uvm_swap.c revision 1.26 1 /* $NetBSD: uvm_swap.c,v 1.26 1999/03/26 17:34:16 chs Exp $ */
2
3 /*
4 * Copyright (c) 1995, 1996, 1997 Matthew R. Green
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
23 * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
24 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED
25 * AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
26 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
27 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
28 * SUCH DAMAGE.
29 *
30 * from: NetBSD: vm_swap.c,v 1.52 1997/12/02 13:47:37 pk Exp
31 * from: Id: uvm_swap.c,v 1.1.2.42 1998/02/02 20:38:06 chuck Exp
32 */
33
34 #include "fs_nfs.h"
35 #include "opt_uvmhist.h"
36 #include "opt_compat_netbsd.h"
37
38 #include <sys/param.h>
39 #include <sys/systm.h>
40 #include <sys/buf.h>
41 #include <sys/proc.h>
42 #include <sys/namei.h>
43 #include <sys/disklabel.h>
44 #include <sys/errno.h>
45 #include <sys/kernel.h>
46 #include <sys/malloc.h>
47 #include <sys/vnode.h>
48 #include <sys/file.h>
49 #include <sys/extent.h>
50 #include <sys/mount.h>
51 #include <sys/pool.h>
52 #include <sys/syscallargs.h>
53 #include <sys/swap.h>
54
55 #include <vm/vm.h>
56 #include <vm/vm_conf.h>
57
58 #include <uvm/uvm.h>
59
60 #include <miscfs/specfs/specdev.h>
61
62 /*
63 * uvm_swap.c: manage configuration and i/o to swap space.
64 */
65
66 /*
67 * swap space is managed in the following way:
68 *
69 * each swap partition or file is described by a "swapdev" structure.
70 * each "swapdev" structure contains a "swapent" structure which contains
71 * information that is passed up to the user (via system calls).
72 *
73 * each swap partition is assigned a "priority" (int) which controls
74 * swap parition usage.
75 *
76 * the system maintains a global data structure describing all swap
77 * partitions/files. there is a sorted LIST of "swappri" structures
78 * which describe "swapdev"'s at that priority. this LIST is headed
79 * by the "swap_priority" global var. each "swappri" contains a
80 * CIRCLEQ of "swapdev" structures at that priority.
81 *
82 * the system maintains a fixed pool of "swapbuf" structures for use
83 * at swap i/o time. a swapbuf includes a "buf" structure and an
84 * "aiodone" [we want to avoid malloc()'ing anything at swapout time
85 * since memory may be low].
86 *
87 * locking:
88 * - swap_syscall_lock (sleep lock): this lock serializes the swapctl
89 * system call and prevents the swap priority list from changing
90 * while we are in the middle of a system call (e.g. SWAP_STATS).
91 * - uvm.swap_data_lock (simple_lock): this lock protects all swap data
92 * structures including the priority list, the swapdev structures,
93 * and the swapmap extent.
94 * - swap_buf_lock (simple_lock): this lock protects the free swapbuf
95 * pool.
96 *
97 * each swap device has the following info:
98 * - swap device in use (could be disabled, preventing future use)
99 * - swap enabled (allows new allocations on swap)
100 * - map info in /dev/drum
101 * - vnode pointer
102 * for swap files only:
103 * - block size
104 * - max byte count in buffer
105 * - buffer
106 * - credentials to use when doing i/o to file
107 *
108 * userland controls and configures swap with the swapctl(2) system call.
109 * the sys_swapctl performs the following operations:
110 * [1] SWAP_NSWAP: returns the number of swap devices currently configured
111 * [2] SWAP_STATS: given a pointer to an array of swapent structures
112 * (passed in via "arg") of a size passed in via "misc" ... we load
113 * the current swap config into the array.
114 * [3] SWAP_ON: given a pathname in arg (could be device or file) and a
115 * priority in "misc", start swapping on it.
116 * [4] SWAP_OFF: as SWAP_ON, but stops swapping to a device
117 * [5] SWAP_CTL: changes the priority of a swap device (new priority in
118 * "misc")
119 */
120
121 /*
122 * SWAP_TO_FILES: allows swapping to plain files.
123 */
124
125 #define SWAP_TO_FILES
126
127 /*
128 * swapdev: describes a single swap partition/file
129 *
130 * note the following should be true:
131 * swd_inuse <= swd_nblks [number of blocks in use is <= total blocks]
132 * swd_nblks <= swd_mapsize [because mapsize includes miniroot+disklabel]
133 */
134 struct swapdev {
135 struct oswapent swd_ose;
136 #define swd_dev swd_ose.ose_dev /* device id */
137 #define swd_flags swd_ose.ose_flags /* flags:inuse/enable/fake */
138 #define swd_priority swd_ose.ose_priority /* our priority */
139 /* also: swd_ose.ose_nblks, swd_ose.ose_inuse */
140 char *swd_path; /* saved pathname of device */
141 int swd_pathlen; /* length of pathname */
142 int swd_npages; /* #pages we can use */
143 int swd_npginuse; /* #pages in use */
144 int swd_drumoffset; /* page0 offset in drum */
145 int swd_drumsize; /* #pages in drum */
146 struct extent *swd_ex; /* extent for this swapdev */
147 struct vnode *swd_vp; /* backing vnode */
148 CIRCLEQ_ENTRY(swapdev) swd_next; /* priority circleq */
149
150 #ifdef SWAP_TO_FILES
151 int swd_bsize; /* blocksize (bytes) */
152 int swd_maxactive; /* max active i/o reqs */
153 struct buf swd_tab; /* buffer list */
154 struct ucred *swd_cred; /* cred for file access */
155 #endif
156 };
157
158 /*
159 * swap device priority entry; the list is kept sorted on `spi_priority'.
160 */
161 struct swappri {
162 int spi_priority; /* priority */
163 CIRCLEQ_HEAD(spi_swapdev, swapdev) spi_swapdev;
164 /* circleq of swapdevs at this priority */
165 LIST_ENTRY(swappri) spi_swappri; /* global list of pri's */
166 };
167
168 /*
169 * swapbuf, swapbuffer plus async i/o info
170 */
171 struct swapbuf {
172 struct buf sw_buf; /* a buffer structure */
173 struct uvm_aiodesc sw_aio; /* aiodesc structure, used if ASYNC */
174 SIMPLEQ_ENTRY(swapbuf) sw_sq; /* free list pointer */
175 };
176
177 /*
178 * The following two structures are used to keep track of data transfers
179 * on swap devices associated with regular files.
180 * NOTE: this code is more or less a copy of vnd.c; we use the same
181 * structure names here to ease porting..
182 */
183 struct vndxfer {
184 struct buf *vx_bp; /* Pointer to parent buffer */
185 struct swapdev *vx_sdp;
186 int vx_error;
187 int vx_pending; /* # of pending aux buffers */
188 int vx_flags;
189 #define VX_BUSY 1
190 #define VX_DEAD 2
191 };
192
193 struct vndbuf {
194 struct buf vb_buf;
195 struct vndxfer *vb_xfer;
196 };
197
198
199 /*
200 * We keep a of pool vndbuf's and vndxfer structures.
201 */
202 struct pool *vndxfer_pool;
203 struct pool *vndbuf_pool;
204
205 #define getvndxfer(vnx) do { \
206 int s = splbio(); \
207 vnx = (struct vndxfer *) \
208 pool_get(vndxfer_pool, PR_MALLOCOK|PR_WAITOK); \
209 splx(s); \
210 } while (0)
211
212 #define putvndxfer(vnx) { \
213 pool_put(vndxfer_pool, (void *)(vnx)); \
214 }
215
216 #define getvndbuf(vbp) do { \
217 int s = splbio(); \
218 vbp = (struct vndbuf *) \
219 pool_get(vndbuf_pool, PR_MALLOCOK|PR_WAITOK); \
220 splx(s); \
221 } while (0)
222
223 #define putvndbuf(vbp) { \
224 pool_put(vndbuf_pool, (void *)(vbp)); \
225 }
226
227
228 /*
229 * local variables
230 */
231 static struct extent *swapmap; /* controls the mapping of /dev/drum */
232 SIMPLEQ_HEAD(swapbufhead, swapbuf);
233 struct pool *swapbuf_pool;
234
235 /* list of all active swap devices [by priority] */
236 LIST_HEAD(swap_priority, swappri);
237 static struct swap_priority swap_priority;
238
239 /* locks */
240 lock_data_t swap_syscall_lock;
241
242 /*
243 * prototypes
244 */
245 static void swapdrum_add __P((struct swapdev *, int));
246 static struct swapdev *swapdrum_getsdp __P((int));
247
248 static struct swapdev *swaplist_find __P((struct vnode *, int));
249 static void swaplist_insert __P((struct swapdev *,
250 struct swappri *, int));
251 static void swaplist_trim __P((void));
252
253 static int swap_on __P((struct proc *, struct swapdev *));
254 #ifdef SWAP_OFF_WORKS
255 static int swap_off __P((struct proc *, struct swapdev *));
256 #endif
257
258 #ifdef SWAP_TO_FILES
259 static void sw_reg_strategy __P((struct swapdev *, struct buf *, int));
260 static void sw_reg_iodone __P((struct buf *));
261 static void sw_reg_start __P((struct swapdev *));
262 #endif
263
264 static void uvm_swap_aiodone __P((struct uvm_aiodesc *));
265 static void uvm_swap_bufdone __P((struct buf *));
266 static int uvm_swap_io __P((struct vm_page **, int, int, int));
267
268 /*
269 * uvm_swap_init: init the swap system data structures and locks
270 *
271 * => called at boot time from init_main.c after the filesystems
272 * are brought up (which happens after uvm_init())
273 */
274 void
275 uvm_swap_init()
276 {
277 UVMHIST_FUNC("uvm_swap_init");
278
279 UVMHIST_CALLED(pdhist);
280 /*
281 * first, init the swap list, its counter, and its lock.
