct swapdev *);
226
227 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
228 static void sw_reg_biodone(struct buf *);
229 static void sw_reg_iodone(struct work *wk, void *dummy);
230 static void sw_reg_start(struct swapdev *);
231
232 static int uvm_swap_io(struct vm_page **, int, int, int);
233
234 static void uvm_swap_genkey(struct swapdev *);
235 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
236 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
237
238 static size_t
239 encmap_size(size_t npages)
240 {
241 struct swapdev *sdp;
242 const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
243 const size_t bitsperword = NBBY * bytesperword;
244 const size_t nbits = npages; /* one bit for each page */
245 const size_t nwords = howmany(nbits, bitsperword);
246 const size_t nbytes = nwords * bytesperword;
247
248 return nbytes;
249 }
250
251 /*
252 * uvm_swap_init: init the swap system data structures and locks
253 *
254 * => called at boot time from init_main.c after the filesystems
255 * are brought up (which happens after uvm_init())
256 */
257 void
258 uvm_swap_init(void)
259 {
260 UVMHIST_FUNC(__func__);
261
262 UVMHIST_CALLED(pdhist);
263 /*
264 * first, init the swap list, its counter, and its lock.
265 * then get a handle on the vnode for /dev/drum by using
266 * the its dev_t number ("swapdev", from MD conf.c).
267 */
268
269 LIST_INIT(&swap_priority);
270 uvmexp.nswapdev = 0;
271 rw_init(&swap_syscall_lock);
272 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
273
274 if (bdevvp(swapdev, &swapdev_vp))
275 panic("%s: can't get vnode for swap device", __func__);
276 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
277 panic("%s: can't lock swap device", __func__);
278 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
279 panic("%s: can't open swap device", __func__);
280 VOP_UNLOCK(swapdev_vp);
281
282 /*
283 * create swap block resource map to map /dev/drum. the range
284 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
285 * that block 0 is reserved (used to indicate an allocation
286 * failure, or no allocation).
287 */
288 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
289 VM_NOSLEEP, IPL_NONE);
290 if (swapmap == 0) {
291 panic("%s: vmem_create failed", __func__);
292 }
293
294 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
295 NULL, IPL_BIO);
296 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
297 NULL, IPL_BIO);
298
299 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
300 }
301
302 /*
303 * swaplist functions: functions that operate on the list of swap
304 * devices on the system.
305 */
306
307 /*
308 * swaplist_insert: insert swap device "sdp" into the global list
309 *
310 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
311 * => caller must provide a newly allocated swappri structure (we will
312 * FREE it if we don't need it... this it to prevent allocation
313 * blocking here while adding swap)
314 */
315 static void
316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
317 {
318 struct swappri *spp, *pspp;
319 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
320
321 KASSERT(rw_write_held(&swap_syscall_lock));
322 KASSERT(mutex_owned(&uvm_swap_data_lock));
323
324 /*
325 * find entry at or after which to insert the new device.
326 */
327 pspp = NULL;
328 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
329 if (priority <= spp->spi_priority)
330 break;
331 pspp = spp;
332 }
333
334 /*
335 * new priority?
336 */
337 if (spp == NULL || spp->spi_priority != priority) {
338 spp = newspp; /* use newspp! */
339 UVMHIST_LOG(pdhist, "created new swappri = %jd",
340 priority, 0, 0, 0);
341
342 spp->spi_priority = priority;
343 TAILQ_INIT(&spp->spi_swapdev);
344
345 if (pspp)
346 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
347 else
348 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
349 } else {
350 /* we don't need a new priority structure, free it */
351 kmem_free(newspp, sizeof(*newspp));
352 }
353
354 /*
355 * priority found (or created). now insert on the priority's
356 * tailq list and bump the total number of swapdevs.
357 */
358 sdp->swd_priority = priority;
359 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
360 uvmexp.nswapdev++;
361 }
362
363 /*
364 * swaplist_find: find and optionally remove a swap device from the
365 * global list.
366 *
367 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
368 * => we return the swapdev we found (and removed)
369 */
370 static struct swapdev *
371 swaplist_find(struct vnode *vp, bool remove)
372 {
373 struct swapdev *sdp;
374 struct swappri *spp;
375
376 KASSERT(rw_lock_held(&swap_syscall_lock));
377 KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
378 KASSERT(mutex_owned(&uvm_swap_data_lock));
379
380 /*
381 * search the lists for the requested vp
382 */
383
384 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
385 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
386 if (sdp->swd_vp == vp) {
387 if (remove) {
388 TAILQ_REMOVE(&spp->spi_swapdev,
389 sdp, swd_next);
390 uvmexp.nswapdev--;
391 }
392 return(sdp);
393 }
394 }
395 }
396 return (NULL);
397 }
398
399 /*
400 * swaplist_trim: scan priority list for empty priority entries and kill
401 * them.
402 *
403 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
404 */
405 static void
406 swaplist_trim(void)
407 {
408 struct swappri *spp, *nextspp;
409
410 KASSERT(rw_write_held(&swap_syscall_lock));
411 KASSERT(mutex_owned(&uvm_swap_data_lock));
412
413 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
414 if (!TAILQ_EMPTY(&spp->spi_swapdev))
415 continue;
416 LIST_REMOVE(spp, spi_swappri);
417 kmem_free(spp, sizeof(*spp));
418 }
419 }
420
421 /*
422 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
423 * to the "swapdev" that maps that section of the drum.
424 *
425 * => each swapdev takes one big contig chunk of the drum
426 * => caller must hold uvm_swap_data_lock
427 */
428 static struct swapdev *
429 swapdrum_getsdp(int pgno)
430 {
431 struct swapdev *sdp;
432 struct swappri *spp;
433
434 KASSERT(mutex_owned(&uvm_swap_data_lock));
435
436 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
437 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
438 if (sdp->swd_flags & SWF_FAKE)
439 continue;
440 if (pgno >= sdp->swd_drumoffset &&
441 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
442 return sdp;
443 }
444 }
445 }
446 return NULL;
447 }
448
449 /*
450 * swapdrum_sdp_is: true iff the swap device for pgno is sdp
451 *
452 * => for use in positive assertions only; result is not stable
453 */
454 static bool __debugused
455 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
456 {
457 bool result;
458
459 mutex_enter(&uvm_swap_data_lock);
460 result = swapdrum_getsdp(pgno) == sdp;
461 mutex_exit(&uvm_swap_data_lock);
462
463 return result;
464 }
465
466 void swapsys_lock(krw_t op)
467 {
468 rw_enter(&swap_syscall_lock, op);
469 }
470
471 void swapsys_unlock(void)
472 {
473 rw_exit(&swap_syscall_lock);
474 }
475
476 static void
477 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
478 {
479 se->se_dev = sdp->swd_dev;
480 se->se_flags = sdp->swd_flags;
481 se->se_nblks = sdp->swd_nblks;
482 se->se_inuse = inuse;
483 se->se_priority = sdp->swd_priority;
484 KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
485 strcpy(se->se_path, sdp->swd_path);
486 }
487
488 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
489 (void *)enosys;
490 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
491 (void *)enosys;
492
493 /*
494 * sys_swapctl: main entry point for swapctl(2) system call
495 * [with two helper functions: swap_on and swap_off]
496 */
497 int
498 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
499 {
500 /* {
501 syscallarg(int) cmd;
502 syscallarg(void *) arg;
503 syscallarg(int) misc;
504 } */
505 struct vnode *vp;
506 struct nameidata nd;
507 struct swappri *spp;
508 struct swapdev *sdp;
509 #define SWAP_PATH_MAX (PATH_MAX + 1)
510 char *userpath;
511 size_t len = 0;
512 int error;
513 int priority;
514 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
515
516 /*
517 * we handle the non-priv NSWAP and STATS request first.
