uvm_swap.c revision 1.23 1 /* $NetBSD: uvm_swap.c,v 1.23 1998/12/26 06:25:59 marc Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241 static simple_lock_data_t swap_data_lock;
242
243 /*
244 * prototypes
245 */
246 static void swapdrum_add __P((struct swapdev *, int));
247 static struct swapdev *swapdrum_getsdp __P((int));
248
249 static struct swapdev *swaplist_find __P((struct vnode *, int));
250 static void swaplist_insert __P((struct swapdev *,
251 struct swappri *, int));
252 static void swaplist_trim __P((void));
253
254 static int swap_on __P((struct proc *, struct swapdev *));
255 #ifdef SWAP_OFF_WORKS
256 static int swap_off __P((struct proc *, struct swapdev *));
257 #endif
258
259 #ifdef SWAP_TO_FILES
260 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
261 static void sw_reg_iodone __P((struct buf *));
262 static void sw_reg_start __P((struct swapdev *));
263 #endif
264
265 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
266 static void uvm_swap_bufdone __P((struct buf *));
267 static int uvm_swap_io __P((struct vm_page **, int, int, int));
268
269 /*
270 * uvm_swap_init: init the swap system data structures and locks
271 *
272 * => called at boot time from init_main.c after the filesystems
273 * are brought up (which happens after uvm_init())
274 */
275 void
276 uvm_swap_init()
277 {
278 UVMHIST_FUNC("uvm_swap_init");
279
280 UVMHIST_CALLED(pdhist);
281 /*
282 * first, init the swap list, its counter, and its lock.
283 * then get a handle on the vnode for /dev/drum by using
284 * the its dev_t number ("swapdev", from MD conf.c).
285 */
286
287 LIST_INIT(&swap_priority);
288 uvmexp.nswapdev = 0;
289 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
290 simple_lock_init(&swap_data_lock);
291
292 if (bdevvp(swapdev, &swapdev_vp))
293 panic("uvm_swap_init: can't get vnode for swap device");
294
295 /*
296 * create swap block resource map to map /dev/drum. the range
297 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
298 * that block 0 is reserved (used to indicate an allocation
299 * failure, or no allocation).
300 */
301 swapmap = extent_create("swapmap", 1, INT_MAX,
302 M_VMSWAP, 0, 0, EX_NOWAIT);
303 if (swapmap == 0)
304 panic("uvm_swap_init: extent_create failed");
305
306 /*
307 * allocate our private pool of "swapbuf" structures (includes
308 * a "buf" structure). ["nswbuf" comes from param.c and can
309 * be adjusted by MD code before we get here].
310 */
311
312 swapbuf_pool =
313 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
314 NULL, NULL, 0);
315 if (swapbuf_pool == NULL)
316 panic("swapinit: pool_create failed");
317 /* XXX - set a maximum on swapbuf_pool? */
318
319 vndxfer_pool =
320 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
321 NULL, NULL, 0);
322 if (vndxfer_pool == NULL)
323 panic("swapinit: pool_create failed");
324
325 vndbuf_pool =
326 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
327 NULL, NULL, 0);
328 if (vndbuf_pool == NULL)
329 panic("swapinit: pool_create failed");
330 /*
331 * done!
332 */
333 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
334 }
335
336 /*
337 * swaplist functions: functions that operate on the list of swap
338 * devices on the system.
339 */
340
341 /*
342 * swaplist_insert: insert swap device "sdp" into the global list
343 *
344 * => caller must hold both swap_syscall_lock and swap_data_lock
345 * => caller must provide a newly malloc'd swappri structure (we will
346 * FREE it if we don't need it... this it to prevent malloc blocking
347 * here while adding swap)
348 */
349 static void
350 swaplist_insert(sdp, newspp, priority)
351 struct swapdev *sdp;
352 struct swappri *newspp;
353 int priority;
354 {
355 struct swappri *spp, *pspp;
356 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
357
358 /*
359 * find entry at or after which to insert the new device.
360 */
361 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
362 spp = spp->spi_swappri.le_next) {
363 if (priority <= spp->spi_priority)
364 break;
365 pspp = spp;
366 }
367
368 /*
369 * new priority?
370 */
371 if (spp == NULL || spp->spi_priority != priority) {
372 spp = newspp; /* use newspp! */
373 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
374
375 spp->spi_priority = priority;
376 CIRCLEQ_INIT(&spp->spi_swapdev);
377
378 if (pspp)
379 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
380 else
381 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
382 } else {
383 /* we don't need a new priority structure, free it */
384 FREE(newspp, M_VMSWAP);
385 }
386
387 /*
388 * priority found (or created). now insert on the priority's
389 * circleq list and bump the total number of swapdevs.
390 */
391 sdp->swd_priority = priority;
392 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
393 uvmexp.nswapdev++;
394
395 /*
396 * done!
397 */
398 }
399
400 /*
401 * swaplist_find: find and optionally remove a swap device from the
402 * global list.
403 *
404 * => caller must hold both swap_syscall_lock and swap_data_lock
405 * => we return the swapdev we found (and removed)
406 */
407 static struct swapdev *
408 swaplist_find(vp, remove)
409 struct vnode *vp;
410 boolean_t remove;
411 {
412 struct swapdev *sdp;
413 struct swappri *spp;
414
415 /*
416 * search the lists for the requested vp
417 */
418 for (spp = swap_priority.lh_first; spp != NULL;
419 spp = spp->spi_swappri.le_next) {
420 for (sdp = spp->spi_swapdev.cqh_first;
421 sdp != (void *)&spp->spi_swapdev;
422 sdp = sdp->swd_next.cqe_next)
423 if (sdp->swd_vp == vp) {
424 if (remove) {
425 CIRCLEQ_REMOVE(&spp->spi_swapdev,
426 sdp, swd_next);
427 uvmexp.nswapdev--;
428 }
429 return(sdp);
430 }
431 }
432 return (NULL);
433 }
434
435
436 /*
437 * swaplist_trim: scan priority list for empty priority entries and kill
438 * them.
