uvm_swap.c revision 1.24 1 /* $NetBSD: uvm_swap.c,v 1.24 1999/02/23 15:58:28 mrg Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241 static simple_lock_data_t swap_data_lock;
242
243 /*
244 * prototypes
245 */
246 static void swapdrum_add __P((struct swapdev *, int));
247 static struct swapdev *swapdrum_getsdp __P((int));
248
249 static struct swapdev *swaplist_find __P((struct vnode *, int));
250 static void swaplist_insert __P((struct swapdev *,
251 struct swappri *, int));
252 static void swaplist_trim __P((void));
253
254 static int swap_on __P((struct proc *, struct swapdev *));
255 #ifdef SWAP_OFF_WORKS
256 static int swap_off __P((struct proc *, struct swapdev *));
257 #endif
258
259 #ifdef SWAP_TO_FILES
260 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
261 static void sw_reg_iodone __P((struct buf *));
262 static void sw_reg_start __P((struct swapdev *));
263 #endif
264
265 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
266 static void uvm_swap_bufdone __P((struct buf *));
267 static int uvm_swap_io __P((struct vm_page **, int, int, int));
268
269 /*
270 * uvm_swap_init: init the swap system data structures and locks
271 *
272 * => called at boot time from init_main.c after the filesystems
273 * are brought up (which happens after uvm_init())
274 */
275 void
276 uvm_swap_init()
277 {
278 UVMHIST_FUNC("uvm_swap_init");
279
280 UVMHIST_CALLED(pdhist);
281 /*
282 * first, init the swap list, its counter, and its lock.
283 * then get a handle on the vnode for /dev/drum by using
284 * the its dev_t number ("swapdev", from MD conf.c).
285 */
286
287 LIST_INIT(&swap_priority);
288 uvmexp.nswapdev = 0;
289 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
290 simple_lock_init(&swap_data_lock);
291
292 if (bdevvp(swapdev, &swapdev_vp))
293 panic("uvm_swap_init: can't get vnode for swap device");
294
295 /*
296 * create swap block resource map to map /dev/drum. the range
297 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
298 * that block 0 is reserved (used to indicate an allocation
299 * failure, or no allocation).
300 */
301 swapmap = extent_create("swapmap", 1, INT_MAX,
302 M_VMSWAP, 0, 0, EX_NOWAIT);
303 if (swapmap == 0)
304 panic("uvm_swap_init: extent_create failed");
305
306 /*
307 * allocate our private pool of "swapbuf" structures (includes
308 * a "buf" structure). ["nswbuf" comes from param.c and can
309 * be adjusted by MD code before we get here].
310 */
311
312 swapbuf_pool =
313 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
314 NULL, NULL, 0);
315 if (swapbuf_pool == NULL)
316 panic("swapinit: pool_create failed");
317 /* XXX - set a maximum on swapbuf_pool? */
318
319 vndxfer_pool =
320 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
321 NULL, NULL, 0);
322 if (vndxfer_pool == NULL)
323 panic("swapinit: pool_create failed");
324
325 vndbuf_pool =
326 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
327 NULL, NULL, 0);
328 if (vndbuf_pool == NULL)
329 panic("swapinit: pool_create failed");
330 /*
331 * done!
332 */
333 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
334 }
335
336 /*
337 * swaplist functions: functions that operate on the list of swap
338 * devices on the system.
339 */
340
341 /*
342 * swaplist_insert: insert swap device "sdp" into the global list
343 *
344 * => caller must hold both swap_syscall_lock and swap_data_lock
345 * => caller must provide a newly malloc'd swappri structure (we will
346 * FREE it if we don't need it... this it to prevent malloc blocking
347 * here while adding swap)
348 */
349 static void
350 swaplist_insert(sdp, newspp, priority)
351 struct swapdev *sdp;
352 struct swappri *newspp;
353 int priority;
354 {
355 struct swappri *spp, *pspp;
356 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
357
358 /*
359 * find entry at or after which to insert the new device.
360 */
361 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
362 spp = spp->spi_swappri.le_next) {
363 if (priority <= spp->spi_priority)
364 break;
365 pspp = spp;
366 }
367
368 /*
369 * new priority?
370 */
371 if (spp == NULL || spp->spi_priority != priority) {
372 spp = newspp; /* use newspp! */
373 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
374
375 spp->spi_priority = priority;
376 CIRCLEQ_INIT(&spp->spi_swapdev);
377
378 if (pspp)
379 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
380 else
381 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
382 } else {
383 /* we don't need a new priority structure, free it */
384 FREE(newspp, M_VMSWAP);
385 }
386
387 /*
388 * priority found (or created). now insert on the priority's
389 * circleq list and bump the total number of swapdevs.
390 */
391 sdp->swd_priority = priority;
392 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
393 uvmexp.nswapdev++;
394
395 /*
396 * done!
397 */
398 }
399
400 /*
401 * swaplist_find: find and optionally remove a swap device from the
402 * global list.
403 *
404 * => caller must hold both swap_syscall_lock and swap_data_lock
405 * => we return the swapdev we found (and removed)
406 */
407 static struct swapdev *
408 swaplist_find(vp, remove)
409 struct vnode *vp;
410 boolean_t remove;
411 {
412 struct swapdev *sdp;
413 struct swappri *spp;
414
415 /*
416 * search the lists for the requested vp
417 */
418 for (spp = swap_priority.lh_first; spp != NULL;
419 spp = spp->spi_swappri.le_next) {
420 for (sdp = spp->spi_swapdev.cqh_first;
421 sdp != (void *)&spp->spi_swapdev;
422 sdp = sdp->swd_next.cqe_next)
423 if (sdp->swd_vp == vp) {
424 if (remove) {
425 CIRCLEQ_REMOVE(&spp->spi_swapdev,
426 sdp, swd_next);
427 uvmexp.nswapdev--;
428 }
429 return(sdp);
430 }
431 }
432 return (NULL);
433 }
434
435
436 /*
437 * swaplist_trim: scan priority list for empty priority entries and kill
438 * them.
