uvm_swap.c revision 1.204 1 /* $NetBSD: uvm_swap.c,v 1.204 2021/05/23 00:36:36 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997, 2009 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 *
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
17 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
18 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
19 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
20 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
21 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
22 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
23 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
24 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
27 *
28 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
29 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
30 */
31
32 #include <sys/cdefs.h>
33 __KERNEL_RCSID(0, "$NetBSD: uvm_swap.c,v 1.204 2021/05/23 00:36:36 mrg Exp $");
34
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37 #include "opt_ddb.h"
38
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/atomic.h>
42 #include <sys/buf.h>
43 #include <sys/bufq.h>
44 #include <sys/conf.h>
45 #include <sys/cprng.h>
46 #include <sys/proc.h>
47 #include <sys/namei.h>
48 #include <sys/disklabel.h>
49 #include <sys/errno.h>
50 #include <sys/kernel.h>
51 #include <sys/vnode.h>
52 #include <sys/file.h>
53 #include <sys/vmem.h>
54 #include <sys/blist.h>
55 #include <sys/mount.h>
56 #include <sys/pool.h>
57 #include <sys/kmem.h>
58 #include <sys/syscallargs.h>
59 #include <sys/swap.h>
60 #include <sys/kauth.h>
61 #include <sys/sysctl.h>
62 #include <sys/workqueue.h>
63
64 #include <uvm/uvm.h>
65
66 #include <miscfs/specfs/specdev.h>
67
68 #include <crypto/aes/aes.h>
69 #include <crypto/aes/aes_cbc.h>
70
71 /*
72 * uvm_swap.c: manage configuration and i/o to swap space.
73 */
74
75 /*
76 * swap space is managed in the following way:
77 *
78 * each swap partition or file is described by a "swapdev" structure.
79 * each "swapdev" structure contains a "swapent" structure which contains
80 * information that is passed up to the user (via system calls).
81 *
82 * each swap partition is assigned a "priority" (int) which controls
83 * swap partition usage.
84 *
85 * the system maintains a global data structure describing all swap
86 * partitions/files. there is a sorted LIST of "swappri" structures
87 * which describe "swapdev"'s at that priority. this LIST is headed
88 * by the "swap_priority" global var. each "swappri" contains a
89 * TAILQ of "swapdev" structures at that priority.
90 *
91 * locking:
92 * - swap_syscall_lock (krwlock_t): this lock serializes the swapctl
93 * system call and prevents the swap priority list from changing
94 * while we are in the middle of a system call (e.g. SWAP_STATS).
95 * - uvm_swap_data_lock (kmutex_t): this lock protects all swap data
96 * structures including the priority list, the swapdev structures,
97 * and the swapmap arena.
98 *
99 * each swap device has the following info:
100 * - swap device in use (could be disabled, preventing future use)
101 * - swap enabled (allows new allocations on swap)
102 * - map info in /dev/drum
103 * - vnode pointer
104 * for swap files only:
105 * - block size
106 * - max byte count in buffer
107 * - buffer
108 *
109 * userland controls and configures swap with the swapctl(2) system call.
110 * the sys_swapctl performs the following operations:
111 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
112 * [2] SWAP_STATS: given a pointer to an array of swapent structures
113 * (passed in via "arg") of a size passed in via "misc" ... we load
114 * the current swap config into the array. The actual work is done
115 * in the uvm_swap_stats() function.
116 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
117 * priority in "misc", start swapping on it.
118 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
119 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
120 * "misc")
121 */
122
123 /*
124 * swapdev: describes a single swap partition/file
125 *
126 * note the following should be true:
127 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
128 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
129 */
130 struct swapdev {
131 dev_t swd_dev; /* device id */
132 int swd_flags; /* flags:inuse/enable/fake */
133 int swd_priority; /* our priority */
134 int swd_nblks; /* blocks in this device */
135 char *swd_path; /* saved pathname of device */
136 int swd_pathlen; /* length of pathname */
137 int swd_npages; /* #pages we can use */
138 int swd_npginuse; /* #pages in use */
139 int swd_npgbad; /* #pages bad */
140 int swd_drumoffset; /* page0 offset in drum */
141 int swd_drumsize; /* #pages in drum */
142 blist_t swd_blist; /* blist for this swapdev */
143 struct vnode *swd_vp; /* backing vnode */
144 TAILQ_ENTRY(swapdev) swd_next; /* priority tailq */
145
146 int swd_bsize; /* blocksize (bytes) */
147 int swd_maxactive; /* max active i/o reqs */
148 struct bufq_state *swd_tab; /* buffer list */
149 int swd_active; /* number of active buffers */
150
151 volatile uint32_t *swd_encmap; /* bitmap of encrypted slots */
152 struct aesenc swd_enckey; /* AES key expanded for enc */
153 struct aesdec swd_deckey; /* AES key expanded for dec */
154 bool swd_encinit; /* true if keys initialized */
155 };
156
157 /*
158 * swap device priority entry; the list is kept sorted on `spi_priority'.
159 */
160 struct swappri {
161 int spi_priority; /* priority */
162 TAILQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
163 /* tailq of swapdevs at this priority */
164 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
165 };
166
167 /*
168 * The following two structures are used to keep track of data transfers
169 * on swap devices associated with regular files.
170 * NOTE: this code is more or less a copy of vnd.c; we use the same
171 * structure names here to ease porting..
172 */
173 struct vndxfer {
174 struct buf *vx_bp; /* Pointer to parent buffer */
175 struct swapdev *vx_sdp;
176 int vx_error;
177 int vx_pending; /* # of pending aux buffers */
178 int vx_flags;
179 #define VX_BUSY 1
180 #define VX_DEAD 2
181 };
182
183 struct vndbuf {
184 struct buf vb_buf;
185 struct vndxfer *vb_xfer;
186 };
187
188 /*
189 * We keep a of pool vndbuf's and vndxfer structures.
190 */
191 static struct pool vndxfer_pool, vndbuf_pool;
192
193 /*
194 * local variables
195 */
196 static vmem_t *swapmap; /* controls the mapping of /dev/drum */
197
198 /* list of all active swap devices [by priority] */
199 LIST_HEAD(swap_priority, swappri);
200 static struct swap_priority swap_priority;
201
202 /* locks */
203 static kmutex_t uvm_swap_data_lock __cacheline_aligned;
204 static krwlock_t swap_syscall_lock;
205 bool uvm_swap_init_done = false;
206
207 /* workqueue and use counter for swap to regular files */
208 static int sw_reg_count = 0;
209 static struct workqueue *sw_reg_workqueue;
210
211 /* tuneables */
212 u_int uvm_swapisfull_factor = 99;
213 bool uvm_swap_encrypt = false;
214
215 /*
216 * prototypes
217 */
218 static struct swapdev *swapdrum_getsdp(int);
219
220 static struct swapdev *swaplist_find(struct vnode *, bool);
221 static void swaplist_insert(struct swapdev *,
222 struct swappri *, int);
223 static void swaplist_trim(void);
224
225 static int swap_on(struct lwp *, struct swapdev *);
226 static int swap_off(struct lwp *, struct swapdev *);
227
228 static void sw_reg_strategy(struct swapdev *, struct buf *, int);
229 static void sw_reg_biodone(struct buf *);
230 static void sw_reg_iodone(struct work *wk, void *dummy);
231 static void sw_reg_start(struct swapdev *);
232
233 static int uvm_swap_io(struct vm_page **, int, int, int);
234
235 static void uvm_swap_genkey(struct swapdev *);
236 static void uvm_swap_encryptpage(struct swapdev *, void *, int);
237 static void uvm_swap_decryptpage(struct swapdev *, void *, int);
238
239 static size_t
240 encmap_size(size_t npages)
241 {
242 struct swapdev *sdp;
243 const size_t bytesperword = sizeof(sdp->swd_encmap[0]);
244 const size_t bitsperword = NBBY * bytesperword;
245 const size_t nbits = npages; /* one bit for each page */
246 const size_t nwords = howmany(nbits, bitsperword);
247 const size_t nbytes = nwords * bytesperword;
248
249 return nbytes;
250 }
251
252 /*
253 * uvm_swap_init: init the swap system data structures and locks
254 *
255 * => called at boot time from init_main.c after the filesystems
256 * are brought up (which happens after uvm_init())
257 */
258 void
259 uvm_swap_init(void)
260 {
261 UVMHIST_FUNC(__func__);
262
263 UVMHIST_CALLED(pdhist);
264 /*
265 * first, init the swap list, its counter, and its lock.
266 * then get a handle on the vnode for /dev/drum by using
267 * the its dev_t number ("swapdev", from MD conf.c).
268 */
269
270 LIST_INIT(&swap_priority);
271 uvmexp.nswapdev = 0;
272 rw_init(&swap_syscall_lock);
273 mutex_init(&uvm_swap_data_lock, MUTEX_DEFAULT, IPL_NONE);
274
275 if (bdevvp(swapdev, &swapdev_vp))
276 panic("%s: can't get vnode for swap device", __func__);
277 if (vn_lock(swapdev_vp, LK_EXCLUSIVE | LK_RETRY))
278 panic("%s: can't lock swap device", __func__);
279 if (VOP_OPEN(swapdev_vp, FREAD | FWRITE, NOCRED))
280 panic("%s: can't open swap device", __func__);
281 VOP_UNLOCK(swapdev_vp);
282
283 /*
284 * create swap block resource map to map /dev/drum. the range
285 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
286 * that block 0 is reserved (used to indicate an allocation
287 * failure, or no allocation).