518 *
519 * SWAP_NSWAP: return number of config'd swap devices
520 * [can also be obtained with uvmexp sysctl]
521 */
522 if (SCARG(uap, cmd) == SWAP_NSWAP) {
523 const int nswapdev = uvmexp.nswapdev;
524 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
525 0, 0, 0);
526 *retval = nswapdev;
527 return 0;
528 }
529
530 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
531
532 /*
533 * ensure serialized syscall access by grabbing the swap_syscall_lock
534 */
535 rw_enter(&swap_syscall_lock, RW_WRITER);
536
537 /*
538 * SWAP_STATS: get stats on current # of configured swap devs
539 *
540 * note that the swap_priority list can't change as long
541 * as we are holding the swap_syscall_lock. we don't want
542 * to grab the uvm_swap_data_lock because we may fault&sleep during
543 * copyout() and we don't want to be holding that lock then!
544 */
545 switch (SCARG(uap, cmd)) {
546 case SWAP_STATS13:
547 error = (*uvm_swap_stats13)(uap, retval);
548 goto out;
549 case SWAP_STATS50:
550 error = (*uvm_swap_stats50)(uap, retval);
551 goto out;
552 case SWAP_STATS:
553 error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
554 NULL, sizeof(struct swapent), retval);
555 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
556 goto out;
557
558 case SWAP_GETDUMPDEV:
559 error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
560 goto out;
561 default:
562 break;
563 }
564
565 /*
566 * all other requests require superuser privs. verify.
567 */
568 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
569 0, NULL, NULL, NULL)))
570 goto out;
571
572 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
573 /* drop the current dump device */
574 dumpdev = NODEV;
575 dumpcdev = NODEV;
576 cpu_dumpconf();
577 goto out;
578 }
579
580 /*
581 * at this point we expect a path name in arg. we will
582 * use namei() to gain a vnode reference (vref), and lock
583 * the vnode (VOP_LOCK).
584 *
585 * XXX: a NULL arg means use the root vnode pointer (e.g. for
586 * miniroot)
587 */
588 if (SCARG(uap, arg) == NULL) {
589 vp = rootvp; /* miniroot */
590 vref(vp);
591 if (vn_lock(vp, LK_EXCLUSIVE)) {
592 vrele(vp);
593 error = EBUSY;
594 goto out;
595 }
596 if (SCARG(uap, cmd) == SWAP_ON &&
597 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
598 panic("swapctl: miniroot copy failed");
599 } else {
600 struct pathbuf *pb;
601
602 /*
603 * This used to allow copying in one extra byte
604 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
605 * This was completely pointless because if anyone
606 * used that extra byte namei would fail with
607 * ENAMETOOLONG anyway, so I've removed the excess
608 * logic. - dholland 20100215
609 */
610
611 error = pathbuf_copyin(SCARG(uap, arg), &pb);
612 if (error) {
613 goto out;
614 }
615 if (SCARG(uap, cmd) == SWAP_ON) {
616 /* get a copy of the string */
617 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
618 len = strlen(userpath) + 1;
619 }
620 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
621 if ((error = namei(&nd))) {
622 pathbuf_destroy(pb);
623 goto out;
624 }
625 vp = nd.ni_vp;
626 pathbuf_destroy(pb);
627 }
628 /* note: "vp" is referenced and locked */
629
630 error = 0; /* assume no error */
631 switch(SCARG(uap, cmd)) {
632
633 case SWAP_DUMPDEV:
634 if (vp->v_type != VBLK) {
635 error = ENOTBLK;
636 break;
637 }
638 if (bdevsw_lookup(vp->v_rdev)) {
639 dumpdev = vp->v_rdev;
640 dumpcdev = devsw_blk2chr(dumpdev);
641 } else
642 dumpdev = NODEV;
643 cpu_dumpconf();
644 break;
645
646 case SWAP_CTL:
647 /*
648 * get new priority, remove old entry (if any) and then
649 * reinsert it in the correct place. finally, prune out
650 * any empty priority structures.
651 */
652 priority = SCARG(uap, misc);
653 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
654 mutex_enter(&uvm_swap_data_lock);
655 if ((sdp = swaplist_find(vp, true)) == NULL) {
656 error = ENOENT;
657 } else {
658 swaplist_insert(sdp, spp, priority);
659 swaplist_trim();
660 }
661 mutex_exit(&uvm_swap_data_lock);
662 if (error)
663 kmem_free(spp, sizeof(*spp));
664 break;
665
666 case SWAP_ON:
667
668 /*
669 * check for duplicates. if none found, then insert a
670 * dummy entry on the list to prevent someone else from
671 * trying to enable this device while we are working on
672 * it.
673 */
674
675 priority = SCARG(uap, misc);
676 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
677 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
678 sdp->swd_flags = SWF_FAKE;
679 sdp->swd_vp = vp;
680 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
681 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
682 mutex_enter(&uvm_swap_data_lock);
683 if (swaplist_find(vp, false) != NULL) {
684 error = EBUSY;
685 mutex_exit(&uvm_swap_data_lock);
686 bufq_free(sdp->swd_tab);
687 kmem_free(sdp, sizeof(*sdp));
688 kmem_free(spp, sizeof(*spp));
689 break;
690 }
691 swaplist_insert(sdp, spp, priority);
692 mutex_exit(&uvm_swap_data_lock);
693
694 KASSERT(len > 0);
695 sdp->swd_pathlen = len;
696 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
697 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
698 panic("swapctl: copystr");
699
700 /*
701 * we've now got a FAKE placeholder in the swap list.
702 * now attempt to enable swap on it. if we fail, undo
703 * what we've done and kill the fake entry we just inserted.
704 * if swap_on is a success, it will clear the SWF_FAKE flag
705 */
706
707 if ((error = swap_on(l, sdp)) != 0) {
708 mutex_enter(&uvm_swap_data_lock);
709 (void) swaplist_find(vp, true); /* kill fake entry */
710 swaplist_trim();
711 mutex_exit(&uvm_swap_data_lock);
712 bufq_free(sdp->swd_tab);
713 kmem_free(sdp->swd_path, sdp->swd_pathlen);
714 kmem_free(sdp, sizeof(*sdp));
715 break;
716 }
717 break;
718
719 case SWAP_OFF:
720 mutex_enter(&uvm_swap_data_lock);
721 if ((sdp = swaplist_find(vp, false)) == NULL) {
722 mutex_exit(&uvm_swap_data_lock);
723 error = ENXIO;
724 break;
725 }
726
727 /*
728 * If a device isn't in use or enabled, we
729 * can't stop swapping from it (again).
