Home | History | Annotate | Line # | Download | only in uvm
uvm_swap.c revision 1.203
      1 /*	$NetBSD: uvm_swap.c,v 1.203 2021/03/13 15:29:55 skrll Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  *
     16  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
     17  * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
     18  * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
     19  * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
     20  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
     21  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
     22  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
     23  * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
     24  * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     25  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     26  * SUCH DAMAGE.
     27  *
     28  * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
     29  * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
     30  */
     31 
     32 #include <sys/cdefs.h>
     33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.203 2021/03/13 15:29:55 skrll Exp $");
     34 
     35 #include "opt_uvmhist.h"
     36 #include "opt_compat_netbsd.h"
     37 #include "opt_ddb.h"
     38 
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/atomic.h>
     42 #include <sys/buf.h>
     43 #include <sys/bufq.h>
     44 #include <sys/conf.h>
     45 #include <sys/cprng.h>
     46 #include <sys/proc.h>
     47 #include <sys/namei.h>
     48 #include <sys/disklabel.h>
     49 #include <sys/errno.h>
     50 #include <sys/kernel.h>
     51 #include <sys/vnode.h>
     52 #include <sys/file.h>
     53 #include <sys/vmem.h>
     54 #include <sys/blist.h>
     55 #include <sys/mount.h>
     56 #include <sys/pool.h>
     57 #include <sys/kmem.h>
     58 #include <sys/syscallargs.h>
     59 #include <sys/swap.h>
     60 #include <sys/kauth.h>
     61 #include <sys/sysctl.h>
     62 #include <sys/workqueue.h>
     63 
     64 #include <uvm/uvm.h>
     65 
     66 #include <miscfs/specfs/specdev.h>
     67 
     68 #include <crypto/aes/aes.h>
     69 #include <crypto/aes/aes_cbc.h>
     70 
     71 /*
     72  * uvm_swap.c: manage configuration and i/o to swap space.
     73  */
     74 
     75 /*
     76  * swap space is managed in the following way:
     77  *
     78  * each swap partition or file is described by a "swapdev" structure.
     79  * each "swapdev" structure contains a "swapent" structure which contains
     80  * information that is passed up to the user (via system calls).
     81  *
     82  * each swap partition is assigned a "priority" (int) which controls
     83  * swap partition usage.
     84  *
     85  * the system maintains a global data structure describing all swap
     86  * partitions/files.   there is a sorted LIST of "swappri" structures
     87  * which describe "swapdev"'s at that priority.   this LIST is headed
     88  * by the "swap_priority" global var.    each "swappri" contains a
     89  * TAILQ of "swapdev" structures at that priority.
     90  *
     91  * locking:
     92  *  - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
     93  *    system call and prevents the swap priority list from changing
     94  *    while we are in the middle of a system call (e.g. SWAP_STATS).
     95  *  - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
     96  *    structures including the priority list, the swapdev structures,
     97  *    and the swapmap arena.
     98  *
     99  * each swap device has the following info:
    100  *  - swap device in use (could be disabled, preventing future use)
    101  *  - swap enabled (allows new allocations on swap)
    102  *  - map info in /dev/drum
    103  *  - vnode pointer
    104  * for swap files only:
    105  *  - block size
    106  *  - max byte count in buffer
    107  *  - buffer
    108  *
    109  * userland controls and configures swap with the swapctl(2) system call.
    110  * the sys_swapctl performs the following operations:
    111  *  [1] SWAP_NSWAP: returns the number of swap devices currently configured
    112  *  [2] SWAP_STATS: given a pointer to an array of swapent structures
    113  *	(passed in via "arg") of a size passed in via "misc" ... we load
    114  *	the current swap config into the array. The actual work is done
    115  *	in the uvm_swap_stats() function.
    116  *  [3] SWAP_ON: given a pathname in arg (could be device or file) and a
    117  *	priority in "misc", start swapping on it.
    118  *  [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
    119  *  [5] SWAP_CTL: changes the priority of a swap device (new priority in
    120  *	"misc")
    121  */
    122 
    123 /*
    124  * swapdev: describes a single swap partition/file
    125  *
    126  * note the following should be true:
    127  * swd_inuse <= swd_nblks  [number of blocks in use is <= total blocks]
    128  * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
    129  */
    130 struct swapdev {
    131 	dev_t			swd_dev;	/* device id */
    132 	int			swd_flags;	/* flags:inuse/enable/fake */
    133 	int			swd_priority;	/* our priority */
    134 	int			swd_nblks;	/* blocks in this device */
    135 	char			*swd_path;	/* saved pathname of device */
    136 	int			swd_pathlen;	/* length of pathname */
    137 	int			swd_npages;	/* #pages we can use */
    138 	int			swd_npginuse;	/* #pages in use */
    139 	int			swd_npgbad;	/* #pages bad */
    140 	int			swd_drumoffset;	/* page0 offset in drum */
    141 	int			swd_drumsize;	/* #pages in drum */
    142 	blist_t			swd_blist;	/* blist for this swapdev */
    143 	struct vnode		*swd_vp;	/* backing vnode */
    144 	TAILQ_ENTRY(swapdev)	swd_next;	/* priority tailq */
    145 
    146 	int			swd_bsize;	/* blocksize (bytes) */
    147 	int			swd_maxactive;	/* max active i/o reqs */
    148 	struct bufq_state	*swd_tab;	/* buffer list */
    149 	int			swd_active;	/* number of active buffers */
    150 
    151 	volatile uint32_t	*swd_encmap;	/* bitmap of encrypted slots */
    152 	struct aesenc		swd_enckey;	/* AES key expanded for enc */
    153 	struct aesdec		swd_deckey;	/* AES key expanded for dec */
    154 	bool			swd_encinit;	/* true if keys initialized */
    155 };
    156 
    157 /*
    158  * swap device priority entry; the list is kept sorted on `spi_priority'.
    159  */
    160 struct swappri {
    161 	int			spi_priority;     /* priority */
    162 	TAILQ_HEAD(spi_swapdev, swapdev)	spi_swapdev;
    163 	/* tailq of swapdevs at this priority */
    164 	LIST_ENTRY(swappri)	spi_swappri;      /* global list of pri's */
    165 };
    166 
    167 /*
    168  * The following two structures are used to keep track of data transfers
    169  * on swap devices associated with regular files.
    170  * NOTE: this code is more or less a copy of vnd.c; we use the same
    171  * structure names here to ease porting..
    172  */
    173 struct vndxfer {
    174 	struct buf	*vx_bp;		/* Pointer to parent buffer */
    175 	struct swapdev	*vx_sdp;
    176 	int		vx_error;
    177 	int		vx_pending;	/* # of pending aux buffers */
    178 	int		vx_flags;
    179 #define VX_BUSY		1
    180 #define VX_DEAD		2
    181 };
    182 
    183 struct vndbuf {
    184 	struct buf	vb_buf;
    185 	struct vndxfer	*vb_xfer;
    186 };
    187 
    188 /*
    189  * We keep a of pool vndbuf's and vndxfer structures.
    190  */
    191 static struct pool vndxfer_pool, vndbuf_pool;
    192 
    193 /*
    194  * local variables
    195  */
    196 static vmem_t *swapmap;	/* controls the mapping of /dev/drum */
    197 
    198 /* list of all active swap devices [by priority] */
    199 LIST_HEAD(swap_priority, swappri);
    200 static struct swap_priority swap_priority;
    201 
    202 /* locks */
    203 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
    204 static krwlock_t swap_syscall_lock;
    205 
    206 /* workqueue and use counter for swap to regular files */
    207 static int sw_reg_count = 0;
    208 static struct workqueue *sw_reg_workqueue;
    209 
    210 /* tuneables */
    211 u_int uvm_swapisfull_factor = 99;
    212 bool uvm_swap_encrypt = false;
    213 
    214 /*
    215  * prototypes
    216  */
    217 static struct swapdev	*swapdrum_getsdp(int);
    218 
    219 static struct swapdev	*swaplist_find(struct vnode *, bool);
    220 static void		 swaplist_insert(struct swapdev *,
    221 					 struct swappri *, int);
    222 static void		 swaplist_trim(void);
    223 
    224 static int swap_on(struct lwp *, struct swapdev *);
    225 static int swap_off(struct lwp *, struct swapdev *);
    226 
    227 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
    228 static void sw_reg_biodone(struct buf *);
    229 static void sw_reg_iodone(struct work *wk, void *dummy);
    230 static void sw_reg_start(struct swapdev *);
    231 
    232 static int uvm_swap_io(struct vm_page **, int, int, int);
    233 
    234 static void uvm_swap_genkey(struct swapdev *);
    235 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
    236 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
    237 
    238 static size_t
    239 encmap_size(size_t npages)
    240 {
    241 	struct swapdev *sdp;
    242 	const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
    243 	const size_t bitsperword = NBBY * bytesperword;
    244 	const size_t nbits = npages; /* one bit for each page */
    245 	const size_t nwords = howmany(nbits, bitsperword);
    246 	const size_t nbytes = nwords * bytesperword;
    247 
    248 	return nbytes;
    249 }
    250 
    251 /*
    252  * uvm_swap_init: init the swap system data structures and locks
    253  *
    254  * => called at boot time from init_main.c after the filesystems
    255  *	are brought up (which happens after uvm_init())
    256  */
    257 void
    258 uvm_swap_init(void)
    259 {
    260 	UVMHIST_FUNC(__func__);
    261 
    262 	UVMHIST_CALLED(pdhist);
    263 	/*
    264 	 * first, init the swap list, its counter, and its lock.