288 */
289 swapmap = vmem_create("swapmap", 1, INT_MAX - 1, 1, NULL, NULL, NULL, 0,
290 VM_NOSLEEP, IPL_NONE);
291 if (swapmap == 0) {
292 panic("%s: vmem_create failed", __func__);
293 }
294
295 pool_init(&vndxfer_pool, sizeof(struct vndxfer), 0, 0, 0, "swp vnx",
296 NULL, IPL_BIO);
297 pool_init(&vndbuf_pool, sizeof(struct vndbuf), 0, 0, 0, "swp vnd",
298 NULL, IPL_BIO);
299
300 uvm_swap_init_done = true;
301
302 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
303 }
304
305 /*
306 * swaplist functions: functions that operate on the list of swap
307 * devices on the system.
308 */
309
310 /*
311 * swaplist_insert: insert swap device "sdp" into the global list
312 *
313 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
314 * => caller must provide a newly allocated swappri structure (we will
315 * FREE it if we don't need it... this it to prevent allocation
316 * blocking here while adding swap)
317 */
318 static void
319 swaplist_insert(struct swapdev *sdp, struct swappri *newspp, int priority)
320 {
321 struct swappri *spp, *pspp;
322 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
323
324 KASSERT(rw_write_held(&swap_syscall_lock));
325 KASSERT(mutex_owned(&uvm_swap_data_lock));
326
327 /*
328 * find entry at or after which to insert the new device.
329 */
330 pspp = NULL;
331 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
332 if (priority <= spp->spi_priority)
333 break;
334 pspp = spp;
335 }
336
337 /*
338 * new priority?
339 */
340 if (spp == NULL || spp->spi_priority != priority) {
341 spp = newspp; /* use newspp! */
342 UVMHIST_LOG(pdhist, "created new swappri = %jd",
343 priority, 0, 0, 0);
344
345 spp->spi_priority = priority;
346 TAILQ_INIT(&spp->spi_swapdev);
347
348 if (pspp)
349 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
350 else
351 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
352 } else {
353 /* we don't need a new priority structure, free it */
354 kmem_free(newspp, sizeof(*newspp));
355 }
356
357 /*
358 * priority found (or created). now insert on the priority's
359 * tailq list and bump the total number of swapdevs.
360 */
361 sdp->swd_priority = priority;
362 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
363 uvmexp.nswapdev++;
364 }
365
366 /*
367 * swaplist_find: find and optionally remove a swap device from the
368 * global list.
369 *
370 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
371 * => we return the swapdev we found (and removed)
372 */
373 static struct swapdev *
374 swaplist_find(struct vnode *vp, bool remove)
375 {
376 struct swapdev *sdp;
377 struct swappri *spp;
378
379 KASSERT(rw_lock_held(&swap_syscall_lock));
380 KASSERT(remove ? rw_write_held(&swap_syscall_lock) : 1);
381 KASSERT(mutex_owned(&uvm_swap_data_lock));
382
383 /*
384 * search the lists for the requested vp
385 */
386
387 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
388 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
389 if (sdp->swd_vp == vp) {
390 if (remove) {
391 TAILQ_REMOVE(&spp->spi_swapdev,
392 sdp, swd_next);
393 uvmexp.nswapdev--;
394 }
395 return(sdp);
396 }
397 }
398 }
399 return (NULL);
400 }
401
402 /*
403 * swaplist_trim: scan priority list for empty priority entries and kill
404 * them.
405 *
406 * => caller must hold both swap_syscall_lock and uvm_swap_data_lock
407 */
408 static void
409 swaplist_trim(void)
410 {
411 struct swappri *spp, *nextspp;
412
413 KASSERT(rw_write_held(&swap_syscall_lock));
414 KASSERT(mutex_owned(&uvm_swap_data_lock));
415
416 LIST_FOREACH_SAFE(spp, &swap_priority, spi_swappri, nextspp) {
417 if (!TAILQ_EMPTY(&spp->spi_swapdev))
418 continue;
419 LIST_REMOVE(spp, spi_swappri);
420 kmem_free(spp, sizeof(*spp));
421 }
422 }
423
424 /*
425 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
426 * to the "swapdev" that maps that section of the drum.
427 *
428 * => each swapdev takes one big contig chunk of the drum
429 * => caller must hold uvm_swap_data_lock
430 */
431 static struct swapdev *
432 swapdrum_getsdp(int pgno)
433 {
434 struct swapdev *sdp;
435 struct swappri *spp;
436
437 KASSERT(mutex_owned(&uvm_swap_data_lock));
438
439 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
440 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
441 if (sdp->swd_flags & SWF_FAKE)
442 continue;
443 if (pgno >= sdp->swd_drumoffset &&
444 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
445 return sdp;
446 }
447 }
448 }
449 return NULL;
450 }
451
452 /*
453 * swapdrum_sdp_is: true iff the swap device for pgno is sdp
454 *
455 * => for use in positive assertions only; result is not stable
456 */
457 static bool __debugused
458 swapdrum_sdp_is(int pgno, struct swapdev *sdp)
459 {
460 bool result;
461
462 mutex_enter(&uvm_swap_data_lock);
463 result = swapdrum_getsdp(pgno) == sdp;
464 mutex_exit(&uvm_swap_data_lock);
465
466 return result;
467 }
468
469 void swapsys_lock(krw_t op)
470 {
471 rw_enter(&swap_syscall_lock, op);
472 }
473
474 void swapsys_unlock(void)
475 {
476 rw_exit(&swap_syscall_lock);
477 }
478
479 static void
480 swapent_cvt(struct swapent *se, const struct swapdev *sdp, int inuse)
481 {
482 se->se_dev = sdp->swd_dev;
483 se->se_flags = sdp->swd_flags;
484 se->se_nblks = sdp->swd_nblks;
485 se->se_inuse = inuse;
486 se->se_priority = sdp->swd_priority;
487 KASSERT(sdp->swd_pathlen < sizeof(se->se_path));
488 strcpy(se->se_path, sdp->swd_path);
489 }
490
491 int (*uvm_swap_stats13)(const struct sys_swapctl_args *, register_t *) =
492 (void *)enosys;
493 int (*uvm_swap_stats50)(const struct sys_swapctl_args *, register_t *) =
494 (void *)enosys;
495
496 /*
497 * sys_swapctl: main entry point for swapctl(2) system call
498 * [with two helper functions: swap_on and swap_off]
499 */
500 int
501 sys_swapctl(struct lwp *l, const struct sys_swapctl_args *uap, register_t *retval)
502 {
503 /* {
504 syscallarg(int) cmd;
505 syscallarg(void *) arg;
506 syscallarg(int) misc;
507 } */
508 struct vnode *vp;
509 struct nameidata nd;
510 struct swappri *spp;
511 struct swapdev *sdp;
512 #define SWAP_PATH_MAX (PATH_MAX + 1)
513 char *userpath;
514 size_t len = 0;
515 int error;
516 int priority;
517 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
518
519 /*
520 * we handle the non-priv NSWAP and STATS request first.
521 *
522 * SWAP_NSWAP: return number of config'd swap devices
523 * [can also be obtained with uvmexp sysctl]
524 */
525 if (SCARG(uap, cmd) == SWAP_NSWAP) {
526 const int nswapdev = uvmexp.nswapdev;
527 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%jd", nswapdev,
528 0, 0, 0);
529 *retval = nswapdev;
530 return 0;
531 }
532
533 userpath = kmem_alloc(SWAP_PATH_MAX, KM_SLEEP);
534
535 /*
536 * ensure serialized syscall access by grabbing the swap_syscall_lock
537 */
538 rw_enter(&swap_syscall_lock, RW_WRITER);
539
540 /*
541 * SWAP_STATS: get stats on current # of configured swap devs
542 *
543 * note that the swap_priority list can't change as long
544 * as we are holding the swap_syscall_lock. we don't want
545 * to grab the uvm_swap_data_lock because we may fault&sleep during
546 * copyout() and we don't want to be holding that lock then!
547 */
548 switch (SCARG(uap, cmd)) {
549 case SWAP_STATS13:
550 error = (*uvm_swap_stats13)(uap, retval);
551 goto out;
552 case SWAP_STATS50:
553 error = (*uvm_swap_stats50)(uap, retval);
554 goto out;
555 case SWAP_STATS:
556 error = uvm_swap_stats(SCARG(uap, arg), SCARG(uap, misc),
557 NULL, sizeof(struct swapent), retval);
558 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
559 goto out;
560
561 case SWAP_GETDUMPDEV:
562 error = copyout(&dumpdev, SCARG(uap, arg), sizeof(dumpdev));
563 goto out;
564 default:
565 break;
566 }
567
568 /*
569 * all other requests require superuser privs. verify.