282 * then get a handle on the vnode for /dev/drum by using
283 * the its dev_t number ("swapdev", from MD conf.c).
284 */
285
286 LIST_INIT(&swap_priority);
287 uvmexp.nswapdev = 0;
288 lockinit(&swap_syscall_lock, PVM, "swapsys", 0, 0);
289 simple_lock_init(&uvm.swap_data_lock);
290
291 if (bdevvp(swapdev, &swapdev_vp))
292 panic("uvm_swap_init: can't get vnode for swap device");
293
294 /*
295 * create swap block resource map to map /dev/drum. the range
296 * from 1 to INT_MAX allows 2 gigablocks of swap space. note
297 * that block 0 is reserved (used to indicate an allocation
298 * failure, or no allocation).
299 */
300 swapmap = extent_create("swapmap", 1, INT_MAX,
301 M_VMSWAP, 0, 0, EX_NOWAIT);
302 if (swapmap == 0)
303 panic("uvm_swap_init: extent_create failed");
304
305 /*
306 * allocate our private pool of "swapbuf" structures (includes
307 * a "buf" structure). ["nswbuf" comes from param.c and can
308 * be adjusted by MD code before we get here].
309 */
310
311 swapbuf_pool =
312 pool_create(sizeof(struct swapbuf), 0, 0, 0, "swp buf", 0,
313 NULL, NULL, 0);
314 if (swapbuf_pool == NULL)
315 panic("swapinit: pool_create failed");
316 /* XXX - set a maximum on swapbuf_pool? */
317
318 vndxfer_pool =
319 pool_create(sizeof(struct vndxfer), 0, 0, 0, "swp vnx", 0,
320 NULL, NULL, 0);
321 if (vndxfer_pool == NULL)
322 panic("swapinit: pool_create failed");
323
324 vndbuf_pool =
325 pool_create(sizeof(struct vndbuf), 0, 0, 0, "swp vnd", 0,
326 NULL, NULL, 0);
327 if (vndbuf_pool == NULL)
328 panic("swapinit: pool_create failed");
329 /*
330 * done!
331 */
332 UVMHIST_LOG(pdhist, "<- done", 0, 0, 0, 0);
333 }
334
335 /*
336 * swaplist functions: functions that operate on the list of swap
337 * devices on the system.
338 */
339
340 /*
341 * swaplist_insert: insert swap device "sdp" into the global list
342 *
343 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
344 * => caller must provide a newly malloc'd swappri structure (we will
345 * FREE it if we don't need it... this it to prevent malloc blocking
346 * here while adding swap)
347 */
348 static void
349 swaplist_insert(sdp, newspp, priority)
350 struct swapdev *sdp;
351 struct swappri *newspp;
352 int priority;
353 {
354 struct swappri *spp, *pspp;
355 UVMHIST_FUNC("swaplist_insert"); UVMHIST_CALLED(pdhist);
356
357 /*
358 * find entry at or after which to insert the new device.
359 */
360 for (pspp = NULL, spp = swap_priority.lh_first; spp != NULL;
361 spp = spp->spi_swappri.le_next) {
362 if (priority <= spp->spi_priority)
363 break;
364 pspp = spp;
365 }
366
367 /*
368 * new priority?
369 */
370 if (spp == NULL || spp->spi_priority != priority) {
371 spp = newspp; /* use newspp! */
372 UVMHIST_LOG(pdhist, "created new swappri = %d", priority, 0, 0, 0);
373
374 spp->spi_priority = priority;
375 CIRCLEQ_INIT(&spp->spi_swapdev);
376
377 if (pspp)
378 LIST_INSERT_AFTER(pspp, spp, spi_swappri);
379 else
380 LIST_INSERT_HEAD(&swap_priority, spp, spi_swappri);
381 } else {
382 /* we don't need a new priority structure, free it */
383 FREE(newspp, M_VMSWAP);
384 }
385
386 /*
387 * priority found (or created). now insert on the priority's
388 * circleq list and bump the total number of swapdevs.
389 */
390 sdp->swd_priority = priority;
391 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
392 uvmexp.nswapdev++;
393
394 /*
395 * done!
396 */
397 }
398
399 /*
400 * swaplist_find: find and optionally remove a swap device from the
401 * global list.
402 *
403 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
404 * => we return the swapdev we found (and removed)
405 */
406 static struct swapdev *
407 swaplist_find(vp, remove)
408 struct vnode *vp;
409 boolean_t remove;
410 {
411 struct swapdev *sdp;
412 struct swappri *spp;
413
414 /*
415 * search the lists for the requested vp
416 */
417 for (spp = swap_priority.lh_first; spp != NULL;
418 spp = spp->spi_swappri.le_next) {
419 for (sdp = spp->spi_swapdev.cqh_first;
420 sdp != (void *)&spp->spi_swapdev;
421 sdp = sdp->swd_next.cqe_next)
422 if (sdp->swd_vp == vp) {
423 if (remove) {
424 CIRCLEQ_REMOVE(&spp->spi_swapdev,
425 sdp, swd_next);
426 uvmexp.nswapdev--;
427 }
428 return(sdp);
429 }
430 }
431 return (NULL);
432 }
433
434
435 /*
436 * swaplist_trim: scan priority list for empty priority entries and kill
437 * them.
438 *
439 * => caller must hold both swap_syscall_lock and uvm.swap_data_lock
440 */
441 static void
442 swaplist_trim()
443 {
444 struct swappri *spp, *nextspp;
445
446 for (spp = swap_priority.lh_first; spp != NULL; spp = nextspp) {
447 nextspp = spp->spi_swappri.le_next;
448 if (spp->spi_swapdev.cqh_first != (void *)&spp->spi_swapdev)
449 continue;
450 LIST_REMOVE(spp, spi_swappri);
451 free((caddr_t)spp, M_VMSWAP);
452 }
453 }
454
455 /*
456 * swapdrum_add: add a "swapdev"'s blocks into /dev/drum's area.
457 *
458 * => caller must hold swap_syscall_lock
459 * => uvm.swap_data_lock should be unlocked (we may sleep)
460 */
461 static void
462 swapdrum_add(sdp, npages)
463 struct swapdev *sdp;
464 int npages;
465 {
466 u_long result;
467
468 if (extent_alloc(swapmap, npages, EX_NOALIGN, EX_NOBOUNDARY,
469 EX_WAITOK, &result))
470 panic("swapdrum_add");
471
472 sdp->swd_drumoffset = result;
473 sdp->swd_drumsize = npages;
474 }
475
476 /*
477 * swapdrum_getsdp: given a page offset in /dev/drum, convert it back
478 * to the "swapdev" that maps that section of the drum.
479 *
480 * => each swapdev takes one big contig chunk of the drum
481 * => caller must hold uvm.swap_data_lock
482 */
483 static struct swapdev *
484 swapdrum_getsdp(pgno)
485 int pgno;
486 {
487 struct swapdev *sdp;
488 struct swappri *spp;
489
490 for (spp = swap_priority.lh_first; spp != NULL;
491 spp = spp->spi_swappri.le_next)
492 for (sdp = spp->spi_swapdev.cqh_first;
493 sdp != (void *)&spp->spi_swapdev;
494 sdp = sdp->swd_next.cqe_next)
495 if (pgno >= sdp->swd_drumoffset &&
496 pgno < (sdp->swd_drumoffset + sdp->swd_drumsize)) {
497 return sdp;
498 }
499 return NULL;
500 }
501
502
503 /*
504 * sys_swapctl: main entry point for swapctl(2) system call
505 * [with two helper functions: swap_on and swap_off]
506 */
507 int
508 sys_swapctl(p, v, retval)
509 struct proc *p;
510 void *v;
511 register_t *retval;
512 {
513 struct sys_swapctl_args /* {
514 syscallarg(int) cmd;
515 syscallarg(void *) arg;
516 syscallarg(int) misc;
517 } */ *uap = (struct sys_swapctl_args *)v;
518 struct vnode *vp;
519 struct nameidata nd;
520 struct swappri *spp;
521 struct swapdev *sdp;
522 struct swapent *sep;
523 char userpath[PATH_MAX + 1];
524 size_t len;
525 int count, error, misc;
526 int priority;
527 UVMHIST_FUNC("sys_swapctl"); UVMHIST_CALLED(pdhist);
528
529 misc = SCARG(uap, misc);
530
531 /*
532 * ensure serialized syscall access by grabbing the swap_syscall_lock
533 */
534 lockmgr(&swap_syscall_lock, LK_EXCLUSIVE, (void *)0);
535
536 /*
537 * we handle the non-priv NSWAP and STATS request first.