    265 	 * then get a handle on the vnode for /dev/drum by using
    266 	 * the its dev_t number ("swapdev", from MD conf.c).
    267 	 */
    268 
    269 	LIST_INIT(&swap_priority);
    270 	uvmexp.nswapdev = 0;
    271 	rw_init(&swap_syscall_lock);
    272 	mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
    273 
    274 	if (bdevvp(swapdev, &swapdev_vp))
    275 		panic("%s: can't get vnode for swap device", __func__);
    276 	if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
    277 		panic("%s: can't lock swap device", __func__);
    278 	if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
    279 		panic("%s: can't open swap device", __func__);
    280 	VOP_UNLOCK(swapdev_vp);
    281 
    282 	/*
    283 	 * create swap block resource map to map /dev/drum.   the range
    284 	 * from 1 to INT_MAX allows 2 gigablocks of swap space.  note
    285 	 * that block 0 is reserved (used to indicate an allocation
    286 	 * failure, or no allocation).
    287 	 */
    288 	swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
    289 	    VM_NOSLEEP, IPL_NONE);
    290 	if (swapmap == 0) {
    291 		panic("%s: vmem_create failed", __func__);
    292 	}
    293 
    294 	pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
    295 	    NULL, IPL_BIO);
    296 	pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
    297 	    NULL, IPL_BIO);
    298 
    299 	UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
    300 }
    301 
    302 /*
    303  * swaplist functions: functions that operate on the list of swap
    304  * devices on the system.
    305  */
    306 
    307 /*
    308  * swaplist_insert: insert swap device "sdp" into the global list
    309  *
    310  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    311  * => caller must provide a newly allocated swappri structure (we will
    312  *	FREE it if we don't need it... this it to prevent allocation
    313  *	blocking here while adding swap)
    314  */
    315 static void
    316 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
    317 {
    318 	struct swappri *spp, *pspp;
    319 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    320 
    321 	KASSERT(rw_write_held(&swap_syscall_lock));
    322 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    323 
    324 	/*
    325 	 * find entry at or after which to insert the new device.
    326 	 */
    327 	pspp = NULL;
    328 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    329 		if (priority <= spp->spi_priority)
    330 			break;
    331 		pspp = spp;
    332 	}
    333 
    334 	/*
    335 	 * new priority?
    336 	 */
    337 	if (spp == NULL || spp->spi_priority != priority) {
    338 		spp = newspp;  /* use newspp! */
    339 		UVMHIST_LOG(pdhist, "created new swappri = %jd",
    340 			    priority, 0, 0, 0);
    341 
    342 		spp->spi_priority = priority;
    343 		TAILQ_INIT(&spp->spi_swapdev);
    344 
    345 		if (pspp)
    346 			LIST_INSERT_AFTER(pspp, spp, spi_swappri);
    347 		else
    348 			LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
    349 	} else {
    350 	  	/* we don't need a new priority structure, free it */
    351 		kmem_free(newspp, sizeof(*newspp));
    352 	}
    353 
    354 	/*
    355 	 * priority found (or created).   now insert on the priority's
    356 	 * tailq list and bump the total number of swapdevs.
    357 	 */
    358 	sdp->swd_priority = priority;
    359 	TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
    360 	uvmexp.nswapdev++;
    361 }
    362 
    363 /*
    364  * swaplist_find: find and optionally remove a swap device from the
    365  *	global list.
    366  *
    367  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    368  * => we return the swapdev we found (and removed)
    369  */
    370 static struct swapdev *
    371 swaplist_find(struct vnode *vp, bool remove)
    372 {
    373 	struct swapdev *sdp;
    374 	struct swappri *spp;
    375 
    376 	KASSERT(rw_lock_held(&swap_syscall_lock));
    377 	KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
    378 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    379 
    380 	/*
    381 	 * search the lists for the requested vp
    382 	 */
    383 
    384 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    385 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    386 			if (sdp->swd_vp == vp) {
    387 				if (remove) {
    388 					TAILQ_REMOVE(&spp->spi_swapdev,
    389 					    sdp, swd_next);
    390 					uvmexp.nswapdev--;
    391 				}
    392 				return(sdp);
    393 			}
    394 		}
    395 	}
    396 	return (NULL);
    397 }
    398 
    399 /*
    400  * swaplist_trim: scan priority list for empty priority entries and kill
    401  *	them.
    402  *
    403  * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
    404  */
    405 static void
    406 swaplist_trim(void)
    407 {
    408 	struct swappri *spp, *nextspp;
    409 
    410 	KASSERT(rw_write_held(&swap_syscall_lock));
    411 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    412 
    413 	LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
    414 		if (!TAILQ_EMPTY(&spp->spi_swapdev))
    415 			continue;
    416 		LIST_REMOVE(spp, spi_swappri);
    417 		kmem_free(spp, sizeof(*spp));
    418 	}
    419 }
    420 
    421 /*
    422  * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
    423  *	to the "swapdev" that maps that section of the drum.
    424  *
    425  * => each swapdev takes one big contig chunk of the drum
    426  * => caller must hold uvm_swap_data_lock
    427  */
    428 static struct swapdev *
    429 swapdrum_getsdp(int pgno)
    430 {
    431 	struct swapdev *sdp;
    432 	struct swappri *spp;
    433 
    434 	KASSERT(mutex_owned(&uvm_swap_data_lock));
    435 
    436 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    437 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    438 			if (sdp->swd_flags & SWF_FAKE)
    439 				continue;
    440 			if (pgno >= sdp->swd_drumoffset &&
    441 			    pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
    442 				return sdp;
    443 			}
    444 		}
    445 	}
    446 	return NULL;
    447 }
    448 
    449 /*
    450  * swapdrum_sdp_is: true iff the swap device for pgno is sdp
    451  *
    452  * => for use in positive assertions only; result is not stable
    453  */
    454 static bool __debugused
    455 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
    456 {
    457 	bool result;
    458 
    459 	mutex_enter(&uvm_swap_data_lock);
    460 	result = swapdrum_getsdp(pgno) == sdp;
    461 	mutex_exit(&uvm_swap_data_lock);
    462 
    463 	return result;
    464 }
    465 
    466 void swapsys_lock(krw_t op)
    467 {
    468 	rw_enter(&swap_syscall_lock, op);
    469 }
    470 
    471 void swapsys_unlock(void)
    472 {
    473 	rw_exit(&swap_syscall_lock);
    474 }
    475 
    476 static void
    477 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
    478 {
    479 	se->se_dev = sdp->swd_dev;
    480 	se->se_flags = sdp->swd_flags;
    481 	se->se_nblks = sdp->swd_nblks;
    482 	se->se_inuse = inuse;
    483 	se->se_priority = sdp->swd_priority;
    484 	KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
    485 	strcpy(se->se_path, sdp->swd_path);
    486 }
    487 
    488 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
    489     (void *)enosys;
    490 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
    491     (void *)enosys;
    492 
    493 /*
    494  * sys_swapctl: main entry point for swapctl(2) system call
    495  * 	[with two helper functions: swap_on and swap_off]
    496  */
    497 int
    498 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
    499 {
    500 	/* {
    501 		syscallarg(int) cmd;
    502 		syscallarg(void *) arg;
    503 		syscallarg(int) misc;
    504 	} */
    505 	struct vnode *vp;
    506 	struct nameidata nd;
    507 	struct swappri *spp;
    508 	struct swapdev *sdp;
    509 #define SWAP_PATH_MAX (PATH_MAX + 1)
    510 	char	*userpath;
    511 	size_t	len = 0;
    512 	int	error;
    513 	int	priority;
    514 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    515 
    516 	/*
    517 	 * we handle the non-priv NSWAP and STATS request first.
    518 	 *
    519 	 * SWAP_NSWAP: return number of config'd swap devices
    520 	 * [can also be obtained with uvmexp sysctl]
    521 	 */
    522 	if (SCARG(uap, cmd) == SWAP_NSWAP) {
    523 		const int nswapdev = uvmexp.nswapdev;
    524 		UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
    525 		    0, 0, 0);
    526 		*retval = nswapdev;
    527 		return 0;
    528 	}
    529 
    530 	userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
    531 
    532 	/*
    533 	 * ensure serialized syscall access by grabbing the swap_syscall_lock
    534 	 */
    535 	rw_enter(&swap_syscall_lock, RW_WRITER);
    536 
    537 	/*
    538 	 * SWAP_STATS: get stats on current # of configured swap devs
    539 	 *
    540 	 * note that the swap_priority list can't change as long
    541 	 * as we are holding the swap_syscall_lock.  we don't want
    542 	 * to grab the uvm_swap_data_lock because we may fault&sleep during
    543 	 * copyout() and we don't want to be holding that lock then!
    544 	 */
    545 	switch (SCARG(uap, cmd)) {
    546 	case SWAP_STATS13:
    547 		error = (*uvm_swap_stats13)(uap, retval);
    548 		goto out;
    549 	case SWAP_STATS50:
    550 		error = (*uvm_swap_stats50)(uap, retval);
    551 		goto out;
    552 	case SWAP_STATS:
    553 		error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
    554 		    NULL, sizeof(struct swapent), retval);
    555 		UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
    556 		goto out;
    557 
    558 	case SWAP_GETDUMPDEV:
    559 		error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
    560 		goto out;
    561 	default:
    562 		break;
    563 	}
    564 
    565 	/*
    566 	 * all other requests require superuser privs.   verify.