570 */
571 if ((error = kauth_authorize_system(l->l_cred, KAUTH_SYSTEM_SWAPCTL,
572 0, NULL, NULL, NULL)))
573 goto out;
574
575 if (SCARG(uap, cmd) == SWAP_DUMPOFF) {
576 /* drop the current dump device */
577 dumpdev = NODEV;
578 dumpcdev = NODEV;
579 cpu_dumpconf();
580 goto out;
581 }
582
583 /*
584 * at this point we expect a path name in arg. we will
585 * use namei() to gain a vnode reference (vref), and lock
586 * the vnode (VOP_LOCK).
587 *
588 * XXX: a NULL arg means use the root vnode pointer (e.g. for
589 * miniroot)
590 */
591 if (SCARG(uap, arg) == NULL) {
592 vp = rootvp; /* miniroot */
593 vref(vp);
594 if (vn_lock(vp, LK_EXCLUSIVE)) {
595 vrele(vp);
596 error = EBUSY;
597 goto out;
598 }
599 if (SCARG(uap, cmd) == SWAP_ON &&
600 copystr("miniroot", userpath, SWAP_PATH_MAX, &len))
601 panic("swapctl: miniroot copy failed");
602 } else {
603 struct pathbuf *pb;
604
605 /*
606 * This used to allow copying in one extra byte
607 * (SWAP_PATH_MAX instead of PATH_MAX) for SWAP_ON.
608 * This was completely pointless because if anyone
609 * used that extra byte namei would fail with
610 * ENAMETOOLONG anyway, so I've removed the excess
611 * logic. - dholland 20100215
612 */
613
614 error = pathbuf_copyin(SCARG(uap, arg), &pb);
615 if (error) {
616 goto out;
617 }
618 if (SCARG(uap, cmd) == SWAP_ON) {
619 /* get a copy of the string */
620 pathbuf_copystring(pb, userpath, SWAP_PATH_MAX);
621 len = strlen(userpath) + 1;
622 }
623 NDINIT(&nd, LOOKUP, FOLLOW | LOCKLEAF | TRYEMULROOT, pb);
624 if ((error = namei(&nd))) {
625 pathbuf_destroy(pb);
626 goto out;
627 }
628 vp = nd.ni_vp;
629 pathbuf_destroy(pb);
630 }
631 /* note: "vp" is referenced and locked */
632
633 error = 0; /* assume no error */
634 switch(SCARG(uap, cmd)) {
635
636 case SWAP_DUMPDEV:
637 if (vp->v_type != VBLK) {
638 error = ENOTBLK;
639 break;
640 }
641 if (bdevsw_lookup(vp->v_rdev)) {
642 dumpdev = vp->v_rdev;
643 dumpcdev = devsw_blk2chr(dumpdev);
644 } else
645 dumpdev = NODEV;
646 cpu_dumpconf();
647 break;
648
649 case SWAP_CTL:
650 /*
651 * get new priority, remove old entry (if any) and then
652 * reinsert it in the correct place. finally, prune out
653 * any empty priority structures.
654 */
655 priority = SCARG(uap, misc);
656 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
657 mutex_enter(&uvm_swap_data_lock);
658 if ((sdp = swaplist_find(vp, true)) == NULL) {
659 error = ENOENT;
660 } else {
661 swaplist_insert(sdp, spp, priority);
662 swaplist_trim();
663 }
664 mutex_exit(&uvm_swap_data_lock);
665 if (error)
666 kmem_free(spp, sizeof(*spp));
667 break;
668
669 case SWAP_ON:
670
671 /*
672 * check for duplicates. if none found, then insert a
673 * dummy entry on the list to prevent someone else from
674 * trying to enable this device while we are working on
675 * it.
676 */
677
678 priority = SCARG(uap, misc);
679 sdp = kmem_zalloc(sizeof(*sdp), KM_SLEEP);
680 spp = kmem_alloc(sizeof(*spp), KM_SLEEP);
681 sdp->swd_flags = SWF_FAKE;
682 sdp->swd_vp = vp;
683 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
684 bufq_alloc(&sdp->swd_tab, "disksort", BUFQ_SORT_RAWBLOCK);
685 mutex_enter(&uvm_swap_data_lock);
686 if (swaplist_find(vp, false) != NULL) {
687 error = EBUSY;
688 mutex_exit(&uvm_swap_data_lock);
689 bufq_free(sdp->swd_tab);
690 kmem_free(sdp, sizeof(*sdp));
691 kmem_free(spp, sizeof(*spp));
692 break;
693 }
694 swaplist_insert(sdp, spp, priority);
695 mutex_exit(&uvm_swap_data_lock);
696
697 KASSERT(len > 0);
698 sdp->swd_pathlen = len;
699 sdp->swd_path = kmem_alloc(len, KM_SLEEP);
700 if (copystr(userpath, sdp->swd_path, len, 0) != 0)
701 panic("swapctl: copystr");
702
703 /*
704 * we've now got a FAKE placeholder in the swap list.
705 * now attempt to enable swap on it. if we fail, undo
706 * what we've done and kill the fake entry we just inserted.
707 * if swap_on is a success, it will clear the SWF_FAKE flag
708 */
709
710 if ((error = swap_on(l, sdp)) != 0) {
711 mutex_enter(&uvm_swap_data_lock);
712 (void) swaplist_find(vp, true); /* kill fake entry */
713 swaplist_trim();
714 mutex_exit(&uvm_swap_data_lock);
715 bufq_free(sdp->swd_tab);
716 kmem_free(sdp->swd_path, sdp->swd_pathlen);
717 kmem_free(sdp, sizeof(*sdp));
718 break;
719 }
720 break;
721
722 case SWAP_OFF:
723 mutex_enter(&uvm_swap_data_lock);
724 if ((sdp = swaplist_find(vp, false)) == NULL) {
725 mutex_exit(&uvm_swap_data_lock);
726 error = ENXIO;
727 break;
728 }
729
730 /*
731 * If a device isn't in use or enabled, we
732 * can't stop swapping from it (again).
733 */
734 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
735 mutex_exit(&uvm_swap_data_lock);
736 error = EBUSY;
737 break;
738 }
739
740 /*
741 * do the real work.
742 */
743 error = swap_off(l, sdp);
744 break;
745
746 default:
747 error = EINVAL;
748 }
749
750 /*
751 * done! release the ref gained by namei() and unlock.
752 */
753 vput(vp);
754 out:
755 rw_exit(&swap_syscall_lock);
756 kmem_free(userpath, SWAP_PATH_MAX);
757
758 UVMHIST_LOG(pdhist, "<- done! error=%jd", error, 0, 0, 0);
759 return (error);
760 }
761
762 /*
763 * uvm_swap_stats: implements swapctl(SWAP_STATS). The function is kept
764 * away from sys_swapctl() in order to allow COMPAT_* swapctl()
765 * emulation to use it directly without going through sys_swapctl().
766 * The problem with using sys_swapctl() there is that it involves
767 * copying the swapent array to the stackgap, and this array's size
768 * is not known at build time. Hence it would not be possible to
769 * ensure it would fit in the stackgap in any case.
770 */
771 int
772 uvm_swap_stats(char *ptr, int misc,
773 void (*f)(void *, const struct swapent *), size_t len,
774 register_t *retval)
775 {
776 struct swappri *spp;
777 struct swapdev *sdp;
778 struct swapent sep;
779 int count = 0;
780 int error;
781
782 KASSERT(len <= sizeof(sep));
783 if (len == 0)
784 return ENOSYS;
785
786 if (misc < 0)
787 return EINVAL;
788
789 if (misc == 0 || uvmexp.nswapdev == 0)
790 return 0;
791
792 /* Make sure userland cannot exhaust kernel memory */
793 if ((size_t)misc > (size_t)uvmexp.nswapdev)
794 misc = uvmexp.nswapdev;
795
796 KASSERT(rw_lock_held(&swap_syscall_lock));
797
798 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
799 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
800 int inuse;
801
802 if (misc-- <= 0)
803 break;
804
805 inuse = btodb((uint64_t)sdp->swd_npginuse <<
806 PAGE_SHIFT);
807
808 memset(&sep, 0, sizeof(sep));
809 swapent_cvt(&sep, sdp, inuse);
810 if (f)
811 (*f)(&sep, &sep);
812 if ((error = copyout(&sep, ptr, len)) != 0)
813 return error;
814 ptr += len;
815 count++;
816 }
817 }
818 *retval = count;
819 return 0;
820 }
821
822 /*
823 * swap_on: attempt to enable a swapdev for swapping. note that the
824 * swapdev is already on the global list, but disabled (marked
825 * SWF_FAKE).
826 *
827 * => we avoid the start of the disk (to protect disk labels)
828 * => we also avoid the miniroot, if we are swapping to root.
829 * => caller should leave uvm_swap_data_lock unlocked, we may lock it
830 * if needed.
831 */
832 static int
833 swap_on(struct lwp *l, struct swapdev *sdp)
834 {
835 struct vnode *vp;
836 int error, npages, nblocks, size;
837 long addr;
838 vmem_addr_t result;
839 struct vattr va;
840 dev_t dev;
841 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
842
843 /*
844 * we want to enable swapping on sdp. the swd_vp contains
845 * the vnode we want (locked and ref'd), and the swd_dev
846 * contains the dev_t of the file, if it a block device.