538 *
539 * SWAP_NSWAP: return number of config'd swap devices
540 * [can also be obtained with uvmexp sysctl]
541 */
542 if (SCARG(uap, cmd) == SWAP_NSWAP) {
543 UVMHIST_LOG(pdhist, "<- done SWAP_NSWAP=%d", uvmexp.nswapdev,
544 0, 0, 0);
545 *retval = uvmexp.nswapdev;
546 error = 0;
547 goto out;
548 }
549
550 /*
551 * SWAP_STATS: get stats on current # of configured swap devs
552 *
553 * note that the swap_priority list can't change as long
554 * as we are holding the swap_syscall_lock. we don't want
555 * to grab the uvm.swap_data_lock because we may fault&sleep during
556 * copyout() and we don't want to be holding that lock then!
557 */
558 if (SCARG(uap, cmd) == SWAP_STATS
559 #if defined(COMPAT_13)
560 || SCARG(uap, cmd) == SWAP_OSTATS
561 #endif
562 ) {
563 sep = (struct swapent *)SCARG(uap, arg);
564 count = 0;
565
566 for (spp = swap_priority.lh_first; spp != NULL;
567 spp = spp->spi_swappri.le_next) {
568 for (sdp = spp->spi_swapdev.cqh_first;
569 sdp != (void *)&spp->spi_swapdev && misc-- > 0;
570 sdp = sdp->swd_next.cqe_next) {
571 /*
572 * backwards compatibility for system call.
573 * note that we use 'struct oswapent' as an
574 * overlay into both 'struct swapdev' and
575 * the userland 'struct swapent', as we
576 * want to retain backwards compatibility
577 * with NetBSD 1.3.
578 */
579 sdp->swd_ose.ose_inuse =
580 btodb(sdp->swd_npginuse << PAGE_SHIFT);
581 error = copyout((caddr_t)&sdp->swd_ose,
582 (caddr_t)sep, sizeof(struct oswapent));
583
584 /* now copy out the path if necessary */
585 #if defined(COMPAT_13)
586 if (error == 0 && SCARG(uap, cmd) == SWAP_STATS)
587 #else
588 if (error == 0)
589 #endif
590 error = copyout((caddr_t)sdp->swd_path,
591 (caddr_t)&sep->se_path,
592 sdp->swd_pathlen);
593
594 if (error)
595 goto out;
596 count++;
597 #if defined(COMPAT_13)
598 if (SCARG(uap, cmd) == SWAP_OSTATS)
599 ((struct oswapent *)sep)++;
600 else
601 #endif
602 sep++;
603 }
604 }
605
606 UVMHIST_LOG(pdhist, "<- done SWAP_STATS", 0, 0, 0, 0);
607
608 *retval = count;
609 error = 0;
610 goto out;
611 }
612
613 /*
614 * all other requests require superuser privs. verify.
615 */
616 if ((error = suser(p->p_ucred, &p->p_acflag)))
617 goto out;
618
619 /*
620 * at this point we expect a path name in arg. we will
621 * use namei() to gain a vnode reference (vref), and lock
622 * the vnode (VOP_LOCK).
623 *
624 * XXX: a NULL arg means use the root vnode pointer (e.g. for
625 * miniroot)
626 */
627 if (SCARG(uap, arg) == NULL) {
628 vp = rootvp; /* miniroot */
629 if (vget(vp, LK_EXCLUSIVE)) {
630 error = EBUSY;
631 goto out;
632 }
633 if (SCARG(uap, cmd) == SWAP_ON &&
634 copystr("miniroot", userpath, sizeof userpath, &len))
635 panic("swapctl: miniroot copy failed");
636 } else {
637 int space;
638 char *where;
639
640 if (SCARG(uap, cmd) == SWAP_ON) {
641 if ((error = copyinstr(SCARG(uap, arg), userpath,
642 sizeof userpath, &len)))
643 goto out;
644 space = UIO_SYSSPACE;
645 where = userpath;
646 } else {
647 space = UIO_USERSPACE;
648 where = (char *)SCARG(uap, arg);
649 }
650 NDINIT(&nd, LOOKUP, FOLLOW|LOCKLEAF, space, where, p);
651 if ((error = namei(&nd)))
652 goto out;
653 vp = nd.ni_vp;
654 }
655 /* note: "vp" is referenced and locked */
656
657 error = 0; /* assume no error */
658 switch(SCARG(uap, cmd)) {
659 case SWAP_DUMPDEV:
660 if (vp->v_type != VBLK) {
661 error = ENOTBLK;
662 goto out;
663 }
664 dumpdev = vp->v_rdev;
665
666 break;
667
668 case SWAP_CTL:
669 /*
670 * get new priority, remove old entry (if any) and then
671 * reinsert it in the correct place. finally, prune out
672 * any empty priority structures.
673 */
674 priority = SCARG(uap, misc);
675 spp = (struct swappri *)
676 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
677 simple_lock(&uvm.swap_data_lock);
678 if ((sdp = swaplist_find(vp, 1)) == NULL) {
679 error = ENOENT;
680 } else {
681 swaplist_insert(sdp, spp, priority);
682 swaplist_trim();
683 }
684 simple_unlock(&uvm.swap_data_lock);
685 if (error)
686 free(spp, M_VMSWAP);
687 break;
688
689 case SWAP_ON:
690 /*
691 * check for duplicates. if none found, then insert a
692 * dummy entry on the list to prevent someone else from
693 * trying to enable this device while we are working on
694 * it.
695 */
696 priority = SCARG(uap, misc);
697 simple_lock(&uvm.swap_data_lock);
698 if ((sdp = swaplist_find(vp, 0)) != NULL) {
699 error = EBUSY;
700 simple_unlock(&uvm.swap_data_lock);
701 break;
702 }
703 sdp = (struct swapdev *)
704 malloc(sizeof *sdp, M_VMSWAP, M_WAITOK);
705 spp = (struct swappri *)
706 malloc(sizeof *spp, M_VMSWAP, M_WAITOK);
707 memset(sdp, 0, sizeof(*sdp));
708 sdp->swd_flags = SWF_FAKE; /* placeholder only */
709 sdp->swd_vp = vp;
710 sdp->swd_dev = (vp->v_type == VBLK) ? vp->v_rdev : NODEV;
711 #ifdef SWAP_TO_FILES
712 /*
713 * XXX Is NFS elaboration necessary?
714 */
715 if (vp->v_type == VREG)
716 sdp->swd_cred = crdup(p->p_ucred);
717 #endif
718 swaplist_insert(sdp, spp, priority);
719 simple_unlock(&uvm.swap_data_lock);
720
721 sdp->swd_pathlen = len;
722 sdp->swd_path = malloc(sdp->swd_pathlen, M_VMSWAP, M_WAITOK);
723 if (copystr(userpath, sdp->swd_path, sdp->swd_pathlen, 0) != 0)
724 panic("swapctl: copystr");
725 /*
726 * we've now got a FAKE placeholder in the swap list.
727 * now attempt to enable swap on it. if we fail, undo
728 * what we've done and kill the fake entry we just inserted.
729 * if swap_on is a success, it will clear the SWF_FAKE flag
730 */
731 if ((error = swap_on(p, sdp)) != 0) {
732 simple_lock(&uvm.swap_data_lock);
733 (void) swaplist_find(vp, 1); /* kill fake entry */
734 swaplist_trim();
735 simple_unlock(&uvm.swap_data_lock);
736 #ifdef SWAP_TO_FILES
737 if (vp->v_type == VREG)
738 crfree(sdp->swd_cred);
739 #endif
740 free(sdp->swd_path, M_VMSWAP);
741 free((caddr_t)sdp, M_VMSWAP);
742 break;
743 }
744
745 /*
746 * got it! now add a second reference to vp so that
747 * we keep a reference to the vnode after we return.
748 */
749 vref(vp);
750 break;
751
752 case SWAP_OFF:
753 UVMHIST_LOG(pdhist, "someone is using SWAP_OFF...??", 0,0,0,0);
754 #ifdef SWAP_OFF_WORKS
755 /*
756 * find the entry of interest and ensure it is enabled.
757 */
758 simple_lock(&uvm.swap_data_lock);
759 if ((sdp = swaplist_find(vp, 0)) == NULL) {
760 simple_unlock(&uvm.swap_data_lock);
761 error = ENXIO;
762 break;
763 }
764 /*
765 * If a device isn't in use or enabled, we
766 * can't stop swapping from it (again).
767 */
768 if ((sdp->swd_flags & (SWF_INUSE|SWF_ENABLE)) == 0) {
769 simple_unlock(&uvm.swap_data_lock);
770 error = EBUSY;
771 break;
772 }
773 /* XXXCDC: should we call with list locked or unlocked? */
774 if ((error = swap_off(p, sdp)) != 0)
775 break;
776 /* XXXCDC: might need relock here */
777
778 /*
779 * now we can kill the entry.