    567 	 */
    568 	if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
    569 	    0, NULL, NULL, NULL)))
    570 		goto out;
    571 
    572 	if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
    573 		/* drop the current dump device */
    574 		dumpdev = NODEV;
    575 		dumpcdev = NODEV;
    576 		cpu_dumpconf();
    577 		goto out;
    578 	}
    579 
    580 	/*
    581 	 * at this point we expect a path name in arg.   we will
    582 	 * use namei() to gain a vnode reference (vref), and lock
    583 	 * the vnode (VOP_LOCK).
    584 	 *
    585 	 * XXX: a NULL arg means use the root vnode pointer (e.g. for
    586 	 * miniroot)
    587 	 */
    588 	if (SCARG(uap, arg) == NULL) {
    589 		vp = rootvp;		/* miniroot */
    590 		vref(vp);
    591 		if (vn_lock(vp, LK_EXCLUSIVE)) {
    592 			vrele(vp);
    593 			error = EBUSY;
    594 			goto out;
    595 		}
    596 		if (SCARG(uap, cmd) == SWAP_ON &&
    597 		    copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
    598 			panic("swapctl: miniroot copy failed");
    599 	} else {
    600 		struct pathbuf *pb;
    601 
    602 		/*
    603 		 * This used to allow copying in one extra byte
    604 		 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
    605 		 * This was completely pointless because if anyone
    606 		 * used that extra byte namei would fail with
    607 		 * ENAMETOOLONG anyway, so I've removed the excess
    608 		 * logic. - dholland 20100215
    609 		 */
    610 
    611 		error = pathbuf_copyin(SCARG(uap, arg), &pb);
    612 		if (error) {
    613 			goto out;
    614 		}
    615 		if (SCARG(uap, cmd) == SWAP_ON) {
    616 			/* get a copy of the string */
    617 			pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
    618 			len = strlen(userpath) + 1;
    619 		}
    620 		NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
    621 		if ((error = namei(&nd))) {
    622 			pathbuf_destroy(pb);
    623 			goto out;
    624 		}
    625 		vp = nd.ni_vp;
    626 		pathbuf_destroy(pb);
    627 	}
    628 	/* note: "vp" is referenced and locked */
    629 
    630 	error = 0;		/* assume no error */
    631 	switch(SCARG(uap, cmd)) {
    632 
    633 	case SWAP_DUMPDEV:
    634 		if (vp->v_type != VBLK) {
    635 			error = ENOTBLK;
    636 			break;
    637 		}
    638 		if (bdevsw_lookup(vp->v_rdev)) {
    639 			dumpdev = vp->v_rdev;
    640 			dumpcdev = devsw_blk2chr(dumpdev);
    641 		} else
    642 			dumpdev = NODEV;
    643 		cpu_dumpconf();
    644 		break;
    645 
    646 	case SWAP_CTL:
    647 		/*
    648 		 * get new priority, remove old entry (if any) and then
    649 		 * reinsert it in the correct place.  finally, prune out
    650 		 * any empty priority structures.
    651 		 */
    652 		priority = SCARG(uap, misc);
    653 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    654 		mutex_enter(&uvm_swap_data_lock);
    655 		if ((sdp = swaplist_find(vp, true)) == NULL) {
    656 			error = ENOENT;
    657 		} else {
    658 			swaplist_insert(sdp, spp, priority);
    659 			swaplist_trim();
    660 		}
    661 		mutex_exit(&uvm_swap_data_lock);
    662 		if (error)
    663 			kmem_free(spp, sizeof(*spp));
    664 		break;
    665 
    666 	case SWAP_ON:
    667 
    668 		/*
    669 		 * check for duplicates.   if none found, then insert a
    670 		 * dummy entry on the list to prevent someone else from
    671 		 * trying to enable this device while we are working on
    672 		 * it.
    673 		 */
    674 
    675 		priority = SCARG(uap, misc);
    676 		sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
    677 		spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
    678 		sdp->swd_flags = SWF_FAKE;
    679 		sdp->swd_vp = vp;
    680 		sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
    681 		bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
    682 		mutex_enter(&uvm_swap_data_lock);
    683 		if (swaplist_find(vp, false) != NULL) {
    684 			error = EBUSY;
    685 			mutex_exit(&uvm_swap_data_lock);
    686 			bufq_free(sdp->swd_tab);
    687 			kmem_free(sdp, sizeof(*sdp));
    688 			kmem_free(spp, sizeof(*spp));
    689 			break;
    690 		}
    691 		swaplist_insert(sdp, spp, priority);
    692 		mutex_exit(&uvm_swap_data_lock);
    693 
    694 		KASSERT(len > 0);
    695 		sdp->swd_pathlen = len;
    696 		sdp->swd_path = kmem_alloc(len, KM_SLEEP);
    697 		if (copystr(userpath, sdp->swd_path, len, 0) != 0)
    698 			panic("swapctl: copystr");
    699 
    700 		/*
    701 		 * we've now got a FAKE placeholder in the swap list.
    702 		 * now attempt to enable swap on it.  if we fail, undo
    703 		 * what we've done and kill the fake entry we just inserted.
    704 		 * if swap_on is a success, it will clear the SWF_FAKE flag
    705 		 */
    706 
    707 		if ((error = swap_on(l, sdp)) != 0) {
    708 			mutex_enter(&uvm_swap_data_lock);
    709 			(void) swaplist_find(vp, true);  /* kill fake entry */
    710 			swaplist_trim();
    711 			mutex_exit(&uvm_swap_data_lock);
    712 			bufq_free(sdp->swd_tab);
    713 			kmem_free(sdp->swd_path, sdp->swd_pathlen);
    714 			kmem_free(sdp, sizeof(*sdp));
    715 			break;
    716 		}
    717 		break;
    718 
    719 	case SWAP_OFF:
    720 		mutex_enter(&uvm_swap_data_lock);
    721 		if ((sdp = swaplist_find(vp, false)) == NULL) {
    722 			mutex_exit(&uvm_swap_data_lock);
    723 			error = ENXIO;
    724 			break;
    725 		}
    726 
    727 		/*
    728 		 * If a device isn't in use or enabled, we
    729 		 * can't stop swapping from it (again).
    730 		 */
    731 		if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
    732 			mutex_exit(&uvm_swap_data_lock);
    733 			error = EBUSY;
    734 			break;
    735 		}
    736 
    737 		/*
    738 		 * do the real work.
    739 		 */
    740 		error = swap_off(l, sdp);
    741 		break;
    742 
    743 	default:
    744 		error = EINVAL;
    745 	}
    746 
    747 	/*
    748 	 * done!  release the ref gained by namei() and unlock.
    749 	 */
    750 	vput(vp);
    751 out:
    752 	rw_exit(&swap_syscall_lock);
    753 	kmem_free(userpath, SWAP_PATH_MAX);
    754 
    755 	UVMHIST_LOG(pdhist, "<- done!  error=%jd", error, 0, 0, 0);
    756 	return (error);
    757 }
    758 
    759 /*
    760  * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
    761  * away from sys_swapctl() in order to allow COMPAT_* swapctl()
    762  * emulation to use it directly without going through sys_swapctl().
    763  * The problem with using sys_swapctl() there is that it involves
    764  * copying the swapent array to the stackgap, and this array's size
    765  * is not known at build time. Hence it would not be possible to
    766  * ensure it would fit in the stackgap in any case.
    767  */
    768 int
    769 uvm_swap_stats(char *ptr, int misc,
    770     void (*f)(void *, const struct swapent *), size_t len,
    771     register_t *retval)
    772 {
    773 	struct swappri *spp;
    774 	struct swapdev *sdp;
    775 	struct swapent sep;
    776 	int count = 0;
    777 	int error;
    778 
    779 	KASSERT(len <= sizeof(sep));
    780 	if (len == 0)
    781 		return ENOSYS;
    782 
    783 	if (misc < 0)
    784 		return EINVAL;
    785 
    786 	if (misc == 0 || uvmexp.nswapdev == 0)
    787 		return 0;
    788 
    789 	/* Make sure userland cannot exhaust kernel memory */
    790 	if ((size_t)misc > (size_t)uvmexp.nswapdev)
    791 		misc = uvmexp.nswapdev;
    792 
    793 	KASSERT(rw_lock_held(&swap_syscall_lock));
    794 
    795 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
    796 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
    797 			int inuse;
    798 
    799 			if (misc-- <= 0)
    800 				break;
    801 
    802 			inuse = btodb((uint64_t)sdp->swd_npginuse <<
    803 			    PAGE_SHIFT);
    804 
    805 			memset(&sep, 0, sizeof(sep));
    806 			swapent_cvt(&sep, sdp, inuse);
    807 			if (f)
    808 				(*f)(&sep, &sep);
    809 			if ((error = copyout(&sep, ptr, len)) != 0)
    810 				return error;
    811 			ptr += len;
    812 			count++;
    813 		}
    814 	}
    815 	*retval = count;
    816 	return 0;
    817 }
    818 
    819 /*
    820  * swap_on: attempt to enable a swapdev for swapping.   note that the
    821  *	swapdev is already on the global list, but disabled (marked
    822  *	SWF_FAKE).
    823  *
    824  * => we avoid the start of the disk (to protect disk labels)
    825  * => we also avoid the miniroot, if we are swapping to root.
    826  * => caller should leave uvm_swap_data_lock unlocked, we may lock it
    827  *	if needed.