847 */
848
849 vp = sdp->swd_vp;
850 dev = sdp->swd_dev;
851
852 /*
853 * open the swap file (mostly useful for block device files to
854 * let device driver know what is up).
855 *
856 * we skip the open/close for root on swap because the root
857 * has already been opened when root was mounted (mountroot).
858 */
859 if (vp != rootvp) {
860 if ((error = VOP_OPEN(vp, FREAD|FWRITE, l->l_cred)))
861 return (error);
862 }
863
864 /* XXX this only works for block devices */
865 UVMHIST_LOG(pdhist, " dev=%jd, major(dev)=%jd", dev, major(dev), 0, 0);
866
867 /*
868 * we now need to determine the size of the swap area. for
869 * block specials we can call the d_psize function.
870 * for normal files, we must stat [get attrs].
871 *
872 * we put the result in nblks.
873 * for normal files, we also want the filesystem block size
874 * (which we get with statfs).
875 */
876 switch (vp->v_type) {
877 case VBLK:
878 if ((nblocks = bdev_size(dev)) == -1) {
879 error = ENXIO;
880 goto bad;
881 }
882 break;
883
884 case VREG:
885 if ((error = VOP_GETATTR(vp, &va, l->l_cred)))
886 goto bad;
887 nblocks = (int)btodb(va.va_size);
888 sdp->swd_bsize = 1 << vp->v_mount->mnt_fs_bshift;
889 /*
890 * limit the max # of outstanding I/O requests we issue
891 * at any one time. take it easy on NFS servers.
892 */
893 if (vp->v_tag == VT_NFS)
894 sdp->swd_maxactive = 2; /* XXX */
895 else
896 sdp->swd_maxactive = 8; /* XXX */
897 break;
898
899 default:
900 error = ENXIO;
901 goto bad;
902 }
903
904 /*
905 * save nblocks in a safe place and convert to pages.
906 */
907
908 sdp->swd_nblks = nblocks;
909 npages = dbtob((uint64_t)nblocks) >> PAGE_SHIFT;
910
911 /*
912 * for block special files, we want to make sure that leave
913 * the disklabel and bootblocks alone, so we arrange to skip
914 * over them (arbitrarily choosing to skip PAGE_SIZE bytes).
915 * note that because of this the "size" can be less than the
916 * actual number of blocks on the device.
917 */
918 if (vp->v_type == VBLK) {
919 /* we use pages 1 to (size - 1) [inclusive] */
920 size = npages - 1;
921 addr = 1;
922 } else {
923 /* we use pages 0 to (size - 1) [inclusive] */
924 size = npages;
925 addr = 0;
926 }
927
928 /*
929 * make sure we have enough blocks for a reasonable sized swap
930 * area. we want at least one page.
931 */
932
933 if (size < 1) {
934 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
935 error = EINVAL;
936 goto bad;
937 }
938
939 UVMHIST_LOG(pdhist, " dev=%#jx: size=%jd addr=%jd", dev, size, addr, 0);
940
941 /*
942 * now we need to allocate an extent to manage this swap device
943 */
944
945 sdp->swd_blist = blist_create(npages);
946 /* mark all expect the `saved' region free. */
947 blist_free(sdp->swd_blist, addr, size);
948
949 /*
950 * allocate space to for swap encryption state and mark the
951 * keys uninitialized so we generate them lazily
952 */
953 sdp->swd_encmap = kmem_zalloc(encmap_size(npages), KM_SLEEP);
954 sdp->swd_encinit = false;
955
956 /*
957 * if the vnode we are swapping to is the root vnode
958 * (i.e. we are swapping to the miniroot) then we want
959 * to make sure we don't overwrite it. do a statfs to
960 * find its size and skip over it.
961 */
962 if (vp == rootvp) {
963 struct mount *mp;
964 struct statvfs *sp;
965 int rootblocks, rootpages;
966
967 mp = rootvnode->v_mount;
968 sp = &mp->mnt_stat;
969 rootblocks = sp->f_blocks * btodb(sp->f_frsize);
970 /*
971 * XXX: sp->f_blocks isn't the total number of
972 * blocks in the filesystem, it's the number of
973 * data blocks. so, our rootblocks almost
974 * definitely underestimates the total size
975 * of the filesystem - how badly depends on the
976 * details of the filesystem type. there isn't
977 * an obvious way to deal with this cleanly
978 * and perfectly, so for now we just pad our
979 * rootblocks estimate with an extra 5 percent.
980 */
981 rootblocks += (rootblocks >> 5) +
982 (rootblocks >> 6) +
983 (rootblocks >> 7);
984 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
985 if (rootpages > size)
986 panic("swap_on: miniroot larger than swap?");
987
988 if (rootpages != blist_fill(sdp->swd_blist, addr, rootpages)) {
989 panic("swap_on: unable to preserve miniroot");
990 }
991
992 size -= rootpages;
993 printf("Preserved %d pages of miniroot ", rootpages);
994 printf("leaving %d pages of swap\n", size);
995 }
996
997 /*
998 * add a ref to vp to reflect usage as a swap device.
999 */
1000 vref(vp);
1001
1002 /*
1003 * now add the new swapdev to the drum and enable.
1004 */
1005 error = vmem_alloc(swapmap, npages, VM_BESTFIT | VM_SLEEP, &result);
1006 if (error != 0)
1007 panic("swapdrum_add");
1008 /*
1009 * If this is the first regular swap create the workqueue.
1010 * => Protected by swap_syscall_lock.
1011 */
1012 if (vp->v_type != VBLK) {
1013 if (sw_reg_count++ == 0) {
1014 KASSERT(sw_reg_workqueue == NULL);
1015 if (workqueue_create(&sw_reg_workqueue, "swapiod",
1016 sw_reg_iodone, NULL, PRIBIO, IPL_BIO, 0) != 0)
1017 panic("%s: workqueue_create failed", __func__);
1018 }
1019 }
1020
1021 sdp->swd_drumoffset = (int)result;
1022 sdp->swd_drumsize = npages;
1023 sdp->swd_npages = size;
1024 mutex_enter(&uvm_swap_data_lock);
1025 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1026 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1027 uvmexp.swpages += size;
1028 uvmexp.swpgavail += size;
1029 mutex_exit(&uvm_swap_data_lock);
1030 return (0);
1031
1032 /*
1033 * failure: clean up and return error.
1034 */
1035
1036 bad:
1037 if (sdp->swd_blist) {
1038 blist_destroy(sdp->swd_blist);
1039 }
1040 if (vp != rootvp) {
1041 (void)VOP_CLOSE(vp, FREAD|FWRITE, l->l_cred);
1042 }
1043 return (error);
1044 }
1045
1046 /*
1047 * swap_off: stop swapping on swapdev
1048 *
1049 * => swap data should be locked, we will unlock.
1050 */
1051 static int
1052 swap_off(struct lwp *l, struct swapdev *sdp)
1053 {
1054 int npages = sdp->swd_npages;
1055 int error = 0;
1056
1057 UVMHIST_FUNC(__func__);
1058 UVMHIST_CALLARGS(pdhist, " dev=%#jx, npages=%jd", sdp->swd_dev,npages, 0, 0);
1059
1060 KASSERT(rw_write_held(&swap_syscall_lock));
1061 KASSERT(mutex_owned(&uvm_swap_data_lock));
1062
1063 /* disable the swap area being removed */
1064 sdp->swd_flags &= ~SWF_ENABLE;
1065 uvmexp.swpgavail -= npages;
1066 mutex_exit(&uvm_swap_data_lock);
1067
1068 /*
1069 * the idea is to find all the pages that are paged out to this
1070 * device, and page them all in. in uvm, swap-backed pageable
1071 * memory can take two forms: aobjs and anons. call the
1072 * swapoff hook for each subsystem to bring in pages.
1073 */
1074
1075 if (uao_swap_off(sdp->swd_drumoffset,
1076 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1077 amap_swap_off(sdp->swd_drumoffset,
1078 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1079 error = ENOMEM;
1080 } else if (sdp->swd_npginuse > sdp->swd_npgbad) {
1081 error = EBUSY;
1082 }
1083
1084 if (error) {
1085 mutex_enter(&uvm_swap_data_lock);
1086 sdp->swd_flags |= SWF_ENABLE;
1087 uvmexp.swpgavail += npages;
1088 mutex_exit(&uvm_swap_data_lock);
1089
1090 return error;
1091 }
1092
1093 /*
1094 * If this is the last regular swap destroy the workqueue.
1095 * => Protected by swap_syscall_lock.
1096 */
1097 if (sdp->swd_vp->v_type != VBLK) {
1098 KASSERT(sw_reg_count > 0);
1099 KASSERT(sw_reg_workqueue != NULL);
1100 if (--sw_reg_count == 0) {
1101 workqueue_destroy(sw_reg_workqueue);
1102 sw_reg_workqueue = NULL;
1103 }
1104 }
1105
1106 /*
1107 * done with the vnode.