439 *
440 * => caller must hold both swap_syscall_lock and swap_data_lock
441 */
442 static void
443 swaplist_trim()
444 {
445 struct swappri *spp, *nextspp;
446
447 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
448 nextspp = spp->spi_swappri.le_next;
449 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
450 continue;
451 LIST_REMOVE(spp, spi_swappri);
452 free((caddr_t)spp, M_VMSWAP);
453 }
454 }
455
456 /*
457 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
458 *
459 * => caller must hold swap_syscall_lock
460 * => swap_data_lock should be unlocked (we may sleep)
461 */
462 static void
463 swapdrum_add(sdp, npages)
464 struct swapdev *sdp;
465 int npages;
466 {
467 u_long result;
468
469 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
470 EX_WAITOK, &result))
471 panic("swapdrum_add");
472
473 sdp->swd_drumoffset = result;
474 sdp->swd_drumsize = npages;
475 }
476
477 /*
478 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
479 * to the "swapdev" that maps that section of the drum.
480 *
481 * => each swapdev takes one big contig chunk of the drum
482 * => caller must hold swap_data_lock
483 */
484 static struct swapdev *
485 swapdrum_getsdp(pgno)
486 int pgno;
487 {
488 struct swapdev *sdp;
489 struct swappri *spp;
490
491 for (spp = swap_priority.lh_first; spp != NULL;
492 spp = spp->spi_swappri.le_next)
493 for (sdp = spp->spi_swapdev.cqh_first;
494 sdp != (void *)&spp->spi_swapdev;
495 sdp = sdp->swd_next.cqe_next)
496 if (pgno >= sdp->swd_drumoffset &&
497 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
498 return sdp;
499 }
500 return NULL;
501 }
502
503
504 /*
505 * sys_swapctl: main entry point for swapctl(2) system call
506 * [with two helper functions: swap_on and swap_off]
507 */
508 int
509 sys_swapctl(p, v, retval)
510 struct proc *p;
511 void *v;
512 register_t *retval;
513 {
514 struct sys_swapctl_args /* {
515 syscallarg(int) cmd;
516 syscallarg(void *) arg;
517 syscallarg(int) misc;
518 } */ *uap = (struct sys_swapctl_args *)v;
519 struct vnode *vp;
520 struct nameidata nd;
521 struct swappri *spp;
522 struct swapdev *sdp;
523 struct swapent *sep;
524 char userpath[PATH_MAX + 1];
525 size_t len;
526 int count, error, misc;
527 int priority;
528 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
529
530 misc = SCARG(uap, misc);
531
532 /*
533 * ensure serialized syscall access by grabbing the swap_syscall_lock
534 */
535 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
536
537 /*
538 * we handle the non-priv NSWAP and STATS request first.
539 *
540 * SWAP_NSWAP: return number of config'd swap devices
541 * [can also be obtained with uvmexp sysctl]
542 */
543 if (SCARG(uap, cmd) == SWAP_NSWAP) {
544 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
545 0, 0, 0);
546 *retval = uvmexp.nswapdev;
547 error = 0;
548 goto out;
549 }
550
551 /*
552 * SWAP_STATS: get stats on current # of configured swap devs
553 *
554 * note that the swap_priority list can't change as long
555 * as we are holding the swap_syscall_lock. we don't want
556 * to grab the swap_data_lock because we may fault&sleep during
557 * copyout() and we don't want to be holding that lock then!
558 */
559 if (SCARG(uap, cmd) == SWAP_STATS
560 #if defined(COMPAT_13)
561 || SCARG(uap, cmd) == SWAP_OSTATS
562 #endif
563 ) {
564 sep = (struct swapent *)SCARG(uap, arg);
565 count = 0;
566
567 for (spp = swap_priority.lh_first; spp != NULL;
568 spp = spp->spi_swappri.le_next) {
569 for (sdp = spp->spi_swapdev.cqh_first;
570 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
571 sdp = sdp->swd_next.cqe_next) {
572 /*
573 * backwards compatibility for system call.
574 * note that we use 'struct oswapent' as an
575 * overlay into both 'struct swapdev' and
576 * the userland 'struct swapent', as we
577 * want to retain backwards compatibility
578 * with NetBSD 1.3.
579 */
580 sdp->swd_ose.ose_inuse =
581 btodb(sdp->swd_npginuse << PAGE_SHIFT);
582 error = copyout((caddr_t)&sdp->swd_ose,
583 (caddr_t)sep, sizeof(struct oswapent));
584
585 /* now copy out the path if necessary */
586 #if defined(COMPAT_13)
587 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
588 #else
589 if (error == 0)
590 #endif
591 error = copyout((caddr_t)sdp->swd_path,
592 (caddr_t)&sep->se_path,
593 sdp->swd_pathlen);
594
595 if (error)
596 goto out;
597 count++;
598 #if defined(COMPAT_13)
599 if (SCARG(uap, cmd) == SWAP_OSTATS)
600 ((struct oswapent *)sep)++;
601 else
602 #endif
603 sep++;
604 }
605 }
606
607 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
608
609 *retval = count;
610 error = 0;
611 goto out;
612 }
613
614 /*
615 * all other requests require superuser privs. verify.
616 */
617 if ((error = suser(p->p_ucred, &p->p_acflag)))
618 goto out;
619
620 /*
621 * at this point we expect a path name in arg. we will
622 * use namei() to gain a vnode reference (vref), and lock
623 * the vnode (VOP_LOCK).
624 *
625 * XXX: a NULL arg means use the root vnode pointer (e.g. for
626 * miniroot)
627 */
628 if (SCARG(uap, arg) == NULL) {
629 vp = rootvp; /* miniroot */
630 if (vget(vp, LK_EXCLUSIVE)) {
631 error = EBUSY;
632 goto out;
633 }
634 if (SCARG(uap, cmd) == SWAP_ON &&
635 copystr("miniroot", userpath, sizeof userpath, &len))
636 panic("swapctl: miniroot copy failed");
637 } else {
638 int space;
639 char *where;
640
641 if (SCARG(uap, cmd) == SWAP_ON) {
642 if ((error = copyinstr(SCARG(uap, arg), userpath,
643 sizeof userpath, &len)))
644 goto out;
645 space = UIO_SYSSPACE;
646 where = userpath;
647 } else {
648 space = UIO_USERSPACE;
649 where = (char *)SCARG(uap, arg);
650 }
651 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
652 if ((error = namei(&nd)))
653 goto out;
654 vp = nd.ni_vp;
655 }
656 /* note: "vp" is referenced and locked */
657
658 error = 0; /* assume no error */
659 switch(SCARG(uap, cmd)) {
660 case SWAP_CTL:
661 /*
662 * get new priority, remove old entry (if any) and then
663 * reinsert it in the correct place. finally, prune out
664 * any empty priority structures.