439 *
440 * => caller must hold both swap_syscall_lock and swap_data_lock
441 */
442 static void
443 swaplist_trim()
444 {
445 struct swappri *spp, *nextspp;
446
447 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
448 nextspp = spp->spi_swappri.le_next;
449 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
450 continue;
451 LIST_REMOVE(spp, spi_swappri);
452 free((caddr_t)spp, M_VMSWAP);
453 }
454 }
455
456 /*
457 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
458 *
459 * => caller must hold swap_syscall_lock
460 * => swap_data_lock should be unlocked (we may sleep)
461 */
462 static void
463 swapdrum_add(sdp, npages)
464 struct swapdev *sdp;
465 int npages;
466 {
467 u_long result;
468
469 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
470 EX_WAITOK, &result))
471 panic("swapdrum_add");
472
473 sdp->swd_drumoffset = result;
474 sdp->swd_drumsize = npages;
475 }
476
477 /*
478 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
479 * to the "swapdev" that maps that section of the drum.
480 *
481 * => each swapdev takes one big contig chunk of the drum
482 * => caller must hold swap_data_lock
483 */
484 static struct swapdev *
485 swapdrum_getsdp(pgno)
486 int pgno;
487 {
488 struct swapdev *sdp;
489 struct swappri *spp;
490
491 for (spp = swap_priority.lh_first; spp != NULL;
492 spp = spp->spi_swappri.le_next)
493 for (sdp = spp->spi_swapdev.cqh_first;
494 sdp != (void *)&spp->spi_swapdev;
495 sdp = sdp->swd_next.cqe_next)
496 if (pgno >= sdp->swd_drumoffset &&
497 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
498 return sdp;
499 }
500 return NULL;
501 }
502
503
504 /*
505 * sys_swapctl: main entry point for swapctl(2) system call
506 * [with two helper functions: swap_on and swap_off]
507 */
508 int
509 sys_swapctl(p, v, retval)
510 struct proc *p;
511 void *v;
512 register_t *retval;
513 {
514 struct sys_swapctl_args /* {
515 syscallarg(int) cmd;
516 syscallarg(void *) arg;
517 syscallarg(int) misc;
518 } */ *uap = (struct sys_swapctl_args *)v;
519 struct vnode *vp;
520 struct nameidata nd;
521 struct swappri *spp;
522 struct swapdev *sdp;
523 struct swapent *sep;
524 char userpath[PATH_MAX + 1];
525 size_t len;
526 int count, error, misc;
527 int priority;
528 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
529
530 misc = SCARG(uap, misc);
531
532 /*
533 * ensure serialized syscall access by grabbing the swap_syscall_lock
534 */
535 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
536
537 /*
538 * we handle the non-priv NSWAP and STATS request first.
539 *
540 * SWAP_NSWAP: return number of config'd swap devices
541 * [can also be obtained with uvmexp sysctl]
542 */
543 if (SCARG(uap, cmd) == SWAP_NSWAP) {
544 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
545 0, 0, 0);
546 *retval = uvmexp.nswapdev;
547 error = 0;
548 goto out;
549 }
550
551 /*
552 * SWAP_STATS: get stats on current # of configured swap devs
553 *
554 * note that the swap_priority list can't change as long
555 * as we are holding the swap_syscall_lock. we don't want
556 * to grab the swap_data_lock because we may fault&sleep during
557 * copyout() and we don't want to be holding that lock then!
558 */
559 if (SCARG(uap, cmd) == SWAP_STATS
560 #if defined(COMPAT_13)
561 || SCARG(uap, cmd) == SWAP_OSTATS
562 #endif
563 ) {
564 sep = (struct swapent *)SCARG(uap, arg);
565 count = 0;
566
567 for (spp = swap_priority.lh_first; spp != NULL;
568 spp = spp->spi_swappri.le_next) {
569 for (sdp = spp->spi_swapdev.cqh_first;
570 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
571 sdp = sdp->swd_next.cqe_next) {
572 /*
573 * backwards compatibility for system call.
574 * note that we use 'struct oswapent' as an
575 * overlay into both 'struct swapdev' and
576 * the userland 'struct swapent', as we
577 * want to retain backwards compatibility
578 * with NetBSD 1.3.
579 */
580 sdp->swd_ose.ose_inuse =
581 btodb(sdp->swd_npginuse << PAGE_SHIFT);
582 error = copyout((caddr_t)&sdp->swd_ose,
583 (caddr_t)sep, sizeof(struct oswapent));
584
585 /* now copy out the path if necessary */
586 #if defined(COMPAT_13)
587 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
588 #else
589 if (error == 0)
590 #endif
591 error = copyout((caddr_t)sdp->swd_path,
592 (caddr_t)&sep->se_path,
593 sdp->swd_pathlen);
594
595 if (error)
596 goto out;
597 count++;
598 #if defined(COMPAT_13)
599 if (SCARG(uap, cmd) == SWAP_OSTATS)
600 ((struct oswapent *)sep)++;
601 else
602 #endif
603 sep++;
604 }
605 }
606
607 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
608
609 *retval = count;
610 error = 0;
611 goto out;
612 }
613
614 /*
615 * all other requests require superuser privs. verify.
616 */
617 if ((error = suser(p->p_ucred, &p->p_acflag)))
618 goto out;
619
620 /*
621 * at this point we expect a path name in arg. we will
622 * use namei() to gain a vnode reference (vref), and lock
623 * the vnode (VOP_LOCK).
624 *
625 * XXX: a NULL arg means use the root vnode pointer (e.g. for
626 * miniroot)
627 */
628 if (SCARG(uap, arg) == NULL) {
629 vp = rootvp; /* miniroot */
630 if (vget(vp, LK_EXCLUSIVE)) {
631 error = EBUSY;
632 goto out;
633 }
634 if (SCARG(uap, cmd) == SWAP_ON &&
635 copystr("miniroot", userpath, sizeof userpath, &len))
636 panic("swapctl: miniroot copy failed");
637 } else {
638 int space;
639 char *where;
640
641 if (SCARG(uap, cmd) == SWAP_ON) {
642 if ((error = copyinstr(SCARG(uap, arg), userpath,
643 sizeof userpath, &len)))
644 goto out;
645 space = UIO_SYSSPACE;
646 where = userpath;
647 } else {
648 space = UIO_USERSPACE;
649 where = (char *)SCARG(uap, arg);
650 }
651 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
652 if ((error = namei(&nd)))
653 goto out;
654 vp = nd.ni_vp;
655 }
656 /* note: "vp" is referenced and locked */
657
658 error = 0; /* assume no error */
659 switch(SCARG(uap, cmd)) {
660 case SWAP_DUMPDEV:
661 if (vp->v_type != VBLK) {
662 error = ENOTBLK;
663 goto out;
664 }
665 dumpdev = vp->v_rdev;
666
667 break;
668
669 case SWAP_CTL:
670 /*
671 * get new priority, remove old entry (if any) and then
672 * reinsert it in the correct place. finally, prune out
673 * any empty priority structures.