730 */
731 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
732 mutex_exit(&uvm_swap_data_lock);
733 error = EBUSY;
734 break;
735 }
736
737 /*
738 * do the real work.
739 */
740 error = swap_off(l, sdp);
741 break;
742
743 default:
744 error = EINVAL;
745 }
746
747 /*
748 * done! release the ref gained by namei() and unlock.
749 */
750 vput(vp);
751 out:
752 rw_exit(&swap_syscall_lock);
753 kmem_free(userpath, SWAP_PATH_MAX);
754
755 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
756 return (error);
757 }
758
759 /*
760 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
761 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
762 * emulation to use it directly without going through sys_swapctl().
763 * The problem with using sys_swapctl() there is that it involves
764 * copying the swapent array to the stackgap, and this array's size
765 * is not known at build time. Hence it would not be possible to
766 * ensure it would fit in the stackgap in any case.
767 */
768 int
769 uvm_swap_stats(char *ptr, int misc,
770 void (*f)(void *, const struct swapent *), size_t len,
771 register_t *retval)
772 {
773 struct swappri *spp;
774 struct swapdev *sdp;
775 struct swapent sep;
776 int count = 0;
777 int error;
778
779 KASSERT(len <= sizeof(sep));
780 if (len == 0)
781 return ENOSYS;
782
783 if (misc < 0)
784 return EINVAL;
785
786 if (misc == 0 || uvmexp.nswapdev == 0)
787 return 0;
788
789 /* Make sure userland cannot exhaust kernel memory */
790 if ((size_t)misc > (size_t)uvmexp.nswapdev)
791 misc = uvmexp.nswapdev;
792
793 KASSERT(rw_lock_held(&swap_syscall_lock));
794
795 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
796 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
797 int inuse;
798
799 if (misc-- <= 0)
800 break;
801
802 inuse = btodb((uint64_t)sdp->swd_npginuse <<
803 PAGE_SHIFT);
804
805 memset(&sep, 0, sizeof(sep));
806 swapent_cvt(&sep, sdp, inuse);
807 if (f)
808 (*f)(&sep, &sep);
809 if ((error = copyout(&sep, ptr, len)) != 0)
810 return error;
811 ptr += len;
812 count++;
813 }
814 }
815 *retval = count;
816 return 0;
817 }
818
819 /*
820 * swap_on: attempt to enable a swapdev for swapping. note that the
821 * swapdev is already on the global list, but disabled (marked
822 * SWF_FAKE).
823 *
824 * => we avoid the start of the disk (to protect disk labels)
825 * => we also avoid the miniroot, if we are swapping to root.
826 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
827 * if needed.
828 */
829 static int
830 swap_on(struct lwp *l, struct swapdev *sdp)
831 {
832 struct vnode *vp;
833 int error, npages, nblocks, size;
834 long addr;
835 vmem_addr_t result;
836 struct vattr va;
837 dev_t dev;
838 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
839
840 /*
841 * we want to enable swapping on sdp. the swd_vp contains
842 * the vnode we want (locked and ref'd), and the swd_dev
843 * contains the dev_t of the file, if it a block device.
844 */
845
846 vp = sdp->swd_vp;
847 dev = sdp->swd_dev;
848
849 /*
850 * open the swap file (mostly useful for block device files to
851 * let device driver know what is up).
852 *
853 * we skip the open/close for root on swap because the root
854 * has already been opened when root was mounted (mountroot).
855 */
856 if (vp != rootvp) {
857 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
858 return (error);
859 }
860
861 /* XXX this only works for block devices */
862 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
863
864 /*
865 * we now need to determine the size of the swap area. for
866 * block specials we can call the d_psize function.
867 * for normal files, we must stat [get attrs].
868 *
869 * we put the result in nblks.
870 * for normal files, we also want the filesystem block size
871 * (which we get with statfs).
872 */
873 switch (vp->v_type) {
874 case VBLK:
875 if ((nblocks = bdev_size(dev)) == -1) {
876 error = ENXIO;
877 goto bad;
878 }
879 break;
880
881 case VREG:
882 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
883 goto bad;
884 nblocks = (int)btodb(va.va_size);
885 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
886 /*
887 * limit the max # of outstanding I/O requests we issue
888 * at any one time. take it easy on NFS servers.
889 */
890 if (vp->v_tag == VT_NFS)
891 sdp->swd_maxactive = 2; /* XXX */
892 else
893 sdp->swd_maxactive = 8; /* XXX */
894 break;
895
896 default:
897 error = ENXIO;
898 goto bad;
899 }
900
901 /*
902 * save nblocks in a safe place and convert to pages.
903 */
904
905 sdp->swd_nblks = nblocks;
906 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
907
908 /*
909 * for block special files, we want to make sure that leave
910 * the disklabel and bootblocks alone, so we arrange to skip
911 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
912 * note that because of this the "size" can be less than the
913 * actual number of blocks on the device.
914 */
915 if (vp->v_type == VBLK) {
916 /* we use pages 1 to (size - 1) [inclusive] */
917 size = npages - 1;
918 addr = 1;
919 } else {
920 /* we use pages 0 to (size - 1) [inclusive] */
921 size = npages;
922 addr = 0;
923 }
924
925 /*
926 * make sure we have enough blocks for a reasonable sized swap
927 * area. we want at least one page.
928 */
929
930 if (size < 1) {
931 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
932 error = EINVAL;
933 goto bad;
934 }
935
936 UVMHIST_LOG(pdhist, " dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
937
938 /*
939 * now we need to allocate an extent to manage this swap device
940 */
941
942 sdp->swd_blist = blist_create(npages);
943 /* mark all expect the `saved' region free. */
944 blist_free(sdp->swd_blist, addr, size);
945
946 /*
947 * allocate space to for swap encryption state and mark the
948 * keys uninitialized so we generate them lazily
949 */
950 sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
951 sdp->swd_encinit = false;
952
953 /*
954 * if the vnode we are swapping to is the root vnode
955 * (i.e. we are swapping to the miniroot) then we want
956 * to make sure we don't overwrite it. do a statfs to
957 * find its size and skip over it.
958 */
959 if (vp == rootvp) {
960 struct mount *mp;
961 struct statvfs *sp;
962 int rootblocks, rootpages;
963
964 mp = rootvnode->v_mount;
965 sp = &mp->mnt_stat;
966 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
967 /*
968 * XXX: sp->f_blocks isn't the total number of
969 * blocks in the filesystem, it's the number of
970 * data blocks. so, our rootblocks almost
971 * definitely underestimates the total size
972 * of the filesystem - how badly depends on the
973 * details of the filesystem type. there isn't
974 * an obvious way to deal with this cleanly
975 * and perfectly, so for now we just pad our
976 * rootblocks estimate with an extra 5 percent.
