uvm_swap.c revision 1.22.2.1 1 /* $NetBSD: uvm_swap.c,v 1.22.2.1 1998/11/09 06:06:39 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241 static simple_lock_data_t swap_data_lock;
242
243 /*
244 * prototypes
245 */
246 static void swapdrum_add __P((struct swapdev *, int));
247 static struct swapdev *swapdrum_getsdp __P((int));
248
249 static struct swapdev *swaplist_find __P((struct vnode *, int));
250 static void swaplist_insert __P((struct swapdev *,
251 struct swappri *, int));
252 static void swaplist_trim __P((void));
253
254 static int swap_on __P((struct proc *, struct swapdev *));
255 static int swap_off __P((struct proc *, struct swapdev *));
256
257 #ifdef SWAP_TO_FILES
258 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
259 static void sw_reg_iodone __P((struct buf *));
260 static void sw_reg_start __P((struct swapdev *));
261 #endif
262
263 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
264 static void uvm_swap_bufdone __P((struct buf *));
265 static int uvm_swap_io __P((struct vm_page **, int, int, int));
266
267 /*
268 * uvm_swap_init: init the swap system data structures and locks
269 *
270 * => called at boot time from init_main.c after the filesystems
271 * are brought up (which happens after uvm_init())
272 */
273 void
274 uvm_swap_init()
275 {
276 UVMHIST_FUNC("uvm_swap_init");
277
278 UVMHIST_CALLED(pdhist);
279 /*
280 * first, init the swap list, its counter, and its lock.
281 * then get a handle on the vnode for /dev/drum by using
282 * the its dev_t number ("swapdev", from MD conf.c).
283 */
284
285 LIST_INIT(&swap_priority);
286 uvmexp.nswapdev = 0;
287 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
288 simple_lock_init(&swap_data_lock);
289
290 if (bdevvp(swapdev, &swapdev_vp))
291 panic("uvm_swap_init: can't get vnode for swap device");
292
293 /*
294 * create swap block resource map to map /dev/drum. the range
295 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
296 * that block 0 is reserved (used to indicate an allocation
297 * failure, or no allocation).
298 */
299 swapmap = extent_create("swapmap", 1, INT_MAX,
300 M_VMSWAP, 0, 0, EX_NOWAIT);
301 if (swapmap == 0)
302 panic("uvm_swap_init: extent_create failed");
303
304 /*
305 * allocate our private pool of "swapbuf" structures (includes
306 * a "buf" structure). ["nswbuf" comes from param.c and can
307 * be adjusted by MD code before we get here].
308 */
309
310 swapbuf_pool =
311 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
312 NULL, NULL, 0);
313 if (swapbuf_pool == NULL)
314 panic("swapinit: pool_create failed");
315 /* XXX - set a maximum on swapbuf_pool? */
316
317 vndxfer_pool =
318 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
319 NULL, NULL, 0);
320 if (vndxfer_pool == NULL)
321 panic("swapinit: pool_create failed");
322
323 vndbuf_pool =
324 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
325 NULL, NULL, 0);
326 if (vndbuf_pool == NULL)
327 panic("swapinit: pool_create failed");
328 /*
329 * done!
330 */
331 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
332 }
333
334 /*
335 * swaplist functions: functions that operate on the list of swap
336 * devices on the system.
337 */
338
339 /*
340 * swaplist_insert: insert swap device "sdp" into the global list
341 *
342 * => caller must hold both swap_syscall_lock and swap_data_lock
343 * => caller must provide a newly malloc'd swappri structure (we will
344 * FREE it if we don't need it... this it to prevent malloc blocking
345 * here while adding swap)
346 */
347 static void
348 swaplist_insert(sdp, newspp, priority)
349 struct swapdev *sdp;
350 struct swappri *newspp;
351 int priority;
352 {
353 struct swappri *spp, *pspp;
354 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
355
356 /*
357 * find entry at or after which to insert the new device.
358 */
359 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
360 spp = spp->spi_swappri.le_next) {
361 if (priority <= spp->spi_priority)
362 break;
363 pspp = spp;
364 }
365
366 /*
367 * new priority?
368 */
369 if (spp == NULL || spp->spi_priority != priority) {
370 spp = newspp; /* use newspp! */
371 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
372
373 spp->spi_priority = priority;
374 CIRCLEQ_INIT(&spp->spi_swapdev);
375
376 if (pspp)
377 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
378 else
379 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
380 } else {
381 /* we don't need a new priority structure, free it */
382 FREE(newspp, M_VMSWAP);
383 }
384
385 /*
386 * priority found (or created). now insert on the priority's
387 * circleq list and bump the total number of swapdevs.
388 */
389 sdp->swd_priority = priority;
390 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
391 uvmexp.nswapdev++;
392
393 /*
394 * done!
395 */
396 }
397
398 /*
399 * swaplist_find: find and optionally remove a swap device from the
400 * global list.
401 *
402 * => caller must hold both swap_syscall_lock and swap_data_lock
403 * => we return the swapdev we found (and removed)
404 */
405 static struct swapdev *
406 swaplist_find(vp, remove)
407 struct vnode *vp;
408 boolean_t remove;
409 {
410 struct swapdev *sdp;
411 struct swappri *spp;
412
413 /*
414 * search the lists for the requested vp
415 */
416 for (spp = swap_priority.lh_first; spp != NULL;
417 spp = spp->spi_swappri.le_next) {
418 for (sdp = spp->spi_swapdev.cqh_first;
419 sdp != (void *)&spp->spi_swapdev;
420 sdp = sdp->swd_next.cqe_next)
421 if (sdp->swd_vp == vp) {
422 if (remove) {
423 CIRCLEQ_REMOVE(&spp->spi_swapdev,
424 sdp, swd_next);
425 uvmexp.nswapdev--;
426 }
427 return(sdp);
428 }
429 }
430 return (NULL);
431 }
432
433
434 /*
435 * swaplist_trim: scan priority list for empty priority entries and kill
436 * them.