674 */
675 priority = SCARG(uap, misc);
676 spp = (struct swappri *)
677 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
678 simple_lock(&swap_data_lock);
679 if ((sdp = swaplist_find(vp, 1)) == NULL) {
680 error = ENOENT;
681 } else {
682 swaplist_insert(sdp, spp, priority);
683 swaplist_trim();
684 }
685 simple_unlock(&swap_data_lock);
686 if (error)
687 free(spp, M_VMSWAP);
688 break;
689
690 case SWAP_ON:
691 /*
692 * check for duplicates. if none found, then insert a
693 * dummy entry on the list to prevent someone else from
694 * trying to enable this device while we are working on
695 * it.
696 */
697 priority = SCARG(uap, misc);
698 simple_lock(&swap_data_lock);
699 if ((sdp = swaplist_find(vp, 0)) != NULL) {
700 error = EBUSY;
701 simple_unlock(&swap_data_lock);
702 break;
703 }
704 sdp = (struct swapdev *)
705 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
706 spp = (struct swappri *)
707 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
708 memset(sdp, 0, sizeof(*sdp));
709 sdp->swd_flags = SWF_FAKE; /* placeholder only */
710 sdp->swd_vp = vp;
711 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
712 #ifdef SWAP_TO_FILES
713 /*
714 * XXX Is NFS elaboration necessary?
715 */
716 if (vp->v_type == VREG)
717 sdp->swd_cred = crdup(p->p_ucred);
718 #endif
719 swaplist_insert(sdp, spp, priority);
720 simple_unlock(&swap_data_lock);
721
722 sdp->swd_pathlen = len;
723 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
724 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
725 panic("swapctl: copystr");
726 /*
727 * we've now got a FAKE placeholder in the swap list.
728 * now attempt to enable swap on it. if we fail, undo
729 * what we've done and kill the fake entry we just inserted.
730 * if swap_on is a success, it will clear the SWF_FAKE flag
731 */
732 if ((error = swap_on(p, sdp)) != 0) {
733 simple_lock(&swap_data_lock);
734 (void) swaplist_find(vp, 1); /* kill fake entry */
735 swaplist_trim();
736 simple_unlock(&swap_data_lock);
737 #ifdef SWAP_TO_FILES
738 if (vp->v_type == VREG)
739 crfree(sdp->swd_cred);
740 #endif
741 free(sdp->swd_path, M_VMSWAP);
742 free((caddr_t)sdp, M_VMSWAP);
743 break;
744 }
745
746 /*
747 * got it! now add a second reference to vp so that
748 * we keep a reference to the vnode after we return.
749 */
750 vref(vp);
751 break;
752
753 case SWAP_OFF:
754 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
755 #ifdef SWAP_OFF_WORKS
756 /*
757 * find the entry of interest and ensure it is enabled.
758 */
759 simple_lock(&swap_data_lock);
760 if ((sdp = swaplist_find(vp, 0)) == NULL) {
761 simple_unlock(&swap_data_lock);
762 error = ENXIO;
763 break;
764 }
765 /*
766 * If a device isn't in use or enabled, we
767 * can't stop swapping from it (again).
768 */
769 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
770 simple_unlock(&swap_data_lock);
771 error = EBUSY;
772 break;
773 }
774 /* XXXCDC: should we call with list locked or unlocked? */
775 if ((error = swap_off(p, sdp)) != 0)
776 break;
777 /* XXXCDC: might need relock here */
778
779 /*
780 * now we can kill the entry.
781 */
782 if ((sdp = swaplist_find(vp, 1)) == NULL) {
783 error = ENXIO;
784 break;
785 }
786 simple_unlock(&swap_data_lock);
787 free((caddr_t)sdp, M_VMSWAP);
788 #else
789 error = EINVAL;
790 #endif
791 break;
792
793 default:
794 UVMHIST_LOG(pdhist, "unhandled command: %#x",
795 SCARG(uap, cmd), 0, 0, 0);
796 error = EINVAL;
797 }
798
799 /*
800 * done! use vput to drop our reference and unlock
801 */
802 vput(vp);
803 out:
804 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
805
806 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
807 return (error);
808 }
809
810 /*
811 * swap_on: attempt to enable a swapdev for swapping. note that the
812 * swapdev is already on the global list, but disabled (marked
813 * SWF_FAKE).
814 *
815 * => we avoid the start of the disk (to protect disk labels)
816 * => we also avoid the miniroot, if we are swapping to root.
817 * => caller should leave swap_data_lock unlocked, we may lock it
818 * if needed.
819 */
820 static int
821 swap_on(p, sdp)
822 struct proc *p;
823 struct swapdev *sdp;
824 {
825 static int count = 0; /* static */
826 struct vnode *vp;
827 int error, npages, nblocks, size;
828 long addr;
829 #ifdef SWAP_TO_FILES
830 struct vattr va;
831 #endif
832 #ifdef NFS
833 extern int (**nfsv2_vnodeop_p) __P((void *));
834 #endif /* NFS */
835 dev_t dev;
836 char *name;
837 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
838
839 /*
840 * we want to enable swapping on sdp. the swd_vp contains
841 * the vnode we want (locked and ref'd), and the swd_dev
842 * contains the dev_t of the file, if it a block device.
843 */
844
845 vp = sdp->swd_vp;
846 dev = sdp->swd_dev;
847
848 /*
849 * open the swap file (mostly useful for block device files to
850 * let device driver know what is up).
851 *
852 * we skip the open/close for root on swap because the root
853 * has already been opened when root was mounted (mountroot).
854 */
855 if (vp != rootvp) {
856 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
857 return (error);
858 }
859
860 /* XXX this only works for block devices */
861 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
862
863 /*
864 * we now need to determine the size of the swap area. for
865 * block specials we can call the d_psize function.
866 * for normal files, we must stat [get attrs].
867 *
868 * we put the result in nblks.
869 * for normal files, we also want the filesystem block size
870 * (which we get with statfs).
871 */
872 switch (vp->v_type) {
873 case VBLK:
874 if (bdevsw[major(dev)].d_psize == 0 ||
875 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
876 error = ENXIO;
877 goto bad;
878 }
879 break;
880
881 #ifdef SWAP_TO_FILES
882 case VREG:
883 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
884 goto bad;
885 nblocks = (int)btodb(va.va_size);
886 if ((error =
887 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
888 goto bad;
889
890 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
891 /*
892 * limit the max # of outstanding I/O requests we issue
893 * at any one time. take it easy on NFS servers.