665 */
666 priority = SCARG(uap, misc);
667 spp = (struct swappri *)
668 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
669 simple_lock(&swap_data_lock);
670 if ((sdp = swaplist_find(vp, 1)) == NULL) {
671 error = ENOENT;
672 } else {
673 swaplist_insert(sdp, spp, priority);
674 swaplist_trim();
675 }
676 simple_unlock(&swap_data_lock);
677 if (error)
678 free(spp, M_VMSWAP);
679 break;
680
681 case SWAP_ON:
682 /*
683 * check for duplicates. if none found, then insert a
684 * dummy entry on the list to prevent someone else from
685 * trying to enable this device while we are working on
686 * it.
687 */
688 priority = SCARG(uap, misc);
689 simple_lock(&swap_data_lock);
690 if ((sdp = swaplist_find(vp, 0)) != NULL) {
691 error = EBUSY;
692 simple_unlock(&swap_data_lock);
693 break;
694 }
695 sdp = (struct swapdev *)
696 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
697 spp = (struct swappri *)
698 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
699 memset(sdp, 0, sizeof(*sdp));
700 sdp->swd_flags = SWF_FAKE; /* placeholder only */
701 sdp->swd_vp = vp;
702 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
703 #ifdef SWAP_TO_FILES
704 /*
705 * XXX Is NFS elaboration necessary?
706 */
707 if (vp->v_type == VREG)
708 sdp->swd_cred = crdup(p->p_ucred);
709 #endif
710 swaplist_insert(sdp, spp, priority);
711 simple_unlock(&swap_data_lock);
712
713 sdp->swd_pathlen = len;
714 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
715 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
716 panic("swapctl: copystr");
717 /*
718 * we've now got a FAKE placeholder in the swap list.
719 * now attempt to enable swap on it. if we fail, undo
720 * what we've done and kill the fake entry we just inserted.
721 * if swap_on is a success, it will clear the SWF_FAKE flag
722 */
723 if ((error = swap_on(p, sdp)) != 0) {
724 simple_lock(&swap_data_lock);
725 (void) swaplist_find(vp, 1); /* kill fake entry */
726 swaplist_trim();
727 simple_unlock(&swap_data_lock);
728 #ifdef SWAP_TO_FILES
729 if (vp->v_type == VREG)
730 crfree(sdp->swd_cred);
731 #endif
732 free(sdp->swd_path, M_VMSWAP);
733 free((caddr_t)sdp, M_VMSWAP);
734 break;
735 }
736
737 /*
738 * got it! now add a second reference to vp so that
739 * we keep a reference to the vnode after we return.
740 */
741 vref(vp);
742 break;
743
744 case SWAP_OFF:
745 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
746 #ifdef SWAP_OFF_WORKS
747 /*
748 * find the entry of interest and ensure it is enabled.
749 */
750 simple_lock(&swap_data_lock);
751 if ((sdp = swaplist_find(vp, 0)) == NULL) {
752 simple_unlock(&swap_data_lock);
753 error = ENXIO;
754 break;
755 }
756 /*
757 * If a device isn't in use or enabled, we
758 * can't stop swapping from it (again).
759 */
760 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
761 simple_unlock(&swap_data_lock);
762 error = EBUSY;
763 break;
764 }
765 /* XXXCDC: should we call with list locked or unlocked? */
766 if ((error = swap_off(p, sdp)) != 0)
767 break;
768 /* XXXCDC: might need relock here */
769
770 /*
771 * now we can kill the entry.
772 */
773 if ((sdp = swaplist_find(vp, 1)) == NULL) {
774 error = ENXIO;
775 break;
776 }
777 simple_unlock(&swap_data_lock);
778 free((caddr_t)sdp, M_VMSWAP);
779 #else
780 error = EINVAL;
781 #endif
782 break;
783
784 default:
785 UVMHIST_LOG(pdhist, "unhandled command: %#x",
786 SCARG(uap, cmd), 0, 0, 0);
787 error = EINVAL;
788 }
789
790 /*
791 * done! use vput to drop our reference and unlock
792 */
793 vput(vp);
794 out:
795 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
796
797 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
798 return (error);
799 }
800
801 /*
802 * swap_on: attempt to enable a swapdev for swapping. note that the
803 * swapdev is already on the global list, but disabled (marked
804 * SWF_FAKE).
805 *
806 * => we avoid the start of the disk (to protect disk labels)
807 * => we also avoid the miniroot, if we are swapping to root.
808 * => caller should leave swap_data_lock unlocked, we may lock it
809 * if needed.
810 */
811 static int
812 swap_on(p, sdp)
813 struct proc *p;
814 struct swapdev *sdp;
815 {
816 static int count = 0; /* static */
817 struct vnode *vp;
818 int error, npages, nblocks, size;
819 long addr;
820 #ifdef SWAP_TO_FILES
821 struct vattr va;
822 #endif
823 #ifdef NFS
824 extern int (**nfsv2_vnodeop_p) __P((void *));
825 #endif /* NFS */
826 dev_t dev;
827 char *name;
828 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
829
830 /*
831 * we want to enable swapping on sdp. the swd_vp contains
832 * the vnode we want (locked and ref'd), and the swd_dev
833 * contains the dev_t of the file, if it a block device.
834 */
835
836 vp = sdp->swd_vp;
837 dev = sdp->swd_dev;
838
839 /*
840 * open the swap file (mostly useful for block device files to
841 * let device driver know what is up).
842 *
843 * we skip the open/close for root on swap because the root
844 * has already been opened when root was mounted (mountroot).
845 */
846 if (vp != rootvp) {
847 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
848 return (error);
849 }
850
851 /* XXX this only works for block devices */
852 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
853
854 /*
855 * we now need to determine the size of the swap area. for
856 * block specials we can call the d_psize function.
857 * for normal files, we must stat [get attrs].
858 *
859 * we put the result in nblks.
860 * for normal files, we also want the filesystem block size
861 * (which we get with statfs).
862 */
863 switch (vp->v_type) {
864 case VBLK:
865 if (bdevsw[major(dev)].d_psize == 0 ||
866 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
867 error = ENXIO;
868 goto bad;
869 }
870 break;
871
872 #ifdef SWAP_TO_FILES
873 case VREG:
874 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
875 goto bad;
876 nblocks = (int)btodb(va.va_size);
877 if ((error =
878 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
879 goto bad;
880
881 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
882 /*
883 * limit the max # of outstanding I/O requests we issue
884 * at any one time. take it easy on NFS servers.