437 *
438 * => caller must hold both swap_syscall_lock and swap_data_lock
439 */
440 static void
441 swaplist_trim()
442 {
443 struct swappri *spp, *nextspp;
444
445 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
446 nextspp = spp->spi_swappri.le_next;
447 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
448 continue;
449 LIST_REMOVE(spp, spi_swappri);
450 free((caddr_t)spp, M_VMSWAP);
451 }
452 }
453
454 /*
455 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
456 *
457 * => caller must hold swap_syscall_lock
458 * => swap_data_lock should be unlocked (we may sleep)
459 */
460 static void
461 swapdrum_add(sdp, npages)
462 struct swapdev *sdp;
463 int npages;
464 {
465 u_long result;
466
467 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
468 EX_WAITOK, &result))
469 panic("swapdrum_add");
470
471 sdp->swd_drumoffset = result;
472 sdp->swd_drumsize = npages;
473 }
474
475 /*
476 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
477 * to the "swapdev" that maps that section of the drum.
478 *
479 * => each swapdev takes one big contig chunk of the drum
480 * => caller must hold swap_data_lock
481 */
482 static struct swapdev *
483 swapdrum_getsdp(pgno)
484 int pgno;
485 {
486 struct swapdev *sdp;
487 struct swappri *spp;
488
489 for (spp = swap_priority.lh_first; spp != NULL;
490 spp = spp->spi_swappri.le_next)
491 for (sdp = spp->spi_swapdev.cqh_first;
492 sdp != (void *)&spp->spi_swapdev;
493 sdp = sdp->swd_next.cqe_next)
494 if (pgno >= sdp->swd_drumoffset &&
495 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
496 return sdp;
497 }
498 return NULL;
499 }
500
501
502 /*
503 * sys_swapctl: main entry point for swapctl(2) system call
504 * [with two helper functions: swap_on and swap_off]
505 */
506 int
507 sys_swapctl(p, v, retval)
508 struct proc *p;
509 void *v;
510 register_t *retval;
511 {
512 struct sys_swapctl_args /* {
513 syscallarg(int) cmd;
514 syscallarg(void *) arg;
515 syscallarg(int) misc;
516 } */ *uap = (struct sys_swapctl_args *)v;
517 struct vnode *vp;
518 struct nameidata nd;
519 struct swappri *spp;
520 struct swapdev *sdp;
521 struct swapent *sep;
522 char userpath[PATH_MAX + 1];
523 size_t len;
524 int count, error, misc;
525 int priority;
526 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
527
528 misc = SCARG(uap, misc);
529
530 /*
531 * ensure serialized syscall access by grabbing the swap_syscall_lock
532 */
533 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
534
535 /*
536 * we handle the non-priv NSWAP and STATS request first.
537 *
538 * SWAP_NSWAP: return number of config'd swap devices
539 * [can also be obtained with uvmexp sysctl]
540 */
541 if (SCARG(uap, cmd) == SWAP_NSWAP) {
542 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
543 0, 0, 0);
544 *retval = uvmexp.nswapdev;
545 error = 0;
546 goto out;
547 }
548
549 /*
550 * SWAP_STATS: get stats on current # of configured swap devs
551 *
552 * note that the swap_priority list can't change as long
553 * as we are holding the swap_syscall_lock. we don't want
554 * to grab the swap_data_lock because we may fault&sleep during
555 * copyout() and we don't want to be holding that lock then!
556 */
557 if (SCARG(uap, cmd) == SWAP_STATS
558 #if defined(COMPAT_13)
559 || SCARG(uap, cmd) == SWAP_OSTATS
560 #endif
561 ) {
562 sep = (struct swapent *)SCARG(uap, arg);
563 count = 0;
564
565 for (spp = swap_priority.lh_first; spp != NULL;
566 spp = spp->spi_swappri.le_next) {
567 for (sdp = spp->spi_swapdev.cqh_first;
568 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
569 sdp = sdp->swd_next.cqe_next) {
570 /*
571 * backwards compatibility for system call.
572 * note that we use 'struct oswapent' as an
573 * overlay into both 'struct swapdev' and
574 * the userland 'struct swapent', as we
575 * want to retain backwards compatibility
576 * with NetBSD 1.3.
577 */
578 sdp->swd_ose.ose_inuse =
579 btodb(sdp->swd_npginuse << PAGE_SHIFT);
580 error = copyout((caddr_t)&sdp->swd_ose,
581 (caddr_t)sep, sizeof(struct oswapent));
582
583 /* now copy out the path if necessary */
584 #if defined(COMPAT_13)
585 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
586 #else
587 if (error == 0)
588 #endif
589 error = copyout((caddr_t)sdp->swd_path,
590 (caddr_t)&sep->se_path,
591 sdp->swd_pathlen);
592
593 if (error)
594 goto out;
595 count++;
596 #if defined(COMPAT_13)
597 if (SCARG(uap, cmd) == SWAP_OSTATS)
598 ((struct oswapent *)sep)++;
599 else
600 #endif
601 sep++;
602 }
603 }
604
605 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
606
607 *retval = count;
608 error = 0;
609 goto out;
610 }
611
612 /*
613 * all other requests require superuser privs. verify.
614 */
615 if ((error = suser(p->p_ucred, &p->p_acflag)))
616 goto out;
617
618 /*
619 * at this point we expect a path name in arg. we will
620 * use namei() to gain a vnode reference (vref), and lock
621 * the vnode (VOP_LOCK).
622 *
623 * XXX: a NULL arg means use the root vnode pointer (e.g. for
624 * miniroot)
625 */
626 if (SCARG(uap, arg) == NULL) {
627 vp = rootvp; /* miniroot */
628 if (vget(vp, LK_EXCLUSIVE)) {
629 error = EBUSY;
630 goto out;
631 }
632 if (SCARG(uap, cmd) == SWAP_ON &&
633 copystr("miniroot", userpath, sizeof userpath, &len))
634 panic("swapctl: miniroot copy failed");
635 } else {
636 int space;
637 char *where;
638
639 if (SCARG(uap, cmd) == SWAP_ON) {
640 if ((error = copyinstr(SCARG(uap, arg), userpath,
641 sizeof userpath, &len)))
642 goto out;
643 space = UIO_SYSSPACE;
644 where = userpath;
645 } else {
646 space = UIO_USERSPACE;
647 where = (char *)SCARG(uap, arg);
648 }
649 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
650 if ((error = namei(&nd)))
651 goto out;
652 vp = nd.ni_vp;
653 }
654 /* note: "vp" is referenced and locked */
655
656 error = 0; /* assume no error */
657 switch(SCARG(uap, cmd)) {
658 case SWAP_CTL:
659 /*
660 * get new priority, remove old entry (if any) and then
661 * reinsert it in the correct place. finally, prune out
662 * any empty priority structures.