    828  */
    829 static int
    830 swap_on(struct lwp *l, struct swapdev *sdp)
    831 {
    832 	struct vnode *vp;
    833 	int error, npages, nblocks, size;
    834 	long addr;
    835 	vmem_addr_t result;
    836 	struct vattr va;
    837 	dev_t dev;
    838 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
    839 
    840 	/*
    841 	 * we want to enable swapping on sdp.   the swd_vp contains
    842 	 * the vnode we want (locked and ref'd), and the swd_dev
    843 	 * contains the dev_t of the file, if it a block device.
    844 	 */
    845 
    846 	vp = sdp->swd_vp;
    847 	dev = sdp->swd_dev;
    848 
    849 	/*
    850 	 * open the swap file (mostly useful for block device files to
    851 	 * let device driver know what is up).
    852 	 *
    853 	 * we skip the open/close for root on swap because the root
    854 	 * has already been opened when root was mounted (mountroot).
    855 	 */
    856 	if (vp != rootvp) {
    857 		if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
    858 			return (error);
    859 	}
    860 
    861 	/* XXX this only works for block devices */
    862 	UVMHIST_LOG(pdhist, "  dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
    863 
    864 	/*
    865 	 * we now need to determine the size of the swap area.   for
    866 	 * block specials we can call the d_psize function.
    867 	 * for normal files, we must stat [get attrs].
    868 	 *
    869 	 * we put the result in nblks.
    870 	 * for normal files, we also want the filesystem block size
    871 	 * (which we get with statfs).
    872 	 */
    873 	switch (vp->v_type) {
    874 	case VBLK:
    875 		if ((nblocks = bdev_size(dev)) == -1) {
    876 			error = ENXIO;
    877 			goto bad;
    878 		}
    879 		break;
    880 
    881 	case VREG:
    882 		if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
    883 			goto bad;
    884 		nblocks = (int)btodb(va.va_size);
    885 		sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
    886 		/*
    887 		 * limit the max # of outstanding I/O requests we issue
    888 		 * at any one time.   take it easy on NFS servers.
    889 		 */
    890 		if (vp->v_tag == VT_NFS)
    891 			sdp->swd_maxactive = 2; /* XXX */
    892 		else
    893 			sdp->swd_maxactive = 8; /* XXX */
    894 		break;
    895 
    896 	default:
    897 		error = ENXIO;
    898 		goto bad;
    899 	}
    900 
    901 	/*
    902 	 * save nblocks in a safe place and convert to pages.
    903 	 */
    904 
    905 	sdp->swd_nblks = nblocks;
    906 	npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
    907 
    908 	/*
    909 	 * for block special files, we want to make sure that leave
    910 	 * the disklabel and bootblocks alone, so we arrange to skip
    911 	 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
    912 	 * note that because of this the "size" can be less than the
    913 	 * actual number of blocks on the device.
    914 	 */
    915 	if (vp->v_type == VBLK) {
    916 		/* we use pages 1 to (size - 1) [inclusive] */
    917 		size = npages - 1;
    918 		addr = 1;
    919 	} else {
    920 		/* we use pages 0 to (size - 1) [inclusive] */
    921 		size = npages;
    922 		addr = 0;
    923 	}
    924 
    925 	/*
    926 	 * make sure we have enough blocks for a reasonable sized swap
    927 	 * area.   we want at least one page.
    928 	 */
    929 
    930 	if (size < 1) {
    931 		UVMHIST_LOG(pdhist, "  size <= 1!!", 0, 0, 0, 0);
    932 		error = EINVAL;
    933 		goto bad;
    934 	}
    935 
    936 	UVMHIST_LOG(pdhist, "  dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
    937 
    938 	/*
    939 	 * now we need to allocate an extent to manage this swap device
    940 	 */
    941 
    942 	sdp->swd_blist = blist_create(npages);
    943 	/* mark all expect the `saved' region free. */
    944 	blist_free(sdp->swd_blist, addr, size);
    945 
    946 	/*
    947 	 * allocate space to for swap encryption state and mark the
    948 	 * keys uninitialized so we generate them lazily
    949 	 */
    950 	sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
    951 	sdp->swd_encinit = false;
    952 
    953 	/*
    954 	 * if the vnode we are swapping to is the root vnode
    955 	 * (i.e. we are swapping to the miniroot) then we want
    956 	 * to make sure we don't overwrite it.   do a statfs to
    957 	 * find its size and skip over it.
    958 	 */
    959 	if (vp == rootvp) {
    960 		struct mount *mp;
    961 		struct statvfs *sp;
    962 		int rootblocks, rootpages;
    963 
    964 		mp = rootvnode->v_mount;
    965 		sp = &mp->mnt_stat;
    966 		rootblocks = sp->f_blocks * btodb(sp->f_frsize);
    967 		/*
    968 		 * XXX: sp->f_blocks isn't the total number of
    969 		 * blocks in the filesystem, it's the number of
    970 		 * data blocks.  so, our rootblocks almost
    971 		 * definitely underestimates the total size
    972 		 * of the filesystem - how badly depends on the
    973 		 * details of the filesystem type.  there isn't
    974 		 * an obvious way to deal with this cleanly
    975 		 * and perfectly, so for now we just pad our
    976 		 * rootblocks estimate with an extra 5 percent.
    977 		 */
    978 		rootblocks += (rootblocks >> 5) +
    979 			(rootblocks >> 6) +
    980 			(rootblocks >> 7);
    981 		rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
    982 		if (rootpages > size)
    983 			panic("swap_on: miniroot larger than swap?");
    984 
    985 		if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
    986 			panic("swap_on: unable to preserve miniroot");
    987 		}
    988 
    989 		size -= rootpages;
    990 		printf("Preserved %d pages of miniroot ", rootpages);
    991 		printf("leaving %d pages of swap\n", size);
    992 	}
    993 
    994 	/*
    995 	 * add a ref to vp to reflect usage as a swap device.
    996 	 */
    997 	vref(vp);
    998 
    999 	/*
   1000 	 * now add the new swapdev to the drum and enable.
   1001 	 */
   1002 	error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
   1003 	if (error != 0)
   1004 		panic("swapdrum_add");
   1005 	/*
   1006 	 * If this is the first regular swap create the workqueue.
   1007 	 * => Protected by swap_syscall_lock.
   1008 	 */
   1009 	if (vp->v_type != VBLK) {
   1010 		if (sw_reg_count++ == 0) {
   1011 			KASSERT(sw_reg_workqueue == NULL);
   1012 			if (workqueue_create(&sw_reg_workqueue, "swapiod",
   1013 			    sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
   1014 				panic("%s: workqueue_create failed", __func__);
   1015 		}
   1016 	}
   1017 
   1018 	sdp->swd_drumoffset = (int)result;
   1019 	sdp->swd_drumsize = npages;
   1020 	sdp->swd_npages = size;
   1021 	mutex_enter(&uvm_swap_data_lock);
   1022 	sdp->swd_flags &= ~SWF_FAKE;	/* going live */
   1023 	sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
   1024 	uvmexp.swpages += size;
   1025 	uvmexp.swpgavail += size;
   1026 	mutex_exit(&uvm_swap_data_lock);
   1027 	return (0);
   1028 
   1029 	/*
   1030 	 * failure: clean up and return error.
   1031 	 */
   1032 
   1033 bad:
   1034 	if (sdp->swd_blist) {
   1035 		blist_destroy(sdp->swd_blist);
   1036 	}
   1037 	if (vp != rootvp) {
   1038 		(void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
   1039 	}
   1040 	return (error);
   1041 }
   1042 
   1043 /*
   1044  * swap_off: stop swapping on swapdev
   1045  *
   1046  * => swap data should be locked, we will unlock.
   1047  */
   1048 static int
   1049 swap_off(struct lwp *l, struct swapdev *sdp)
   1050 {
   1051 	int npages = sdp->swd_npages;
   1052 	int error = 0;
   1053 
   1054 	UVMHIST_FUNC(__func__);
   1055 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
   1056 
   1057 	KASSERT(rw_write_held(&swap_syscall_lock));
   1058 	KASSERT(mutex_owned(&uvm_swap_data_lock));
   1059 
   1060 	/* disable the swap area being removed */
   1061 	sdp->swd_flags &= ~SWF_ENABLE;
   1062 	uvmexp.swpgavail -= npages;
   1063 	mutex_exit(&uvm_swap_data_lock);
   1064 
   1065 	/*
   1066 	 * the idea is to find all the pages that are paged out to this
   1067 	 * device, and page them all in.  in uvm, swap-backed pageable
   1068 	 * memory can take two forms: aobjs and anons.  call the
   1069 	 * swapoff hook for each subsystem to bring in pages.
   1070 	 */
   1071 
   1072 	if (uao_swap_off(sdp->swd_drumoffset,
   1073 			 sdp->swd_drumoffset + sdp->swd_drumsize) ||
   1074 	    amap_swap_off(sdp->swd_drumoffset,
   1075 			  sdp->swd_drumoffset + sdp->swd_drumsize)) {
   1076 		error = ENOMEM;
   1077 	} else if (sdp->swd_npginuse > sdp->swd_npgbad) {
   1078 		error = EBUSY;
   1079 	}
   1080 
   1081 	if (error) {
   1082 		mutex_enter(&uvm_swap_data_lock);
   1083 		sdp->swd_flags |= SWF_ENABLE;
   1084 		uvmexp.swpgavail += npages;
   1085 		mutex_exit(&uvm_swap_data_lock);
   1086 
   1087 		return error;
   1088 	}
   1089 
   1090 	/*
   1091 	 * If this is the last regular swap destroy the workqueue.
   1092 	 * => Protected by swap_syscall_lock.