1108 * drop our ref on the vnode before calling VOP_CLOSE()
1109 * so that spec_close() can tell if this is the last close.
1110 */
1111 vrele(sdp->swd_vp);
1112 if (sdp->swd_vp != rootvp) {
1113 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, l->l_cred);
1114 }
1115
1116 mutex_enter(&uvm_swap_data_lock);
1117 uvmexp.swpages -= npages;
1118 uvmexp.swpginuse -= sdp->swd_npgbad;
1119
1120 if (swaplist_find(sdp->swd_vp, true) == NULL)
1121 panic("%s: swapdev not in list", __func__);
1122 swaplist_trim();
1123 mutex_exit(&uvm_swap_data_lock);
1124
1125 /*
1126 * free all resources!
1127 */
1128 vmem_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize);
1129 blist_destroy(sdp->swd_blist);
1130 bufq_free(sdp->swd_tab);
1131 kmem_free(__UNVOLATILE(sdp->swd_encmap),
1132 encmap_size(sdp->swd_drumsize));
1133 explicit_memset(&sdp->swd_enckey, 0, sizeof sdp->swd_enckey);
1134 explicit_memset(&sdp->swd_deckey, 0, sizeof sdp->swd_deckey);
1135 kmem_free(sdp, sizeof(*sdp));
1136 return (0);
1137 }
1138
1139 void
1140 uvm_swap_shutdown(struct lwp *l)
1141 {
1142 struct swapdev *sdp;
1143 struct swappri *spp;
1144 struct vnode *vp;
1145 int error;
1146
1147 if (!uvm_swap_init_done)
1148 return;
1149 printf("turning off swap...");
1150 rw_enter(&swap_syscall_lock, RW_WRITER);
1151 mutex_enter(&uvm_swap_data_lock);
1152 again:
1153 LIST_FOREACH(spp, &swap_priority, spi_swappri)
1154 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1155 if (sdp->swd_flags & SWF_FAKE)
1156 continue;
1157 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0)
1158 continue;
1159 #ifdef DEBUG
1160 printf("\nturning off swap on %s...", sdp->swd_path);
1161 #endif
1162 /* Have to lock and reference vnode for swap_off(). */
1163 vn_lock(vp = sdp->swd_vp, LK_EXCLUSIVE|LK_RETRY);
1164 vref(vp);
1165 error = swap_off(l, sdp);
1166 vput(vp);
1167 mutex_enter(&uvm_swap_data_lock);
1168 if (error) {
1169 printf("stopping swap on %s failed "
1170 "with error %d\n", sdp->swd_path, error);
1171 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1172 uvmexp.nswapdev--;
1173 swaplist_trim();
1174 }
1175 goto again;
1176 }
1177 printf(" done\n");
1178 mutex_exit(&uvm_swap_data_lock);
1179 rw_exit(&swap_syscall_lock);
1180 }
1181
1182
1183 /*
1184 * /dev/drum interface and i/o functions
1185 */
1186
1187 /*
1188 * swstrategy: perform I/O on the drum
1189 *
1190 * => we must map the i/o request from the drum to the correct swapdev.
1191 */
1192 static void
1193 swstrategy(struct buf *bp)
1194 {
1195 struct swapdev *sdp;
1196 struct vnode *vp;
1197 int pageno, bn;
1198 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1199
1200 /*
1201 * convert block number to swapdev. note that swapdev can't
1202 * be yanked out from under us because we are holding resources
1203 * in it (i.e. the blocks we are doing I/O on).
1204 */
1205 pageno = dbtob((int64_t)bp->b_blkno) >> PAGE_SHIFT;
1206 mutex_enter(&uvm_swap_data_lock);
1207 sdp = swapdrum_getsdp(pageno);
1208 mutex_exit(&uvm_swap_data_lock);
1209 if (sdp == NULL) {
1210 bp->b_error = EINVAL;
1211 bp->b_resid = bp->b_bcount;
1212 biodone(bp);
1213 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1214 return;
1215 }
1216
1217 /*
1218 * convert drum page number to block number on this swapdev.
1219 */
1220
1221 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1222 bn = btodb((uint64_t)pageno << PAGE_SHIFT); /* convert to diskblock */
1223
1224 UVMHIST_LOG(pdhist, " Rd/Wr (0/1) %jd: mapoff=%#jx bn=%#jx bcount=%jd",
1225 ((bp->b_flags & B_READ) == 0) ? 1 : 0,
1226 sdp->swd_drumoffset, bn, bp->b_bcount);
1227
1228 /*
1229 * for block devices we finish up here.
1230 * for regular files we have to do more work which we delegate
1231 * to sw_reg_strategy().
1232 */
1233
1234 vp = sdp->swd_vp; /* swapdev vnode pointer */
1235 switch (vp->v_type) {
1236 default:
1237 panic("%s: vnode type 0x%x", __func__, vp->v_type);
1238
1239 case VBLK:
1240
1241 /*
1242 * must convert "bp" from an I/O on /dev/drum to an I/O
1243 * on the swapdev (sdp).
1244 */
1245 bp->b_blkno = bn; /* swapdev block number */
1246 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1247
1248 /*
1249 * if we are doing a write, we have to redirect the i/o on
1250 * drum's v_numoutput counter to the swapdevs.
1251 */
1252 if ((bp->b_flags & B_READ) == 0) {
1253 mutex_enter(bp->b_objlock);
1254 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1255 mutex_exit(bp->b_objlock);
1256 mutex_enter(vp->v_interlock);
1257 vp->v_numoutput++; /* put it on swapdev */
1258 mutex_exit(vp->v_interlock);
1259 }
1260
1261 /*
1262 * finally plug in swapdev vnode and start I/O
1263 */
1264 bp->b_vp = vp;
1265 bp->b_objlock = vp->v_interlock;
1266 VOP_STRATEGY(vp, bp);
1267 return;
1268
1269 case VREG:
1270 /*
1271 * delegate to sw_reg_strategy function.
1272 */
1273 sw_reg_strategy(sdp, bp, bn);
1274 return;
1275 }
1276 /* NOTREACHED */
1277 }
1278
1279 /*
1280 * swread: the read function for the drum (just a call to physio)
1281 */
1282 /*ARGSUSED*/
1283 static int
1284 swread(dev_t dev, struct uio *uio, int ioflag)
1285 {
1286 UVMHIST_FUNC(__func__);
1287 UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1288
1289 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1290 }
1291
1292 /*
1293 * swwrite: the write function for the drum (just a call to physio)
1294 */
1295 /*ARGSUSED*/
1296 static int
1297 swwrite(dev_t dev, struct uio *uio, int ioflag)
1298 {
1299 UVMHIST_FUNC(__func__);
1300 UVMHIST_CALLARGS(pdhist, " dev=%#jx offset=%#jx", dev, uio->uio_offset, 0, 0);
1301
1302 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1303 }
1304
1305 const struct bdevsw swap_bdevsw = {
1306 .d_open = nullopen,
1307 .d_close = nullclose,
1308 .d_strategy = swstrategy,
1309 .d_ioctl = noioctl,
1310 .d_dump = nodump,
1311 .d_psize = nosize,
1312 .d_discard = nodiscard,
1313 .d_flag = D_OTHER
1314 };
1315
1316 const struct cdevsw swap_cdevsw = {
1317 .d_open = nullopen,
1318 .d_close = nullclose,
1319 .d_read = swread,
1320 .d_write = swwrite,
1321 .d_ioctl = noioctl,
1322 .d_stop = nostop,
1323 .d_tty = notty,
1324 .d_poll = nopoll,
1325 .d_mmap = nommap,
1326 .d_kqfilter = nokqfilter,
1327 .d_discard = nodiscard,
1328 .d_flag = D_OTHER,
1329 };
1330
1331 /*
1332 * sw_reg_strategy: handle swap i/o to regular files
1333 */
1334 static void
1335 sw_reg_strategy(struct swapdev *sdp, struct buf *bp, int bn)
1336 {
1337 struct vnode *vp;
1338 struct vndxfer *vnx;
1339 daddr_t nbn;
1340 char *addr;
1341 off_t byteoff;
1342 int s, off, nra, error, sz, resid;
1343 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1344
1345 /*
1346 * allocate a vndxfer head for this transfer and point it to
1347 * our buffer.
1348 */
1349 vnx = pool_get(&vndxfer_pool, PR_WAITOK);
1350 vnx->vx_flags = VX_BUSY;
1351 vnx->vx_error = 0;
1352 vnx->vx_pending = 0;
1353 vnx->vx_bp = bp;
1354 vnx->vx_sdp = sdp;
1355
1356 /*
1357 * setup for main loop where we read filesystem blocks into
1358 * our buffer.