894 */
895 #ifdef NFS
896 if (vp->v_op == nfsv2_vnodeop_p)
897 sdp->swd_maxactive = 2; /* XXX */
898 else
899 #endif /* NFS */
900 sdp->swd_maxactive = 8; /* XXX */
901 break;
902 #endif
903
904 default:
905 error = ENXIO;
906 goto bad;
907 }
908
909 /*
910 * save nblocks in a safe place and convert to pages.
911 */
912
913 sdp->swd_ose.ose_nblks = nblocks;
914 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
915
916 /*
917 * for block special files, we want to make sure that leave
918 * the disklabel and bootblocks alone, so we arrange to skip
919 * over them (randomly choosing to skip PAGE_SIZE bytes).
920 * note that because of this the "size" can be less than the
921 * actual number of blocks on the device.
922 */
923 if (vp->v_type == VBLK) {
924 /* we use pages 1 to (size - 1) [inclusive] */
925 size = npages - 1;
926 addr = 1;
927 } else {
928 /* we use pages 0 to (size - 1) [inclusive] */
929 size = npages;
930 addr = 0;
931 }
932
933 /*
934 * make sure we have enough blocks for a reasonable sized swap
935 * area. we want at least one page.
936 */
937
938 if (size < 1) {
939 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
940 error = EINVAL;
941 goto bad;
942 }
943
944 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
945
946 /*
947 * now we need to allocate an extent to manage this swap device
948 */
949 name = malloc(12, M_VMSWAP, M_WAITOK);
950 sprintf(name, "swap0x%04x", count++);
951
952 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
953 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
954 0, 0, EX_WAITOK);
955 /* allocate the `saved' region from the extent so it won't be used */
956 if (addr) {
957 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
958 panic("disklabel region");
959 sdp->swd_npginuse += addr;
960 uvmexp.swpginuse += addr;
961 }
962
963
964 /*
965 * if the vnode we are swapping to is the root vnode
966 * (i.e. we are swapping to the miniroot) then we want
967 * to make sure we don't overwrite it. do a statfs to
968 * find its size and skip over it.
969 */
970 if (vp == rootvp) {
971 struct mount *mp;
972 struct statfs *sp;
973 int rootblocks, rootpages;
974
975 mp = rootvnode->v_mount;
976 sp = &mp->mnt_stat;
977 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
978 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
979 if (rootpages > npages)
980 panic("swap_on: miniroot larger than swap?");
981
982 if (extent_alloc_region(sdp->swd_ex, addr,
983 rootpages, EX_WAITOK))
984 panic("swap_on: unable to preserve miniroot");
985
986 sdp->swd_npginuse += (rootpages - addr);
987 uvmexp.swpginuse += (rootpages - addr);
988
989 printf("Preserved %d pages of miniroot ", rootpages);
990 printf("leaving %d pages of swap\n", size - rootpages);
991 }
992
993 /*
994 * now add the new swapdev to the drum and enable.
995 */
996 simple_lock(&swap_data_lock);
997 swapdrum_add(sdp, npages);
998 sdp->swd_npages = npages;
999 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1000 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1001 simple_unlock(&swap_data_lock);
1002 uvmexp.swpages += npages;
1003
1004 /*
1005 * add anon's to reflect the swap space we added
1006 */
1007 uvm_anon_add(size);
1008
1009 #if 0
1010 /*
1011 * At this point we could arrange to reserve memory for the
1012 * swap buffer pools.
1013 *
1014 * I don't think this is necessary, since swapping starts well
1015 * ahead of serious memory deprivation and the memory resource
1016 * pools hold on to actively used memory. This should ensure
1017 * we always have some resources to continue operation.
1018 */
1019
1020 int s = splbio();
1021 int n = 8 * sdp->swd_maxactive;
1022
1023 (void)pool_prime(swapbuf_pool, n, 0);
1024
1025 if (vp->v_type == VREG) {
1026 /* Allocate additional vnx and vnd buffers */
1027 /*
1028 * Allocation Policy:
1029 * (8 * swd_maxactive) vnx headers per swap dev
1030 * (16 * swd_maxactive) vnd buffers per swap dev
1031 */
1032
1033 n = 8 * sdp->swd_maxactive;
1034 (void)pool_prime(vndxfer_pool, n, 0);
1035
1036 n = 16 * sdp->swd_maxactive;
1037 (void)pool_prime(vndbuf_pool, n, 0);
1038 }
1039 splx(s);
1040 #endif
1041
1042 return (0);
1043
1044 bad:
1045 /*
1046 * failure: close device if necessary and return error.
1047 */
1048 if (vp != rootvp)
1049 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1050 return (error);
1051 }
1052
1053 #ifdef SWAP_OFF_WORKS
1054 /*
1055 * swap_off: stop swapping on swapdev
1056 *
1057 * XXXCDC: what conditions go here?
1058 */
1059 static int
1060 swap_off(p, sdp)
1061 struct proc *p;
1062 struct swapdev *sdp;
1063 {
1064 char *name;
1065 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1066
1067 /* turn off the enable flag */
1068 sdp->swd_flags &= ~SWF_ENABLE;
1069
1070 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1071
1072 /*
1073 * XXX write me
1074 *
1075 * the idea is to find out which processes are using this swap
1076 * device, and page them all in.
1077 *
1078 * eventually, we should try to move them out to other swap areas
1079 * if available.
1080 *
1081 * The alternative is to create a redirection map for this swap
1082 * device. This should work by moving all the pages of data from
1083 * the ex-swap device to another one, and making an entry in the
1084 * redirection map for it. locking is going to be important for
1085 * this!