977 */
978 rootblocks += (rootblocks >> 5) +
979 (rootblocks >> 6) +
980 (rootblocks >> 7);
981 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
982 if (rootpages > size)
983 panic("swap_on: miniroot larger than swap?");
984
985 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
986 panic("swap_on: unable to preserve miniroot");
987 }
988
989 size -= rootpages;
990 printf("Preserved %d pages of miniroot ", rootpages);
991 printf("leaving %d pages of swap\n", size);
992 }
993
994 /*
995 * add a ref to vp to reflect usage as a swap device.
996 */
997 vref(vp);
998
999 /*
1000 * now add the new swapdev to the drum and enable.
1001 */
1002 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1003 if (error != 0)
1004 panic("swapdrum_add");
1005 /*
1006 * If this is the first regular swap create the workqueue.
1007 * => Protected by swap_syscall_lock.
1008 */
1009 if (vp->v_type != VBLK) {
1010 if (sw_reg_count++ == 0) {
1011 KASSERT(sw_reg_workqueue == NULL);
1012 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1013 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1014 panic("%s: workqueue_create failed", __func__);
1015 }
1016 }
1017
1018 sdp->swd_drumoffset = (int)result;
1019 sdp->swd_drumsize = npages;
1020 sdp->swd_npages = size;
1021 mutex_enter(&uvm_swap_data_lock);
1022 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1023 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1024 uvmexp.swpages += size;
1025 uvmexp.swpgavail += size;
1026 mutex_exit(&uvm_swap_data_lock);
1027 return (0);
1028
1029 /*
1030 * failure: clean up and return error.
1031 */
1032
1033 bad:
1034 if (sdp->swd_blist) {
1035 blist_destroy(sdp->swd_blist);
1036 }
1037 if (vp != rootvp) {
1038 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1039 }
1040 return (error);
1041 }
1042
1043 /*
1044 * swap_off: stop swapping on swapdev
1045 *
1046 * => swap data should be locked, we will unlock.
1047 */
1048 static int
1049 swap_off(struct lwp *l, struct swapdev *sdp)
1050 {
1051 int npages = sdp->swd_npages;
1052 int error = 0;
1053
1054 UVMHIST_FUNC(__func__);
1055 UVMHIST_CALLARGS(pdhist, " dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1056
1057 KASSERT(rw_write_held(&swap_syscall_lock));
1058 KASSERT(mutex_owned(&uvm_swap_data_lock));
1059
1060 /* disable the swap area being removed */
1061 sdp->swd_flags &= ~SWF_ENABLE;
1062 uvmexp.swpgavail -= npages;
1063 mutex_exit(&uvm_swap_data_lock);
1064
1065 /*
1066 * the idea is to find all the pages that are paged out to this
1067 * device, and page them all in. in uvm, swap-backed pageable
1068 * memory can take two forms: aobjs and anons. call the
1069 * swapoff hook for each subsystem to bring in pages.
1070 */
1071
1072 if (uao_swap_off(sdp->swd_drumoffset,
1073 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1074 amap_swap_off(sdp->swd_drumoffset,
1075 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1076 error = ENOMEM;
1077 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1078 error = EBUSY;
1079 }
1080
1081 if (error) {
1082 mutex_enter(&uvm_swap_data_lock);
1083 sdp->swd_flags |= SWF_ENABLE;
1084 uvmexp.swpgavail += npages;
1085 mutex_exit(&uvm_swap_data_lock);
1086
1087 return error;
1088 }
1089
1090 /*
1091 * If this is the last regular swap destroy the workqueue.
1092 * => Protected by swap_syscall_lock.
1093 */
1094 if (sdp->swd_vp->v_type != VBLK) {
1095 KASSERT(sw_reg_count > 0);
1096 KASSERT(sw_reg_workqueue != NULL);
1097 if (--sw_reg_count == 0) {
1098 workqueue_destroy(sw_reg_workqueue);
1099 sw_reg_workqueue = NULL;
1100 }
1101 }
1102
1103 /*
1104 * done with the vnode.
1105 * drop our ref on the vnode before calling VOP_CLOSE()
1106 * so that spec_close() can tell if this is the last close.
1107 */
1108 vrele(sdp->swd_vp);
1109 if (sdp->swd_vp != rootvp) {
1110 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1111 }
1112
1113 mutex_enter(&uvm_swap_data_lock);
1114 uvmexp.swpages -= npages;
1115 uvmexp.swpginuse -= sdp->swd_npgbad;
1116
1117 if (swaplist_find(sdp->swd_vp, true) == NULL)
1118 panic("%s: swapdev not in list", __func__);
1119 swaplist_trim();
1120 mutex_exit(&uvm_swap_data_lock);
1121
1122 /*
1123 * free all resources!
1124 */
1125 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1126 blist_destroy(sdp->swd_blist);
1127 bufq_free(sdp->swd_tab);
1128 kmem_free(__UNVOLATILE(sdp->swd_encmap),
1129 encmap_size(sdp->swd_drumsize));
1130 explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1131 explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1132 kmem_free(sdp, sizeof(*sdp));
1133 return (0);
1134 }
1135
1136 void
1137 uvm_swap_shutdown(struct lwp *l)
1138 {
1139 struct swapdev *sdp;
1140 struct swappri *spp;
1141 struct vnode *vp;
1142 int error;
1143
1144 printf("turning off swap...");
1145 rw_enter(&swap_syscall_lock, RW_WRITER);
1146 mutex_enter(&uvm_swap_data_lock);
1147 again:
1148 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1149 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1150 if (sdp->swd_flags & SWF_FAKE)
1151 continue;
1152 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1153 continue;
1154 #ifdef DEBUG
1155 printf("\nturning off swap on %s...", sdp->swd_path);
1156 #endif
1157 /* Have to lock and reference vnode for swap_off(). */
1158 vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
1159 vref(vp);
1160 error = swap_off(l, sdp);
1161 vput(vp);
1162 mutex_enter(&uvm_swap_data_lock);
1163 if (error) {
1164 printf("stopping swap on %s failed "
1165 "with error %d\n", sdp->swd_path, error);
1166 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1167 uvmexp.nswapdev--;
1168 swaplist_trim();
1169 }
1170 goto again;
1171 }
1172 printf(" done\n");
1173 mutex_exit(&uvm_swap_data_lock);
1174 rw_exit(&swap_syscall_lock);
1175 }
1176
1177
1178 /*
1179 * /dev/drum interface and i/o functions
1180 */
1181
1182 /*
1183 * swstrategy: perform I/O on the drum
1184 *
1185 * => we must map the i/o request from the drum to the correct swapdev.