1359 */
1360 error = 0;
1361 bp->b_resid = bp->b_bcount; /* nothing transferred yet! */
1362 addr = bp->b_data; /* current position in buffer */
1363 byteoff = dbtob((uint64_t)bn);
1364
1365 for (resid = bp->b_resid; resid; resid -= sz) {
1366 struct vndbuf *nbp;
1367
1368 /*
1369 * translate byteoffset into block number. return values:
1370 * vp = vnode of underlying device
1371 * nbn = new block number (on underlying vnode dev)
1372 * nra = num blocks we can read-ahead (excludes requested
1373 * block)
1374 */
1375 nra = 0;
1376 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1377 &vp, &nbn, &nra);
1378
1379 if (error == 0 && nbn == (daddr_t)-1) {
1380 /*
1381 * this used to just set error, but that doesn't
1382 * do the right thing. Instead, it causes random
1383 * memory errors. The panic() should remain until
1384 * this condition doesn't destabilize the system.
1385 */
1386 #if 1
1387 panic("%s: swap to sparse file", __func__);
1388 #else
1389 error = EIO; /* failure */
1390 #endif
1391 }
1392
1393 /*
1394 * punt if there was an error or a hole in the file.
1395 * we must wait for any i/o ops we have already started
1396 * to finish before returning.
1397 *
1398 * XXX we could deal with holes here but it would be
1399 * a hassle (in the write case).
1400 */
1401 if (error) {
1402 s = splbio();
1403 vnx->vx_error = error; /* pass error up */
1404 goto out;
1405 }
1406
1407 /*
1408 * compute the size ("sz") of this transfer (in bytes).
1409 */
1410 off = byteoff % sdp->swd_bsize;
1411 sz = (1 + nra) * sdp->swd_bsize - off;
1412 if (sz > resid)
1413 sz = resid;
1414
1415 UVMHIST_LOG(pdhist, "sw_reg_strategy: "
1416 "vp %#jx/%#jx offset %#jx/%#jx",
1417 (uintptr_t)sdp->swd_vp, (uintptr_t)vp, byteoff, nbn);
1418
1419 /*
1420 * now get a buf structure. note that the vb_buf is
1421 * at the front of the nbp structure so that you can
1422 * cast pointers between the two structure easily.
1423 */
1424 nbp = pool_get(&vndbuf_pool, PR_WAITOK);
1425 buf_init(&nbp->vb_buf);
1426 nbp->vb_buf.b_flags = bp->b_flags;
1427 nbp->vb_buf.b_cflags = bp->b_cflags;
1428 nbp->vb_buf.b_oflags = bp->b_oflags;
1429 nbp->vb_buf.b_bcount = sz;
1430 nbp->vb_buf.b_bufsize = sz;
1431 nbp->vb_buf.b_error = 0;
1432 nbp->vb_buf.b_data = addr;
1433 nbp->vb_buf.b_lblkno = 0;
1434 nbp->vb_buf.b_blkno = nbn + btodb(off);
1435 nbp->vb_buf.b_rawblkno = nbp->vb_buf.b_blkno;
1436 nbp->vb_buf.b_iodone = sw_reg_biodone;
1437 nbp->vb_buf.b_vp = vp;
1438 nbp->vb_buf.b_objlock = vp->v_interlock;
1439 if (vp->v_type == VBLK) {
1440 nbp->vb_buf.b_dev = vp->v_rdev;
1441 }
1442
1443 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1444
1445 /*
1446 * Just sort by block number
1447 */
1448 s = splbio();
1449 if (vnx->vx_error != 0) {
1450 buf_destroy(&nbp->vb_buf);
1451 pool_put(&vndbuf_pool, nbp);
1452 goto out;
1453 }
1454 vnx->vx_pending++;
1455
1456 /* sort it in and start I/O if we are not over our limit */
1457 /* XXXAD locking */
1458 bufq_put(sdp->swd_tab, &nbp->vb_buf);
1459 sw_reg_start(sdp);
1460 splx(s);
1461
1462 /*
1463 * advance to the next I/O
1464 */
1465 byteoff += sz;
1466 addr += sz;
1467 }
1468
1469 s = splbio();
1470
1471 out: /* Arrive here at splbio */
1472 vnx->vx_flags &= ~VX_BUSY;
1473 if (vnx->vx_pending == 0) {
1474 error = vnx->vx_error;
1475 pool_put(&vndxfer_pool, vnx);
1476 bp->b_error = error;
1477 biodone(bp);
1478 }
1479 splx(s);
1480 }
1481
1482 /*
1483 * sw_reg_start: start an I/O request on the requested swapdev
1484 *
1485 * => reqs are sorted by b_rawblkno (above)
1486 */
1487 static void
1488 sw_reg_start(struct swapdev *sdp)
1489 {
1490 struct buf *bp;
1491 struct vnode *vp;
1492 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1493
1494 /* recursion control */
1495 if ((sdp->swd_flags & SWF_BUSY) != 0)
1496 return;
1497
1498 sdp->swd_flags |= SWF_BUSY;
1499
1500 while (sdp->swd_active < sdp->swd_maxactive) {
1501 bp = bufq_get(sdp->swd_tab);
1502 if (bp == NULL)
1503 break;
1504 sdp->swd_active++;
1505
1506 UVMHIST_LOG(pdhist,
1507 "sw_reg_start: bp %#jx vp %#jx blkno %#jx cnt %#jx",
1508 (uintptr_t)bp, (uintptr_t)bp->b_vp, (uintptr_t)bp->b_blkno,
1509 bp->b_bcount);
1510 vp = bp->b_vp;
1511 KASSERT(bp->b_objlock == vp->v_interlock);
1512 if ((bp->b_flags & B_READ) == 0) {
1513 mutex_enter(vp->v_interlock);
1514 vp->v_numoutput++;
1515 mutex_exit(vp->v_interlock);
1516 }
1517 VOP_STRATEGY(vp, bp);
1518 }
1519 sdp->swd_flags &= ~SWF_BUSY;
1520 }
1521
1522 /*
1523 * sw_reg_biodone: one of our i/o's has completed
1524 */
1525 static void
1526 sw_reg_biodone(struct buf *bp)
1527 {
1528 workqueue_enqueue(sw_reg_workqueue, &bp->b_work, NULL);
1529 }
1530
1531 /*
1532 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1533 *
1534 * => note that we can recover the vndbuf struct by casting the buf ptr
1535 */
1536 static void
1537 sw_reg_iodone(struct work *wk, void *dummy)
1538 {
1539 struct vndbuf *vbp = (void *)wk;
1540 struct vndxfer *vnx = vbp->vb_xfer;
1541 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1542 struct swapdev *sdp = vnx->vx_sdp;
1543 int s, resid, error;
1544 KASSERT(&vbp->vb_buf.b_work == wk);
1545 UVMHIST_FUNC(__func__);
1546 UVMHIST_CALLARGS(pdhist, " vbp=%#jx vp=%#jx blkno=%#jx addr=%#jx",
1547 (uintptr_t)vbp, (uintptr_t)vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno,
1548 (uintptr_t)vbp->vb_buf.b_data);
1549 UVMHIST_LOG(pdhist, " cnt=%#jx resid=%#jx",
1550 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1551
1552 /*
1553 * protect vbp at splbio and update.
1554 */
1555
1556 s = splbio();
1557 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1558 pbp->b_resid -= resid;
1559 vnx->vx_pending--;
1560
1561 if (vbp->vb_buf.b_error != 0) {
1562 /* pass error upward */
1563 error = vbp->vb_buf.b_error ? vbp->vb_buf.b_error : EIO;
1564 UVMHIST_LOG(pdhist, " got error=%jd !", error, 0, 0, 0);
1565 vnx->vx_error = error;
1566 }
1567
1568 /*
1569 * kill vbp structure
1570 */
1571 buf_destroy(&vbp->vb_buf);
1572 pool_put(&vndbuf_pool, vbp);
1573
1574 /*
1575 * wrap up this transaction if it has run to completion or, in
1576 * case of an error, when all auxiliary buffers have returned.
1577 */
1578 if (vnx->vx_error != 0) {
1579 /* pass error upward */
1580 error = vnx->vx_error;
1581 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1582 pbp->b_error = error;
1583 biodone(pbp);
1584 pool_put(&vndxfer_pool, vnx);
1585 }
1586 } else if (pbp->b_resid == 0) {
1587 KASSERT(vnx->vx_pending == 0);
1588 if ((vnx->vx_flags & VX_BUSY) == 0) {
1589 UVMHIST_LOG(pdhist, " iodone, pbp=%#jx error=%jd !",
1590 (uintptr_t)pbp, vnx->vx_error, 0, 0);
1591 biodone(pbp);
1592 pool_put(&vndxfer_pool, vnx);
1593 }
1594 }
1595
1596 /*
1597 * done! start next swapdev I/O if one is pending
1598 */
1599 sdp->swd_active--;
1600 sw_reg_start(sdp);
1601 splx(s);
1602 }
1603
1604
1605 /*
1606 * uvm_swap_alloc: allocate space on swap
1607 *
1608 * => allocation is done "round robin" down the priority list, as we
1609 * allocate in a priority we "rotate" the circle queue.
1610 * => space can be freed with uvm_swap_free
1611 * => we return the page slot number in /dev/drum (0 == invalid slot)
1612 * => we lock uvm_swap_data_lock
1613 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1614 */
1615 int
1616 uvm_swap_alloc(int *nslots /* IN/OUT */, bool lessok)
1617 {
1618 struct swapdev *sdp;
1619 struct swappri *spp;
1620 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1621
1622 /*
1623 * no swap devices configured yet? definite failure.