663 */
664 priority = SCARG(uap, misc);
665 spp = (struct swappri *)
666 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
667 simple_lock(&swap_data_lock);
668 if ((sdp = swaplist_find(vp, 1)) == NULL) {
669 error = ENOENT;
670 } else {
671 swaplist_insert(sdp, spp, priority);
672 swaplist_trim();
673 }
674 simple_unlock(&swap_data_lock);
675 if (error)
676 free(spp, M_VMSWAP);
677 break;
678
679 case SWAP_ON:
680 /*
681 * check for duplicates. if none found, then insert a
682 * dummy entry on the list to prevent someone else from
683 * trying to enable this device while we are working on
684 * it.
685 */
686 priority = SCARG(uap, misc);
687 simple_lock(&swap_data_lock);
688 if ((sdp = swaplist_find(vp, 0)) != NULL) {
689 error = EBUSY;
690 simple_unlock(&swap_data_lock);
691 break;
692 }
693 sdp = (struct swapdev *)
694 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
695 spp = (struct swappri *)
696 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
697 memset(sdp, 0, sizeof(*sdp));
698 sdp->swd_flags = SWF_FAKE; /* placeholder only */
699 sdp->swd_vp = vp;
700 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
701 #ifdef SWAP_TO_FILES
702 /*
703 * XXX Is NFS elaboration necessary?
704 */
705 if (vp->v_type == VREG)
706 sdp->swd_cred = crdup(p->p_ucred);
707 #endif
708 swaplist_insert(sdp, spp, priority);
709 simple_unlock(&swap_data_lock);
710
711 sdp->swd_pathlen = len;
712 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
713 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
714 panic("swapctl: copystr");
715 /*
716 * we've now got a FAKE placeholder in the swap list.
717 * now attempt to enable swap on it. if we fail, undo
718 * what we've done and kill the fake entry we just inserted.
719 * if swap_on is a success, it will clear the SWF_FAKE flag
720 */
721 if ((error = swap_on(p, sdp)) != 0) {
722 simple_lock(&swap_data_lock);
723 (void) swaplist_find(vp, 1); /* kill fake entry */
724 swaplist_trim();
725 simple_unlock(&swap_data_lock);
726 #ifdef SWAP_TO_FILES
727 if (vp->v_type == VREG)
728 crfree(sdp->swd_cred);
729 #endif
730 free(sdp->swd_path, M_VMSWAP);
731 free((caddr_t)sdp, M_VMSWAP);
732 break;
733 }
734
735 /*
736 * got it! now add a second reference to vp so that
737 * we keep a reference to the vnode after we return.
738 */
739 vref(vp);
740 break;
741
742 case SWAP_OFF:
743 /*
744 * find the entry of interest and ensure it is enabled.
745 */
746 simple_lock(&swap_data_lock);
747 if ((sdp = swaplist_find(vp, 0)) == NULL) {
748 simple_unlock(&swap_data_lock);
749 error = ENXIO;
750 break;
751 }
752 /*
753 * If a device isn't in use or enabled, we
754 * can't stop swapping from it (again).
755 */
756 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
757 simple_unlock(&swap_data_lock);
758 error = EBUSY;
759 break;
760 }
761
762 /*
763 * do the real work.
764 */
765 /* XXXCDC: should we call with list locked or unlocked? */
766 if ((error = swap_off(p, sdp)) != 0)
767 /* XXXCDC: might need relock here */
768 goto out;
769
770 break;
771
772 default:
773 error = EINVAL;
774 }
775
776 /*
777 * done! use vput to drop our reference and unlock
778 */
779 vput(vp);
780 out:
781 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
782
783 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
784 return (error);
785 }
786
787 /*
788 * swap_on: attempt to enable a swapdev for swapping. note that the
789 * swapdev is already on the global list, but disabled (marked
790 * SWF_FAKE).
791 *
792 * => we avoid the start of the disk (to protect disk labels)
793 * => we also avoid the miniroot, if we are swapping to root.
794 * => caller should leave swap_data_lock unlocked, we may lock it
795 * if needed.
796 */
797 static int
798 swap_on(p, sdp)
799 struct proc *p;
800 struct swapdev *sdp;
801 {
802 static int count = 0; /* static */
803 struct vnode *vp;
804 int error, npages, nblocks, size;
805 long addr;
806 #ifdef SWAP_TO_FILES
807 struct vattr va;
808 #endif
809 #ifdef NFS
810 extern int (**nfsv2_vnodeop_p) __P((void *));
811 #endif /* NFS */
812 dev_t dev;
813 char *name;
814 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
815
816 /*
817 * we want to enable swapping on sdp. the swd_vp contains
818 * the vnode we want (locked and ref'd), and the swd_dev
819 * contains the dev_t of the file, if it a block device.
820 */
821
822 vp = sdp->swd_vp;
823 dev = sdp->swd_dev;
824
825 /*
826 * open the swap file (mostly useful for block device files to
827 * let device driver know what is up).
828 *
829 * we skip the open/close for root on swap because the root
830 * has already been opened when root was mounted (mountroot).
831 */
832 if (vp != rootvp) {
833 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
834 return (error);
835 }
836
837 /* XXX this only works for block devices */
838 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
839
840 /*
841 * we now need to determine the size of the swap area. for
842 * block specials we can call the d_psize function.
843 * for normal files, we must stat [get attrs].
844 *
845 * we put the result in nblks.
846 * for normal files, we also want the filesystem block size
847 * (which we get with statfs).
848 */
849 switch (vp->v_type) {
850 case VBLK:
851 if (bdevsw[major(dev)].d_psize == 0 ||
852 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
853 error = ENXIO;
854 goto bad;
855 }
856 break;
857
858 #ifdef SWAP_TO_FILES
859 case VREG:
860 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
861 goto bad;
862 nblocks = (int)btodb(va.va_size);
863 if ((error =
864 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
865 goto bad;
866
867 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
868 /*
869 * limit the max # of outstanding I/O requests we issue
870 * at any one time. take it easy on NFS servers.
871 */
872 #ifdef NFS
873 if (vp->v_op == nfsv2_vnodeop_p)
874 sdp->swd_maxactive = 2; /* XXX */
875 else
876 #endif /* NFS */
877 sdp->swd_maxactive = 8; /* XXX */
878 break;
879 #endif
880
881 default:
882 error = ENXIO;
883 goto bad;
884 }
885
886 /*
887 * save nblocks in a safe place and convert to pages.