1186 */
1187 static void
1188 swstrategy(struct buf *bp)
1189 {
1190 struct swapdev *sdp;
1191 struct vnode *vp;
1192 int pageno, bn;
1193 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1194
1195 /*
1196 * convert block number to swapdev. note that swapdev can't
1197 * be yanked out from under us because we are holding resources
1198 * in it (i.e. the blocks we are doing I/O on).
1199 */
1200 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1201 mutex_enter(&uvm_swap_data_lock);
1202 sdp = swapdrum_getsdp(pageno);
1203 mutex_exit(&uvm_swap_data_lock);
1204 if (sdp == NULL) {
1205 bp->b_error = EINVAL;
1206 bp->b_resid = bp->b_bcount;
1207 biodone(bp);
1208 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1209 return;
1210 }
1211
1212 /*
1213 * convert drum page number to block number on this swapdev.
1214 */
1215
1216 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1217 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1218
1219 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
1220 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1221 sdp->swd_drumoffset, bn, bp->b_bcount);
1222
1223 /*
1224 * for block devices we finish up here.
1225 * for regular files we have to do more work which we delegate
1226 * to sw_reg_strategy().
1227 */
1228
1229 vp = sdp->swd_vp; /* swapdev vnode pointer */
1230 switch (vp->v_type) {
1231 default:
1232 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1233
1234 case VBLK:
1235
1236 /*
1237 * must convert "bp" from an I/O on /dev/drum to an I/O
1238 * on the swapdev (sdp).
1239 */
1240 bp->b_blkno = bn; /* swapdev block number */
1241 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1242
1243 /*
1244 * if we are doing a write, we have to redirect the i/o on
1245 * drum's v_numoutput counter to the swapdevs.
1246 */
1247 if ((bp->b_flags & B_READ) == 0) {
1248 mutex_enter(bp->b_objlock);
1249 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1250 mutex_exit(bp->b_objlock);
1251 mutex_enter(vp->v_interlock);
1252 vp->v_numoutput++; /* put it on swapdev */
1253 mutex_exit(vp->v_interlock);
1254 }
1255
1256 /*
1257 * finally plug in swapdev vnode and start I/O
1258 */
1259 bp->b_vp = vp;
1260 bp->b_objlock = vp->v_interlock;
1261 VOP_STRATEGY(vp, bp);
1262 return;
1263
1264 case VREG:
1265 /*
1266 * delegate to sw_reg_strategy function.
1267 */
1268 sw_reg_strategy(sdp, bp, bn);
1269 return;
1270 }
1271 /* NOTREACHED */
1272 }
1273
1274 /*
1275 * swread: the read function for the drum (just a call to physio)
1276 */
1277 /*ARGSUSED*/
1278 static int
1279 swread(dev_t dev, struct uio *uio, int ioflag)
1280 {
1281 UVMHIST_FUNC(__func__);
1282 UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1283
1284 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1285 }
1286
1287 /*
1288 * swwrite: the write function for the drum (just a call to physio)
1289 */
1290 /*ARGSUSED*/
1291 static int
1292 swwrite(dev_t dev, struct uio *uio, int ioflag)
1293 {
1294 UVMHIST_FUNC(__func__);
1295 UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1296
1297 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1298 }
1299
1300 const struct bdevsw swap_bdevsw = {
1301 .d_open = nullopen,
1302 .d_close = nullclose,
1303 .d_strategy = swstrategy,
1304 .d_ioctl = noioctl,
1305 .d_dump = nodump,
1306 .d_psize = nosize,
1307 .d_discard = nodiscard,
1308 .d_flag = D_OTHER
1309 };
1310
1311 const struct cdevsw swap_cdevsw = {
1312 .d_open = nullopen,
1313 .d_close = nullclose,
1314 .d_read = swread,
1315 .d_write = swwrite,
1316 .d_ioctl = noioctl,
1317 .d_stop = nostop,
1318 .d_tty = notty,
1319 .d_poll = nopoll,
1320 .d_mmap = nommap,
1321 .d_kqfilter = nokqfilter,
1322 .d_discard = nodiscard,
1323 .d_flag = D_OTHER,
1324 };
1325
1326 /*
1327 * sw_reg_strategy: handle swap i/o to regular files
1328 */
1329 static void
1330 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1331 {
1332 struct vnode *vp;
1333 struct vndxfer *vnx;
1334 daddr_t nbn;
1335 char *addr;
1336 off_t byteoff;
1337 int s, off, nra, error, sz, resid;
1338 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1339
1340 /*
1341 * allocate a vndxfer head for this transfer and point it to
1342 * our buffer.
1343 */
1344 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1345 vnx->vx_flags = VX_BUSY;
1346 vnx->vx_error = 0;
1347 vnx->vx_pending = 0;
1348 vnx->vx_bp = bp;
1349 vnx->vx_sdp = sdp;
1350
1351 /*
1352 * setup for main loop where we read filesystem blocks into
1353 * our buffer.
1354 */
1355 error = 0;
1356 bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1357 addr = bp->b_data; /* current position in buffer */
1358 byteoff = dbtob((uint64_t)bn);
1359
1360 for (resid = bp->b_resid; resid; resid -= sz) {
1361 struct vndbuf *nbp;
1362
1363 /*
1364 * translate byteoffset into block number. return values:
1365 * vp = vnode of underlying device
1366 * nbn = new block number (on underlying vnode dev)
1367 * nra = num blocks we can read-ahead (excludes requested
1368 * block)
1369 */
1370 nra = 0;
1371 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1372 &vp, &nbn, &nra);
1373
1374 if (error == 0 && nbn == (daddr_t)-1) {
1375 /*
1376 * this used to just set error, but that doesn't
1377 * do the right thing. Instead, it causes random
1378 * memory errors. The panic() should remain until
1379 * this condition doesn't destabilize the system.
1380 */
1381 #if 1
1382 panic("%s: swap to sparse file", __func__);
1383 #else
1384 error = EIO; /* failure */
1385 #endif
1386 }
1387
1388 /*
1389 * punt if there was an error or a hole in the file.
1390 * we must wait for any i/o ops we have already started
1391 * to finish before returning.
1392 *
1393 * XXX we could deal with holes here but it would be
1394 * a hassle (in the write case).
1395 */
1396 if (error) {
1397 s = splbio();
1398 vnx->vx_error = error; /* pass error up */
1399 goto out;
1400 }
1401
1402 /*
1403 * compute the size ("sz") of this transfer (in bytes).
1404 */
1405 off = byteoff % sdp->swd_bsize;
1406 sz = (1 + nra) * sdp->swd_bsize - off;
1407 if (sz > resid)
1408 sz = resid;
1409
1410 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1411 "vp %#jx/%#jx offset %#jx/%#jx",
1412 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1413
1414 /*
1415 * now get a buf structure. note that the vb_buf is
1416 * at the front of the nbp structure so that you can
1417 * cast pointers between the two structure easily.