1086 *
1087 * XXXCDC: also need to shrink anon pool
1088 */
1089
1090 /* until the above code is written, we must ENODEV */
1091 return ENODEV;
1092
1093 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1094 name = sdp->swd_ex->ex_name;
1095 extent_destroy(sdp->swd_ex);
1096 free(name, M_VMSWAP);
1097 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1098 if (sdp->swp_vp != rootvp)
1099 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1100 if (sdp->swd_vp)
1101 vrele(sdp->swd_vp);
1102 free((caddr_t)sdp, M_VMSWAP);
1103 return (0);
1104 }
1105 #endif
1106
1107 /*
1108 * /dev/drum interface and i/o functions
1109 */
1110
1111 /*
1112 * swread: the read function for the drum (just a call to physio)
1113 */
1114 /*ARGSUSED*/
1115 int
1116 swread(dev, uio, ioflag)
1117 dev_t dev;
1118 struct uio *uio;
1119 int ioflag;
1120 {
1121 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1122
1123 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1124 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1125 }
1126
1127 /*
1128 * swwrite: the write function for the drum (just a call to physio)
1129 */
1130 /*ARGSUSED*/
1131 int
1132 swwrite(dev, uio, ioflag)
1133 dev_t dev;
1134 struct uio *uio;
1135 int ioflag;
1136 {
1137 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1138
1139 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1140 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1141 }
1142
1143 /*
1144 * swstrategy: perform I/O on the drum
1145 *
1146 * => we must map the i/o request from the drum to the correct swapdev.
1147 */
1148 void
1149 swstrategy(bp)
1150 struct buf *bp;
1151 {
1152 struct swapdev *sdp;
1153 struct vnode *vp;
1154 int pageno;
1155 int bn;
1156 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1157
1158 /*
1159 * convert block number to swapdev. note that swapdev can't
1160 * be yanked out from under us because we are holding resources
1161 * in it (i.e. the blocks we are doing I/O on).
1162 */
1163 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1164 simple_lock(&swap_data_lock);
1165 sdp = swapdrum_getsdp(pageno);
1166 simple_unlock(&swap_data_lock);
1167 if (sdp == NULL) {
1168 bp->b_error = EINVAL;
1169 bp->b_flags |= B_ERROR;
1170 biodone(bp);
1171 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1172 return;
1173 }
1174
1175 /*
1176 * convert drum page number to block number on this swapdev.
1177 */
1178
1179 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1180 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1181
1182 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1183 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1184 sdp->swd_drumoffset, bn, bp->b_bcount);
1185
1186
1187 /*
1188 * for block devices we finish up here.
1189 * for regular files we have to do more work which we deligate
1190 * to sw_reg_strategy().
1191 */
1192
1193 switch (sdp->swd_vp->v_type) {
1194 default:
1195 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1196 case VBLK:
1197
1198 /*
1199 * must convert "bp" from an I/O on /dev/drum to an I/O
1200 * on the swapdev (sdp).
1201 */
1202 bp->b_blkno = bn; /* swapdev block number */
1203 vp = sdp->swd_vp; /* swapdev vnode pointer */
1204 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1205 VHOLD(vp); /* "hold" swapdev vp for i/o */
1206
1207 /*
1208 * if we are doing a write, we have to redirect the i/o on
1209 * drum's v_numoutput counter to the swapdevs.
1210 */
1211 if ((bp->b_flags & B_READ) == 0) {
1212 int s = splbio();
1213 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1214 vp->v_numoutput++; /* put it on swapdev */
1215 splx(s);
1216 }
1217
1218 /*
1219 * dissassocate buffer with /dev/drum vnode
1220 * [could be null if buf was from physio]
1221 */
1222 if (bp->b_vp != NULLVP)
1223 brelvp(bp);
1224
1225 /*
1226 * finally plug in swapdev vnode and start I/O
1227 */
1228 bp->b_vp = vp;
1229 VOP_STRATEGY(bp);
1230 return;
1231 #ifdef SWAP_TO_FILES
1232 case VREG:
1233 /*
1234 * deligate to sw_reg_strategy function.
1235 */
1236 sw_reg_strategy(sdp, bp, bn);
1237 return;
1238 #endif
1239 }
1240 /* NOTREACHED */
1241 }
1242
1243 #ifdef SWAP_TO_FILES
1244 /*
1245 * sw_reg_strategy: handle swap i/o to regular files
1246 */
1247 static void
1248 sw_reg_strategy(sdp, bp, bn)
1249 struct swapdev *sdp;
1250 struct buf *bp;
1251 int bn;
1252 {
1253 struct vnode *vp;
1254 struct vndxfer *vnx;
1255 daddr_t nbn, byteoff;
1256 caddr_t addr;
1257 int s, off, nra, error, sz, resid;
1258 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1259
1260 /*
1261 * allocate a vndxfer head for this transfer and point it to
1262 * our buffer.
1263 */
1264 getvndxfer(vnx);
1265 vnx->vx_flags = VX_BUSY;
1266 vnx->vx_error = 0;
1267 vnx->vx_pending = 0;
1268 vnx->vx_bp = bp;
1269 vnx->vx_sdp = sdp;
1270
1271 /*
1272 * setup for main loop where we read filesystem blocks into
1273 * our buffer.
1274 */
1275 error = 0;
1276 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1277 addr = bp->b_data; /* current position in buffer */
1278 byteoff = dbtob(bn);
1279
1280 for (resid = bp->b_resid; resid; resid -= sz) {
1281 struct vndbuf *nbp;
1282
1283 /*
1284 * translate byteoffset into block number. return values:
1285 * vp = vnode of underlying device
1286 * nbn = new block number (on underlying vnode dev)
1287 * nra = num blocks we can read-ahead (excludes requested
1288 * block)
1289 */
1290 nra = 0;
1291 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1292 &vp, &nbn, &nra);
1293
1294 if (error == 0 && (long)nbn == -1) {
1295 /*
1296 * this used to just set error, but that doesn't
1297 * do the right thing. Instead, it causes random
1298 * memory errors. The panic() should remain until
1299 * this condition doesn't destabilize the system.
1300 */
1301 #if 1
1302 panic("sw_reg_strategy: swap to sparse file");
1303 #else
1304 error = EIO; /* failure */
1305 #endif
1306 }
1307
1308 /*
1309 * punt if there was an error or a hole in the file.
1310 * we must wait for any i/o ops we have already started
1311 * to finish before returning.
1312 *
1313 * XXX we could deal with holes here but it would be
1314 * a hassle (in the write case).
1315 */
1316 if (error) {
1317 s = splbio();
1318 vnx->vx_error = error; /* pass error up */
1319 goto out;
1320 }
1321
1322 /*
1323 * compute the size ("sz") of this transfer (in bytes).
1324 * XXXCDC: ignores read-ahead for non-zero offset
1325 */
1326 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1327 sz = sdp->swd_bsize - off;
1328 else
1329 sz = (1 + nra) * sdp->swd_bsize;
1330
1331 if (resid < sz)
1332 sz = resid;
1333
1334 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1335 sdp->swd_vp, vp, byteoff, nbn);
1336
1337 /*
1338 * now get a buf structure. note that the vb_buf is
1339 * at the front of the nbp structure so that you can
1340 * cast pointers between the two structure easily.