885 */
886 #ifdef NFS
887 if (vp->v_op == nfsv2_vnodeop_p)
888 sdp->swd_maxactive = 2; /* XXX */
889 else
890 #endif /* NFS */
891 sdp->swd_maxactive = 8; /* XXX */
892 break;
893 #endif
894
895 default:
896 error = ENXIO;
897 goto bad;
898 }
899
900 /*
901 * save nblocks in a safe place and convert to pages.
902 */
903
904 sdp->swd_ose.ose_nblks = nblocks;
905 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
906
907 /*
908 * for block special files, we want to make sure that leave
909 * the disklabel and bootblocks alone, so we arrange to skip
910 * over them (randomly choosing to skip PAGE_SIZE bytes).
911 * note that because of this the "size" can be less than the
912 * actual number of blocks on the device.
913 */
914 if (vp->v_type == VBLK) {
915 /* we use pages 1 to (size - 1) [inclusive] */
916 size = npages - 1;
917 addr = 1;
918 } else {
919 /* we use pages 0 to (size - 1) [inclusive] */
920 size = npages;
921 addr = 0;
922 }
923
924 /*
925 * make sure we have enough blocks for a reasonable sized swap
926 * area. we want at least one page.
927 */
928
929 if (size < 1) {
930 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
931 error = EINVAL;
932 goto bad;
933 }
934
935 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
936
937 /*
938 * now we need to allocate an extent to manage this swap device
939 */
940 name = malloc(12, M_VMSWAP, M_WAITOK);
941 sprintf(name, "swap0x%04x", count++);
942
943 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
944 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
945 0, 0, EX_WAITOK);
946 /* allocate the `saved' region from the extent so it won't be used */
947 if (addr) {
948 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
949 panic("disklabel region");
950 sdp->swd_npginuse += addr;
951 uvmexp.swpginuse += addr;
952 }
953
954
955 /*
956 * if the vnode we are swapping to is the root vnode
957 * (i.e. we are swapping to the miniroot) then we want
958 * to make sure we don't overwrite it. do a statfs to
959 * find its size and skip over it.
960 */
961 if (vp == rootvp) {
962 struct mount *mp;
963 struct statfs *sp;
964 int rootblocks, rootpages;
965
966 mp = rootvnode->v_mount;
967 sp = &mp->mnt_stat;
968 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
969 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
970 if (rootpages > npages)
971 panic("swap_on: miniroot larger than swap?");
972
973 if (extent_alloc_region(sdp->swd_ex, addr,
974 rootpages, EX_WAITOK))
975 panic("swap_on: unable to preserve miniroot");
976
977 sdp->swd_npginuse += (rootpages - addr);
978 uvmexp.swpginuse += (rootpages - addr);
979
980 printf("Preserved %d pages of miniroot ", rootpages);
981 printf("leaving %d pages of swap\n", size - rootpages);
982 }
983
984 /*
985 * now add the new swapdev to the drum and enable.
986 */
987 simple_lock(&swap_data_lock);
988 swapdrum_add(sdp, npages);
989 sdp->swd_npages = npages;
990 sdp->swd_flags &= ~SWF_FAKE; /* going live */
991 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
992 simple_unlock(&swap_data_lock);
993 uvmexp.swpages += npages;
994
995 /*
996 * add anon's to reflect the swap space we added
997 */
998 uvm_anon_add(size);
999
1000 #if 0
1001 /*
1002 * At this point we could arrange to reserve memory for the
1003 * swap buffer pools.
1004 *
1005 * I don't think this is necessary, since swapping starts well
1006 * ahead of serious memory deprivation and the memory resource
1007 * pools hold on to actively used memory. This should ensure
1008 * we always have some resources to continue operation.
1009 */
1010
1011 int s = splbio();
1012 int n = 8 * sdp->swd_maxactive;
1013
1014 (void)pool_prime(swapbuf_pool, n, 0);
1015
1016 if (vp->v_type == VREG) {
1017 /* Allocate additional vnx and vnd buffers */
1018 /*
1019 * Allocation Policy:
1020 * (8 * swd_maxactive) vnx headers per swap dev
1021 * (16 * swd_maxactive) vnd buffers per swap dev
1022 */
1023
1024 n = 8 * sdp->swd_maxactive;
1025 (void)pool_prime(vndxfer_pool, n, 0);
1026
1027 n = 16 * sdp->swd_maxactive;
1028 (void)pool_prime(vndbuf_pool, n, 0);
1029 }
1030 splx(s);
1031 #endif
1032
1033 return (0);
1034
1035 bad:
1036 /*
1037 * failure: close device if necessary and return error.
1038 */
1039 if (vp != rootvp)
1040 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1041 return (error);
1042 }
1043
1044 #ifdef SWAP_OFF_WORKS
1045 /*
1046 * swap_off: stop swapping on swapdev
1047 *
1048 * XXXCDC: what conditions go here?
1049 */
1050 static int
1051 swap_off(p, sdp)
1052 struct proc *p;
1053 struct swapdev *sdp;
1054 {
1055 char *name;
1056 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1057
1058 /* turn off the enable flag */
1059 sdp->swd_flags &= ~SWF_ENABLE;
1060
1061 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1062
1063 /*
1064 * XXX write me
1065 *
1066 * the idea is to find out which processes are using this swap
1067 * device, and page them all in.
1068 *
1069 * eventually, we should try to move them out to other swap areas
1070 * if available.
1071 *
1072 * The alternative is to create a redirection map for this swap
1073 * device. This should work by moving all the pages of data from
1074 * the ex-swap device to another one, and making an entry in the
1075 * redirection map for it. locking is going to be important for
1076 * this!