888 */
889
890 sdp->swd_ose.ose_nblks = nblocks;
891 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
892
893 /*
894 * for block special files, we want to make sure that leave
895 * the disklabel and bootblocks alone, so we arrange to skip
896 * over them (randomly choosing to skip PAGE_SIZE bytes).
897 * note that because of this the "size" can be less than the
898 * actual number of blocks on the device.
899 */
900 if (vp->v_type == VBLK) {
901 /* we use pages 1 to (size - 1) [inclusive] */
902 size = npages - 1;
903 addr = 1;
904 } else {
905 /* we use pages 0 to (size - 1) [inclusive] */
906 size = npages;
907 addr = 0;
908 }
909
910 /*
911 * make sure we have enough blocks for a reasonable sized swap
912 * area. we want at least one page.
913 */
914
915 if (size < 1) {
916 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
917 error = EINVAL;
918 goto bad;
919 }
920
921 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
922
923 /*
924 * now we need to allocate an extent to manage this swap device
925 */
926 name = malloc(12, M_VMSWAP, M_WAITOK);
927 sprintf(name, "swap0x%04x", count++);
928
929 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
930 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
931 0, 0, EX_WAITOK);
932 /* allocate the `saved' region from the extent so it won't be used */
933 if (addr) {
934 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
935 panic("disklabel region");
936 }
937
938
939 /*
940 * if the vnode we are swapping to is the root vnode
941 * (i.e. we are swapping to the miniroot) then we want
942 * to make sure we don't overwrite it. do a statfs to
943 * find its size and skip over it.
944 */
945 if (vp == rootvp) {
946 struct mount *mp;
947 struct statfs *sp;
948 int rootblocks, rootpages;
949
950 mp = rootvnode->v_mount;
951 sp = &mp->mnt_stat;
952 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
953 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
954 if (rootpages > npages)
955 panic("swap_on: miniroot larger than swap?");
956
957 if (extent_alloc_region(sdp->swd_ex, addr,
958 rootpages, EX_WAITOK))
959 panic("swap_on: unable to preserve miniroot");
960
961 size -= rootpages;
962 printf("Preserved %d pages of miniroot ", rootpages);
963 printf("leaving %d pages of swap\n", size);
964 }
965
966 /*
967 * add anons to reflect the new swap space
968 */
969 uvm_anon_add(size, TRUE);
970
971 /*
972 * now add the new swapdev to the drum and enable.
973 */
974 simple_lock(&swap_data_lock);
975 swapdrum_add(sdp, npages);
976 sdp->swd_npages = size;
977 sdp->swd_flags &= ~SWF_FAKE; /* going live */
978 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
979 uvmexp.swpages += size;
980 simple_unlock(&swap_data_lock);
981
982 #if 0
983 /*
984 * At this point we could arrange to reserve memory for the
985 * swap buffer pools.
986 *
987 * I don't think this is necessary, since swapping starts well
988 * ahead of serious memory deprivation and the memory resource
989 * pools hold on to actively used memory. This should ensure
990 * we always have some resources to continue operation.
991 */
992
993 int s = splbio();
994 int n = 8 * sdp->swd_maxactive;
995
996 (void)pool_prime(swapbuf_pool, n, 0);
997
998 if (vp->v_type == VREG) {
999 /* Allocate additional vnx and vnd buffers */
1000 /*
1001 * Allocation Policy:
1002 * (8 * swd_maxactive) vnx headers per swap dev
1003 * (16 * swd_maxactive) vnd buffers per swap dev
1004 */
1005
1006 n = 8 * sdp->swd_maxactive;
1007 (void)pool_prime(vndxfer_pool, n, 0);
1008
1009 n = 16 * sdp->swd_maxactive;
1010 (void)pool_prime(vndbuf_pool, n, 0);
1011 }
1012 splx(s);
1013 #endif
1014
1015 return (0);
1016
1017 bad:
1018 /*
1019 * failure: close device if necessary and return error.
1020 */
1021 if (vp != rootvp)
1022 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1023 return (error);
1024 }
1025
1026 /*
1027 * swap_off: stop swapping on swapdev
1028 *
1029 * => swap data should be locked, we will unlock.
1030 */
1031 static int
1032 swap_off(p, sdp)
1033 struct proc *p;
1034 struct swapdev *sdp;
1035 {
1036 void *name;
1037 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1038
1039 /* turn off the enable flag, adjust counters */
1040 sdp->swd_flags &= ~SWF_ENABLE;
1041 uvmexp.swpages -= sdp->swd_npages;
1042 uvmexp.nanonneeded -= sdp->swd_npages;
1043
1044 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev,0,0,0);
1045
1046 /*
1047 * the idea is to find all the pages that are paged out to this
1048 * device, and page them all in. in uvm, swap-backed pageable
1049 * memory can take two forms: aobjs and anons. call the
1050 * swapoff hook for each subsystem to bring in pages.
1051 */
1052
1053 simple_unlock(&swap_data_lock);
1054 if (uao_swap_off(sdp->swd_drumoffset,
1055 sdp->swd_drumoffset + sdp->swd_drumsize) ||
1056 anon_swap_off(sdp->swd_drumoffset,
1057 sdp->swd_drumoffset + sdp->swd_drumsize)) {
1058 return ENOMEM;
1059 }
1060
1061 #ifdef DIAGNOSTIC
1062 if (sdp->swd_npginuse != 0) {
1063 panic("swap_off: %d pages still in use\n", sdp->swd_npginuse);
1064 }
1065 #endif
1066
1067 simple_lock(&swap_data_lock);
1068
1069 /*
1070 * done with the vnode.
1071 */
1072 if (sdp->swd_vp != rootvp)
1073 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1074 if (sdp->swd_vp)
1075 vrele(sdp->swd_vp);
1076
1077 /*
1078 * free all resources!