780 */
781 if ((sdp = swaplist_find(vp, 1)) == NULL) {
782 error = ENXIO;
783 break;
784 }
785 simple_unlock(&uvm.swap_data_lock);
786 free((caddr_t)sdp, M_VMSWAP);
787 #else
788 error = EINVAL;
789 #endif
790 break;
791
792 default:
793 UVMHIST_LOG(pdhist, "unhandled command: %#x",
794 SCARG(uap, cmd), 0, 0, 0);
795 error = EINVAL;
796 }
797
798 /*
799 * done! use vput to drop our reference and unlock
800 */
801 vput(vp);
802 out:
803 lockmgr(&swap_syscall_lock, LK_RELEASE, (void *)0);
804
805 UVMHIST_LOG(pdhist, "<- done! error=%d", error, 0, 0, 0);
806 return (error);
807 }
808
809 /*
810 * swap_on: attempt to enable a swapdev for swapping. note that the
811 * swapdev is already on the global list, but disabled (marked
812 * SWF_FAKE).
813 *
814 * => we avoid the start of the disk (to protect disk labels)
815 * => we also avoid the miniroot, if we are swapping to root.
816 * => caller should leave uvm.swap_data_lock unlocked, we may lock it
817 * if needed.
818 */
819 static int
820 swap_on(p, sdp)
821 struct proc *p;
822 struct swapdev *sdp;
823 {
824 static int count = 0; /* static */
825 struct vnode *vp;
826 int error, npages, nblocks, size;
827 long addr;
828 #ifdef SWAP_TO_FILES
829 struct vattr va;
830 #endif
831 #ifdef NFS
832 extern int (**nfsv2_vnodeop_p) __P((void *));
833 #endif /* NFS */
834 dev_t dev;
835 char *name;
836 UVMHIST_FUNC("swap_on"); UVMHIST_CALLED(pdhist);
837
838 /*
839 * we want to enable swapping on sdp. the swd_vp contains
840 * the vnode we want (locked and ref'd), and the swd_dev
841 * contains the dev_t of the file, if it a block device.
842 */
843
844 vp = sdp->swd_vp;
845 dev = sdp->swd_dev;
846
847 /*
848 * open the swap file (mostly useful for block device files to
849 * let device driver know what is up).
850 *
851 * we skip the open/close for root on swap because the root
852 * has already been opened when root was mounted (mountroot).
853 */
854 if (vp != rootvp) {
855 if ((error = VOP_OPEN(vp, FREAD|FWRITE, p->p_ucred, p)))
856 return (error);
857 }
858
859 /* XXX this only works for block devices */
860 UVMHIST_LOG(pdhist, " dev=%d, major(dev)=%d", dev, major(dev), 0,0);
861
862 /*
863 * we now need to determine the size of the swap area. for
864 * block specials we can call the d_psize function.
865 * for normal files, we must stat [get attrs].
866 *
867 * we put the result in nblks.
868 * for normal files, we also want the filesystem block size
869 * (which we get with statfs).
870 */
871 switch (vp->v_type) {
872 case VBLK:
873 if (bdevsw[major(dev)].d_psize == 0 ||
874 (nblocks = (*bdevsw[major(dev)].d_psize)(dev)) == -1) {
875 error = ENXIO;
876 goto bad;
877 }
878 break;
879
880 #ifdef SWAP_TO_FILES
881 case VREG:
882 if ((error = VOP_GETATTR(vp, &va, p->p_ucred, p)))
883 goto bad;
884 nblocks = (int)btodb(va.va_size);
885 if ((error =
886 VFS_STATFS(vp->v_mount, &vp->v_mount->mnt_stat, p)) != 0)
887 goto bad;
888
889 sdp->swd_bsize = vp->v_mount->mnt_stat.f_iosize;
890 /*
891 * limit the max # of outstanding I/O requests we issue
892 * at any one time. take it easy on NFS servers.
893 */
894 #ifdef NFS
895 if (vp->v_op == nfsv2_vnodeop_p)
896 sdp->swd_maxactive = 2; /* XXX */
897 else
898 #endif /* NFS */
899 sdp->swd_maxactive = 8; /* XXX */
900 break;
901 #endif
902
903 default:
904 error = ENXIO;
905 goto bad;
906 }
907
908 /*
909 * save nblocks in a safe place and convert to pages.
910 */
911
912 sdp->swd_ose.ose_nblks = nblocks;
913 npages = dbtob((u_int64_t)nblocks) >> PAGE_SHIFT;
914
915 /*
916 * for block special files, we want to make sure that leave
917 * the disklabel and bootblocks alone, so we arrange to skip
918 * over them (randomly choosing to skip PAGE_SIZE bytes).
919 * note that because of this the "size" can be less than the
920 * actual number of blocks on the device.
921 */
922 if (vp->v_type == VBLK) {
923 /* we use pages 1 to (size - 1) [inclusive] */
924 size = npages - 1;
925 addr = 1;
926 } else {
927 /* we use pages 0 to (size - 1) [inclusive] */
928 size = npages;
929 addr = 0;
930 }
931
932 /*
933 * make sure we have enough blocks for a reasonable sized swap
934 * area. we want at least one page.
935 */
936
937 if (size < 1) {
938 UVMHIST_LOG(pdhist, " size <= 1!!", 0, 0, 0, 0);
939 error = EINVAL;
940 goto bad;
941 }
942
943 UVMHIST_LOG(pdhist, " dev=%x: size=%d addr=%ld\n", dev, size, addr, 0);
944
945 /*
946 * now we need to allocate an extent to manage this swap device
947 */
948 name = malloc(12, M_VMSWAP, M_WAITOK);
949 sprintf(name, "swap0x%04x", count++);
950
951 /* note that extent_create's 3rd arg is inclusive, thus "- 1" */
952 sdp->swd_ex = extent_create(name, 0, npages - 1, M_VMSWAP,
953 0, 0, EX_WAITOK);
954 /* allocate the `saved' region from the extent so it won't be used */
955 if (addr) {
956 if (extent_alloc_region(sdp->swd_ex, 0, addr, EX_WAITOK))
957 panic("disklabel region");
958 sdp->swd_npginuse += addr;
959 simple_lock(&uvm.swap_data_lock);
960 uvmexp.swpginuse += addr;
961 uvmexp.swpgonly += addr;
962 simple_unlock(&uvm.swap_data_lock);
963 }
964
965 /*
966 * if the vnode we are swapping to is the root vnode
967 * (i.e. we are swapping to the miniroot) then we want
968 * to make sure we don't overwrite it. do a statfs to
969 * find its size and skip over it.
970 */
971 if (vp == rootvp) {
972 struct mount *mp;
973 struct statfs *sp;
974 int rootblocks, rootpages;
975
976 mp = rootvnode->v_mount;
977 sp = &mp->mnt_stat;
978 rootblocks = sp->f_blocks * btodb(sp->f_bsize);
979 rootpages = round_page(dbtob(rootblocks)) >> PAGE_SHIFT;
980 if (rootpages > npages)
981 panic("swap_on: miniroot larger than swap?");
982
983 if (extent_alloc_region(sdp->swd_ex, addr,
984 rootpages, EX_WAITOK))
985 panic("swap_on: unable to preserve miniroot");
986
987 simple_lock(&uvm.swap_data_lock);
988 sdp->swd_npginuse += (rootpages - addr);
989 uvmexp.swpginuse += (rootpages - addr);
990 uvmexp.swpgonly += (rootpages - addr);
991 simple_unlock(&uvm.swap_data_lock);
992
993 printf("Preserved %d pages of miniroot ", rootpages);
994 printf("leaving %d pages of swap\n", size - rootpages);
995 }
996
997 /*
998 * now add the new swapdev to the drum and enable.
999 */
1000 simple_lock(&uvm.swap_data_lock);
1001 swapdrum_add(sdp, npages);
1002 sdp->swd_npages = npages;
1003 sdp->swd_flags &= ~SWF_FAKE; /* going live */
1004 sdp->swd_flags |= (SWF_INUSE|SWF_ENABLE);
1005 simple_unlock(&uvm.swap_data_lock);
1006 uvmexp.swpages += npages;
1007
1008 /*
1009 * add anon's to reflect the swap space we added
1010 */
1011 uvm_anon_add(size);
1012
1013 #if 0
1014 /*
1015 * At this point we could arrange to reserve memory for the
1016 * swap buffer pools.
1017 *
1018 * I don't think this is necessary, since swapping starts well
1019 * ahead of serious memory deprivation and the memory resource
1020 * pools hold on to actively used memory. This should ensure
1021 * we always have some resources to continue operation.