1077 *
1078 * XXXCDC: also need to shrink anon pool
1079 */
1080
1081 /* until the above code is written, we must ENODEV */
1082 return ENODEV;
1083
1084 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1085 name = sdp->swd_ex->ex_name;
1086 extent_destroy(sdp->swd_ex);
1087 free(name, M_VMSWAP);
1088 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1089 if (sdp->swp_vp != rootvp)
1090 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1091 if (sdp->swd_vp)
1092 vrele(sdp->swd_vp);
1093 free((caddr_t)sdp, M_VMSWAP);
1094 return (0);
1095 }
1096 #endif
1097
1098 /*
1099 * /dev/drum interface and i/o functions
1100 */
1101
1102 /*
1103 * swread: the read function for the drum (just a call to physio)
1104 */
1105 /*ARGSUSED*/
1106 int
1107 swread(dev, uio, ioflag)
1108 dev_t dev;
1109 struct uio *uio;
1110 int ioflag;
1111 {
1112 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1113
1114 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1115 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1116 }
1117
1118 /*
1119 * swwrite: the write function for the drum (just a call to physio)
1120 */
1121 /*ARGSUSED*/
1122 int
1123 swwrite(dev, uio, ioflag)
1124 dev_t dev;
1125 struct uio *uio;
1126 int ioflag;
1127 {
1128 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1129
1130 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1131 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1132 }
1133
1134 /*
1135 * swstrategy: perform I/O on the drum
1136 *
1137 * => we must map the i/o request from the drum to the correct swapdev.
1138 */
1139 void
1140 swstrategy(bp)
1141 struct buf *bp;
1142 {
1143 struct swapdev *sdp;
1144 struct vnode *vp;
1145 int pageno;
1146 int bn;
1147 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1148
1149 /*
1150 * convert block number to swapdev. note that swapdev can't
1151 * be yanked out from under us because we are holding resources
1152 * in it (i.e. the blocks we are doing I/O on).
1153 */
1154 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1155 simple_lock(&swap_data_lock);
1156 sdp = swapdrum_getsdp(pageno);
1157 simple_unlock(&swap_data_lock);
1158 if (sdp == NULL) {
1159 bp->b_error = EINVAL;
1160 bp->b_flags |= B_ERROR;
1161 biodone(bp);
1162 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1163 return;
1164 }
1165
1166 /*
1167 * convert drum page number to block number on this swapdev.
1168 */
1169
1170 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1171 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1172
1173 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1174 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1175 sdp->swd_drumoffset, bn, bp->b_bcount);
1176
1177
1178 /*
1179 * for block devices we finish up here.
1180 * for regular files we have to do more work which we deligate
1181 * to sw_reg_strategy().
1182 */
1183
1184 switch (sdp->swd_vp->v_type) {
1185 default:
1186 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1187 case VBLK:
1188
1189 /*
1190 * must convert "bp" from an I/O on /dev/drum to an I/O
1191 * on the swapdev (sdp).
1192 */
1193 bp->b_blkno = bn; /* swapdev block number */
1194 vp = sdp->swd_vp; /* swapdev vnode pointer */
1195 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1196 VHOLD(vp); /* "hold" swapdev vp for i/o */
1197
1198 /*
1199 * if we are doing a write, we have to redirect the i/o on
1200 * drum's v_numoutput counter to the swapdevs.
1201 */
1202 if ((bp->b_flags & B_READ) == 0) {
1203 int s = splbio();
1204 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1205 vp->v_numoutput++; /* put it on swapdev */
1206 splx(s);
1207 }
1208
1209 /*
1210 * dissassocate buffer with /dev/drum vnode
1211 * [could be null if buf was from physio]
1212 */
1213 if (bp->b_vp != NULLVP)
1214 brelvp(bp);
1215
1216 /*
1217 * finally plug in swapdev vnode and start I/O
1218 */
1219 bp->b_vp = vp;
1220 VOP_STRATEGY(bp);
1221 return;
1222 #ifdef SWAP_TO_FILES
1223 case VREG:
1224 /*
1225 * deligate to sw_reg_strategy function.
1226 */
1227 sw_reg_strategy(sdp, bp, bn);
1228 return;
1229 #endif
1230 }
1231 /* NOTREACHED */
1232 }
1233
1234 #ifdef SWAP_TO_FILES
1235 /*
1236 * sw_reg_strategy: handle swap i/o to regular files
1237 */
1238 static void
1239 sw_reg_strategy(sdp, bp, bn)
1240 struct swapdev *sdp;
1241 struct buf *bp;
1242 int bn;
1243 {
1244 struct vnode *vp;
1245 struct vndxfer *vnx;
1246 daddr_t nbn, byteoff;
1247 caddr_t addr;
1248 int s, off, nra, error, sz, resid;
1249 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1250
1251 /*
1252 * allocate a vndxfer head for this transfer and point it to
1253 * our buffer.
1254 */
1255 getvndxfer(vnx);
1256 vnx->vx_flags = VX_BUSY;
1257 vnx->vx_error = 0;
1258 vnx->vx_pending = 0;
1259 vnx->vx_bp = bp;
1260 vnx->vx_sdp = sdp;
1261
1262 /*
1263 * setup for main loop where we read filesystem blocks into
1264 * our buffer.
1265 */
1266 error = 0;
1267 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1268 addr = bp->b_data; /* current position in buffer */
1269 byteoff = dbtob(bn);
1270
1271 for (resid = bp->b_resid; resid; resid -= sz) {
1272 struct vndbuf *nbp;
1273
1274 /*
1275 * translate byteoffset into block number. return values:
1276 * vp = vnode of underlying device
1277 * nbn = new block number (on underlying vnode dev)
1278 * nra = num blocks we can read-ahead (excludes requested
1279 * block)
1280 */
1281 nra = 0;
1282 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1283 &vp, &nbn, &nra);
1284
1285 if (error == 0 && (long)nbn == -1) {
1286 /*
1287 * this used to just set error, but that doesn't
1288 * do the right thing. Instead, it causes random
1289 * memory errors. The panic() should remain until
1290 * this condition doesn't destabilize the system.
1291 */
1292 #if 1
1293 panic("sw_reg_strategy: swap to sparse file");
1294 #else
1295 error = EIO; /* failure */
1296 #endif
1297 }
1298
1299 /*
1300 * punt if there was an error or a hole in the file.
1301 * we must wait for any i/o ops we have already started
1302 * to finish before returning.
1303 *
1304 * XXX we could deal with holes here but it would be
1305 * a hassle (in the write case).
1306 */
1307 if (error) {
1308 s = splbio();
1309 vnx->vx_error = error; /* pass error up */
1310 goto out;
1311 }
1312
1313 /*
1314 * compute the size ("sz") of this transfer (in bytes).
1315 * XXXCDC: ignores read-ahead for non-zero offset
1316 */
1317 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1318 sz = sdp->swd_bsize - off;
1319 else
1320 sz = (1 + nra) * sdp->swd_bsize;
1321
1322 if (resid < sz)
1323 sz = resid;
1324
1325 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1326 sdp->swd_vp, vp, byteoff, nbn);
1327
1328 /*
1329 * now get a buf structure. note that the vb_buf is
1330 * at the front of the nbp structure so that you can
1331 * cast pointers between the two structure easily.