1079 */
1080 if (swaplist_find(sdp->swd_vp, 1) == NULL)
1081 panic("swap_off: swapdev not in list\n");
1082
1083 extent_free(swapmap, sdp->swd_drumoffset, sdp->swd_drumsize,
1084 EX_WAITOK);
1085 name = (void *)sdp->swd_ex->ex_name;
1086 extent_destroy(sdp->swd_ex);
1087 free(name, M_VMSWAP);
1088 free(sdp, M_VMSWAP);
1089
1090 simple_unlock(&swap_data_lock);
1091
1092 return (0);
1093 }
1094
1095 /*
1096 * /dev/drum interface and i/o functions
1097 */
1098
1099 /*
1100 * swread: the read function for the drum (just a call to physio)
1101 */
1102 /*ARGSUSED*/
1103 int
1104 swread(dev, uio, ioflag)
1105 dev_t dev;
1106 struct uio *uio;
1107 int ioflag;
1108 {
1109 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1110
1111 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1112 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1113 }
1114
1115 /*
1116 * swwrite: the write function for the drum (just a call to physio)
1117 */
1118 /*ARGSUSED*/
1119 int
1120 swwrite(dev, uio, ioflag)
1121 dev_t dev;
1122 struct uio *uio;
1123 int ioflag;
1124 {
1125 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1126
1127 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1128 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1129 }
1130
1131 /*
1132 * swstrategy: perform I/O on the drum
1133 *
1134 * => we must map the i/o request from the drum to the correct swapdev.
1135 */
1136 void
1137 swstrategy(bp)
1138 struct buf *bp;
1139 {
1140 struct swapdev *sdp;
1141 struct vnode *vp;
1142 int pageno;
1143 int bn;
1144 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1145
1146 /*
1147 * convert block number to swapdev. note that swapdev can't
1148 * be yanked out from under us because we are holding resources
1149 * in it (i.e. the blocks we are doing I/O on).
1150 */
1151 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1152 simple_lock(&swap_data_lock);
1153 sdp = swapdrum_getsdp(pageno);
1154 simple_unlock(&swap_data_lock);
1155 if (sdp == NULL) {
1156 bp->b_error = EINVAL;
1157 bp->b_flags |= B_ERROR;
1158 biodone(bp);
1159 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1160 return;
1161 }
1162
1163 /*
1164 * convert drum page number to block number on this swapdev.
1165 */
1166
1167 pageno -= sdp->swd_drumoffset; /* page # on swapdev */
1168 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1169
1170 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1171 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1172 sdp->swd_drumoffset, bn, bp->b_bcount);
1173
1174 /*
1175 * for block devices we finish up here.
1176 * for regular files we have to do more work which we delegate
1177 * to sw_reg_strategy().
1178 */
1179
1180 switch (sdp->swd_vp->v_type) {
1181 default:
1182 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1183 case VBLK:
1184
1185 /*
1186 * must convert "bp" from an I/O on /dev/drum to an I/O
1187 * on the swapdev (sdp).
1188 */
1189 bp->b_blkno = bn; /* swapdev block number */
1190 vp = sdp->swd_vp; /* swapdev vnode pointer */
1191 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1192 VHOLD(vp); /* "hold" swapdev vp for i/o */
1193
1194 /*
1195 * if we are doing a write, we have to redirect the i/o on
1196 * drum's v_numoutput counter to the swapdevs.
1197 */
1198 if ((bp->b_flags & B_READ) == 0) {
1199 int s = splbio();
1200 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1201 vp->v_numoutput++; /* put it on swapdev */
1202 splx(s);
1203 }
1204
1205 /*
1206 * dissassocate buffer with /dev/drum vnode
1207 * [could be null if buf was from physio]
1208 */
1209 if (bp->b_vp != NULLVP)
1210 brelvp(bp);
1211
1212 /*
1213 * finally plug in swapdev vnode and start I/O
1214 */
1215 bp->b_vp = vp;
1216 VOP_STRATEGY(bp);
1217 return;
1218 #ifdef SWAP_TO_FILES
1219 case VREG:
1220 /*
1221 * deligate to sw_reg_strategy function.
1222 */
1223 sw_reg_strategy(sdp, bp, bn);
1224 return;
1225 #endif
1226 }
1227 /* NOTREACHED */
1228 }
1229
1230 #ifdef SWAP_TO_FILES
1231 /*
1232 * sw_reg_strategy: handle swap i/o to regular files
1233 */
1234 static void
1235 sw_reg_strategy(sdp, bp, bn)
1236 struct swapdev *sdp;
1237 struct buf *bp;
1238 int bn;
1239 {
1240 struct vnode *vp;
1241 struct vndxfer *vnx;
1242 daddr_t nbn, byteoff;
1243 caddr_t addr;
1244 int s, off, nra, error, sz, resid;
1245 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1246
1247 /*
1248 * allocate a vndxfer head for this transfer and point it to
1249 * our buffer.
1250 */
1251 getvndxfer(vnx);
1252 vnx->vx_flags = VX_BUSY;
1253 vnx->vx_error = 0;
1254 vnx->vx_pending = 0;
1255 vnx->vx_bp = bp;
1256 vnx->vx_sdp = sdp;
1257
1258 /*
1259 * setup for main loop where we read filesystem blocks into
1260 * our buffer.
1261 */
1262 error = 0;
1263 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1264 addr = bp->b_data; /* current position in buffer */
1265 byteoff = dbtob(bn);
1266
1267 for (resid = bp->b_resid; resid; resid -= sz) {
1268 struct vndbuf *nbp;
1269
1270 /*
1271 * translate byteoffset into block number. return values:
1272 * vp = vnode of underlying device
1273 * nbn = new block number (on underlying vnode dev)
1274 * nra = num blocks we can read-ahead (excludes requested
1275 * block)
1276 */
1277 nra = 0;
1278 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1279 &vp, &nbn, &nra);
1280
1281 if (error == 0 && (long)nbn == -1)
1282 error = EIO; /* failure */
1283
1284 /*
1285 * punt if there was an error or a hole in the file.
1286 * we must wait for any i/o ops we have already started
1287 * to finish before returning.
1288 *
1289 * XXX we could deal with holes here but it would be
1290 * a hassle (in the write case).
1291 */
1292 if (error) {
1293 s = splbio();
1294 vnx->vx_error = error; /* pass error up */
1295 goto out;
1296 }
1297
1298 /*
1299 * compute the size ("sz") of this transfer (in bytes).
1300 * XXXCDC: ignores read-ahead for non-zero offset
1301 */
1302 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1303 sz = sdp->swd_bsize - off;
1304 else
1305 sz = (1 + nra) * sdp->swd_bsize;
1306
1307 if (resid < sz)
1308 sz = resid;
1309
1310 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1311 sdp->swd_vp, vp, byteoff, nbn);
1312
1313 /*
1314 * now get a buf structure. note that the vb_buf is
1315 * at the front of the nbp structure so that you can
1316 * cast pointers between the two structure easily.