1624 */
1625 if (uvmexp.nswapdev < 1)
1626 return 0;
1627
1628 /*
1629 * XXXJAK: BEGIN HACK
1630 *
1631 * blist_alloc() in subr_blist.c will panic if we try to allocate
1632 * too many slots.
1633 */
1634 if (*nslots > BLIST_MAX_ALLOC) {
1635 if (__predict_false(lessok == false))
1636 return 0;
1637 *nslots = BLIST_MAX_ALLOC;
1638 }
1639 /* XXXJAK: END HACK */
1640
1641 /*
1642 * lock data lock, convert slots into blocks, and enter loop
1643 */
1644 mutex_enter(&uvm_swap_data_lock);
1645
1646 ReTry: /* XXXMRG */
1647 LIST_FOREACH(spp, &swap_priority, spi_swappri) {
1648 TAILQ_FOREACH(sdp, &spp->spi_swapdev, swd_next) {
1649 uint64_t result;
1650
1651 /* if it's not enabled, then we can't swap from it */
1652 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1653 continue;
1654 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1655 continue;
1656 result = blist_alloc(sdp->swd_blist, *nslots);
1657 if (result == BLIST_NONE) {
1658 continue;
1659 }
1660 KASSERT(result < sdp->swd_drumsize);
1661
1662 /*
1663 * successful allocation! now rotate the tailq.
1664 */
1665 TAILQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1666 TAILQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1667 sdp->swd_npginuse += *nslots;
1668 uvmexp.swpginuse += *nslots;
1669 mutex_exit(&uvm_swap_data_lock);
1670 /* done! return drum slot number */
1671 UVMHIST_LOG(pdhist,
1672 "success! returning %jd slots starting at %jd",
1673 *nslots, result + sdp->swd_drumoffset, 0, 0);
1674 return (result + sdp->swd_drumoffset);
1675 }
1676 }
1677
1678 /* XXXMRG: BEGIN HACK */
1679 if (*nslots > 1 && lessok) {
1680 *nslots = 1;
1681 /* XXXMRG: ugh! blist should support this for us */
1682 goto ReTry;
1683 }
1684 /* XXXMRG: END HACK */
1685
1686 mutex_exit(&uvm_swap_data_lock);
1687 return 0;
1688 }
1689
1690 /*
1691 * uvm_swapisfull: return true if most of available swap is allocated
1692 * and in use. we don't count some small portion as it may be inaccessible
1693 * to us at any given moment, for example if there is lock contention or if
1694 * pages are busy.
1695 */
1696 bool
1697 uvm_swapisfull(void)
1698 {
1699 int swpgonly;
1700 bool rv;
1701
1702 if (uvmexp.swpages == 0) {
1703 return true;
1704 }
1705
1706 mutex_enter(&uvm_swap_data_lock);
1707 KASSERT(uvmexp.swpgonly <= uvmexp.swpages);
1708 swpgonly = (int)((uint64_t)uvmexp.swpgonly * 100 /
1709 uvm_swapisfull_factor);
1710 rv = (swpgonly >= uvmexp.swpgavail);
1711 mutex_exit(&uvm_swap_data_lock);
1712
1713 return (rv);
1714 }
1715
1716 /*
1717 * uvm_swap_markbad: keep track of swap ranges where we've had i/o errors
1718 *
1719 * => we lock uvm_swap_data_lock
1720 */
1721 void
1722 uvm_swap_markbad(int startslot, int nslots)
1723 {
1724 struct swapdev *sdp;
1725 UVMHIST_FUNC(__func__); UVMHIST_CALLED(pdhist);
1726
1727 mutex_enter(&uvm_swap_data_lock);
1728 sdp = swapdrum_getsdp(startslot);
1729 KASSERT(sdp != NULL);
1730
1731 /*
1732 * we just keep track of how many pages have been marked bad
1733 * in this device, to make everything add up in swap_off().
1734 * we assume here that the range of slots will all be within
1735 * one swap device.
1736 */
1737
1738 KASSERT(uvmexp.swpgonly >= nslots);
1739 atomic_add_int(&uvmexp.swpgonly, -nslots);
1740 sdp->swd_npgbad += nslots;
1741 UVMHIST_LOG(pdhist, "now %jd bad", sdp->swd_npgbad, 0,0,0);
1742 mutex_exit(&uvm_swap_data_lock);
1743 }
1744
1745 /*
1746 * uvm_swap_free: free swap slots
1747 *
1748 * => this can be all or part of an allocation made by uvm_swap_alloc
1749 * => we lock uvm_swap_data_lock
1750 */
1751 void
1752 uvm_swap_free(int startslot, int nslots)
1753 {
1754 struct swapdev *sdp;
1755 UVMHIST_FUNC(__func__);
1756 UVMHIST_CALLARGS(pdhist, "freeing %jd slots starting at %jd", nslots,
1757 startslot, 0, 0);
1758
1759 /*
1760 * ignore attempts to free the "bad" slot.
1761 */
1762
1763 if (startslot == SWSLOT_BAD) {
1764 return;
1765 }
1766
1767 /*
1768 * convert drum slot offset back to sdp, free the blocks
1769 * in the extent, and return. must hold pri lock to do
1770 * lookup and access the extent.
1771 */
1772
1773 mutex_enter(&uvm_swap_data_lock);
1774 sdp = swapdrum_getsdp(startslot);
1775 KASSERT(uvmexp.nswapdev >= 1);
1776 KASSERT(sdp != NULL);
1777 KASSERT(sdp->swd_npginuse >= nslots);
1778 blist_free(sdp->swd_blist, startslot - sdp->swd_drumoffset, nslots);
1779 sdp->swd_npginuse -= nslots;
1780 uvmexp.swpginuse -= nslots;
1781 mutex_exit(&uvm_swap_data_lock);
1782 }
1783
1784 /*
1785 * uvm_swap_put: put any number of pages into a contig place on swap
1786 *
1787 * => can be sync or async
1788 */
1789
1790 int
1791 uvm_swap_put(int swslot, struct vm_page **ppsp, int npages, int flags)
1792 {
1793 int error;
1794
1795 error = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1796 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1797 return error;
1798 }
1799
1800 /*
1801 * uvm_swap_get: get a single page from swap
1802 *
1803 * => usually a sync op (from fault)
1804 */
1805
1806 int
1807 uvm_swap_get(struct vm_page *page, int swslot, int flags)
1808 {
1809 int error;
1810
1811 atomic_inc_uint(&uvmexp.nswget);
1812 KASSERT(flags & PGO_SYNCIO);
1813 if (swslot == SWSLOT_BAD) {
1814 return EIO;
1815 }
1816
1817 error = uvm_swap_io(&page, swslot, 1, B_READ |
1818 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1819 if (error == 0) {
1820
1821 /*
1822 * this page is no longer only in swap.
1823 */
1824
1825 KASSERT(uvmexp.swpgonly > 0);
1826 atomic_dec_uint(&uvmexp.swpgonly);
1827 }
1828 return error;
1829 }
1830
1831 /*
1832 * uvm_swap_io: do an i/o operation to swap
1833 */
1834
1835 static int
1836 uvm_swap_io(struct vm_page **pps, int startslot, int npages, int flags)
1837 {
1838 daddr_t startblk;
1839 struct buf *bp;
1840 vaddr_t kva;
1841 int error, mapinflags;
1842 bool write, async, swap_encrypt;
1843 UVMHIST_FUNC(__func__);
1844 UVMHIST_CALLARGS(pdhist, "<- called, startslot=%jd, npages=%jd, flags=%#jx",
1845 startslot, npages, flags, 0);
1846
1847 write = (flags & B_READ) == 0;
1848 async = (flags & B_ASYNC) != 0;
1849 swap_encrypt = atomic_load_relaxed(&uvm_swap_encrypt);
1850
1851 /*
1852 * allocate a buf for the i/o.
1853 */
1854
1855 KASSERT(curlwp != uvm.pagedaemon_lwp || (write && async));
1856 bp = getiobuf(swapdev_vp, curlwp != uvm.pagedaemon_lwp);
1857 if (bp == NULL) {
1858 uvm_aio_aiodone_pages(pps, npages, true, ENOMEM);
1859 return ENOMEM;
1860 }
1861
1862 /*
1863 * convert starting drum slot to block number
1864 */
1865
1866 startblk = btodb((uint64_t)startslot << PAGE_SHIFT);
1867
1868 /*
1869 * first, map the pages into the kernel.
1870 */
1871
1872 mapinflags = !write ?
1873 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_READ :
1874 UVMPAGER_MAPIN_WAITOK|UVMPAGER_MAPIN_WRITE;
1875 if (write && swap_encrypt) /* need to encrypt in-place */
1876 mapinflags |= UVMPAGER_MAPIN_READ;
1877 kva = uvm_pagermapin(pps, npages, mapinflags);
1878
1879 /*
1880 * encrypt writes in place if requested
1881 */
1882
1883 if (write) do {
1884 struct swapdev *sdp;
1885 int i;
1886
1887 /*
1888 * Get the swapdev so we can discriminate on the
1889 * encryption state. There may or may not be an
1890 * encryption key generated; we may or may not be asked
1891 * to encrypt swap.