1332 */
1333 getvndbuf(nbp);
1334 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1335 nbp->vb_buf.b_bcount = sz;
1336 #if 0
1337 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1338 #endif
1339 nbp->vb_buf.b_bufsize = sz;
1340 nbp->vb_buf.b_error = 0;
1341 nbp->vb_buf.b_data = addr;
1342 nbp->vb_buf.b_blkno = nbn + btodb(off);
1343 nbp->vb_buf.b_proc = bp->b_proc;
1344 nbp->vb_buf.b_iodone = sw_reg_iodone;
1345 nbp->vb_buf.b_vp = NULLVP;
1346 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1347 nbp->vb_buf.b_rcred = sdp->swd_cred;
1348 nbp->vb_buf.b_wcred = sdp->swd_cred;
1349
1350 /*
1351 * set b_dirtyoff/end and b_validoff/end. this is
1352 * required by the NFS client code (otherwise it will
1353 * just discard our I/O request).
1354 */
1355 if (bp->b_dirtyend == 0) {
1356 nbp->vb_buf.b_dirtyoff = 0;
1357 nbp->vb_buf.b_dirtyend = sz;
1358 } else {
1359 nbp->vb_buf.b_dirtyoff =
1360 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1361 nbp->vb_buf.b_dirtyend =
1362 min(sz,
1363 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1364 }
1365 if (bp->b_validend == 0) {
1366 nbp->vb_buf.b_validoff = 0;
1367 nbp->vb_buf.b_validend = sz;
1368 } else {
1369 nbp->vb_buf.b_validoff =
1370 max(0, bp->b_validoff - (bp->b_bcount-resid));
1371 nbp->vb_buf.b_validend =
1372 min(sz,
1373 max(0, bp->b_validend - (bp->b_bcount-resid)));
1374 }
1375
1376 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1377
1378 /*
1379 * Just sort by block number
1380 */
1381 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1382 s = splbio();
1383 if (vnx->vx_error != 0) {
1384 putvndbuf(nbp);
1385 goto out;
1386 }
1387 vnx->vx_pending++;
1388
1389 /* assoc new buffer with underlying vnode */
1390 bgetvp(vp, &nbp->vb_buf);
1391
1392 /* sort it in and start I/O if we are not over our limit */
1393 disksort(&sdp->swd_tab, &nbp->vb_buf);
1394 sw_reg_start(sdp);
1395 splx(s);
1396
1397 /*
1398 * advance to the next I/O
1399 */
1400 byteoff += sz;
1401 addr += sz;
1402 }
1403
1404 s = splbio();
1405
1406 out: /* Arrive here at splbio */
1407 vnx->vx_flags &= ~VX_BUSY;
1408 if (vnx->vx_pending == 0) {
1409 if (vnx->vx_error != 0) {
1410 bp->b_error = vnx->vx_error;
1411 bp->b_flags |= B_ERROR;
1412 }
1413 putvndxfer(vnx);
1414 biodone(bp);
1415 }
1416 splx(s);
1417 }
1418
1419 /*
1420 * sw_reg_start: start an I/O request on the requested swapdev
1421 *
1422 * => reqs are sorted by disksort (above)
1423 */
1424 static void
1425 sw_reg_start(sdp)
1426 struct swapdev *sdp;
1427 {
1428 struct buf *bp;
1429 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1430
1431 /* recursion control */
1432 if ((sdp->swd_flags & SWF_BUSY) != 0)
1433 return;
1434
1435 sdp->swd_flags |= SWF_BUSY;
1436
1437 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1438 bp = sdp->swd_tab.b_actf;
1439 if (bp == NULL)
1440 break;
1441 sdp->swd_tab.b_actf = bp->b_actf;
1442 sdp->swd_tab.b_active++;
1443
1444 UVMHIST_LOG(pdhist,
1445 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1446 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1447 if ((bp->b_flags & B_READ) == 0)
1448 bp->b_vp->v_numoutput++;
1449 VOP_STRATEGY(bp);
1450 }
1451 sdp->swd_flags &= ~SWF_BUSY;
1452 }
1453
1454 /*
1455 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1456 *
1457 * => note that we can recover the vndbuf struct by casting the buf ptr
1458 */
1459 static void
1460 sw_reg_iodone(bp)
1461 struct buf *bp;
1462 {
1463 struct vndbuf *vbp = (struct vndbuf *) bp;
1464 struct vndxfer *vnx = vbp->vb_xfer;
1465 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1466 struct swapdev *sdp = vnx->vx_sdp;
1467 int s, resid;
1468 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1469
1470 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1471 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1472 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1473 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1474
1475 /*
1476 * protect vbp at splbio and update.
1477 */
1478
1479 s = splbio();
1480 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1481 pbp->b_resid -= resid;
1482 vnx->vx_pending--;
1483
1484 if (vbp->vb_buf.b_error) {
1485 UVMHIST_LOG(pdhist, " got error=%d !",
1486 vbp->vb_buf.b_error, 0, 0, 0);
1487
1488 /* pass error upward */
1489 vnx->vx_error = vbp->vb_buf.b_error;
1490 }
1491
1492 /*
1493 * drop "hold" reference to vnode (if one)
1494 * XXXCDC: always set to NULLVP, this is useless, right?
1495 */
1496 if (vbp->vb_buf.b_vp != NULLVP)
1497 brelvp(&vbp->vb_buf);
1498
1499 /*
1500 * kill vbp structure
1501 */
1502 putvndbuf(vbp);
1503
1504 /*
1505 * wrap up this transaction if it has run to completion or, in
1506 * case of an error, when all auxiliary buffers have returned.