1418 */
1419 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1420 buf_init(&nbp->vb_buf);
1421 nbp->vb_buf.b_flags = bp->b_flags;
1422 nbp->vb_buf.b_cflags = bp->b_cflags;
1423 nbp->vb_buf.b_oflags = bp->b_oflags;
1424 nbp->vb_buf.b_bcount = sz;
1425 nbp->vb_buf.b_bufsize = sz;
1426 nbp->vb_buf.b_error = 0;
1427 nbp->vb_buf.b_data = addr;
1428 nbp->vb_buf.b_lblkno = 0;
1429 nbp->vb_buf.b_blkno = nbn + btodb(off);
1430 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1431 nbp->vb_buf.b_iodone = sw_reg_biodone;
1432 nbp->vb_buf.b_vp = vp;
1433 nbp->vb_buf.b_objlock = vp->v_interlock;
1434 if (vp->v_type == VBLK) {
1435 nbp->vb_buf.b_dev = vp->v_rdev;
1436 }
1437
1438 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1439
1440 /*
1441 * Just sort by block number
1442 */
1443 s = splbio();
1444 if (vnx->vx_error != 0) {
1445 buf_destroy(&nbp->vb_buf);
1446 pool_put(&vndbuf_pool, nbp);
1447 goto out;
1448 }
1449 vnx->vx_pending++;
1450
1451 /* sort it in and start I/O if we are not over our limit */
1452 /* XXXAD locking */
1453 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1454 sw_reg_start(sdp);
1455 splx(s);
1456
1457 /*
1458 * advance to the next I/O
1459 */
1460 byteoff += sz;
1461 addr += sz;
1462 }
1463
1464 s = splbio();
1465
1466 out: /* Arrive here at splbio */
1467 vnx->vx_flags &= ~VX_BUSY;
1468 if (vnx->vx_pending == 0) {
1469 error = vnx->vx_error;
1470 pool_put(&vndxfer_pool, vnx);
1471 bp->b_error = error;
1472 biodone(bp);
1473 }
1474 splx(s);
1475 }
1476
1477 /*
1478 * sw_reg_start: start an I/O request on the requested swapdev
1479 *
1480 * => reqs are sorted by b_rawblkno (above)
1481 */
1482 static void
1483 sw_reg_start(struct swapdev *sdp)
1484 {
1485 struct buf *bp;
1486 struct vnode *vp;
1487 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1488
1489 /* recursion control */
1490 if ((sdp->swd_flags & SWF_BUSY) != 0)
1491 return;
1492
1493 sdp->swd_flags |= SWF_BUSY;
1494
1495 while (sdp->swd_active < sdp->swd_maxactive) {
1496 bp = bufq_get(sdp->swd_tab);
1497 if (bp == NULL)
1498 break;
1499 sdp->swd_active++;
1500
1501 UVMHIST_LOG(pdhist,
1502 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %#jx",
1503 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1504 bp->b_bcount);
1505 vp = bp->b_vp;
1506 KASSERT(bp->b_objlock == vp->v_interlock);
1507 if ((bp->b_flags & B_READ) == 0) {
1508 mutex_enter(vp->v_interlock);
1509 vp->v_numoutput++;
1510 mutex_exit(vp->v_interlock);
1511 }
1512 VOP_STRATEGY(vp, bp);
1513 }
1514 sdp->swd_flags &= ~SWF_BUSY;
1515 }
1516
1517 /*
1518 * sw_reg_biodone: one of our i/o's has completed
1519 */
1520 static void
1521 sw_reg_biodone(struct buf *bp)
1522 {
1523 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1524 }
1525
1526 /*
1527 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1528 *
1529 * => note that we can recover the vndbuf struct by casting the buf ptr
1530 */
1531 static void
1532 sw_reg_iodone(struct work *wk, void *dummy)
1533 {
1534 struct vndbuf *vbp = (void *)wk;
1535 struct vndxfer *vnx = vbp->vb_xfer;
1536 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1537 struct swapdev *sdp = vnx->vx_sdp;
1538 int s, resid, error;
1539 KASSERT(&vbp->vb_buf.b_work == wk);
1540 UVMHIST_FUNC(__func__);
1541 UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
1542 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1543 (uintptr_t)vbp->vb_buf.b_data);
1544 UVMHIST_LOG(pdhist, " cnt=%#jx resid=%#jx",
1545 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1546
1547 /*
1548 * protect vbp at splbio and update.
1549 */
1550
1551 s = splbio();
1552 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1553 pbp->b_resid -= resid;
1554 vnx->vx_pending--;
1555
1556 if (vbp->vb_buf.b_error != 0) {
1557 /* pass error upward */
1558 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1559 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1560 vnx->vx_error = error;
1561 }
1562
1563 /*
1564 * kill vbp structure
1565 */
1566 buf_destroy(&vbp->vb_buf);
1567 pool_put(&vndbuf_pool, vbp);
1568
1569 /*
1570 * wrap up this transaction if it has run to completion or, in
1571 * case of an error, when all auxiliary buffers have returned.
1572 */
1573 if (vnx->vx_error != 0) {
1574 /* pass error upward */
1575 error = vnx->vx_error;
1576 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1577 pbp->b_error = error;
1578 biodone(pbp);
1579 pool_put(&vndxfer_pool, vnx);
1580 }
1581 } else if (pbp->b_resid == 0) {
1582 KASSERT(vnx->vx_pending == 0);
1583 if ((vnx->vx_flags & VX_BUSY) == 0) {
1584 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1585 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1586 biodone(pbp);
1587 pool_put(&vndxfer_pool, vnx);
1588 }
1589 }
1590
1591 /*
1592 * done! start next swapdev I/O if one is pending
1593 */
1594 sdp->swd_active--;
1595 sw_reg_start(sdp);
1596 splx(s);
1597 }
1598
1599
1600 /*
1601 * uvm_swap_alloc: allocate space on swap
1602 *
1603 * => allocation is done "round robin" down the priority list, as we
1604 * allocate in a priority we "rotate" the circle queue.
1605 * => space can be freed with uvm_swap_free
1606 * => we return the page slot number in /dev/drum (0 == invalid slot)
1607 * => we lock uvm_swap_data_lock
1608 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1609 */
1610 int
1611 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1612 {
1613 struct swapdev *sdp;
1614 struct swappri *spp;
1615 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1616
1617 /*
1618 * no swap devices configured yet? definite failure.
1619 */
1620 if (uvmexp.nswapdev < 1)
1621 return 0;
1622
1623 /*
1624 * XXXJAK: BEGIN HACK
1625 *
1626 * blist_alloc() in subr_blist.c will panic if we try to allocate
1627 * too many slots.
1628 */
1629 if (*nslots > BLIST_MAX_ALLOC) {
1630 if (__predict_false(lessok == false))
1631 return 0;
1632 *nslots = BLIST_MAX_ALLOC;
1633 }
1634 /* XXXJAK: END HACK */
1635
1636 /*
1637 * lock data lock, convert slots into blocks, and enter loop
1638 */
1639 mutex_enter(&uvm_swap_data_lock);
1640
1641 ReTry: /* XXXMRG */
1642 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1643 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1644 uint64_t result;
1645
1646 /* if it's not enabled, then we can't swap from it */
1647 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1648 continue;
1649 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1650 continue;
1651 result = blist_alloc(sdp->swd_blist, *nslots);
1652 if (result == BLIST_NONE) {
1653 continue;
1654 }
1655 KASSERT(result < sdp->swd_drumsize);
1656
1657 /*
1658 * successful allocation! now rotate the tailq.