1341 */
1342 getvndbuf(nbp);
1343 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1344 nbp->vb_buf.b_bcount = sz;
1345 #if 0
1346 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1347 #endif
1348 nbp->vb_buf.b_bufsize = sz;
1349 nbp->vb_buf.b_error = 0;
1350 nbp->vb_buf.b_data = addr;
1351 nbp->vb_buf.b_blkno = nbn + btodb(off);
1352 nbp->vb_buf.b_proc = bp->b_proc;
1353 nbp->vb_buf.b_iodone = sw_reg_iodone;
1354 nbp->vb_buf.b_vp = NULLVP;
1355 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1356 nbp->vb_buf.b_rcred = sdp->swd_cred;
1357 nbp->vb_buf.b_wcred = sdp->swd_cred;
1358
1359 /*
1360 * set b_dirtyoff/end and b_validoff/end. this is
1361 * required by the NFS client code (otherwise it will
1362 * just discard our I/O request).
1363 */
1364 if (bp->b_dirtyend == 0) {
1365 nbp->vb_buf.b_dirtyoff = 0;
1366 nbp->vb_buf.b_dirtyend = sz;
1367 } else {
1368 nbp->vb_buf.b_dirtyoff =
1369 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1370 nbp->vb_buf.b_dirtyend =
1371 min(sz,
1372 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1373 }
1374 if (bp->b_validend == 0) {
1375 nbp->vb_buf.b_validoff = 0;
1376 nbp->vb_buf.b_validend = sz;
1377 } else {
1378 nbp->vb_buf.b_validoff =
1379 max(0, bp->b_validoff - (bp->b_bcount-resid));
1380 nbp->vb_buf.b_validend =
1381 min(sz,
1382 max(0, bp->b_validend - (bp->b_bcount-resid)));
1383 }
1384
1385 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1386
1387 /*
1388 * Just sort by block number
1389 */
1390 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1391 s = splbio();
1392 if (vnx->vx_error != 0) {
1393 putvndbuf(nbp);
1394 goto out;
1395 }
1396 vnx->vx_pending++;
1397
1398 /* assoc new buffer with underlying vnode */
1399 bgetvp(vp, &nbp->vb_buf);
1400
1401 /* sort it in and start I/O if we are not over our limit */
1402 disksort(&sdp->swd_tab, &nbp->vb_buf);
1403 sw_reg_start(sdp);
1404 splx(s);
1405
1406 /*
1407 * advance to the next I/O
1408 */
1409 byteoff += sz;
1410 addr += sz;
1411 }
1412
1413 s = splbio();
1414
1415 out: /* Arrive here at splbio */
1416 vnx->vx_flags &= ~VX_BUSY;
1417 if (vnx->vx_pending == 0) {
1418 if (vnx->vx_error != 0) {
1419 bp->b_error = vnx->vx_error;
1420 bp->b_flags |= B_ERROR;
1421 }
1422 putvndxfer(vnx);
1423 biodone(bp);
1424 }
1425 splx(s);
1426 }
1427
1428 /*
1429 * sw_reg_start: start an I/O request on the requested swapdev
1430 *
1431 * => reqs are sorted by disksort (above)
1432 */
1433 static void
1434 sw_reg_start(sdp)
1435 struct swapdev *sdp;
1436 {
1437 struct buf *bp;
1438 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1439
1440 /* recursion control */
1441 if ((sdp->swd_flags & SWF_BUSY) != 0)
1442 return;
1443
1444 sdp->swd_flags |= SWF_BUSY;
1445
1446 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1447 bp = sdp->swd_tab.b_actf;
1448 if (bp == NULL)
1449 break;
1450 sdp->swd_tab.b_actf = bp->b_actf;
1451 sdp->swd_tab.b_active++;
1452
1453 UVMHIST_LOG(pdhist,
1454 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1455 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1456 if ((bp->b_flags & B_READ) == 0)
1457 bp->b_vp->v_numoutput++;
1458 VOP_STRATEGY(bp);
1459 }
1460 sdp->swd_flags &= ~SWF_BUSY;
1461 }
1462
1463 /*
1464 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1465 *
1466 * => note that we can recover the vndbuf struct by casting the buf ptr
1467 */
1468 static void
1469 sw_reg_iodone(bp)
1470 struct buf *bp;
1471 {
1472 struct vndbuf *vbp = (struct vndbuf *) bp;
1473 struct vndxfer *vnx = vbp->vb_xfer;
1474 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1475 struct swapdev *sdp = vnx->vx_sdp;
1476 int s, resid;
1477 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1478
1479 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1480 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1481 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1482 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1483
1484 /*
1485 * protect vbp at splbio and update.
1486 */
1487
1488 s = splbio();
1489 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1490 pbp->b_resid -= resid;
1491 vnx->vx_pending--;
1492
1493 if (vbp->vb_buf.b_error) {
1494 UVMHIST_LOG(pdhist, " got error=%d !",
1495 vbp->vb_buf.b_error, 0, 0, 0);
1496
1497 /* pass error upward */
1498 vnx->vx_error = vbp->vb_buf.b_error;
1499 }
1500
1501 /*
1502 * drop "hold" reference to vnode (if one)
1503 * XXXCDC: always set to NULLVP, this is useless, right?
1504 */
1505 if (vbp->vb_buf.b_vp != NULLVP)
1506 brelvp(&vbp->vb_buf);
1507
1508 /*
1509 * kill vbp structure
1510 */
1511 putvndbuf(vbp);
1512
1513 /*
1514 * wrap up this transaction if it has run to completion or, in
1515 * case of an error, when all auxiliary buffers have returned.