1507 */
1508 if (vnx->vx_error != 0) {
1509 /* pass error upward */
1510 pbp->b_flags |= B_ERROR;
1511 pbp->b_error = vnx->vx_error;
1512 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1513 putvndxfer(vnx);
1514 biodone(pbp);
1515 }
1516 } else if (pbp->b_resid == 0) {
1517 #ifdef DIAGNOSTIC
1518 if (vnx->vx_pending != 0)
1519 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1520 #endif
1521
1522 if ((vnx->vx_flags & VX_BUSY) == 0) {
1523 UVMHIST_LOG(pdhist, " iodone error=%d !",
1524 pbp, vnx->vx_error, 0, 0);
1525 putvndxfer(vnx);
1526 biodone(pbp);
1527 }
1528 }
1529
1530 /*
1531 * done! start next swapdev I/O if one is pending
1532 */
1533 sdp->swd_tab.b_active--;
1534 sw_reg_start(sdp);
1535
1536 splx(s);
1537 }
1538 #endif /* SWAP_TO_FILES */
1539
1540
1541 /*
1542 * uvm_swap_alloc: allocate space on swap
1543 *
1544 * => allocation is done "round robin" down the priority list, as we
1545 * allocate in a priority we "rotate" the circle queue.
1546 * => space can be freed with uvm_swap_free
1547 * => we return the page slot number in /dev/drum (0 == invalid slot)
1548 * => we lock swap_data_lock
1549 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1550 */
1551 int
1552 uvm_swap_alloc(nslots, lessok)
1553 int *nslots; /* IN/OUT */
1554 boolean_t lessok;
1555 {
1556 struct swapdev *sdp;
1557 struct swappri *spp;
1558 u_long result;
1559 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1560
1561 /*
1562 * no swap devices configured yet? definite failure.
1563 */
1564 if (uvmexp.nswapdev < 1)
1565 return 0;
1566
1567 /*
1568 * lock data lock, convert slots into blocks, and enter loop
1569 */
1570 simple_lock(&swap_data_lock);
1571
1572 ReTry: /* XXXMRG */
1573 for (spp = swap_priority.lh_first; spp != NULL;
1574 spp = spp->spi_swappri.le_next) {
1575 for (sdp = spp->spi_swapdev.cqh_first;
1576 sdp != (void *)&spp->spi_swapdev;
1577 sdp = sdp->swd_next.cqe_next) {
1578 /* if it's not enabled, then we can't swap from it */
1579 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1580 continue;
1581 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1582 continue;
1583 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1584 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1585 &result) != 0) {
1586 continue;
1587 }
1588
1589 /*
1590 * successful allocation! now rotate the circleq.
1591 */
1592 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1593 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1594 sdp->swd_npginuse += *nslots;
1595 uvmexp.swpginuse += *nslots;
1596 simple_unlock(&swap_data_lock);
1597 /* done! return drum slot number */
1598 UVMHIST_LOG(pdhist,
1599 "success! returning %d slots starting at %d",
1600 *nslots, result + sdp->swd_drumoffset, 0, 0);
1601 #if 0
1602 {
1603 struct swapdev *sdp2;
1604
1605 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1606 if (sdp2 == NULL) {
1607 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1608 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1609 panic("uvm_swap_alloc: allocating unmapped swap block!");
1610 }
1611 }
1612 #endif
1613 return(result + sdp->swd_drumoffset);
1614 }
1615 }
1616
1617 /* XXXMRG: BEGIN HACK */
1618 if (*nslots > 1 && lessok) {
1619 *nslots = 1;
1620 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1621 }
1622 /* XXXMRG: END HACK */
1623
1624 simple_unlock(&swap_data_lock);
1625 return 0; /* failed */
1626 }
1627
1628 /*
1629 * uvm_swap_free: free swap slots
1630 *
1631 * => this can be all or part of an allocation made by uvm_swap_alloc
1632 * => we lock swap_data_lock
1633 */
1634 void
1635 uvm_swap_free(startslot, nslots)
1636 int startslot;
1637 int nslots;
1638 {
1639 struct swapdev *sdp;
1640 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1641
1642 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1643 startslot, 0, 0);
1644 /*
1645 * convert drum slot offset back to sdp, free the blocks
1646 * in the extent, and return. must hold pri lock to do
1647 * lookup and access the extent.
1648 */
1649 simple_lock(&swap_data_lock);
1650 sdp = swapdrum_getsdp(startslot);
1651
1652 #ifdef DIAGNOSTIC
1653 if (uvmexp.nswapdev < 1)
1654 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1655 if (sdp == NULL) {
1656 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1657 nslots);
1658 panic("uvm_swap_free: unmapped address\n");
1659 }
1660 #endif
1661 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1662 EX_MALLOCOK|EX_NOWAIT) != 0)
1663 printf("warning: resource shortage: %d slots of swap lost\n",
1664 nslots);
1665
1666 sdp->swd_npginuse -= nslots;
1667 uvmexp.swpginuse -= nslots;
1668 #ifdef DIAGNOSTIC
1669 if (sdp->swd_npginuse < 0)
1670 panic("uvm_swap_free: inuse < 0");
1671 #endif
1672 simple_unlock(&swap_data_lock);
1673 }
1674
1675 /*
1676 * uvm_swap_put: put any number of pages into a contig place on swap
1677 *
1678 * => can be sync or async
1679 * => XXXMRG: consider making it an inline or macro
1680 */
1681 int
1682 uvm_swap_put(swslot, ppsp, npages, flags)
1683 int swslot;
1684 struct vm_page **ppsp;
1685 int npages;
1686 int flags;
1687 {
1688 int result;
1689
1690 #if 0
1691 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1692 #endif
1693
1694 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1695 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1696
1697 return (result);
1698 }
1699
1700 /*
1701 * uvm_swap_get: get a single page from swap
1702 *
1703 * => usually a sync op (from fault)
1704 * => XXXMRG: consider making it an inline or macro
1705 */
1706 int
1707 uvm_swap_get(page, swslot, flags)
1708 struct vm_page *page;
1709 int swslot, flags;
1710 {
1711 int result;
1712
1713 uvmexp.nswget++;
1714 #ifdef DIAGNOSTIC
1715 if ((flags & PGO_SYNCIO) == 0)
1716 printf("uvm_swap_get: ASYNC get requested?\n");
1717 #endif
1718
1719 result = uvm_swap_io(&page, swslot, 1, B_READ |
1720 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1721
1722 return (result);
1723 }
1724
1725 /*
1726 * uvm_swap_io: do an i/o operation to swap
1727 */
1728
1729 static int
1730 uvm_swap_io(pps, startslot, npages, flags)
1731 struct vm_page **pps;
1732 int startslot, npages, flags;
1733 {
1734 daddr_t startblk;
1735 struct swapbuf *sbp;
1736 struct buf *bp;
1737 vaddr_t kva;
1738 int result, s, waitf, pflag;
1739 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1740
1741 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1742 startslot, npages, flags, 0);
1743 /*
1744 * convert starting drum slot to block number
1745 */
1746 startblk = btodb(startslot << PAGE_SHIFT);
1747
1748 /*
1749 * first, map the pages into the kernel (XXX: currently required
1750 * by buffer system). note that we don't let pagermapin alloc
1751 * an aiodesc structure because we don't want to chance a malloc.