1022 */
1023
1024 int s = splbio();
1025 int n = 8 * sdp->swd_maxactive;
1026
1027 (void)pool_prime(swapbuf_pool, n, 0);
1028
1029 if (vp->v_type == VREG) {
1030 /* Allocate additional vnx and vnd buffers */
1031 /*
1032 * Allocation Policy:
1033 * (8 * swd_maxactive) vnx headers per swap dev
1034 * (16 * swd_maxactive) vnd buffers per swap dev
1035 */
1036
1037 n = 8 * sdp->swd_maxactive;
1038 (void)pool_prime(vndxfer_pool, n, 0);
1039
1040 n = 16 * sdp->swd_maxactive;
1041 (void)pool_prime(vndbuf_pool, n, 0);
1042 }
1043 splx(s);
1044 #endif
1045
1046 return (0);
1047
1048 bad:
1049 /*
1050 * failure: close device if necessary and return error.
1051 */
1052 if (vp != rootvp)
1053 (void)VOP_CLOSE(vp, FREAD|FWRITE, p->p_ucred, p);
1054 return (error);
1055 }
1056
1057 #ifdef SWAP_OFF_WORKS
1058 /*
1059 * swap_off: stop swapping on swapdev
1060 *
1061 * XXXCDC: what conditions go here?
1062 */
1063 static int
1064 swap_off(p, sdp)
1065 struct proc *p;
1066 struct swapdev *sdp;
1067 {
1068 char *name;
1069 UVMHIST_FUNC("swap_off"); UVMHIST_CALLED(pdhist);
1070
1071 /* turn off the enable flag */
1072 sdp->swd_flags &= ~SWF_ENABLE;
1073
1074 UVMHIST_LOG(pdhist, " dev=%x", sdp->swd_dev);
1075
1076 /*
1077 * XXX write me
1078 *
1079 * the idea is to find out which processes are using this swap
1080 * device, and page them all in.
1081 *
1082 * eventually, we should try to move them out to other swap areas
1083 * if available.
1084 *
1085 * The alternative is to create a redirection map for this swap
1086 * device. This should work by moving all the pages of data from
1087 * the ex-swap device to another one, and making an entry in the
1088 * redirection map for it. locking is going to be important for
1089 * this!
1090 *
1091 * XXXCDC: also need to shrink anon pool
1092 */
1093
1094 /* until the above code is written, we must ENODEV */
1095 return ENODEV;
1096
1097 extent_free(swapmap, sdp->swd_mapoffset, sdp->swd_mapsize, EX_WAITOK);
1098 name = sdp->swd_ex->ex_name;
1099 extent_destroy(sdp->swd_ex);
1100 free(name, M_VMSWAP);
1101 free((caddr_t)sdp->swd_ex, M_VMSWAP);
1102 if (sdp->swp_vp != rootvp)
1103 (void) VOP_CLOSE(sdp->swd_vp, FREAD|FWRITE, p->p_ucred, p);
1104 if (sdp->swd_vp)
1105 vrele(sdp->swd_vp);
1106 free((caddr_t)sdp, M_VMSWAP);
1107 return (0);
1108 }
1109 #endif
1110
1111 /*
1112 * /dev/drum interface and i/o functions
1113 */
1114
1115 /*
1116 * swread: the read function for the drum (just a call to physio)
1117 */
1118 /*ARGSUSED*/
1119 int
1120 swread(dev, uio, ioflag)
1121 dev_t dev;
1122 struct uio *uio;
1123 int ioflag;
1124 {
1125 UVMHIST_FUNC("swread"); UVMHIST_CALLED(pdhist);
1126
1127 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1128 return (physio(swstrategy, NULL, dev, B_READ, minphys, uio));
1129 }
1130
1131 /*
1132 * swwrite: the write function for the drum (just a call to physio)
1133 */
1134 /*ARGSUSED*/
1135 int
1136 swwrite(dev, uio, ioflag)
1137 dev_t dev;
1138 struct uio *uio;
1139 int ioflag;
1140 {
1141 UVMHIST_FUNC("swwrite"); UVMHIST_CALLED(pdhist);
1142
1143 UVMHIST_LOG(pdhist, " dev=%x offset=%qx", dev, uio->uio_offset, 0, 0);
1144 return (physio(swstrategy, NULL, dev, B_WRITE, minphys, uio));
1145 }
1146
1147 /*
1148 * swstrategy: perform I/O on the drum
1149 *
1150 * => we must map the i/o request from the drum to the correct swapdev.
1151 */
1152 void
1153 swstrategy(bp)
1154 struct buf *bp;
1155 {
1156 struct swapdev *sdp;
1157 struct vnode *vp;
1158 int s, pageno, bn;
1159 UVMHIST_FUNC("swstrategy"); UVMHIST_CALLED(pdhist);
1160
1161 /*
1162 * convert block number to swapdev. note that swapdev can't
1163 * be yanked out from under us because we are holding resources
1164 * in it (i.e. the blocks we are doing I/O on).
1165 */
1166 pageno = dbtob(bp->b_blkno) >> PAGE_SHIFT;
1167 simple_lock(&uvm.swap_data_lock);
1168 sdp = swapdrum_getsdp(pageno);
1169 simple_unlock(&uvm.swap_data_lock);
1170 if (sdp == NULL) {
1171 bp->b_error = EINVAL;
1172 bp->b_flags |= B_ERROR;
1173 biodone(bp);
1174 UVMHIST_LOG(pdhist, " failed to get swap device", 0, 0, 0, 0);
1175 return;
1176 }
1177
1178 /*
1179 * convert drum page number to block number on this swapdev.
1180 */
1181
1182 pageno = pageno - sdp->swd_drumoffset; /* page # on swapdev */
1183 bn = btodb(pageno << PAGE_SHIFT); /* convert to diskblock */
1184
1185 UVMHIST_LOG(pdhist, " %s: mapoff=%x bn=%x bcount=%ld\n",
1186 ((bp->b_flags & B_READ) == 0) ? "write" : "read",
1187 sdp->swd_drumoffset, bn, bp->b_bcount);
1188
1189
1190 /*
1191 * for block devices we finish up here.
1192 * for regular files we have to do more work which we deligate
1193 * to sw_reg_strategy().
1194 */
1195
1196 switch (sdp->swd_vp->v_type) {
1197 default:
1198 panic("swstrategy: vnode type 0x%x", sdp->swd_vp->v_type);
1199 case VBLK:
1200
1201 /*
1202 * must convert "bp" from an I/O on /dev/drum to an I/O
1203 * on the swapdev (sdp).
1204 */
1205 s = splbio();
1206 bp->b_blkno = bn; /* swapdev block number */
1207 vp = sdp->swd_vp; /* swapdev vnode pointer */
1208 bp->b_dev = sdp->swd_dev; /* swapdev dev_t */
1209 VHOLD(vp); /* "hold" swapdev vp for i/o */
1210
1211 /*
1212 * if we are doing a write, we have to redirect the i/o on
1213 * drum's v_numoutput counter to the swapdevs.
1214 */
1215 if ((bp->b_flags & B_READ) == 0) {
1216 vwakeup(bp); /* kills one 'v_numoutput' on drum */
1217 vp->v_numoutput++; /* put it on swapdev */
1218 }
1219
1220 /*
1221 * dissassocate buffer with /dev/drum vnode
1222 * [could be null if buf was from physio]
1223 */
1224 if (bp->b_vp != NULLVP)
1225 brelvp(bp);
1226
1227 /*
1228 * finally plug in swapdev vnode and start I/O
1229 */
1230 bp->b_vp = vp;
1231 splx(s);
1232 VOP_STRATEGY(bp);
1233 return;
1234 #ifdef SWAP_TO_FILES
1235 case VREG:
1236 /*
1237 * deligate to sw_reg_strategy function.
1238 */
1239 sw_reg_strategy(sdp, bp, bn);
1240 return;
1241 #endif
1242 }
1243 /* NOTREACHED */
1244 }
1245
1246 #ifdef SWAP_TO_FILES
1247 /*
1248 * sw_reg_strategy: handle swap i/o to regular files
1249 */
1250 static void
1251 sw_reg_strategy(sdp, bp, bn)
1252 struct swapdev *sdp;
1253 struct buf *bp;
1254 int bn;
1255 {
1256 struct vnode *vp;
1257 struct vndxfer *vnx;
1258 daddr_t nbn, byteoff;
1259 caddr_t addr;
1260 int s, off, nra, error, sz, resid;
1261 UVMHIST_FUNC("sw_reg_strategy"); UVMHIST_CALLED(pdhist);
1262
1263 /*
1264 * allocate a vndxfer head for this transfer and point it to
1265 * our buffer.
1266 */
1267 getvndxfer(vnx);
1268 vnx->vx_flags = VX_BUSY;
1269 vnx->vx_error = 0;
1270 vnx->vx_pending = 0;
1271 vnx->vx_bp = bp;
1272 vnx->vx_sdp = sdp;
1273
1274 /*
1275 * setup for main loop where we read filesystem blocks into
1276 * our buffer.