   1093 	 */
   1094 	if (sdp->swd_vp->v_type != VBLK) {
   1095 		KASSERT(sw_reg_count > 0);
   1096 		KASSERT(sw_reg_workqueue != NULL);
   1097 		if (--sw_reg_count == 0) {
   1098 			workqueue_destroy(sw_reg_workqueue);
   1099 			sw_reg_workqueue = NULL;
   1100 		}
   1101 	}
   1102 
   1103 	/*
   1104 	 * done with the vnode.
   1105 	 * drop our ref on the vnode before calling VOP_CLOSE()
   1106 	 * so that spec_close() can tell if this is the last close.
   1107 	 */
   1108 	vrele(sdp->swd_vp);
   1109 	if (sdp->swd_vp != rootvp) {
   1110 		(void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
   1111 	}
   1112 
   1113 	mutex_enter(&uvm_swap_data_lock);
   1114 	uvmexp.swpages -= npages;
   1115 	uvmexp.swpginuse -= sdp->swd_npgbad;
   1116 
   1117 	if (swaplist_find(sdp->swd_vp, true) == NULL)
   1118 		panic("%s: swapdev not in list", __func__);
   1119 	swaplist_trim();
   1120 	mutex_exit(&uvm_swap_data_lock);
   1121 
   1122 	/*
   1123 	 * free all resources!
   1124 	 */
   1125 	vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
   1126 	blist_destroy(sdp->swd_blist);
   1127 	bufq_free(sdp->swd_tab);
   1128 	kmem_free(__UNVOLATILE(sdp->swd_encmap),
   1129 	    encmap_size(sdp->swd_drumsize));
   1130 	explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
   1131 	explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
   1132 	kmem_free(sdp, sizeof(*sdp));
   1133 	return (0);
   1134 }
   1135 
   1136 void
   1137 uvm_swap_shutdown(struct lwp *l)
   1138 {
   1139 	struct swapdev *sdp;
   1140 	struct swappri *spp;
   1141 	struct vnode *vp;
   1142 	int error;
   1143 
   1144 	printf("turning off swap...");
   1145 	rw_enter(&swap_syscall_lock, RW_WRITER);
   1146 	mutex_enter(&uvm_swap_data_lock);
   1147 again:
   1148 	LIST_FOREACH(spp, &swap_priority, spi_swappri)
   1149 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1150 			if (sdp->swd_flags & SWF_FAKE)
   1151 				continue;
   1152 			if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
   1153 				continue;
   1154 #ifdef DEBUG
   1155 			printf("\nturning off swap on %s...", sdp->swd_path);
   1156 #endif
   1157 			/* Have to lock and reference vnode for swap_off(). */
   1158 			vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
   1159 			vref(vp);
   1160 			error = swap_off(l, sdp);
   1161 			vput(vp);
   1162 			mutex_enter(&uvm_swap_data_lock);
   1163 			if (error) {
   1164 				printf("stopping swap on %s failed "
   1165 				    "with error %d\n", sdp->swd_path, error);
   1166 				TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1167 				uvmexp.nswapdev--;
   1168 				swaplist_trim();
   1169 			}
   1170 			goto again;
   1171 		}
   1172 	printf(" done\n");
   1173 	mutex_exit(&uvm_swap_data_lock);
   1174 	rw_exit(&swap_syscall_lock);
   1175 }
   1176 
   1177 
   1178 /*
   1179  * /dev/drum interface and i/o functions
   1180  */
   1181 
   1182 /*
   1183  * swstrategy: perform I/O on the drum
   1184  *
   1185  * => we must map the i/o request from the drum to the correct swapdev.
   1186  */
   1187 static void
   1188 swstrategy(struct buf *bp)
   1189 {
   1190 	struct swapdev *sdp;
   1191 	struct vnode *vp;
   1192 	int pageno, bn;
   1193 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1194 
   1195 	/*
   1196 	 * convert block number to swapdev.   note that swapdev can't
   1197 	 * be yanked out from under us because we are holding resources
   1198 	 * in it (i.e. the blocks we are doing I/O on).
   1199 	 */
   1200 	pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
   1201 	mutex_enter(&uvm_swap_data_lock);
   1202 	sdp = swapdrum_getsdp(pageno);
   1203 	mutex_exit(&uvm_swap_data_lock);
   1204 	if (sdp == NULL) {
   1205 		bp->b_error = EINVAL;
   1206 		bp->b_resid = bp->b_bcount;
   1207 		biodone(bp);
   1208 		UVMHIST_LOG(pdhist, "  failed to get swap device", 0, 0, 0, 0);
   1209 		return;
   1210 	}
   1211 
   1212 	/*
   1213 	 * convert drum page number to block number on this swapdev.
   1214 	 */
   1215 
   1216 	pageno -= sdp->swd_drumoffset;	/* page # on swapdev */
   1217 	bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
   1218 
   1219 	UVMHIST_LOG(pdhist, "  Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
   1220 		((bp->b_flags & B_READ) == 0) ? 1 : 0,
   1221 		sdp->swd_drumoffset, bn, bp->b_bcount);
   1222 
   1223 	/*
   1224 	 * for block devices we finish up here.
   1225 	 * for regular files we have to do more work which we delegate
   1226 	 * to sw_reg_strategy().
   1227 	 */
   1228 
   1229 	vp = sdp->swd_vp;		/* swapdev vnode pointer */
   1230 	switch (vp->v_type) {
   1231 	default:
   1232 		panic("%s: vnode type 0x%x", __func__, vp->v_type);
   1233 
   1234 	case VBLK:
   1235 
   1236 		/*
   1237 		 * must convert "bp" from an I/O on /dev/drum to an I/O
   1238 		 * on the swapdev (sdp).
   1239 		 */
   1240 		bp->b_blkno = bn;		/* swapdev block number */
   1241 		bp->b_dev = sdp->swd_dev;	/* swapdev dev_t */
   1242 
   1243 		/*
   1244 		 * if we are doing a write, we have to redirect the i/o on
   1245 		 * drum's v_numoutput counter to the swapdevs.
   1246 		 */
   1247 		if ((bp->b_flags & B_READ) == 0) {
   1248 			mutex_enter(bp->b_objlock);
   1249 			vwakeup(bp);	/* kills one 'v_numoutput' on drum */
   1250 			mutex_exit(bp->b_objlock);
   1251 			mutex_enter(vp->v_interlock);
   1252 			vp->v_numoutput++;	/* put it on swapdev */
   1253 			mutex_exit(vp->v_interlock);
   1254 		}
   1255 
   1256 		/*
   1257 		 * finally plug in swapdev vnode and start I/O
   1258 		 */
   1259 		bp->b_vp = vp;
   1260 		bp->b_objlock = vp->v_interlock;
   1261 		VOP_STRATEGY(vp, bp);
   1262 		return;
   1263 
   1264 	case VREG:
   1265 		/*
   1266 		 * delegate to sw_reg_strategy function.
   1267 		 */
   1268 		sw_reg_strategy(sdp, bp, bn);
   1269 		return;
   1270 	}
   1271 	/* NOTREACHED */
   1272 }
   1273 
   1274 /*
   1275  * swread: the read function for the drum (just a call to physio)
   1276  */
   1277 /*ARGSUSED*/
   1278 static int
   1279 swread(dev_t dev, struct uio *uio, int ioflag)
   1280 {
   1281 	UVMHIST_FUNC(__func__);
   1282 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1283 
   1284 	return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
   1285 }
   1286 
   1287 /*
   1288  * swwrite: the write function for the drum (just a call to physio)
   1289  */
   1290 /*ARGSUSED*/
   1291 static int
   1292 swwrite(dev_t dev, struct uio *uio, int ioflag)
   1293 {
   1294 	UVMHIST_FUNC(__func__);
   1295 	UVMHIST_CALLARGS(pdhist, "  dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
   1296 
   1297 	return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
   1298 }
   1299 
   1300 const struct bdevsw swap_bdevsw = {
   1301 	.d_open = nullopen,
   1302 	.d_close = nullclose,
   1303 	.d_strategy = swstrategy,
   1304 	.d_ioctl = noioctl,
   1305 	.d_dump = nodump,
   1306 	.d_psize = nosize,
   1307 	.d_discard = nodiscard,
   1308 	.d_flag = D_OTHER
   1309 };
   1310 
   1311 const struct cdevsw swap_cdevsw = {
   1312 	.d_open = nullopen,
   1313 	.d_close = nullclose,
   1314 	.d_read = swread,
   1315 	.d_write = swwrite,
   1316 	.d_ioctl = noioctl,
   1317 	.d_stop = nostop,
   1318 	.d_tty = notty,
   1319 	.d_poll = nopoll,
   1320 	.d_mmap = nommap,
   1321 	.d_kqfilter = nokqfilter,
   1322 	.d_discard = nodiscard,
   1323 	.d_flag = D_OTHER,
   1324 };
   1325 
   1326 /*
   1327  * sw_reg_strategy: handle swap i/o to regular files
   1328  */
   1329 static void
   1330 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
   1331 {
   1332 	struct vnode	*vp;
   1333 	struct vndxfer	*vnx;
   1334 	daddr_t		nbn;
   1335 	char 		*addr;
   1336 	off_t		byteoff;
   1337 	int		s, off, nra, error, sz, resid;
   1338 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1339 
   1340 	/*
   1341 	 * allocate a vndxfer head for this transfer and point it to
   1342 	 * our buffer.
   1343 	 */
   1344 	vnx = pool_get(&vndxfer_pool, PR_WAITOK);
   1345 	vnx->vx_flags = VX_BUSY;
   1346 	vnx->vx_error = 0;
   1347 	vnx->vx_pending = 0;
   1348 	vnx->vx_bp = bp;
   1349 	vnx->vx_sdp = sdp;
   1350 
   1351 	/*
   1352 	 * setup for main loop where we read filesystem blocks into
   1353 	 * our buffer.