1317 */
1318 getvndbuf(nbp);
1319 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1320 nbp->vb_buf.b_bcount = sz;
1321 #if 0
1322 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1323 #endif
1324 nbp->vb_buf.b_bufsize = sz;
1325 nbp->vb_buf.b_error = 0;
1326 nbp->vb_buf.b_data = addr;
1327 nbp->vb_buf.b_blkno = nbn + btodb(off);
1328 nbp->vb_buf.b_proc = bp->b_proc;
1329 nbp->vb_buf.b_iodone = sw_reg_iodone;
1330 nbp->vb_buf.b_vp = NULLVP;
1331 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1332 nbp->vb_buf.b_rcred = sdp->swd_cred;
1333 nbp->vb_buf.b_wcred = sdp->swd_cred;
1334
1335 /*
1336 * set b_dirtyoff/end and b_validoff/end. this is
1337 * required by the NFS client code (otherwise it will
1338 * just discard our I/O request).
1339 */
1340 if (bp->b_dirtyend == 0) {
1341 nbp->vb_buf.b_dirtyoff = 0;
1342 nbp->vb_buf.b_dirtyend = sz;
1343 } else {
1344 nbp->vb_buf.b_dirtyoff =
1345 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1346 nbp->vb_buf.b_dirtyend =
1347 min(sz,
1348 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1349 }
1350 if (bp->b_validend == 0) {
1351 nbp->vb_buf.b_validoff = 0;
1352 nbp->vb_buf.b_validend = sz;
1353 } else {
1354 nbp->vb_buf.b_validoff =
1355 max(0, bp->b_validoff - (bp->b_bcount-resid));
1356 nbp->vb_buf.b_validend =
1357 min(sz,
1358 max(0, bp->b_validend - (bp->b_bcount-resid)));
1359 }
1360
1361 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1362
1363 /*
1364 * Just sort by block number
1365 */
1366 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1367 s = splbio();
1368 if (vnx->vx_error != 0) {
1369 putvndbuf(nbp);
1370 goto out;
1371 }
1372 vnx->vx_pending++;
1373
1374 /* assoc new buffer with underlying vnode */
1375 bgetvp(vp, &nbp->vb_buf);
1376
1377 /* sort it in and start I/O if we are not over our limit */
1378 disksort(&sdp->swd_tab, &nbp->vb_buf);
1379 sw_reg_start(sdp);
1380 splx(s);
1381
1382 /*
1383 * advance to the next I/O
1384 */
1385 byteoff += sz;
1386 addr += sz;
1387 }
1388
1389 s = splbio();
1390
1391 out: /* Arrive here at splbio */
1392 vnx->vx_flags &= ~VX_BUSY;
1393 if (vnx->vx_pending == 0) {
1394 if (vnx->vx_error != 0) {
1395 bp->b_error = vnx->vx_error;
1396 bp->b_flags |= B_ERROR;
1397 }
1398 putvndxfer(vnx);
1399 biodone(bp);
1400 }
1401 splx(s);
1402 }
1403
1404 /*
1405 * sw_reg_start: start an I/O request on the requested swapdev
1406 *
1407 * => reqs are sorted by disksort (above)
1408 */
1409 static void
1410 sw_reg_start(sdp)
1411 struct swapdev *sdp;
1412 {
1413 struct buf *bp;
1414 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1415
1416 /* recursion control */
1417 if ((sdp->swd_flags & SWF_BUSY) != 0)
1418 return;
1419
1420 sdp->swd_flags |= SWF_BUSY;
1421
1422 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1423 bp = sdp->swd_tab.b_actf;
1424 if (bp == NULL)
1425 break;
1426 sdp->swd_tab.b_actf = bp->b_actf;
1427 sdp->swd_tab.b_active++;
1428
1429 UVMHIST_LOG(pdhist,
1430 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1431 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1432 if ((bp->b_flags & B_READ) == 0)
1433 bp->b_vp->v_numoutput++;
1434 VOP_STRATEGY(bp);
1435 }
1436 sdp->swd_flags &= ~SWF_BUSY;
1437 }
1438
1439 /*
1440 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1441 *
1442 * => note that we can recover the vndbuf struct by casting the buf ptr
1443 */
1444 static void
1445 sw_reg_iodone(bp)
1446 struct buf *bp;
1447 {
1448 struct vndbuf *vbp = (struct vndbuf *) bp;
1449 struct vndxfer *vnx = vbp->vb_xfer;
1450 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1451 struct swapdev *sdp = vnx->vx_sdp;
1452 int s, resid;
1453 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1454
1455 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1456 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1457 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1458 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1459
1460 /*
1461 * protect vbp at splbio and update.
1462 */
1463
1464 s = splbio();
1465 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1466 pbp->b_resid -= resid;
1467 vnx->vx_pending--;
1468
1469 if (vbp->vb_buf.b_error) {
1470 UVMHIST_LOG(pdhist, " got error=%d !",
1471 vbp->vb_buf.b_error, 0, 0, 0);
1472
1473 /* pass error upward */
1474 vnx->vx_error = vbp->vb_buf.b_error;
1475 }
1476
1477 /*
1478 * drop "hold" reference to vnode (if one)
1479 * XXXCDC: always set to NULLVP, this is useless, right?
1480 */
1481 if (vbp->vb_buf.b_vp != NULLVP)
1482 brelvp(&vbp->vb_buf);
1483
1484 /*
1485 * kill vbp structure
1486 */
1487 putvndbuf(vbp);
1488
1489 /*
1490 * wrap up this transaction if it has run to completion or, in
1491 * case of an error, when all auxiliary buffers have returned.
1492 */
1493 if (vnx->vx_error != 0) {
1494 /* pass error upward */
1495 pbp->b_flags |= B_ERROR;
1496 pbp->b_error = vnx->vx_error;
1497 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1498 putvndxfer(vnx);
1499 biodone(pbp);
1500 }
1501 } else if (pbp->b_resid == 0) {
1502 #ifdef DIAGNOSTIC
1503 if (vnx->vx_pending != 0)
1504 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1505 #endif
1506
1507 if ((vnx->vx_flags & VX_BUSY) == 0) {
1508 UVMHIST_LOG(pdhist, " iodone error=%d !",
1509 pbp, vnx->vx_error, 0, 0);
1510 putvndxfer(vnx);
1511 biodone(pbp);
1512 }
1513 }
1514
1515 /*
1516 * done! start next swapdev I/O if one is pending
1517 */
1518 sdp->swd_tab.b_active--;
1519 sw_reg_start(sdp);
1520
1521 splx(s);
1522 }
1523 #endif /* SWAP_TO_FILES */
1524
1525
1526 /*
1527 * uvm_swap_alloc: allocate space on swap
1528 *
1529 * => allocation is done "round robin" down the priority list, as we
1530 * allocate in a priority we "rotate" the circle queue.