1659 */
1660 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1661 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1662 sdp->swd_npginuse += *nslots;
1663 uvmexp.swpginuse += *nslots;
1664 mutex_exit(&uvm_swap_data_lock);
1665 /* done! return drum slot number */
1666 UVMHIST_LOG(pdhist,
1667 "success! returning %jd slots starting at %jd",
1668 *nslots, result + sdp->swd_drumoffset, 0, 0);
1669 return (result + sdp->swd_drumoffset);
1670 }
1671 }
1672
1673 /* XXXMRG: BEGIN HACK */
1674 if (*nslots > 1 && lessok) {
1675 *nslots = 1;
1676 /* XXXMRG: ugh! blist should support this for us */
1677 goto ReTry;
1678 }
1679 /* XXXMRG: END HACK */
1680
1681 mutex_exit(&uvm_swap_data_lock);
1682 return 0;
1683 }
1684
1685 /*
1686 * uvm_swapisfull: return true if most of available swap is allocated
1687 * and in use. we don't count some small portion as it may be inaccessible
1688 * to us at any given moment, for example if there is lock contention or if
1689 * pages are busy.
1690 */
1691 bool
1692 uvm_swapisfull(void)
1693 {
1694 int swpgonly;
1695 bool rv;
1696
1697 if (uvmexp.swpages == 0) {
1698 return true;
1699 }
1700
1701 mutex_enter(&uvm_swap_data_lock);
1702 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1703 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1704 uvm_swapisfull_factor);
1705 rv = (swpgonly >= uvmexp.swpgavail);
1706 mutex_exit(&uvm_swap_data_lock);
1707
1708 return (rv);
1709 }
1710
1711 /*
1712 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1713 *
1714 * => we lock uvm_swap_data_lock
1715 */
1716 void
1717 uvm_swap_markbad(int startslot, int nslots)
1718 {
1719 struct swapdev *sdp;
1720 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1721
1722 mutex_enter(&uvm_swap_data_lock);
1723 sdp = swapdrum_getsdp(startslot);
1724 KASSERT(sdp != NULL);
1725
1726 /*
1727 * we just keep track of how many pages have been marked bad
1728 * in this device, to make everything add up in swap_off().
1729 * we assume here that the range of slots will all be within
1730 * one swap device.
1731 */
1732
1733 KASSERT(uvmexp.swpgonly >= nslots);
1734 atomic_add_int(&uvmexp.swpgonly, -nslots);
1735 sdp->swd_npgbad += nslots;
1736 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1737 mutex_exit(&uvm_swap_data_lock);
1738 }
1739
1740 /*
1741 * uvm_swap_free: free swap slots
1742 *
1743 * => this can be all or part of an allocation made by uvm_swap_alloc
1744 * => we lock uvm_swap_data_lock
1745 */
1746 void
1747 uvm_swap_free(int startslot, int nslots)
1748 {
1749 struct swapdev *sdp;
1750 UVMHIST_FUNC(__func__);
1751 UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
1752 startslot, 0, 0);
1753
1754 /*
1755 * ignore attempts to free the "bad" slot.
1756 */
1757
1758 if (startslot == SWSLOT_BAD) {
1759 return;
1760 }
1761
1762 /*
1763 * convert drum slot offset back to sdp, free the blocks
1764 * in the extent, and return. must hold pri lock to do
1765 * lookup and access the extent.
1766 */
1767
1768 mutex_enter(&uvm_swap_data_lock);
1769 sdp = swapdrum_getsdp(startslot);
1770 KASSERT(uvmexp.nswapdev >= 1);
1771 KASSERT(sdp != NULL);
1772 KASSERT(sdp->swd_npginuse >= nslots);
1773 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1774 sdp->swd_npginuse -= nslots;
1775 uvmexp.swpginuse -= nslots;
1776 mutex_exit(&uvm_swap_data_lock);
1777 }
1778
1779 /*
1780 * uvm_swap_put: put any number of pages into a contig place on swap
1781 *
1782 * => can be sync or async
1783 */
1784
1785 int
1786 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1787 {
1788 int error;
1789
1790 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1791 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1792 return error;
1793 }
1794
1795 /*
1796 * uvm_swap_get: get a single page from swap
1797 *
1798 * => usually a sync op (from fault)
1799 */
1800
1801 int
1802 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1803 {
1804 int error;
1805
1806 atomic_inc_uint(&uvmexp.nswget);
1807 KASSERT(flags & PGO_SYNCIO);
1808 if (swslot == SWSLOT_BAD) {
1809 return EIO;
1810 }
1811
1812 error = uvm_swap_io(&page, swslot, 1, B_READ |
1813 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1814 if (error == 0) {
1815
1816 /*
1817 * this page is no longer only in swap.
1818 */
1819
1820 KASSERT(uvmexp.swpgonly > 0);
1821 atomic_dec_uint(&uvmexp.swpgonly);
1822 }
1823 return error;
1824 }
1825
1826 /*
1827 * uvm_swap_io: do an i/o operation to swap
1828 */
1829
1830 static int
1831 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1832 {
1833 daddr_t startblk;
1834 struct buf *bp;
1835 vaddr_t kva;
1836 int error, mapinflags;
1837 bool write, async, swap_encrypt;
1838 UVMHIST_FUNC(__func__);
1839 UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
1840 startslot, npages, flags, 0);
1841
1842 write = (flags & B_READ) == 0;
1843 async = (flags & B_ASYNC) != 0;
1844 swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1845
1846 /*
1847 * allocate a buf for the i/o.
1848 */
1849
1850 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1851 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1852 if (bp == NULL) {
1853 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1854 return ENOMEM;
1855 }
1856
1857 /*
1858 * convert starting drum slot to block number
1859 */
1860
1861 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1862
1863 /*
1864 * first, map the pages into the kernel.
1865 */
1866
1867 mapinflags = !write ?
1868 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1869 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1870 if (write && swap_encrypt) /* need to encrypt in-place */
1871 mapinflags |= UVMPAGER_MAPIN_READ;
1872 kva = uvm_pagermapin(pps, npages, mapinflags);
1873
1874 /*
1875 * encrypt writes in place if requested
1876 */
1877
1878 if (write) do {
1879 struct swapdev *sdp;
1880 int i;
1881
1882 /*
1883 * Get the swapdev so we can discriminate on the
1884 * encryption state. There may or may not be an
1885 * encryption key generated; we may or may not be asked
1886 * to encrypt swap.
1887 *
1888 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1889 *
1890 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1891 * and mark the slots encrypted.
1892 *
1893 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1894 * marked encrypted from a past life. Mark them not
1895 * encrypted.