   1354 	 */
   1355 	error = 0;
   1356 	bp->b_resid = bp->b_bcount;	/* nothing transferred yet! */
   1357 	addr = bp->b_data;		/* current position in buffer */
   1358 	byteoff = dbtob((uint64_t)bn);
   1359 
   1360 	for (resid = bp->b_resid; resid; resid -= sz) {
   1361 		struct vndbuf	*nbp;
   1362 
   1363 		/*
   1364 		 * translate byteoffset into block number.  return values:
   1365 		 *   vp = vnode of underlying device
   1366 		 *  nbn = new block number (on underlying vnode dev)
   1367 		 *  nra = num blocks we can read-ahead (excludes requested
   1368 		 *	block)
   1369 		 */
   1370 		nra = 0;
   1371 		error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
   1372 				 	&vp, &nbn, &nra);
   1373 
   1374 		if (error == 0 && nbn == (daddr_t)-1) {
   1375 			/*
   1376 			 * this used to just set error, but that doesn't
   1377 			 * do the right thing.  Instead, it causes random
   1378 			 * memory errors.  The panic() should remain until
   1379 			 * this condition doesn't destabilize the system.
   1380 			 */
   1381 #if 1
   1382 			panic("%s: swap to sparse file", __func__);
   1383 #else
   1384 			error = EIO;	/* failure */
   1385 #endif
   1386 		}
   1387 
   1388 		/*
   1389 		 * punt if there was an error or a hole in the file.
   1390 		 * we must wait for any i/o ops we have already started
   1391 		 * to finish before returning.
   1392 		 *
   1393 		 * XXX we could deal with holes here but it would be
   1394 		 * a hassle (in the write case).
   1395 		 */
   1396 		if (error) {
   1397 			s = splbio();
   1398 			vnx->vx_error = error;	/* pass error up */
   1399 			goto out;
   1400 		}
   1401 
   1402 		/*
   1403 		 * compute the size ("sz") of this transfer (in bytes).
   1404 		 */
   1405 		off = byteoff % sdp->swd_bsize;
   1406 		sz = (1 + nra) * sdp->swd_bsize - off;
   1407 		if (sz > resid)
   1408 			sz = resid;
   1409 
   1410 		UVMHIST_LOG(pdhist, "sw_reg_strategy: "
   1411 		    "vp %#jx/%#jx offset %#jx/%#jx",
   1412 		    (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
   1413 
   1414 		/*
   1415 		 * now get a buf structure.   note that the vb_buf is
   1416 		 * at the front of the nbp structure so that you can
   1417 		 * cast pointers between the two structure easily.
   1418 		 */
   1419 		nbp = pool_get(&vndbuf_pool, PR_WAITOK);
   1420 		buf_init(&nbp->vb_buf);
   1421 		nbp->vb_buf.b_flags    = bp->b_flags;
   1422 		nbp->vb_buf.b_cflags   = bp->b_cflags;
   1423 		nbp->vb_buf.b_oflags   = bp->b_oflags;
   1424 		nbp->vb_buf.b_bcount   = sz;
   1425 		nbp->vb_buf.b_bufsize  = sz;
   1426 		nbp->vb_buf.b_error    = 0;
   1427 		nbp->vb_buf.b_data     = addr;
   1428 		nbp->vb_buf.b_lblkno   = 0;
   1429 		nbp->vb_buf.b_blkno    = nbn + btodb(off);
   1430 		nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
   1431 		nbp->vb_buf.b_iodone   = sw_reg_biodone;
   1432 		nbp->vb_buf.b_vp       = vp;
   1433 		nbp->vb_buf.b_objlock  = vp->v_interlock;
   1434 		if (vp->v_type == VBLK) {
   1435 			nbp->vb_buf.b_dev = vp->v_rdev;
   1436 		}
   1437 
   1438 		nbp->vb_xfer = vnx;	/* patch it back in to vnx */
   1439 
   1440 		/*
   1441 		 * Just sort by block number
   1442 		 */
   1443 		s = splbio();
   1444 		if (vnx->vx_error != 0) {
   1445 			buf_destroy(&nbp->vb_buf);
   1446 			pool_put(&vndbuf_pool, nbp);
   1447 			goto out;
   1448 		}
   1449 		vnx->vx_pending++;
   1450 
   1451 		/* sort it in and start I/O if we are not over our limit */
   1452 		/* XXXAD locking */
   1453 		bufq_put(sdp->swd_tab, &nbp->vb_buf);
   1454 		sw_reg_start(sdp);
   1455 		splx(s);
   1456 
   1457 		/*
   1458 		 * advance to the next I/O
   1459 		 */
   1460 		byteoff += sz;
   1461 		addr += sz;
   1462 	}
   1463 
   1464 	s = splbio();
   1465 
   1466 out: /* Arrive here at splbio */
   1467 	vnx->vx_flags &= ~VX_BUSY;
   1468 	if (vnx->vx_pending == 0) {
   1469 		error = vnx->vx_error;
   1470 		pool_put(&vndxfer_pool, vnx);
   1471 		bp->b_error = error;
   1472 		biodone(bp);
   1473 	}
   1474 	splx(s);
   1475 }
   1476 
   1477 /*
   1478  * sw_reg_start: start an I/O request on the requested swapdev
   1479  *
   1480  * => reqs are sorted by b_rawblkno (above)
   1481  */
   1482 static void
   1483 sw_reg_start(struct swapdev *sdp)
   1484 {
   1485 	struct buf	*bp;
   1486 	struct vnode	*vp;
   1487 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1488 
   1489 	/* recursion control */
   1490 	if ((sdp->swd_flags & SWF_BUSY) != 0)
   1491 		return;
   1492 
   1493 	sdp->swd_flags |= SWF_BUSY;
   1494 
   1495 	while (sdp->swd_active < sdp->swd_maxactive) {
   1496 		bp = bufq_get(sdp->swd_tab);
   1497 		if (bp == NULL)
   1498 			break;
   1499 		sdp->swd_active++;
   1500 
   1501 		UVMHIST_LOG(pdhist,
   1502 		    "sw_reg_start:  bp %#jx vp %#jx blkno %#jx cnt %#jx",
   1503 		    (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
   1504 		    bp->b_bcount);
   1505 		vp = bp->b_vp;
   1506 		KASSERT(bp->b_objlock == vp->v_interlock);
   1507 		if ((bp->b_flags & B_READ) == 0) {
   1508 			mutex_enter(vp->v_interlock);
   1509 			vp->v_numoutput++;
   1510 			mutex_exit(vp->v_interlock);
   1511 		}
   1512 		VOP_STRATEGY(vp, bp);
   1513 	}
   1514 	sdp->swd_flags &= ~SWF_BUSY;
   1515 }
   1516 
   1517 /*
   1518  * sw_reg_biodone: one of our i/o's has completed
   1519  */
   1520 static void
   1521 sw_reg_biodone(struct buf *bp)
   1522 {
   1523 	workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
   1524 }
   1525 
   1526 /*
   1527  * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
   1528  *
   1529  * => note that we can recover the vndbuf struct by casting the buf ptr
   1530  */
   1531 static void
   1532 sw_reg_iodone(struct work *wk, void *dummy)
   1533 {
   1534 	struct vndbuf *vbp = (void *)wk;
   1535 	struct vndxfer *vnx = vbp->vb_xfer;
   1536 	struct buf *pbp = vnx->vx_bp;		/* parent buffer */
   1537 	struct swapdev	*sdp = vnx->vx_sdp;
   1538 	int s, resid, error;
   1539 	KASSERT(&vbp->vb_buf.b_work == wk);
   1540 	UVMHIST_FUNC(__func__);
   1541 	UVMHIST_CALLARGS(pdhist, "  vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
   1542 	    (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
   1543 	    (uintptr_t)vbp->vb_buf.b_data);
   1544 	UVMHIST_LOG(pdhist, "  cnt=%#jx resid=%#jx",
   1545 	    vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
   1546 
   1547 	/*
   1548 	 * protect vbp at splbio and update.
   1549 	 */
   1550 
   1551 	s = splbio();
   1552 	resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
   1553 	pbp->b_resid -= resid;
   1554 	vnx->vx_pending--;
   1555 
   1556 	if (vbp->vb_buf.b_error != 0) {
   1557 		/* pass error upward */
   1558 		error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
   1559 		UVMHIST_LOG(pdhist, "  got error=%jd !", error, 0, 0, 0);
   1560 		vnx->vx_error = error;
   1561 	}
   1562 
   1563 	/*
   1564 	 * kill vbp structure
   1565 	 */
   1566 	buf_destroy(&vbp->vb_buf);
   1567 	pool_put(&vndbuf_pool, vbp);
   1568 
   1569 	/*
   1570 	 * wrap up this transaction if it has run to completion or, in
   1571 	 * case of an error, when all auxiliary buffers have returned.