1277 */
1278 error = 0;
1279 bp->b_resid = bp->b_bcount; /* nothing transfered yet! */
1280 addr = bp->b_data; /* current position in buffer */
1281 byteoff = dbtob(bn);
1282
1283 for (resid = bp->b_resid; resid; resid -= sz) {
1284 struct vndbuf *nbp;
1285
1286 /*
1287 * translate byteoffset into block number. return values:
1288 * vp = vnode of underlying device
1289 * nbn = new block number (on underlying vnode dev)
1290 * nra = num blocks we can read-ahead (excludes requested
1291 * block)
1292 */
1293 nra = 0;
1294 error = VOP_BMAP(sdp->swd_vp, byteoff / sdp->swd_bsize,
1295 &vp, &nbn, &nra);
1296
1297 if (error == 0 && (long)nbn == -1) {
1298 /*
1299 * this used to just set error, but that doesn't
1300 * do the right thing. Instead, it causes random
1301 * memory errors. The panic() should remain until
1302 * this condition doesn't destabilize the system.
1303 */
1304 #if 1
1305 panic("sw_reg_strategy: swap to sparse file");
1306 #else
1307 error = EIO; /* failure */
1308 #endif
1309 }
1310
1311 /*
1312 * punt if there was an error or a hole in the file.
1313 * we must wait for any i/o ops we have already started
1314 * to finish before returning.
1315 *
1316 * XXX we could deal with holes here but it would be
1317 * a hassle (in the write case).
1318 */
1319 if (error) {
1320 s = splbio();
1321 vnx->vx_error = error; /* pass error up */
1322 goto out;
1323 }
1324
1325 /*
1326 * compute the size ("sz") of this transfer (in bytes).
1327 * XXXCDC: ignores read-ahead for non-zero offset
1328 */
1329 if ((off = (byteoff % sdp->swd_bsize)) != 0)
1330 sz = sdp->swd_bsize - off;
1331 else
1332 sz = (1 + nra) * sdp->swd_bsize;
1333
1334 if (resid < sz)
1335 sz = resid;
1336
1337 UVMHIST_LOG(pdhist, "sw_reg_strategy: vp %p/%p offset 0x%x/0x%x",
1338 sdp->swd_vp, vp, byteoff, nbn);
1339
1340 /*
1341 * now get a buf structure. note that the vb_buf is
1342 * at the front of the nbp structure so that you can
1343 * cast pointers between the two structure easily.
1344 */
1345 getvndbuf(nbp);
1346 nbp->vb_buf.b_flags = bp->b_flags | B_CALL;
1347 nbp->vb_buf.b_bcount = sz;
1348 #if 0
1349 nbp->vb_buf.b_bufsize = bp->b_bufsize; /* XXXCDC: really? */
1350 #endif
1351 nbp->vb_buf.b_bufsize = sz;
1352 nbp->vb_buf.b_error = 0;
1353 nbp->vb_buf.b_data = addr;
1354 nbp->vb_buf.b_blkno = nbn + btodb(off);
1355 nbp->vb_buf.b_proc = bp->b_proc;
1356 nbp->vb_buf.b_iodone = sw_reg_iodone;
1357 nbp->vb_buf.b_vp = NULLVP;
1358 nbp->vb_buf.b_vnbufs.le_next = NOLIST;
1359 nbp->vb_buf.b_rcred = sdp->swd_cred;
1360 nbp->vb_buf.b_wcred = sdp->swd_cred;
1361
1362 /*
1363 * set b_dirtyoff/end and b_validoff/end. this is
1364 * required by the NFS client code (otherwise it will
1365 * just discard our I/O request).
1366 */
1367 if (bp->b_dirtyend == 0) {
1368 nbp->vb_buf.b_dirtyoff = 0;
1369 nbp->vb_buf.b_dirtyend = sz;
1370 } else {
1371 nbp->vb_buf.b_dirtyoff =
1372 max(0, bp->b_dirtyoff - (bp->b_bcount-resid));
1373 nbp->vb_buf.b_dirtyend =
1374 min(sz,
1375 max(0, bp->b_dirtyend - (bp->b_bcount-resid)));
1376 }
1377 if (bp->b_validend == 0) {
1378 nbp->vb_buf.b_validoff = 0;
1379 nbp->vb_buf.b_validend = sz;
1380 } else {
1381 nbp->vb_buf.b_validoff =
1382 max(0, bp->b_validoff - (bp->b_bcount-resid));
1383 nbp->vb_buf.b_validend =
1384 min(sz,
1385 max(0, bp->b_validend - (bp->b_bcount-resid)));
1386 }
1387
1388 nbp->vb_xfer = vnx; /* patch it back in to vnx */
1389
1390 /*
1391 * Just sort by block number
1392 */
1393 nbp->vb_buf.b_cylinder = nbp->vb_buf.b_blkno;
1394 s = splbio();
1395 if (vnx->vx_error != 0) {
1396 putvndbuf(nbp);
1397 goto out;
1398 }
1399 vnx->vx_pending++;
1400
1401 /* assoc new buffer with underlying vnode */
1402 bgetvp(vp, &nbp->vb_buf);
1403
1404 /* sort it in and start I/O if we are not over our limit */
1405 disksort(&sdp->swd_tab, &nbp->vb_buf);
1406 sw_reg_start(sdp);
1407 splx(s);
1408
1409 /*
1410 * advance to the next I/O
1411 */
1412 byteoff += sz;
1413 addr += sz;
1414 }
1415
1416 s = splbio();
1417
1418 out: /* Arrive here at splbio */
1419 vnx->vx_flags &= ~VX_BUSY;
1420 if (vnx->vx_pending == 0) {
1421 if (vnx->vx_error != 0) {
1422 bp->b_error = vnx->vx_error;
1423 bp->b_flags |= B_ERROR;
1424 }
1425 putvndxfer(vnx);
1426 biodone(bp);
1427 }
1428 splx(s);
1429 }
1430
1431 /*
1432 * sw_reg_start: start an I/O request on the requested swapdev
1433 *
1434 * => reqs are sorted by disksort (above)
1435 */
1436 static void
1437 sw_reg_start(sdp)
1438 struct swapdev *sdp;
1439 {
1440 struct buf *bp;
1441 UVMHIST_FUNC("sw_reg_start"); UVMHIST_CALLED(pdhist);
1442
1443 /* recursion control */
1444 if ((sdp->swd_flags & SWF_BUSY) != 0)
1445 return;
1446
1447 sdp->swd_flags |= SWF_BUSY;
1448
1449 while (sdp->swd_tab.b_active < sdp->swd_maxactive) {
1450 bp = sdp->swd_tab.b_actf;
1451 if (bp == NULL)
1452 break;
1453 sdp->swd_tab.b_actf = bp->b_actf;
1454 sdp->swd_tab.b_active++;
1455
1456 UVMHIST_LOG(pdhist,
1457 "sw_reg_start: bp %p vp %p blkno %p cnt %lx",
1458 bp, bp->b_vp, bp->b_blkno, bp->b_bcount);
1459 if ((bp->b_flags & B_READ) == 0)
1460 bp->b_vp->v_numoutput++;
1461 VOP_STRATEGY(bp);
1462 }
1463 sdp->swd_flags &= ~SWF_BUSY;
1464 }
1465
1466 /*
1467 * sw_reg_iodone: one of our i/o's has completed and needs post-i/o cleanup
1468 *
1469 * => note that we can recover the vndbuf struct by casting the buf ptr
1470 */
1471 static void
1472 sw_reg_iodone(bp)
1473 struct buf *bp;
1474 {
1475 struct vndbuf *vbp = (struct vndbuf *) bp;
1476 struct vndxfer *vnx = vbp->vb_xfer;
1477 struct buf *pbp = vnx->vx_bp; /* parent buffer */
1478 struct swapdev *sdp = vnx->vx_sdp;
1479 int s, resid;
1480 UVMHIST_FUNC("sw_reg_iodone"); UVMHIST_CALLED(pdhist);
1481
1482 UVMHIST_LOG(pdhist, " vbp=%p vp=%p blkno=%x addr=%p",
1483 vbp, vbp->vb_buf.b_vp, vbp->vb_buf.b_blkno, vbp->vb_buf.b_data);
1484 UVMHIST_LOG(pdhist, " cnt=%lx resid=%lx",
1485 vbp->vb_buf.b_bcount, vbp->vb_buf.b_resid, 0, 0);
1486
1487 /*
1488 * protect vbp at splbio and update.
1489 */
1490
1491 s = splbio();
1492 resid = vbp->vb_buf.b_bcount - vbp->vb_buf.b_resid;
1493 pbp->b_resid -= resid;
1494 vnx->vx_pending--;
1495
1496 if (vbp->vb_buf.b_error) {
1497 UVMHIST_LOG(pdhist, " got error=%d !",
1498 vbp->vb_buf.b_error, 0, 0, 0);
1499
1500 /* pass error upward */
1501 vnx->vx_error = vbp->vb_buf.b_error;
1502 }
1503
1504 /*
1505 * drop "hold" reference to vnode (if one)
1506 * XXXCDC: always set to NULLVP, this is useless, right?
1507 */
1508 if (vbp->vb_buf.b_vp != NULLVP)
1509 brelvp(&vbp->vb_buf);
1510
1511 /*
1512 * kill vbp structure
1513 */
1514 putvndbuf(vbp);
1515
1516 /*
1517 * wrap up this transaction if it has run to completion or, in
1518 * case of an error, when all auxiliary buffers have returned.