1531 * => space can be freed with uvm_swap_free
1532 * => we return the page slot number in /dev/drum (0 == invalid slot)
1533 * => we lock swap_data_lock
1534 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1535 */
1536 int
1537 uvm_swap_alloc(nslots, lessok)
1538 int *nslots; /* IN/OUT */
1539 boolean_t lessok;
1540 {
1541 struct swapdev *sdp;
1542 struct swappri *spp;
1543 u_long result;
1544 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1545
1546 /*
1547 * no swap devices configured yet? definite failure.
1548 */
1549 if (uvmexp.nswapdev < 1)
1550 return 0;
1551
1552 /*
1553 * lock data lock, convert slots into blocks, and enter loop
1554 */
1555 simple_lock(&swap_data_lock);
1556
1557 ReTry: /* XXXMRG */
1558 for (spp = swap_priority.lh_first; spp != NULL;
1559 spp = spp->spi_swappri.le_next) {
1560 for (sdp = spp->spi_swapdev.cqh_first;
1561 sdp != (void *)&spp->spi_swapdev;
1562 sdp = sdp->swd_next.cqe_next) {
1563 /* if it's not enabled, then we can't swap from it */
1564 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1565 continue;
1566 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1567 continue;
1568 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1569 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1570 &result) != 0) {
1571 continue;
1572 }
1573
1574 /*
1575 * successful allocation! now rotate the circleq.
1576 */
1577 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1578 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1579 sdp->swd_npginuse += *nslots;
1580 uvmexp.swpginuse += *nslots;
1581 simple_unlock(&swap_data_lock);
1582 /* done! return drum slot number */
1583 UVMHIST_LOG(pdhist,
1584 "success! returning %d slots starting at %d",
1585 *nslots, result + sdp->swd_drumoffset, 0, 0);
1586 #if 0
1587 {
1588 struct swapdev *sdp2;
1589
1590 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1591 if (sdp2 == NULL) {
1592 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1593 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1594 panic("uvm_swap_alloc: allocating unmapped swap block!");
1595 }
1596 }
1597 #endif
1598 return(result + sdp->swd_drumoffset);
1599 }
1600 }
1601
1602 /* XXXMRG: BEGIN HACK */
1603 if (*nslots > 1 && lessok) {
1604 *nslots = 1;
1605 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1606 }
1607 /* XXXMRG: END HACK */
1608
1609 simple_unlock(&swap_data_lock);
1610 return 0; /* failed */
1611 }
1612
1613 /*
1614 * uvm_swap_free: free swap slots
1615 *
1616 * => this can be all or part of an allocation made by uvm_swap_alloc
1617 * => we lock swap_data_lock
1618 */
1619 void
1620 uvm_swap_free(startslot, nslots)
1621 int startslot;
1622 int nslots;
1623 {
1624 struct swapdev *sdp;
1625 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1626
1627 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1628 startslot, 0, 0);
1629 /*
1630 * convert drum slot offset back to sdp, free the blocks
1631 * in the extent, and return. must hold pri lock to do
1632 * lookup and access the extent.
1633 */
1634 simple_lock(&swap_data_lock);
1635 sdp = swapdrum_getsdp(startslot);
1636
1637 #ifdef DIAGNOSTIC
1638 if (uvmexp.nswapdev < 1)
1639 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1640 if (sdp == NULL) {
1641 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1642 nslots);
1643 panic("uvm_swap_free: unmapped address\n");
1644 }
1645 #endif
1646 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1647 EX_MALLOCOK|EX_NOWAIT) != 0)
1648 printf("warning: resource shortage: %d slots of swap lost\n",
1649 nslots);
1650
1651 sdp->swd_npginuse -= nslots;
1652 uvmexp.swpginuse -= nslots;
1653 #ifdef DIAGNOSTIC
1654 if (sdp->swd_npginuse < 0)
1655 panic("uvm_swap_free: inuse < 0");
1656 #endif
1657
1658 simple_unlock(&swap_data_lock);
1659 }
1660
1661 /*
1662 * uvm_swap_put: put any number of pages into a contig place on swap
1663 *
1664 * => can be sync or async
1665 * => XXXMRG: consider making it an inline or macro
1666 */
1667 int
1668 uvm_swap_put(swslot, ppsp, npages, flags)
1669 int swslot;
1670 struct vm_page **ppsp;
1671 int npages;
1672 int flags;
1673 {
1674 int result;
1675
1676 #if 0
1677 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1678 #endif
1679
1680 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1681 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1682
1683 return (result);
1684 }
1685
1686 /*
1687 * uvm_swap_get: get a single page from swap
1688 *
1689 * => usually a sync op (from fault)
1690 * => XXXMRG: consider making it an inline or macro
1691 */
1692 int
1693 uvm_swap_get(page, swslot, flags)
1694 struct vm_page *page;
1695 int swslot, flags;
1696 {
1697 int result;
1698
1699 uvmexp.nswget++;
1700 #ifdef DIAGNOSTIC
1701 if ((flags & PGO_SYNCIO) == 0)
1702 printf("uvm_swap_get: ASYNC get requested?\n");
1703 #endif
1704
1705 /*
1706 * this page is (about to be) no longer only in swap.
1707 */
1708 uvmexp.swpguniq--;
1709
1710 result = uvm_swap_io(&page, swslot, 1, B_READ |
1711 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1712
1713 if (result != 0) {
1714 /*
1715 * oops, the read failed so it really is still only in swap.
1716 */
1717 uvmexp.swpguniq++;
1718 }
1719
1720 return (result);
1721 }
1722
1723 /*
1724 * uvm_swap_io: do an i/o operation to swap
1725 */
1726
1727 static int
1728 uvm_swap_io(pps, startslot, npages, flags)
1729 struct vm_page **pps;
1730 int startslot, npages, flags;
1731 {
1732 daddr_t startblk;
1733 struct swapbuf *sbp;
1734 struct buf *bp;
1735 vaddr_t kva;
1736 int result, s, waitf, pflag;
1737 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1738
1739 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1740 startslot, npages, flags, 0);
1741 /*
1742 * convert starting drum slot to block number
1743 */
1744 startblk = btodb(startslot << PAGE_SHIFT);
1745
1746 /*
1747 * first, map the pages into the kernel (XXX: currently required
1748 * by buffer system). note that we don't let pagermapin alloc
1749 * an aiodesc structure because we don't want to chance a malloc.