1752 * we've got our own pool of aiodesc structures (in swapbuf).
1753 */
1754 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1755 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1756 if (kva == NULL)
1757 return (VM_PAGER_AGAIN);
1758
1759 /*
1760 * now allocate a swap buffer off of freesbufs
1761 * [make sure we don't put the pagedaemon to sleep...]
1762 */
1763 s = splbio();
1764 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1765 ? 0
1766 : PR_WAITOK;
1767 sbp = pool_get(swapbuf_pool, pflag);
1768 splx(s); /* drop splbio */
1769
1770 /*
1771 * if we failed to get a swapbuf, return "try again"
1772 */
1773 if (sbp == NULL)
1774 return (VM_PAGER_AGAIN);
1775
1776 /*
1777 * fill in the bp/sbp. we currently route our i/o through
1778 * /dev/drum's vnode [swapdev_vp].
1779 */
1780 bp = &sbp->sw_buf;
1781 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1782 bp->b_proc = &proc0; /* XXX */
1783 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1784 bp->b_vnbufs.le_next = NOLIST;
1785 bp->b_data = (caddr_t)kva;
1786 bp->b_blkno = startblk;
1787 VHOLD(swapdev_vp);
1788 bp->b_vp = swapdev_vp;
1789 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1790 /* XXXMRG: probably -- this is obviously something inherited... */
1791 if (swapdev_vp->v_type == VBLK)
1792 bp->b_dev = swapdev_vp->v_rdev;
1793 bp->b_bcount = npages << PAGE_SHIFT;
1794
1795 /*
1796 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1797 * and we bump v_numoutput (counter of number of active outputs).
1798 */
1799 if ((bp->b_flags & B_READ) == 0) {
1800 bp->b_dirtyoff = 0;
1801 bp->b_dirtyend = npages << PAGE_SHIFT;
1802 s = splbio();
1803 swapdev_vp->v_numoutput++;
1804 splx(s);
1805 }
1806
1807 /*
1808 * for async ops we must set up the aiodesc and setup the callback
1809 * XXX: we expect no async-reads, but we don't prevent it here.
1810 */
1811 if (flags & B_ASYNC) {
1812 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1813 sbp->sw_aio.kva = kva;
1814 sbp->sw_aio.npages = npages;
1815 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1816 bp->b_flags |= B_CALL; /* set callback */
1817 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1818 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1819 }
1820 UVMHIST_LOG(pdhist,
1821 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1822 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1823
1824 /*
1825 * now we start the I/O, and if async, return.
1826 */
1827 VOP_STRATEGY(bp);
1828 if (flags & B_ASYNC)
1829 return (VM_PAGER_PEND);
1830
1831 /*
1832 * must be sync i/o. wait for it to finish
1833 */
1834 bp->b_error = biowait(bp);
1835 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1836
1837 /*
1838 * kill the pager mapping
1839 */
1840 uvm_pagermapout(kva, npages);
1841
1842 /*
1843 * now dispose of the swap buffer
1844 */
1845 s = splbio();
1846 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1847 if (bp->b_vp)
1848 brelvp(bp);
1849
1850 pool_put(swapbuf_pool, sbp);
1851 splx(s);
1852
1853 /*
1854 * finally return.
1855 */
1856 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1857 return (result);
1858 }
1859
1860 /*
1861 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1862 */
1863 static void
1864 uvm_swap_bufdone(bp)
1865 struct buf *bp;
1866 {
1867 struct swapbuf *sbp = (struct swapbuf *) bp;
1868 int s = splbio();
1869 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1870
1871 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1872 #ifdef DIAGNOSTIC
1873 /*
1874 * sanity check: swapbufs are private, so they shouldn't be wanted
1875 */
1876 if (bp->b_flags & B_WANTED)
1877 panic("uvm_swap_bufdone: private buf wanted");
1878 #endif
1879
1880 /*
1881 * drop buffers reference to the vnode and its flags.
1882 */
1883 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1884 if (bp->b_vp)
1885 brelvp(bp);
1886
1887 /*
1888 * now put the aio on the uvm.aio_done list and wake the
1889 * pagedaemon (which will finish up our job in its context).
1890 */
1891 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1892 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1893 simple_unlock(&uvm.pagedaemon_lock);
1894
1895 thread_wakeup(&uvm.pagedaemon);
1896 splx(s);
1897 }
1898
1899 /*
1900 * uvm_swap_aiodone: aiodone function for anonymous memory
1901 *
1902 * => this is called in the context of the pagedaemon (but with the
1903 * page queues unlocked!)
1904 * => our "aio" structure must be part of a "swapbuf"
1905 */
1906 static void
1907 uvm_swap_aiodone(aio)
1908 struct uvm_aiodesc *aio;
1909 {
1910 struct swapbuf *sbp = aio->pd_ptr;
1911 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1912 int lcv, s;
1913 vaddr_t addr;
1914 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1915
1916 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1917 #ifdef DIAGNOSTIC
1918 /*
1919 * sanity check
1920 */
1921 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1922 panic("uvm_swap_aiodone: aio too big!");
1923 #endif
1924
1925 /*
1926 * first, we have to recover the page pointers (pps) by poking in the
1927 * kernel pmap (XXX: should be saved in the buf structure).
1928 */
1929 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1930 addr += PAGE_SIZE, lcv++) {
1931 pps[lcv] = uvm_pageratop(addr);
1932 }
1933
1934 /*
1935 * now we can dispose of the kernel mappings of the buffer
1936 */
1937 uvm_pagermapout(aio->kva, aio->npages);
1938
1939 /*
1940 * now we can dispose of the pages by using the dropcluster function
1941 * [note that we have no "page of interest" so we pass in null]
1942 */
1943 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1944 PGO_PDFREECLUST, 0);
1945
1946 /*
1947 * finally, we can dispose of the swapbuf
1948 */
1949 s = splbio();
1950 pool_put(swapbuf_pool, sbp);
1951 splx(s);
1952
1953 /*
1954 * done!
1955 */
1956 }
1957