1519 */
1520 if (vnx->vx_error != 0) {
1521 /* pass error upward */
1522 pbp->b_flags |= B_ERROR;
1523 pbp->b_error = vnx->vx_error;
1524 if ((vnx->vx_flags & VX_BUSY) == 0 && vnx->vx_pending == 0) {
1525 putvndxfer(vnx);
1526 biodone(pbp);
1527 }
1528 } else if (pbp->b_resid == 0) {
1529 #ifdef DIAGNOSTIC
1530 if (vnx->vx_pending != 0)
1531 panic("sw_reg_iodone: vnx pending: %d",vnx->vx_pending);
1532 #endif
1533
1534 if ((vnx->vx_flags & VX_BUSY) == 0) {
1535 UVMHIST_LOG(pdhist, " iodone error=%d !",
1536 pbp, vnx->vx_error, 0, 0);
1537 putvndxfer(vnx);
1538 biodone(pbp);
1539 }
1540 }
1541
1542 /*
1543 * done! start next swapdev I/O if one is pending
1544 */
1545 sdp->swd_tab.b_active--;
1546 sw_reg_start(sdp);
1547
1548 splx(s);
1549 }
1550 #endif /* SWAP_TO_FILES */
1551
1552
1553 /*
1554 * uvm_swap_alloc: allocate space on swap
1555 *
1556 * => allocation is done "round robin" down the priority list, as we
1557 * allocate in a priority we "rotate" the circle queue.
1558 * => space can be freed with uvm_swap_free
1559 * => we return the page slot number in /dev/drum (0 == invalid slot)
1560 * => we lock uvm.swap_data_lock
1561 * => XXXMRG: "LESSOK" INTERFACE NEEDED TO EXTENT SYSTEM
1562 */
1563 int
1564 uvm_swap_alloc(nslots, lessok)
1565 int *nslots; /* IN/OUT */
1566 boolean_t lessok;
1567 {
1568 struct swapdev *sdp;
1569 struct swappri *spp;
1570 u_long result;
1571 UVMHIST_FUNC("uvm_swap_alloc"); UVMHIST_CALLED(pdhist);
1572
1573 /*
1574 * no swap devices configured yet? definite failure.
1575 */
1576 if (uvmexp.nswapdev < 1)
1577 return 0;
1578
1579 /*
1580 * lock data lock, convert slots into blocks, and enter loop
1581 */
1582 simple_lock(&uvm.swap_data_lock);
1583
1584 ReTry: /* XXXMRG */
1585 for (spp = swap_priority.lh_first; spp != NULL;
1586 spp = spp->spi_swappri.le_next) {
1587 for (sdp = spp->spi_swapdev.cqh_first;
1588 sdp != (void *)&spp->spi_swapdev;
1589 sdp = sdp->swd_next.cqe_next) {
1590 /* if it's not enabled, then we can't swap from it */
1591 if ((sdp->swd_flags & SWF_ENABLE) == 0)
1592 continue;
1593 if (sdp->swd_npginuse + *nslots > sdp->swd_npages)
1594 continue;
1595 if (extent_alloc(sdp->swd_ex, *nslots, EX_NOALIGN,
1596 EX_NOBOUNDARY, EX_MALLOCOK|EX_NOWAIT,
1597 &result) != 0) {
1598 continue;
1599 }
1600
1601 /*
1602 * successful allocation! now rotate the circleq.
1603 */
1604 CIRCLEQ_REMOVE(&spp->spi_swapdev, sdp, swd_next);
1605 CIRCLEQ_INSERT_TAIL(&spp->spi_swapdev, sdp, swd_next);
1606 sdp->swd_npginuse += *nslots;
1607 uvmexp.swpginuse += *nslots;
1608 simple_unlock(&uvm.swap_data_lock);
1609 /* done! return drum slot number */
1610 UVMHIST_LOG(pdhist,
1611 "success! returning %d slots starting at %d",
1612 *nslots, result + sdp->swd_drumoffset, 0, 0);
1613 #if 0
1614 {
1615 struct swapdev *sdp2;
1616
1617 sdp2 = swapdrum_getsdp(result + sdp->swd_drumoffset);
1618 if (sdp2 == NULL) {
1619 printf("uvm_swap_alloc: nslots=%d, dev=%x, drumoff=%d, result=%ld",
1620 *nslots, sdp->swd_dev, sdp->swd_drumoffset, result);
1621 panic("uvm_swap_alloc: allocating unmapped swap block!");
1622 }
1623 }
1624 #endif
1625 return(result + sdp->swd_drumoffset);
1626 }
1627 }
1628
1629 /* XXXMRG: BEGIN HACK */
1630 if (*nslots > 1 && lessok) {
1631 *nslots = 1;
1632 goto ReTry; /* XXXMRG: ugh! extent should support this for us */
1633 }
1634 /* XXXMRG: END HACK */
1635
1636 simple_unlock(&uvm.swap_data_lock);
1637 return 0; /* failed */
1638 }
1639
1640 /*
1641 * uvm_swap_free: free swap slots
1642 *
1643 * => this can be all or part of an allocation made by uvm_swap_alloc
1644 * => we lock uvm.swap_data_lock
1645 */
1646 void
1647 uvm_swap_free(startslot, nslots)
1648 int startslot;
1649 int nslots;
1650 {
1651 struct swapdev *sdp;
1652 UVMHIST_FUNC("uvm_swap_free"); UVMHIST_CALLED(pdhist);
1653
1654 UVMHIST_LOG(pdhist, "freeing %d slots starting at %d", nslots,
1655 startslot, 0, 0);
1656 /*
1657 * convert drum slot offset back to sdp, free the blocks
1658 * in the extent, and return. must hold pri lock to do
1659 * lookup and access the extent.
1660 */
1661 simple_lock(&uvm.swap_data_lock);
1662 sdp = swapdrum_getsdp(startslot);
1663
1664 #ifdef DIAGNOSTIC
1665 if (uvmexp.nswapdev < 1)
1666 panic("uvm_swap_free: uvmexp.nswapdev < 1\n");
1667 if (sdp == NULL) {
1668 printf("uvm_swap_free: startslot %d, nslots %d\n", startslot,
1669 nslots);
1670 panic("uvm_swap_free: unmapped address\n");
1671 }
1672 #endif
1673 if (extent_free(sdp->swd_ex, startslot - sdp->swd_drumoffset, nslots,
1674 EX_MALLOCOK|EX_NOWAIT) != 0)
1675 printf("warning: resource shortage: %d slots of swap lost\n",
1676 nslots);
1677
1678 sdp->swd_npginuse -= nslots;
1679 uvmexp.swpginuse -= nslots;
1680 #ifdef DIAGNOSTIC
1681 if (sdp->swd_npginuse < 0)
1682 panic("uvm_swap_free: inuse < 0");
1683 #endif
1684 simple_unlock(&uvm.swap_data_lock);
1685 }
1686
1687 /*
1688 * uvm_swap_put: put any number of pages into a contig place on swap
1689 *
1690 * => can be sync or async
1691 * => XXXMRG: consider making it an inline or macro
1692 */
1693 int
1694 uvm_swap_put(swslot, ppsp, npages, flags)
1695 int swslot;
1696 struct vm_page **ppsp;
1697 int npages;
1698 int flags;
1699 {
1700 int result;
1701
1702 #if 0
1703 flags |= PGO_SYNCIO; /* XXXMRG: tmp, force sync */
1704 #endif
1705
1706 result = uvm_swap_io(ppsp, swslot, npages, B_WRITE |
1707 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1708
1709 return (result);
1710 }
1711
1712 /*
1713 * uvm_swap_get: get a single page from swap
1714 *
1715 * => usually a sync op (from fault)
1716 * => XXXMRG: consider making it an inline or macro
1717 */
1718 int
1719 uvm_swap_get(page, swslot, flags)
1720 struct vm_page *page;
1721 int swslot, flags;
1722 {
1723 int result;
1724
1725 uvmexp.nswget++;
1726 #ifdef DIAGNOSTIC
1727 if ((flags & PGO_SYNCIO) == 0)
1728 printf("uvm_swap_get: ASYNC get requested?\n");
1729 #endif
1730
1731 /*
1732 * this page is (about to be) no longer only in swap.
1733 */
1734 simple_lock(&uvm.swap_data_lock);
1735 uvmexp.swpgonly--;
1736 simple_unlock(&uvm.swap_data_lock);
1737
1738 result = uvm_swap_io(&page, swslot, 1, B_READ |
1739 ((flags & PGO_SYNCIO) ? 0 : B_ASYNC));
1740
1741 if (result != VM_PAGER_OK && result != VM_PAGER_PEND) {
1742 /*
1743 * oops, the read failed so it really is still only in swap.