1892 *
1893 * 1. NO KEY, NO ENCRYPTION: Nothing to do.
1894 *
1895 * 2. NO KEY, BUT ENCRYPTION: Generate a key, encrypt,
1896 * and mark the slots encrypted.
1897 *
1898 * 3. KEY, BUT NO ENCRYPTION: The slots may already be
1899 * marked encrypted from a past life. Mark them not
1900 * encrypted.
1901 *
1902 * 4. KEY, ENCRYPTION: Encrypt and mark the slots
1903 * encrypted.
1904 */
1905 mutex_enter(&uvm_swap_data_lock);
1906 sdp = swapdrum_getsdp(startslot);
1907 if (!sdp->swd_encinit) {
1908 if (!swap_encrypt) {
1909 mutex_exit(&uvm_swap_data_lock);
1910 break;
1911 }
1912 uvm_swap_genkey(sdp);
1913 }
1914 KASSERT(sdp->swd_encinit);
1915 mutex_exit(&uvm_swap_data_lock);
1916
1917 for (i = 0; i < npages; i++) {
1918 int s = startslot + i;
1919 KDASSERT(swapdrum_sdp_is(s, sdp));
1920 KASSERT(s >= sdp->swd_drumoffset);
1921 s -= sdp->swd_drumoffset;
1922 KASSERT(s < sdp->swd_drumsize);
1923
1924 if (swap_encrypt) {
1925 uvm_swap_encryptpage(sdp,
1926 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
1927 atomic_or_32(&sdp->swd_encmap[s/32],
1928 __BIT(s%32));
1929 } else {
1930 atomic_and_32(&sdp->swd_encmap[s/32],
1931 ~__BIT(s%32));
1932 }
1933 }
1934 } while (0);
1935
1936 /*
1937 * fill in the bp/sbp. we currently route our i/o through
1938 * /dev/drum's vnode [swapdev_vp].
1939 */
1940
1941 bp->b_cflags = BC_BUSY | BC_NOCACHE;
1942 bp->b_flags = (flags & (B_READ|B_ASYNC));
1943 bp->b_proc = &proc0; /* XXX */
1944 bp->b_vnbufs.le_next = NOLIST;
1945 bp->b_data = (void *)kva;
1946 bp->b_blkno = startblk;
1947 bp->b_bufsize = bp->b_bcount = npages << PAGE_SHIFT;
1948
1949 /*
1950 * bump v_numoutput (counter of number of active outputs).
1951 */
1952
1953 if (write) {
1954 mutex_enter(swapdev_vp->v_interlock);
1955 swapdev_vp->v_numoutput++;
1956 mutex_exit(swapdev_vp->v_interlock);
1957 }
1958
1959 /*
1960 * for async ops we must set up the iodone handler.
1961 */
1962
1963 if (async) {
1964 bp->b_iodone = uvm_aio_aiodone;
1965 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1966 if (curlwp == uvm.pagedaemon_lwp)
1967 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1968 else
1969 BIO_SETPRIO(bp, BPRIO_TIMELIMITED);
1970 } else {
1971 bp->b_iodone = NULL;
1972 BIO_SETPRIO(bp, BPRIO_TIMECRITICAL);
1973 }
1974 UVMHIST_LOG(pdhist,
1975 "about to start io: data = %#jx blkno = %#jx, bcount = %jd",
1976 (uintptr_t)bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1977
1978 /*
1979 * now we start the I/O, and if async, return.
1980 */
1981
1982 VOP_STRATEGY(swapdev_vp, bp);
1983 if (async) {
1984 /*
1985 * Reads are always synchronous; if this changes, we
1986 * need to add an asynchronous path for decryption.
1987 */
1988 KASSERT(write);
1989 return 0;
1990 }
1991
1992 /*
1993 * must be sync i/o. wait for it to finish
1994 */
1995
1996 error = biowait(bp);
1997 if (error)
1998 goto out;
1999
2000 /*
2001 * decrypt reads in place if needed
2002 */
2003
2004 if (!write) do {
2005 struct swapdev *sdp;
2006 bool encinit;
2007 int i;
2008
2009 /*
2010 * Get the sdp. Everything about it except the encinit
2011 * bit, saying whether the encryption key is
2012 * initialized or not, and the encrypted bit for each
2013 * page, is stable until all swap pages have been
2014 * released and the device is removed.
2015 */
2016 mutex_enter(&uvm_swap_data_lock);
2017 sdp = swapdrum_getsdp(startslot);
2018 encinit = sdp->swd_encinit;
2019 mutex_exit(&uvm_swap_data_lock);
2020
2021 if (!encinit)
2022 /*
2023 * If there's no encryption key, there's no way
2024 * any of these slots can be encrypted, so
2025 * nothing to do here.
2026 */
2027 break;
2028 for (i = 0; i < npages; i++) {
2029 int s = startslot + i;
2030 KDASSERT(swapdrum_sdp_is(s, sdp));
2031 KASSERT(s >= sdp->swd_drumoffset);
2032 s -= sdp->swd_drumoffset;
2033 KASSERT(s < sdp->swd_drumsize);
2034 if ((atomic_load_relaxed(&sdp->swd_encmap[s/32]) &
2035 __BIT(s%32)) == 0)
2036 continue;
2037 uvm_swap_decryptpage(sdp,
2038 (void *)(kva + (vsize_t)i*PAGE_SIZE), s);
2039 }
2040 } while (0);
2041 out:
2042 /*
2043 * kill the pager mapping
2044 */
2045
2046 uvm_pagermapout(kva, npages);
2047
2048 /*
2049 * now dispose of the buf and we're done.
2050 */
2051
2052 if (write) {
2053 mutex_enter(swapdev_vp->v_interlock);
2054 vwakeup(bp);
2055 mutex_exit(swapdev_vp->v_interlock);
2056 }
2057 putiobuf(bp);
2058 UVMHIST_LOG(pdhist, "<- done (sync) error=%jd", error, 0, 0, 0);
2059
2060 return (error);
2061 }
2062
2063 /*
2064 * uvm_swap_genkey(sdp)
2065 *
2066 * Generate a key for swap encryption.
2067 */
2068 static void
2069 uvm_swap_genkey(struct swapdev *sdp)
2070 {
2071 uint8_t key[32];
2072
2073 KASSERT(!sdp->swd_encinit);
2074
2075 cprng_strong(kern_cprng, key, sizeof key, 0);
2076 aes_setenckey256(&sdp->swd_enckey, key);
2077 aes_setdeckey256(&sdp->swd_deckey, key);
2078 explicit_memset(key, 0, sizeof key);
2079
2080 sdp->swd_encinit = true;
2081 }
2082
2083 /*
2084 * uvm_swap_encryptpage(sdp, kva, slot)
2085 *
2086 * Encrypt one page of data at kva for the specified slot number
2087 * in the swap device.
2088 */
2089 static void
2090 uvm_swap_encryptpage(struct swapdev *sdp, void *kva, int slot)
2091 {
2092 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2093
2094 /* iv := AES_k(le32enc(slot) || 0^96) */
2095 le32enc(preiv, slot);
2096 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2097
2098 /* *kva := AES-CBC_k(iv, *kva) */
2099 aes_cbc_enc(&sdp->swd_enckey, kva, kva, PAGE_SIZE, iv,
2100 AES_256_NROUNDS);
2101
2102 explicit_memset(&iv, 0, sizeof iv);
2103 }
2104
2105 /*
2106 * uvm_swap_decryptpage(sdp, kva, slot)
2107 *
2108 * Decrypt one page of data at kva for the specified slot number
2109 * in the swap device.
2110 */
2111 static void
2112 uvm_swap_decryptpage(struct swapdev *sdp, void *kva, int slot)
2113 {
2114 uint8_t preiv[16] __aligned(16) = {0}, iv[16] __aligned(16);
2115
2116 /* iv := AES_k(le32enc(slot) || 0^96) */
2117 le32enc(preiv, slot);
2118 aes_enc(&sdp->swd_enckey, (const void *)preiv, iv, AES_256_NROUNDS);
2119
2120 /* *kva := AES-CBC^{-1}_k(iv, *kva) */
2121 aes_cbc_dec(&sdp->swd_deckey, kva, kva, PAGE_SIZE, iv,
2122 AES_256_NROUNDS);
2123
2124 explicit_memset(&iv, 0, sizeof iv);
2125 }
2126
2127 SYSCTL_SETUP(sysctl_uvmswap_setup, "sysctl uvmswap setup")
2128 {
2129
2130 sysctl_createv(clog, 0, NULL, NULL,
2131 CTLFLAG_PERMANENT|CTLFLAG_READWRITE, CTLTYPE_BOOL, "swap_encrypt",
2132 SYSCTL_DESCR("Encrypt data when swapped out to disk"),
2133 NULL, 0, &uvm_swap_encrypt, 0,
2134 CTL_VM, CTL_CREATE, CTL_EOL);
2135 }
2136