   1572 	 */
   1573 	if (vnx->vx_error != 0) {
   1574 		/* pass error upward */
   1575 		error = vnx->vx_error;
   1576 		if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
   1577 			pbp->b_error = error;
   1578 			biodone(pbp);
   1579 			pool_put(&vndxfer_pool, vnx);
   1580 		}
   1581 	} else if (pbp->b_resid == 0) {
   1582 		KASSERT(vnx->vx_pending == 0);
   1583 		if ((vnx->vx_flags & VX_BUSY) == 0) {
   1584 			UVMHIST_LOG(pdhist, "  iodone, pbp=%#jx error=%jd !",
   1585 			    (uintptr_t)pbp, vnx->vx_error, 0, 0);
   1586 			biodone(pbp);
   1587 			pool_put(&vndxfer_pool, vnx);
   1588 		}
   1589 	}
   1590 
   1591 	/*
   1592 	 * done!   start next swapdev I/O if one is pending
   1593 	 */
   1594 	sdp->swd_active--;
   1595 	sw_reg_start(sdp);
   1596 	splx(s);
   1597 }
   1598 
   1599 
   1600 /*
   1601  * uvm_swap_alloc: allocate space on swap
   1602  *
   1603  * => allocation is done "round robin" down the priority list, as we
   1604  *	allocate in a priority we "rotate" the circle queue.
   1605  * => space can be freed with uvm_swap_free
   1606  * => we return the page slot number in /dev/drum (0 == invalid slot)
   1607  * => we lock uvm_swap_data_lock
   1608  * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
   1609  */
   1610 int
   1611 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
   1612 {
   1613 	struct swapdev *sdp;
   1614 	struct swappri *spp;
   1615 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1616 
   1617 	/*
   1618 	 * no swap devices configured yet?   definite failure.
   1619 	 */
   1620 	if (uvmexp.nswapdev < 1)
   1621 		return 0;
   1622 
   1623 	/*
   1624 	 * XXXJAK: BEGIN HACK
   1625 	 *
   1626 	 * blist_alloc() in subr_blist.c will panic if we try to allocate
   1627 	 * too many slots.
   1628 	 */
   1629 	if (*nslots > BLIST_MAX_ALLOC) {
   1630 		if (__predict_false(lessok == false))
   1631 			return 0;
   1632 		*nslots = BLIST_MAX_ALLOC;
   1633 	}
   1634 	/* XXXJAK: END HACK */
   1635 
   1636 	/*
   1637 	 * lock data lock, convert slots into blocks, and enter loop
   1638 	 */
   1639 	mutex_enter(&uvm_swap_data_lock);
   1640 
   1641 ReTry:	/* XXXMRG */
   1642 	LIST_FOREACH(spp, &swap_priority, spi_swappri) {
   1643 		TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
   1644 			uint64_t result;
   1645 
   1646 			/* if it's not enabled, then we can't swap from it */
   1647 			if ((sdp->swd_flags & SWF_ENABLE) == 0)
   1648 				continue;
   1649 			if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
   1650 				continue;
   1651 			result = blist_alloc(sdp->swd_blist, *nslots);
   1652 			if (result == BLIST_NONE) {
   1653 				continue;
   1654 			}
   1655 			KASSERT(result < sdp->swd_drumsize);
   1656 
   1657 			/*
   1658 			 * successful allocation!  now rotate the tailq.
   1659 			 */
   1660 			TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
   1661 			TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
   1662 			sdp->swd_npginuse += *nslots;
   1663 			uvmexp.swpginuse += *nslots;
   1664 			mutex_exit(&uvm_swap_data_lock);
   1665 			/* done!  return drum slot number */
   1666 			UVMHIST_LOG(pdhist,
   1667 			    "success!  returning %jd slots starting at %jd",
   1668 			    *nslots, result + sdp->swd_drumoffset, 0, 0);
   1669 			return (result + sdp->swd_drumoffset);
   1670 		}
   1671 	}
   1672 
   1673 	/* XXXMRG: BEGIN HACK */
   1674 	if (*nslots > 1 && lessok) {
   1675 		*nslots = 1;
   1676 		/* XXXMRG: ugh!  blist should support this for us */
   1677 		goto ReTry;
   1678 	}
   1679 	/* XXXMRG: END HACK */
   1680 
   1681 	mutex_exit(&uvm_swap_data_lock);
   1682 	return 0;
   1683 }
   1684 
   1685 /*
   1686  * uvm_swapisfull: return true if most of available swap is allocated
   1687  * and in use.  we don't count some small portion as it may be inaccessible
   1688  * to us at any given moment, for example if there is lock contention or if
   1689  * pages are busy.
   1690  */
   1691 bool
   1692 uvm_swapisfull(void)
   1693 {
   1694 	int swpgonly;
   1695 	bool rv;
   1696 
   1697 	if (uvmexp.swpages == 0) {
   1698 		return true;
   1699 	}
   1700 
   1701 	mutex_enter(&uvm_swap_data_lock);
   1702 	KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
   1703 	swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
   1704 	    uvm_swapisfull_factor);
   1705 	rv = (swpgonly >= uvmexp.swpgavail);
   1706 	mutex_exit(&uvm_swap_data_lock);
   1707 
   1708 	return (rv);
   1709 }
   1710 
   1711 /*
   1712  * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
   1713  *
   1714  * => we lock uvm_swap_data_lock
   1715  */
   1716 void
   1717 uvm_swap_markbad(int startslot, int nslots)
   1718 {
   1719 	struct swapdev *sdp;
   1720 	UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
   1721 
   1722 	mutex_enter(&uvm_swap_data_lock);
   1723 	sdp = swapdrum_getsdp(startslot);
   1724 	KASSERT(sdp != NULL);
   1725 
   1726 	/*
   1727 	 * we just keep track of how many pages have been marked bad
   1728 	 * in this device, to make everything add up in swap_off().
   1729 	 * we assume here that the range of slots will all be within
   1730 	 * one swap device.
   1731 	 */
   1732 
   1733 	KASSERT(uvmexp.swpgonly >= nslots);
   1734 	atomic_add_int(&uvmexp.swpgonly, -nslots);
   1735 	sdp->swd_npgbad += nslots;
   1736 	UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
   1737 	mutex_exit(&uvm_swap_data_lock);
   1738 }
   1739 
   1740 /*
   1741  * uvm_swap_free: free swap slots
   1742  *
   1743  * => this can be all or part of an allocation made by uvm_swap_alloc
   1744  * => we lock uvm_swap_data_lock
   1745  */
   1746 void
   1747 uvm_swap_free(int startslot, int nslots)
   1748 {
   1749 	struct swapdev *sdp;
   1750 	UVMHIST_FUNC(__func__);
   1751 	UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
   1752 	    startslot, 0, 0);
   1753 
   1754 	/*
   1755 	 * ignore attempts to free the "bad" slot.
   1756 	 */
   1757 
   1758 	if (startslot == SWSLOT_BAD) {
   1759 		return;
   1760 	}
   1761 
   1762 	/*
   1763 	 * convert drum slot offset back to sdp, free the blocks
   1764 	 * in the extent, and return.   must hold pri lock to do
   1765 	 * lookup and access the extent.
   1766 	 */
   1767 
   1768 	mutex_enter(&uvm_swap_data_lock);
   1769 	sdp = swapdrum_getsdp(startslot);
   1770 	KASSERT(uvmexp.nswapdev >= 1);
   1771 	KASSERT(sdp != NULL);
   1772 	KASSERT(sdp->swd_npginuse >= nslots);
   1773 	blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
   1774 	sdp->swd_npginuse -= nslots;
   1775 	uvmexp.swpginuse -= nslots;
   1776 	mutex_exit(&uvm_swap_data_lock);
   1777 }
   1778 
   1779 /*
   1780  * uvm_swap_put: put any number of pages into a contig place on swap
   1781  *
   1782  * => can be sync or async
   1783  */
   1784 
   1785 int
   1786 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
   1787 {
   1788 	int error;
   1789 
   1790 	error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
   1791 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1792 	return error;
   1793 }
   1794 
   1795 /*
   1796  * uvm_swap_get: get a single page from swap
   1797  *
   1798  * => usually a sync op (from fault)
   1799  */
   1800 
   1801 int
   1802 uvm_swap_get(struct vm_page *page, int swslot, int flags)
   1803 {
   1804 	int error;
   1805 
   1806 	atomic_inc_uint(&uvmexp.nswget);
   1807 	KASSERT(flags & PGO_SYNCIO);
   1808 	if (swslot == SWSLOT_BAD) {
   1809 		return EIO;
   1810 	}
   1811 
   1812 	error = uvm_swap_io(&page, swslot, 1, B_READ |
   1813 	    ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
   1814 	if (error == 0) {
   1815 
   1816 		/*
   1817 		 * this page is no longer only in swap.
   1818 		 */
   1819 
   1820 		KASSERT(uvmexp.swpgonly > 0);
   1821 		atomic_dec_uint(&uvmexp.swpgonly);
   1822 	}
   1823 	return error;
   1824 }
   1825 
   1826 /*
   1827  * uvm_swap_io: do an i/o operation to swap
   1828  */
   1829 
   1830 static int
   1831 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
   1832 {
   1833 	daddr_t startblk;
   1834 	struct	buf *bp;
   1835 	vaddr_t kva;
   1836 	int	error, mapinflags;
   1837 	bool write, async, swap_encrypt;
   1838 	UVMHIST_FUNC(__func__);
   1839 	UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
   1840 	    startslot, npages, flags, 0);
   1841 
   1842 	write = (flags & B_READ) == 0;
   1843 	async = (flags & B_ASYNC) != 0;
   1844 	swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
   1845 
   1846 	/*
   1847 	 * allocate a buf for the i/o.
   1848 	 */
   1849 
   1850 	KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
   1851 	bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
   1852 	if (bp == NULL) {
   1853 		uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
   1854 		return ENOMEM;
   1855 	}
   1856 
   1857 	/*
   1858 	 * convert starting drum slot to block number
   1859 	 */
   1860 
   1861 	startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
   1862 
   1863 	/*
   1864 	 * first, map the pages into the kernel.