1744 */
1745 simple_lock(&uvm.swap_data_lock);
1746 uvmexp.swpgonly++;
1747 simple_unlock(&uvm.swap_data_lock);
1748 }
1749
1750 return (result);
1751 }
1752
1753 /*
1754 * uvm_swap_io: do an i/o operation to swap
1755 */
1756
1757 static int
1758 uvm_swap_io(pps, startslot, npages, flags)
1759 struct vm_page **pps;
1760 int startslot, npages, flags;
1761 {
1762 daddr_t startblk;
1763 struct swapbuf *sbp;
1764 struct buf *bp;
1765 vaddr_t kva;
1766 int result, s, waitf, pflag;
1767 UVMHIST_FUNC("uvm_swap_io"); UVMHIST_CALLED(pdhist);
1768
1769 UVMHIST_LOG(pdhist, "<- called, startslot=%d, npages=%d, flags=%d",
1770 startslot, npages, flags, 0);
1771 /*
1772 * convert starting drum slot to block number
1773 */
1774 startblk = btodb(startslot << PAGE_SHIFT);
1775
1776 /*
1777 * first, map the pages into the kernel (XXX: currently required
1778 * by buffer system). note that we don't let pagermapin alloc
1779 * an aiodesc structure because we don't want to chance a malloc.
1780 * we've got our own pool of aiodesc structures (in swapbuf).
1781 */
1782 waitf = (flags & B_ASYNC) ? M_NOWAIT : M_WAITOK;
1783 kva = uvm_pagermapin(pps, npages, NULL, waitf);
1784 if (kva == NULL)
1785 return (VM_PAGER_AGAIN);
1786
1787 /*
1788 * now allocate a swap buffer off of freesbufs
1789 * [make sure we don't put the pagedaemon to sleep...]
1790 */
1791 s = splbio();
1792 pflag = ((flags & B_ASYNC) != 0 || curproc == uvm.pagedaemon_proc)
1793 ? 0
1794 : PR_WAITOK;
1795 sbp = pool_get(swapbuf_pool, pflag);
1796 splx(s); /* drop splbio */
1797
1798 /*
1799 * if we failed to get a swapbuf, return "try again"
1800 */
1801 if (sbp == NULL)
1802 return (VM_PAGER_AGAIN);
1803
1804 /*
1805 * fill in the bp/sbp. we currently route our i/o through
1806 * /dev/drum's vnode [swapdev_vp].
1807 */
1808 bp = &sbp->sw_buf;
1809 bp->b_flags = B_BUSY | B_NOCACHE | (flags & (B_READ|B_ASYNC));
1810 bp->b_proc = &proc0; /* XXX */
1811 bp->b_rcred = bp->b_wcred = proc0.p_ucred;
1812 bp->b_vnbufs.le_next = NOLIST;
1813 bp->b_data = (caddr_t)kva;
1814 bp->b_blkno = startblk;
1815 s = splbio();
1816 VHOLD(swapdev_vp);
1817 bp->b_vp = swapdev_vp;
1818 splx(s);
1819 /* XXXCDC: isn't swapdev_vp always a VCHR? */
1820 /* XXXMRG: probably -- this is obviously something inherited... */
1821 if (swapdev_vp->v_type == VBLK)
1822 bp->b_dev = swapdev_vp->v_rdev;
1823 bp->b_bcount = npages << PAGE_SHIFT;
1824
1825 /*
1826 * for pageouts we must set "dirtyoff" [NFS client code needs it].
1827 * and we bump v_numoutput (counter of number of active outputs).
1828 */
1829 if ((bp->b_flags & B_READ) == 0) {
1830 bp->b_dirtyoff = 0;
1831 bp->b_dirtyend = npages << PAGE_SHIFT;
1832 s = splbio();
1833 swapdev_vp->v_numoutput++;
1834 splx(s);
1835 }
1836
1837 /*
1838 * for async ops we must set up the aiodesc and setup the callback
1839 * XXX: we expect no async-reads, but we don't prevent it here.
1840 */
1841 if (flags & B_ASYNC) {
1842 sbp->sw_aio.aiodone = uvm_swap_aiodone;
1843 sbp->sw_aio.kva = kva;
1844 sbp->sw_aio.npages = npages;
1845 sbp->sw_aio.pd_ptr = sbp; /* backpointer */
1846 bp->b_flags |= B_CALL; /* set callback */
1847 bp->b_iodone = uvm_swap_bufdone;/* "buf" iodone function */
1848 UVMHIST_LOG(pdhist, "doing async!", 0, 0, 0, 0);
1849 }
1850 UVMHIST_LOG(pdhist,
1851 "about to start io: data = 0x%p blkno = 0x%x, bcount = %ld",
1852 bp->b_data, bp->b_blkno, bp->b_bcount, 0);
1853
1854 /*
1855 * now we start the I/O, and if async, return.
1856 */
1857 VOP_STRATEGY(bp);
1858 if (flags & B_ASYNC)
1859 return (VM_PAGER_PEND);
1860
1861 /*
1862 * must be sync i/o. wait for it to finish
1863 */
1864 bp->b_error = biowait(bp);
1865 result = (bp->b_flags & B_ERROR) ? VM_PAGER_ERROR : VM_PAGER_OK;
1866
1867 /*
1868 * kill the pager mapping
1869 */
1870 uvm_pagermapout(kva, npages);
1871
1872 /*
1873 * now dispose of the swap buffer
1874 */
1875 s = splbio();
1876 if (bp->b_vp)
1877 brelvp(bp);
1878
1879 pool_put(swapbuf_pool, sbp);
1880 splx(s);
1881
1882 /*
1883 * finally return.
1884 */
1885 UVMHIST_LOG(pdhist, "<- done (sync) result=%d", result, 0, 0, 0);
1886 return (result);
1887 }
1888
1889 /*
1890 * uvm_swap_bufdone: called from the buffer system when the i/o is done
1891 */
1892 static void
1893 uvm_swap_bufdone(bp)
1894 struct buf *bp;
1895 {
1896 struct swapbuf *sbp = (struct swapbuf *) bp;
1897 int s = splbio();
1898 UVMHIST_FUNC("uvm_swap_bufdone"); UVMHIST_CALLED(pdhist);
1899
1900 UVMHIST_LOG(pdhist, "cleaning buf %p", buf, 0, 0, 0);
1901 #ifdef DIAGNOSTIC
1902 /*
1903 * sanity check: swapbufs are private, so they shouldn't be wanted
1904 */
1905 if (bp->b_flags & B_WANTED)
1906 panic("uvm_swap_bufdone: private buf wanted");
1907 #endif
1908
1909 /*
1910 * drop the buffer's reference to the vnode.
1911 */
1912 if (bp->b_vp)
1913 brelvp(bp);
1914
1915 /*
1916 * now put the aio on the uvm.aio_done list and wake the
1917 * pagedaemon (which will finish up our job in its context).
1918 */
1919 simple_lock(&uvm.pagedaemon_lock); /* locks uvm.aio_done */
1920 TAILQ_INSERT_TAIL(&uvm.aio_done, &sbp->sw_aio, aioq);
1921 simple_unlock(&uvm.pagedaemon_lock);
1922
1923 thread_wakeup(&uvm.pagedaemon);
1924 splx(s);
1925 }
1926
1927 /*
1928 * uvm_swap_aiodone: aiodone function for anonymous memory
1929 *
1930 * => this is called in the context of the pagedaemon (but with the
1931 * page queues unlocked!)
1932 * => our "aio" structure must be part of a "swapbuf"
1933 */
1934 static void
1935 uvm_swap_aiodone(aio)
1936 struct uvm_aiodesc *aio;
1937 {
1938 struct swapbuf *sbp = aio->pd_ptr;
1939 struct vm_page *pps[MAXBSIZE >> PAGE_SHIFT];
1940 int lcv, s;
1941 vaddr_t addr;
1942 UVMHIST_FUNC("uvm_swap_aiodone"); UVMHIST_CALLED(pdhist);
1943
1944 UVMHIST_LOG(pdhist, "done with aio %p", aio, 0, 0, 0);
1945 #ifdef DIAGNOSTIC
1946 /*
1947 * sanity check
1948 */
1949 if (aio->npages > (MAXBSIZE >> PAGE_SHIFT))
1950 panic("uvm_swap_aiodone: aio too big!");
1951 #endif
1952
1953 /*
1954 * first, we have to recover the page pointers (pps) by poking in the
1955 * kernel pmap (XXX: should be saved in the buf structure).
1956 */
1957 for (addr = aio->kva, lcv = 0 ; lcv < aio->npages ;
1958 addr += PAGE_SIZE, lcv++) {
1959 pps[lcv] = uvm_pageratop(addr);
1960 }
1961
1962 /*
1963 * now we can dispose of the kernel mappings of the buffer
1964 */
1965 uvm_pagermapout(aio->kva, aio->npages);
1966
1967 /*
1968 * now we can dispose of the pages by using the dropcluster function
1969 * [note that we have no "page of interest" so we pass in null]
1970 */
1971 uvm_pager_dropcluster(NULL, NULL, pps, &aio->npages,
1972 PGO_PDFREECLUST, 0);
1973
1974 /*
1975 * finally, we can dispose of the swapbuf
1976 */
1977 s = splbio();
1978 pool_put(swapbuf_pool, sbp);
1979 splx(s);
1980 }
1981