1750 * we've got our own pool of aiodesc structures (in swapbuf).
1751 */
1752 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1753 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1754 if (kva == NULL)
1755 return (VM_PAGER_AGAIN);
1756
1757 /*
1758 * now allocate a swap buffer off of freesbufs
1759 * [make sure we don't put the pagedaemon to sleep...]
1760 */
1761 s = splbio();
1762 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1763 ? 0
1764 : PR_WAITOK;
1765 sbp = pool_get(swapbuf_pool, pflag);
1766 splx(s); /* drop splbio */
1767
1768 /*
1769 * if we failed to get a swapbuf, return "try again"
1770 */
1771 if (sbp == NULL)
1772 return (VM_PAGER_AGAIN);
1773
1774 /*
1775 * fill in the bp/sbp. we currently route our i/o through
1776 * /dev/drum's vnode [swapdev_vp].
1777 */
1778 bp = &sbp->sw_buf;
1779 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1780 bp->b_proc = &proc0; /* XXX */
1781 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1782 bp->b_vnbufs.le_next = NOLIST;
1783 bp->b_data = (caddr_t)kva;
1784 bp->b_blkno = startblk;
1785 VHOLD(swapdev_vp);
1786 bp->b_vp = swapdev_vp;
1787 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1788 /* XXXMRG: probably -- this is obviously something inherited... */
1789 if (swapdev_vp->v_type == VBLK)
1790 bp->b_dev = swapdev_vp->v_rdev;
1791 bp->b_bcount = npages << PAGE_SHIFT;
1792
1793 /*
1794 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1795 * and we bump v_numoutput (counter of number of active outputs).
1796 */
1797 if ((bp->b_flags & B_READ) == 0) {
1798 bp->b_dirtyoff = 0;
1799 bp->b_dirtyend = npages << PAGE_SHIFT;
1800 s = splbio();
1801 swapdev_vp->v_numoutput++;
1802 splx(s);
1803 }
1804
1805 /*
1806 * for async ops we must set up the aiodesc and setup the callback
1807 * XXX: we expect no async-reads, but we don't prevent it here.
1808 */
1809 if (flags & B_ASYNC) {
1810 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1811 sbp->sw_aio.kva = kva;
1812 sbp->sw_aio.npages = npages;
1813 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1814 bp->b_flags |= B_CALL; /* set callback */
1815 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1816 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1817 }
1818 UVMHIST_LOG(pdhist,
1819 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1820 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1821
1822 /*
1823 * now we start the I/O, and if async, return.
1824 */
1825 VOP_STRATEGY(bp);
1826 if (flags & B_ASYNC)
1827 return (VM_PAGER_PEND);
1828
1829 /*
1830 * must be sync i/o. wait for it to finish
1831 */
1832 bp->b_error = biowait(bp);
1833 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1834
1835 /*
1836 * kill the pager mapping
1837 */
1838 uvm_pagermapout(kva, npages);
1839
1840 /*
1841 * now dispose of the swap buffer
1842 */
1843 s = splbio();
1844 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1845 if (bp->b_vp)
1846 brelvp(bp);
1847
1848 pool_put(swapbuf_pool, sbp);
1849 splx(s);
1850
1851 /*
1852 * finally return.
1853 */
1854 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1855 return (result);
1856 }
1857
1858 /*
1859 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1860 */
1861 static void
1862 uvm_swap_bufdone(bp)
1863 struct buf *bp;
1864 {
1865 struct swapbuf *sbp = (struct swapbuf *) bp;
1866 int s = splbio();
1867 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1868
1869 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1870 #ifdef DIAGNOSTIC
1871 /*
1872 * sanity check: swapbufs are private, so they shouldn't be wanted
1873 */
1874 if (bp->b_flags & B_WANTED)
1875 panic("uvm_swap_bufdone: private buf wanted");
1876 #endif
1877
1878 /*
1879 * drop buffers reference to the vnode and its flags.
1880 */
1881 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1882 if (bp->b_vp)
1883 brelvp(bp);
1884
1885 /*
1886 * now put the aio on the uvm.aio_done list and wake the
1887 * pagedaemon (which will finish up our job in its context).
1888 */
1889 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1890 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1891 simple_unlock(&uvm.pagedaemon_lock);
1892
1893 thread_wakeup(&uvm.pagedaemon);
1894 splx(s);
1895 }
1896
1897 /*
1898 * uvm_swap_aiodone: aiodone function for anonymous memory
1899 *
1900 * => this is called in the context of the pagedaemon (but with the
1901 * page queues unlocked!)
1902 * => our "aio" structure must be part of a "swapbuf"
1903 */
1904 static void
1905 uvm_swap_aiodone(aio)
1906 struct uvm_aiodesc *aio;
1907 {
1908 struct swapbuf *sbp = aio->pd_ptr;
1909 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1910 int lcv, s;
1911 vaddr_t addr;
1912 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1913
1914 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1915 #ifdef DIAGNOSTIC
1916 /*
1917 * sanity check
1918 */
1919 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1920 panic("uvm_swap_aiodone: aio too big!");
1921 #endif
1922
1923 /*
1924 * first, we have to recover the page pointers (pps) by poking in the
1925 * kernel pmap (XXX: should be saved in the buf structure).
1926 */
1927 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1928 addr += PAGE_SIZE, lcv++) {
1929 pps[lcv] = uvm_pageratop(addr);
1930 }
1931
1932 /*
1933 * now we can dispose of the kernel mappings of the buffer
1934 */
1935 uvm_pagermapout(aio->kva, aio->npages);
1936
1937 /*
1938 * now we can dispose of the pages by using the dropcluster function
1939 * [note that we have no "page of interest" so we pass in null]
1940 */
1941 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1942 PGO_PDFREECLUST, 0);
1943
1944 /*
1945 * finally, we can dispose of the swapbuf
1946 */
1947 s = splbio();
1948 pool_put(swapbuf_pool, sbp);
1949 splx(s);
1950
1951 /*
1952 * done!
1953 */
1954 }
1955