1516 */
1517 if (vnx->vx_error != 0) {
1518 /* pass error upward */
1519 pbp->b_flags |= B_ERROR;
1520 pbp->b_error = vnx->vx_error;
1521 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1522 putvndxfer(vnx);
1523 biodone(pbp);
1524 }
1525 } else if (pbp->b_resid == 0) {
1526 #ifdef DIAGNOSTIC
1527 if (vnx->vx_pending != 0)
1528 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1529 #endif
1530
1531 if ((vnx->vx_flags & VX_BUSY) == 0) {
1532 UVMHIST_LOG(pdhist, " iodone error=%d !",
1533 pbp, vnx->vx_error, 0, 0);
1534 putvndxfer(vnx);
1535 biodone(pbp);
1536 }
1537 }
1538
1539 /*
1540 * done! start next swapdev I/O if one is pending
1541 */
1542 sdp->swd_tab.b_active--;
1543 sw_reg_start(sdp);
1544
1545 splx(s);
1546 }
1547 #endif /* SWAP_TO_FILES */
1548
1549
1550 /*
1551 * uvm_swap_alloc: allocate space on swap
1552 *
1553 * => allocation is done "round robin" down the priority list, as we
1554 * allocate in a priority we "rotate" the circle queue.
1555 * => space can be freed with uvm_swap_free
1556 * => we return the page slot number in /dev/drum (0 == invalid slot)
1557 * => we lock swap_data_lock
1558 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1559 */
1560 int
1561 uvm_swap_alloc(nslots, lessok)
1562 int *nslots; /* IN/OUT */
1563 boolean_t lessok;
1564 {
1565 struct swapdev *sdp;
1566 struct swappri *spp;
1567 u_long result;
1568 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1569
1570 /*
1571 * no swap devices configured yet? definite failure.
1572 */
1573 if (uvmexp.nswapdev < 1)
1574 return 0;
1575
1576 /*
1577 * lock data lock, convert slots into blocks, and enter loop
1578 */
1579 simple_lock(&swap_data_lock);
1580
1581 ReTry: /* XXXMRG */
1582 for (spp = swap_priority.lh_first; spp != NULL;
1583 spp = spp->spi_swappri.le_next) {
1584 for (sdp = spp->spi_swapdev.cqh_first;
1585 sdp != (void *)&spp->spi_swapdev;
1586 sdp = sdp->swd_next.cqe_next) {
1587 /* if it's not enabled, then we can't swap from it */
1588 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1589 continue;
1590 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1591 continue;
1592 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1593 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1594 &result) != 0) {
1595 continue;
1596 }
1597
1598 /*
1599 * successful allocation! now rotate the circleq.
1600 */
1601 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1602 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1603 sdp->swd_npginuse += *nslots;
1604 uvmexp.swpginuse += *nslots;
1605 simple_unlock(&swap_data_lock);
1606 /* done! return drum slot number */
1607 UVMHIST_LOG(pdhist,
1608 "success! returning %d slots starting at %d",
1609 *nslots, result + sdp->swd_drumoffset, 0, 0);
1610 #if 0
1611 {
1612 struct swapdev *sdp2;
1613
1614 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1615 if (sdp2 == NULL) {
1616 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1617 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1618 panic("uvm_swap_alloc: allocating unmapped swap block!");
1619 }
1620 }
1621 #endif
1622 return(result + sdp->swd_drumoffset);
1623 }
1624 }
1625
1626 /* XXXMRG: BEGIN HACK */
1627 if (*nslots > 1 && lessok) {
1628 *nslots = 1;
1629 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1630 }
1631 /* XXXMRG: END HACK */
1632
1633 simple_unlock(&swap_data_lock);
1634 return 0; /* failed */
1635 }
1636
1637 /*
1638 * uvm_swap_free: free swap slots
1639 *
1640 * => this can be all or part of an allocation made by uvm_swap_alloc
1641 * => we lock swap_data_lock
1642 */
1643 void
1644 uvm_swap_free(startslot, nslots)
1645 int startslot;
1646 int nslots;
1647 {
1648 struct swapdev *sdp;
1649 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1650
1651 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1652 startslot, 0, 0);
1653 /*
1654 * convert drum slot offset back to sdp, free the blocks
1655 * in the extent, and return. must hold pri lock to do
1656 * lookup and access the extent.
1657 */
1658 simple_lock(&swap_data_lock);
1659 sdp = swapdrum_getsdp(startslot);
1660
1661 #ifdef DIAGNOSTIC
1662 if (uvmexp.nswapdev < 1)
1663 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1664 if (sdp == NULL) {
1665 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1666 nslots);
1667 panic("uvm_swap_free: unmapped address\n");
1668 }
1669 #endif
1670 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1671 EX_MALLOCOK|EX_NOWAIT) != 0)
1672 printf("warning: resource shortage: %d slots of swap lost\n",
1673 nslots);
1674
1675 sdp->swd_npginuse -= nslots;
1676 uvmexp.swpginuse -= nslots;
1677 #ifdef DIAGNOSTIC
1678 if (sdp->swd_npginuse < 0)
1679 panic("uvm_swap_free: inuse < 0");
1680 #endif
1681 simple_unlock(&swap_data_lock);
1682 }
1683
1684 /*
1685 * uvm_swap_put: put any number of pages into a contig place on swap
1686 *
1687 * => can be sync or async
1688 * => XXXMRG: consider making it an inline or macro
1689 */
1690 int
1691 uvm_swap_put(swslot, ppsp, npages, flags)
1692 int swslot;
1693 struct vm_page **ppsp;
1694 int npages;
1695 int flags;
1696 {
1697 int result;
1698
1699 #if 0
1700 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1701 #endif
1702
1703 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1704 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1705
1706 return (result);
1707 }
1708
1709 /*
1710 * uvm_swap_get: get a single page from swap
1711 *
1712 * => usually a sync op (from fault)
1713 * => XXXMRG: consider making it an inline or macro
1714 */
1715 int
1716 uvm_swap_get(page, swslot, flags)
1717 struct vm_page *page;
1718 int swslot, flags;
1719 {
1720 int result;
1721
1722 uvmexp.nswget++;
1723 #ifdef DIAGNOSTIC
1724 if ((flags & PGO_SYNCIO) == 0)
1725 printf("uvm_swap_get: ASYNC get requested?\n");
1726 #endif
1727
1728 result = uvm_swap_io(&page, swslot, 1, B_READ |
1729 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1730
1731 return (result);
1732 }
1733
1734 /*
1735 * uvm_swap_io: do an i/o operation to swap
1736 */
1737
1738 static int
1739 uvm_swap_io(pps, startslot, npages, flags)
1740 struct vm_page **pps;
1741 int startslot, npages, flags;
1742 {
1743 daddr_t startblk;
1744 struct swapbuf *sbp;
1745 struct buf *bp;
1746 vaddr_t kva;
1747 int result, s, waitf, pflag;
1748 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1749
1750 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1751 startslot, npages, flags, 0);
1752 /*
1753 * convert starting drum slot to block number
1754 */
1755 startblk = btodb(startslot << PAGE_SHIFT);
1756
1757 /*
1758 * first, map the pages into the kernel (XXX: currently required
1759 * by buffer system). note that we don't let pagermapin alloc
1760 * an aiodesc structure because we don't want to chance a malloc.