   1865 	 */
   1866 
   1867 	mapinflags = !write ?
   1868 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
   1869 		UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
   1870 	if (write && swap_encrypt)	/* need to encrypt in-place */
   1871 		mapinflags |= UVMPAGER_MAPIN_READ;
   1872 	kva = uvm_pagermapin(pps, npages, mapinflags);
   1873 
   1874 	/*
   1875 	 * encrypt writes in place if requested
   1876 	 */
   1877 
   1878 	if (write) do {
   1879 		struct swapdev *sdp;
   1880 		int i;
   1881 
   1882 		/*
   1883 		 * Get the swapdev so we can discriminate on the
   1884 		 * encryption state.  There may or may not be an
   1885 		 * encryption key generated; we may or may not be asked
   1886 		 * to encrypt swap.
   1887 		 *
   1888 		 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
   1889 		 *
   1890 		 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
   1891 		 *    and mark the slots encrypted.
   1892 		 *
   1893 		 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
   1894 		 *    marked encrypted from a past life.  Mark them not
   1895 		 *    encrypted.
   1896 		 *
   1897 		 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
   1898 		 *    encrypted.
   1899 		 */
   1900 		mutex_enter(&uvm_swap_data_lock);
   1901 		sdp = swapdrum_getsdp(startslot);
   1902 		if (!sdp->swd_encinit) {
   1903 			if (!swap_encrypt) {
   1904 				mutex_exit(&uvm_swap_data_lock);
   1905 				break;
   1906 			}
   1907 			uvm_swap_genkey(sdp);
   1908 		}
   1909 		KASSERT(sdp->swd_encinit);
   1910 		mutex_exit(&uvm_swap_data_lock);
   1911 
   1912 		for (i = 0; i < npages; i++) {
   1913 			int s = startslot + i;
   1914 			KDASSERT(swapdrum_sdp_is(s, sdp));
   1915 			KASSERT(s >= sdp->swd_drumoffset);
   1916 			s -= sdp->swd_drumoffset;
   1917 			KASSERT(s < sdp->swd_drumsize);
   1918 
   1919 			if (swap_encrypt) {
   1920 				uvm_swap_encryptpage(sdp,
   1921 				    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   1922 				atomic_or_32(&sdp->swd_encmap[s/32],
   1923 				    __BIT(s%32));
   1924 			} else {
   1925 				atomic_and_32(&sdp->swd_encmap[s/32],
   1926 				    ~__BIT(s%32));
   1927 			}
   1928 		}
   1929 	} while (0);
   1930 
   1931 	/*
   1932 	 * fill in the bp/sbp.   we currently route our i/o through
   1933 	 * /dev/drum's vnode [swapdev_vp].
   1934 	 */
   1935 
   1936 	bp->b_cflags = BC_BUSY | BC_NOCACHE;
   1937 	bp->b_flags = (flags & (B_READ|B_ASYNC));
   1938 	bp->b_proc = &proc0;	/* XXX */
   1939 	bp->b_vnbufs.le_next = NOLIST;
   1940 	bp->b_data = (void *)kva;
   1941 	bp->b_blkno = startblk;
   1942 	bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
   1943 
   1944 	/*
   1945 	 * bump v_numoutput (counter of number of active outputs).
   1946 	 */
   1947 
   1948 	if (write) {
   1949 		mutex_enter(swapdev_vp->v_interlock);
   1950 		swapdev_vp->v_numoutput++;
   1951 		mutex_exit(swapdev_vp->v_interlock);
   1952 	}
   1953 
   1954 	/*
   1955 	 * for async ops we must set up the iodone handler.
   1956 	 */
   1957 
   1958 	if (async) {
   1959 		bp->b_iodone = uvm_aio_aiodone;
   1960 		UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
   1961 		if (curlwp == uvm.pagedaemon_lwp)
   1962 			BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1963 		else
   1964 			BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
   1965 	} else {
   1966 		bp->b_iodone = NULL;
   1967 		BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
   1968 	}
   1969 	UVMHIST_LOG(pdhist,
   1970 	    "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
   1971 	    (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
   1972 
   1973 	/*
   1974 	 * now we start the I/O, and if async, return.
   1975 	 */
   1976 
   1977 	VOP_STRATEGY(swapdev_vp, bp);
   1978 	if (async) {
   1979 		/*
   1980 		 * Reads are always synchronous; if this changes, we
   1981 		 * need to add an asynchronous path for decryption.
   1982 		 */
   1983 		KASSERT(write);
   1984 		return 0;
   1985 	}
   1986 
   1987 	/*
   1988 	 * must be sync i/o.   wait for it to finish
   1989 	 */
   1990 
   1991 	error = biowait(bp);
   1992 	if (error)
   1993 		goto out;
   1994 
   1995 	/*
   1996 	 * decrypt reads in place if needed
   1997 	 */
   1998 
   1999 	if (!write) do {
   2000 		struct swapdev *sdp;
   2001 		bool encinit;
   2002 		int i;
   2003 
   2004 		/*
   2005 		 * Get the sdp.  Everything about it except the encinit
   2006 		 * bit, saying whether the encryption key is
   2007 		 * initialized or not, and the encrypted bit for each
   2008 		 * page, is stable until all swap pages have been
   2009 		 * released and the device is removed.
   2010 		 */
   2011 		mutex_enter(&uvm_swap_data_lock);
   2012 		sdp = swapdrum_getsdp(startslot);
   2013 		encinit = sdp->swd_encinit;
   2014 		mutex_exit(&uvm_swap_data_lock);
   2015 
   2016 		if (!encinit)
   2017 			/*
   2018 			 * If there's no encryption key, there's no way
   2019 			 * any of these slots can be encrypted, so
   2020 			 * nothing to do here.
   2021 			 */
   2022 			break;
   2023 		for (i = 0; i < npages; i++) {
   2024 			int s = startslot + i;
   2025 			KDASSERT(swapdrum_sdp_is(s, sdp));
   2026 			KASSERT(s >= sdp->swd_drumoffset);
   2027 			s -= sdp->swd_drumoffset;
   2028 			KASSERT(s < sdp->swd_drumsize);
   2029 			if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
   2030 				__BIT(s%32)) == 0)
   2031 				continue;
   2032 			uvm_swap_decryptpage(sdp,
   2033 			    (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
   2034 		}
   2035 	} while (0);
   2036 out:
   2037 	/*
   2038 	 * kill the pager mapping
   2039 	 */
   2040 
   2041 	uvm_pagermapout(kva, npages);
   2042 
   2043 	/*
   2044 	 * now dispose of the buf and we're done.
   2045 	 */
   2046 
   2047 	if (write) {
   2048 		mutex_enter(swapdev_vp->v_interlock);
   2049 		vwakeup(bp);
   2050 		mutex_exit(swapdev_vp->v_interlock);
   2051 	}
   2052 	putiobuf(bp);
   2053 	UVMHIST_LOG(pdhist, "<- done (sync)  error=%jd", error, 0, 0, 0);
   2054 
   2055 	return (error);
   2056 }
   2057 
   2058 /*
   2059  * uvm_swap_genkey(sdp)
   2060  *
   2061  *	Generate a key for swap encryption.
   2062  */
   2063 static void
   2064 uvm_swap_genkey(struct swapdev *sdp)
   2065 {
   2066 	uint8_t key[32];
   2067 
   2068 	KASSERT(!sdp->swd_encinit);
   2069 
   2070 	cprng_strong(kern_cprng, key, sizeof key, 0);
   2071 	aes_setenckey256(&sdp->swd_enckey, key);
   2072 	aes_setdeckey256(&sdp->swd_deckey, key);
   2073 	explicit_memset(key, 0, sizeof key);
   2074 
   2075 	sdp->swd_encinit = true;
   2076 }
   2077 
   2078 /*
   2079  * uvm_swap_encryptpage(sdp, kva, slot)
   2080  *
   2081  *	Encrypt one page of data at kva for the specified slot number
   2082  *	in the swap device.
   2083  */
   2084 static void
   2085 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
   2086 {
   2087 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2088 
   2089 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2090 	le32enc(preiv, slot);
   2091 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2092 
   2093 	/* *kva := AES-CBC_k(iv, *kva) */
   2094 	aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
   2095 	    AES_256_NROUNDS);
   2096 
   2097 	explicit_memset(&iv, 0, sizeof iv);
   2098 }
   2099 
   2100 /*
   2101  * uvm_swap_decryptpage(sdp, kva, slot)
   2102  *
   2103  *	Decrypt one page of data at kva for the specified slot number
   2104  *	in the swap device.
   2105  */
   2106 static void
   2107 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
   2108 {
   2109 	uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
   2110 
   2111 	/* iv := AES_k(le32enc(slot) || 0^96) */
   2112 	le32enc(preiv, slot);
   2113 	aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
   2114 
   2115 	/* *kva := AES-CBC^{-1}_k(iv, *kva) */
   2116 	aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
   2117 	    AES_256_NROUNDS);
   2118 
   2119 	explicit_memset(&iv, 0, sizeof iv);
   2120 }
   2121 
   2122 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
   2123 {
   2124 
   2125 	sysctl_createv(clog, 0, NULL, NULL,
   2126 	    CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
   2127 	    SYSCTL_DESCR("Encrypt data when swapped out to disk"),
   2128 	    NULL, 0, &uvm_swap_encrypt, 0,
   2129 	    CTL_VM, CTL_CREATE, CTL_EOL);
   2130 }
   2131