1896 *
1897 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1898 * encrypted.
1899 */
1900 mutex_enter(&uvm_swap_data_lock);
1901 sdp = swapdrum_getsdp(startslot);
1902 if (!sdp->swd_encinit) {
1903 if (!swap_encrypt) {
1904 mutex_exit(&uvm_swap_data_lock);
1905 break;
1906 }
1907 uvm_swap_genkey(sdp);
1908 }
1909 KASSERT(sdp->swd_encinit);
1910 mutex_exit(&uvm_swap_data_lock);
1911
1912 for (i = 0; i < npages; i++) {
1913 int s = startslot + i;
1914 KDASSERT(swapdrum_sdp_is(s, sdp));
1915 KASSERT(s >= sdp->swd_drumoffset);
1916 s -= sdp->swd_drumoffset;
1917 KASSERT(s < sdp->swd_drumsize);
1918
1919 if (swap_encrypt) {
1920 uvm_swap_encryptpage(sdp,
1921 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1922 atomic_or_32(&sdp->swd_encmap[s/32],
1923 __BIT(s%32));
1924 } else {
1925 atomic_and_32(&sdp->swd_encmap[s/32],
1926 ~__BIT(s%32));
1927 }
1928 }
1929 } while (0);
1930
1931 /*
1932 * fill in the bp/sbp. we currently route our i/o through
1933 * /dev/drum's vnode [swapdev_vp].
1934 */
1935
1936 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1937 bp->b_flags = (flags & (B_READ|B_ASYNC));
1938 bp->b_proc = &proc0; /* XXX */
1939 bp->b_vnbufs.le_next = NOLIST;
1940 bp->b_data = (void *)kva;
1941 bp->b_blkno = startblk;
1942 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1943
1944 /*
1945 * bump v_numoutput (counter of number of active outputs).
1946 */
1947
1948 if (write) {
1949 mutex_enter(swapdev_vp->v_interlock);
1950 swapdev_vp->v_numoutput++;
1951 mutex_exit(swapdev_vp->v_interlock);
1952 }
1953
1954 /*
1955 * for async ops we must set up the iodone handler.
1956 */
1957
1958 if (async) {
1959 bp->b_iodone = uvm_aio_aiodone;
1960 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1961 if (curlwp == uvm.pagedaemon_lwp)
1962 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1963 else
1964 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1965 } else {
1966 bp->b_iodone = NULL;
1967 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1968 }
1969 UVMHIST_LOG(pdhist,
1970 "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
1971 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1972
1973 /*
1974 * now we start the I/O, and if async, return.
1975 */
1976
1977 VOP_STRATEGY(swapdev_vp, bp);
1978 if (async) {
1979 /*
1980 * Reads are always synchronous; if this changes, we
1981 * need to add an asynchronous path for decryption.
1982 */
1983 KASSERT(write);
1984 return 0;
1985 }
1986
1987 /*
1988 * must be sync i/o. wait for it to finish
1989 */
1990
1991 error = biowait(bp);
1992 if (error)
1993 goto out;
1994
1995 /*
1996 * decrypt reads in place if needed
1997 */
1998
1999 if (!write) do {
2000 struct swapdev *sdp;
2001 bool encinit;
2002 int i;
2003
2004 /*
2005 * Get the sdp. Everything about it except the encinit
2006 * bit, saying whether the encryption key is
2007 * initialized or not, and the encrypted bit for each
2008 * page, is stable until all swap pages have been
2009 * released and the device is removed.
2010 */
2011 mutex_enter(&uvm_swap_data_lock);
2012 sdp = swapdrum_getsdp(startslot);
2013 encinit = sdp->swd_encinit;
2014 mutex_exit(&uvm_swap_data_lock);
2015
2016 if (!encinit)
2017 /*
2018 * If there's no encryption key, there's no way
2019 * any of these slots can be encrypted, so
2020 * nothing to do here.
2021 */
2022 break;
2023 for (i = 0; i < npages; i++) {
2024 int s = startslot + i;
2025 KDASSERT(swapdrum_sdp_is(s, sdp));
2026 KASSERT(s >= sdp->swd_drumoffset);
2027 s -= sdp->swd_drumoffset;
2028 KASSERT(s < sdp->swd_drumsize);
2029 if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2030 __BIT(s%32)) == 0)
2031 continue;
2032 uvm_swap_decryptpage(sdp,
2033 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2034 }
2035 } while (0);
2036 out:
2037 /*
2038 * kill the pager mapping
2039 */
2040
2041 uvm_pagermapout(kva, npages);
2042
2043 /*
2044 * now dispose of the buf and we're done.
2045 */
2046
2047 if (write) {
2048 mutex_enter(swapdev_vp->v_interlock);
2049 vwakeup(bp);
2050 mutex_exit(swapdev_vp->v_interlock);
2051 }
2052 putiobuf(bp);
2053 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
2054
2055 return (error);
2056 }
2057
2058 /*
2059 * uvm_swap_genkey(sdp)
2060 *
2061 * Generate a key for swap encryption.
2062 */
2063 static void
2064 uvm_swap_genkey(struct swapdev *sdp)
2065 {
2066 uint8_t key[32];
2067
2068 KASSERT(!sdp->swd_encinit);
2069
2070 cprng_strong(kern_cprng, key, sizeof key, 0);
2071 aes_setenckey256(&sdp->swd_enckey, key);
2072 aes_setdeckey256(&sdp->swd_deckey, key);
2073 explicit_memset(key, 0, sizeof key);
2074
2075 sdp->swd_encinit = true;
2076 }
2077
2078 /*
2079 * uvm_swap_encryptpage(sdp, kva, slot)
2080 *
2081 * Encrypt one page of data at kva for the specified slot number
2082 * in the swap device.
2083 */
2084 static void
2085 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2086 {
2087 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2088
2089 /* iv := AES_k(le32enc(slot) || 0^96) */
2090 le32enc(preiv, slot);
2091 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2092
2093 /* *kva := AES-CBC_k(iv, *kva) */
2094 aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2095 AES_256_NROUNDS);
2096
2097 explicit_memset(&iv, 0, sizeof iv);
2098 }
2099
2100 /*
2101 * uvm_swap_decryptpage(sdp, kva, slot)
2102 *
2103 * Decrypt one page of data at kva for the specified slot number
2104 * in the swap device.
2105 */
2106 static void
2107 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2108 {
2109 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2110
2111 /* iv := AES_k(le32enc(slot) || 0^96) */
2112 le32enc(preiv, slot);
2113 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2114
2115 /* *kva := AES-CBC^{-1}_k(iv, *kva) */
2116 aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2117 AES_256_NROUNDS);
2118
2119 explicit_memset(&iv, 0, sizeof iv);
2120 }
2121
2122 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2123 {
2124
2125 sysctl_createv(clog, 0, NULL, NULL,
2126 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2127 SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2128 NULL, 0, &uvm_swap_encrypt, 0,
2129 CTL_VM, CTL_CREATE, CTL_EOL);
2130 }
2131