1761 * we've got our own pool of aiodesc structures (in swapbuf).
1762 */
1763 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1764 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1765 if (kva == NULL)
1766 return (VM_PAGER_AGAIN);
1767
1768 /*
1769 * now allocate a swap buffer off of freesbufs
1770 * [make sure we don't put the pagedaemon to sleep...]
1771 */
1772 s = splbio();
1773 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1774 ? 0
1775 : PR_WAITOK;
1776 sbp = pool_get(swapbuf_pool, pflag);
1777 splx(s); /* drop splbio */
1778
1779 /*
1780 * if we failed to get a swapbuf, return "try again"
1781 */
1782 if (sbp == NULL)
1783 return (VM_PAGER_AGAIN);
1784
1785 /*
1786 * fill in the bp/sbp. we currently route our i/o through
1787 * /dev/drum's vnode [swapdev_vp].
1788 */
1789 bp = &sbp->sw_buf;
1790 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1791 bp->b_proc = &proc0; /* XXX */
1792 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1793 bp->b_vnbufs.le_next = NOLIST;
1794 bp->b_data = (caddr_t)kva;
1795 bp->b_blkno = startblk;
1796 VHOLD(swapdev_vp);
1797 bp->b_vp = swapdev_vp;
1798 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1799 /* XXXMRG: probably -- this is obviously something inherited... */
1800 if (swapdev_vp->v_type == VBLK)
1801 bp->b_dev = swapdev_vp->v_rdev;
1802 bp->b_bcount = npages << PAGE_SHIFT;
1803
1804 /*
1805 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1806 * and we bump v_numoutput (counter of number of active outputs).
1807 */
1808 if ((bp->b_flags & B_READ) == 0) {
1809 bp->b_dirtyoff = 0;
1810 bp->b_dirtyend = npages << PAGE_SHIFT;
1811 s = splbio();
1812 swapdev_vp->v_numoutput++;
1813 splx(s);
1814 }
1815
1816 /*
1817 * for async ops we must set up the aiodesc and setup the callback
1818 * XXX: we expect no async-reads, but we don't prevent it here.
1819 */
1820 if (flags & B_ASYNC) {
1821 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1822 sbp->sw_aio.kva = kva;
1823 sbp->sw_aio.npages = npages;
1824 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1825 bp->b_flags |= B_CALL; /* set callback */
1826 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1827 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1828 }
1829 UVMHIST_LOG(pdhist,
1830 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1831 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1832
1833 /*
1834 * now we start the I/O, and if async, return.
1835 */
1836 VOP_STRATEGY(bp);
1837 if (flags & B_ASYNC)
1838 return (VM_PAGER_PEND);
1839
1840 /*
1841 * must be sync i/o. wait for it to finish
1842 */
1843 bp->b_error = biowait(bp);
1844 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1845
1846 /*
1847 * kill the pager mapping
1848 */
1849 uvm_pagermapout(kva, npages);
1850
1851 /*
1852 * now dispose of the swap buffer
1853 */
1854 s = splbio();
1855 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1856 if (bp->b_vp)
1857 brelvp(bp);
1858
1859 pool_put(swapbuf_pool, sbp);
1860 splx(s);
1861
1862 /*
1863 * finally return.
1864 */
1865 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1866 return (result);
1867 }
1868
1869 /*
1870 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1871 */
1872 static void
1873 uvm_swap_bufdone(bp)
1874 struct buf *bp;
1875 {
1876 struct swapbuf *sbp = (struct swapbuf *) bp;
1877 int s = splbio();
1878 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1879
1880 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1881 #ifdef DIAGNOSTIC
1882 /*
1883 * sanity check: swapbufs are private, so they shouldn't be wanted
1884 */
1885 if (bp->b_flags & B_WANTED)
1886 panic("uvm_swap_bufdone: private buf wanted");
1887 #endif
1888
1889 /*
1890 * drop buffers reference to the vnode and its flags.
1891 */
1892 bp->b_flags &= ~(B_BUSY|B_WANTED|B_PHYS|B_PAGET|B_UAREA|B_DIRTY|B_NOCACHE);
1893 if (bp->b_vp)
1894 brelvp(bp);
1895
1896 /*
1897 * now put the aio on the uvm.aio_done list and wake the
1898 * pagedaemon (which will finish up our job in its context).
1899 */
1900 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1901 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1902 simple_unlock(&uvm.pagedaemon_lock);
1903
1904 thread_wakeup(&uvm.pagedaemon);
1905 splx(s);
1906 }
1907
1908 /*
1909 * uvm_swap_aiodone: aiodone function for anonymous memory
1910 *
1911 * => this is called in the context of the pagedaemon (but with the
1912 * page queues unlocked!)
1913 * => our "aio" structure must be part of a "swapbuf"
1914 */
1915 static void
1916 uvm_swap_aiodone(aio)
1917 struct uvm_aiodesc *aio;
1918 {
1919 struct swapbuf *sbp = aio->pd_ptr;
1920 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1921 int lcv, s;
1922 vaddr_t addr;
1923 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1924
1925 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1926 #ifdef DIAGNOSTIC
1927 /*
1928 * sanity check
1929 */
1930 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1931 panic("uvm_swap_aiodone: aio too big!");
1932 #endif
1933
1934 /*
1935 * first, we have to recover the page pointers (pps) by poking in the
1936 * kernel pmap (XXX: should be saved in the buf structure).
1937 */
1938 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1939 addr += PAGE_SIZE, lcv++) {
1940 pps[lcv] = uvm_pageratop(addr);
1941 }
1942
1943 /*
1944 * now we can dispose of the kernel mappings of the buffer
1945 */
1946 uvm_pagermapout(aio->kva, aio->npages);
1947
1948 /*
1949 * now we can dispose of the pages by using the dropcluster function
1950 * [note that we have no "page of interest" so we pass in null]
1951 */
1952 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1953 PGO_PDFREECLUST, 0);
1954
1955 /*
1956 * finally, we can dispose of the swapbuf
1957 */
1958 s = splbio();
1959 pool_put(swapbuf_pool, sbp);
1960 splx(s);
1961
1962 /*
1963 * done!
1964 */
1965 }
1966